JP2014106136A - 漏洩磁束式検査装置および検査方法 - Google Patents

漏洩磁束式検査装置および検査方法 Download PDF

Info

Publication number
JP2014106136A
JP2014106136A JP2012259647A JP2012259647A JP2014106136A JP 2014106136 A JP2014106136 A JP 2014106136A JP 2012259647 A JP2012259647 A JP 2012259647A JP 2012259647 A JP2012259647 A JP 2012259647A JP 2014106136 A JP2014106136 A JP 2014106136A
Authority
JP
Japan
Prior art keywords
defect
frequency
detection unit
signal
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012259647A
Other languages
English (en)
Inventor
Hiroyuki Yokota
廣幸 横田
Yasuo Tomura
寧男 戸村
Hirokazu Kiuchi
宏和 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012259647A priority Critical patent/JP2014106136A/ja
Publication of JP2014106136A publication Critical patent/JP2014106136A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

【課題】欠陥の検出範囲を広げて高精度で欠陥を検出することができる漏洩磁束式検査装置および検査方法を提供すること。
【解決手段】漏洩磁束式検査装置は、鋼板1を磁化する磁化器10と、磁化された鋼板1に存在する欠陥2に起因する漏洩磁束を検出する検出器13と、検出器13からの検出信号を処理して鋼板1の欠陥2を検出する欠陥検出ユニット20とを具備する。欠陥検出ユニット20は、第1および第2のバンドパスフィルター41および31を並列させ、第1のバンドパスフィルター41により検出信号から相対的に低周波数側の周波数範囲の信号を通過させてその周波数範囲から欠陥を検出する低周波数側欠陥検出部23と、第2のバンドパスフィルター31により検出信号から相対的に高周波数側の周波数範囲を通過させてその周波数範囲から欠陥を検出する高周波数側欠陥検出部22とを有し、欠陥の大きさの特徴を検出する。
【選択図】 図7

Description

本発明は、鋼板等の強磁性体金属からなる被検査体に強力な磁界をかけ、被検査体の内部または表面に存在する欠陥に起因する漏洩磁束の変化を検出することにより欠陥の検査を行う漏洩磁束式検査装置および検査方法に関する。
ブリキ鋼板、自動車用鋼板、珪素鋼板等の薄鋼板を製造するラインにおいては、強磁性体金属からなる被検査体である鋼板の内部または表面に存在する欠陥を検査するための検査装置として、漏洩磁束式検査装置が用いられている(例えば、特許文献1〜6)。
漏洩磁束式検査装置は、図12に示すように、搬送されている強磁性体である被検査体としての鋼板1に、磁化器101により強力な磁界をかけ、鋼板1の内部または表面に存在する欠陥102の部分で漏洩する漏洩磁束Mの変化を被検査体面近くに設置した磁束検出器(磁気センサ)103を用いて検出する装置である。このときの磁界は、欠陥による漏洩磁束が多くなるように、飽和と思われる状態まで磁束を鋼板内に通すことができる程度の値とする。
漏洩磁束を検出する磁束検出器(磁気センサ)103としては、磁気抵抗素子、検出コイル、マグネットダイオード、ホール素子が用いられ、その検出信号を、図13に示す欠陥検出ユニット110により処理して欠陥検出を行う。従来の欠陥検出ユニット110は、検出された信号を増幅するアンプ111と、増幅された信号からノイズ信号を分離する単独のバンドパスフィルター(BPF)112と、信号を増幅するとともに全波整流するためのアンプ/全波整流器113と、感度調整器114と、信号の閾値処理を行って欠陥の有無を判定する閾値処理部115とを有する。
アンプ111で増幅された信号はi)に示すようなものであり、この信号がバンドパスフィルター112に供給される。従来のバンドパスフィルター112は、ハイパスフィルター112aとローパスフィルター112bとを直列に組み合わせたものであり、検出したい欠陥の大きさに合わせてハイパス側の下限カットオフ周波数を変更して感度を調整する。すなわち、検出目標の欠陥が小さい場合は下限カットオフ周波数を高周波領域側に変更して最適化の工夫を行っている。また、検査対象物の移動により欠陥の周波数が高くなることに対しては、検査対象物の速度に合わせてカットオフ周波数を変更して補正を行う処理を行っている(速度追従式バンドパスフィルターを採用)。ただし、バンドパスフィルターの周波数を高くすることは周辺の電気機器の誘導信号の影響を受けて電気ノイズが混入することから、むやみに高い周波数を選択することはできない。
また、漏洩磁束の大きさは欠陥の大きさに概ね比例することから、欠陥の大きさの判別は、バンドパスフィルター112を通過した信号をアンプ/全波整流器113で、ii)のように増幅するとともに全波整流してその絶対値を求めて検査信号とし、感度調整器114により検出感度調整(検量線を引く作業)を行い、欠陥信号を適正な信号レベルにする。この信号に対して閾値処理部115により、iii)に示すように閾値判別を行い、有害として定めた閾値を超えた信号が得られたときのみ「欠陥有り」とする。閾値を数段階に設定して有害の重度を判定することも可能である。
特開昭56−61645号公報 特開平11−83808号公報 特開2002−195984号公報 特開2002−257790号公報 特開2004−354240号公報 特開2007−64907号公報
欠陥から発生する漏洩磁束からバンドパスフィルター等を用いて信号処理して欠陥を検出、判定する処理において、出力は欠陥の大きさに概ね比例して得られるが、欠陥の形状が大きく異なるなど、漏洩磁束の漏れ状況が異なると、同じ出力が得られない場合がある。例えば、長い欠陥と幅の広い欠陥では、欠陥体積が同じでも、鋼板内の磁束を阻害する大きさが違うと出力が異なる。すなわち、欠陥の断面積などの磁束の流れ方向に直角方向の大きさの要因差が漏洩磁束の通過に対して妨害になり影響する。
このため、検出すべき欠陥の種類や形状は、装置導入前に整理しておき、検出が必要な欠陥に対して検出素子の選定、構成、ノイズの除去を行うバンドパスフィルターの定数も検出が必要な欠陥に対して最適な値にしておく必要がある。すなわち、検出したい欠陥の形状の出力が小さくなってしまうことがないようにし、さらに、必要な閾値を設定できるように閾値を予め定めておく必要がある。
このように、漏洩磁束式検査装置は、できるだけ多くの欠陥形状に適合させることが望まれているが、被検査体である鋼板に磁界をかける磁極を欠陥の流れ方向(鋼板の搬送方向)に配置した構成では、例えば、被検査体である鋼板が移動する方向に長く伸びた欠陥は、その信号が、同じ欠陥体積の他の形状の欠陥を同一処理した信号より小さくなる傾向がある。また、前述したようにハイパス側の下限カットオフ周波数を高くすることで小さい欠陥の検出には有利になるが、移動方向に長い欠陥などの変化の緩い欠陥には有利に働かない。したがって、全ての形状の欠陥を高精度で検出することは極めて困難である。
本発明はかかる事情に鑑みてなされたものであって、欠陥の検出範囲を広げて高精度で欠陥を検出することができる漏洩磁束式検査装置および検査方法を提供することを課題とする。
上記課題を解決するため、本発明は、強磁性体金属からなる被検査体を磁化する磁化器と、前記磁化器により磁化された被検査体の表面または内部に存在する欠陥に起因する漏洩磁束を検出する検出器と、前記検出器からの検出信号を処理して被検査体の表面または内部に存在する欠陥を検出する欠陥検出ユニットとを具備し、前記欠陥検出ユニットは、2つ以上のバンドパスフィルターを並列させ、少なくとも、第1のバンドパスフィルターにより前記検出信号から相対的に低周波数側の周波数範囲の信号を通過させてその周波数範囲から欠陥を検出する低周波数側欠陥検出部と、第2のバンドパスフィルターにより前記検出信号から相対的に高周波数側の周波数範囲を通過させてその周波数範囲から欠陥を検出する高周波数側欠陥検出部とを有し、前記低周波数側欠陥検出部と前記高周波数側欠陥検出部とで欠陥の大きさの特徴を検出することを特徴とする漏洩磁束式検査装置を提供する。
また、本発明は、強磁性体金属からなる被検査体を磁化器により磁化し、被検査体の表面または内部に存在する欠陥に起因する漏洩磁束を検出器により検出し、前記検出器からの検出信号を処理して被検査体の表面または内部に存在する欠陥を検出する漏洩磁束式検査方法であって、2つ以上のバンドパスフィルターを並列させ、少なくとも、第1のバンドパスフィルターにより前記検出信号から相対的に低周波数側の周波数範囲の信号を通過させてその周波数範囲から欠陥を検出する低周波数側欠陥検出部と、第2のバンドパスフィルターにより前記検出信号から相対的に高周波数側の周波数範囲を通過させてその周波数範囲から欠陥を検出する高周波数側欠陥検出部とを用い、欠陥の大きさの特徴を検出することを特徴とする漏洩磁束式検査方法を提供する。
本発明において、前記低周波数側欠陥検出部は、欠陥の長さに見合った周波数成分を抽出して被検査体移動方向に長い欠陥を検出するものとすることができる。この場合に、前記低周波数側欠陥検出部の出力を用いて、欠陥の長さの判定を行い、前記高周波数側欠陥検出部の出力および前記低周波側欠陥検出部の出力を用いて、欠陥の長さを含めた大きさの判定を行うようにすることができる。また、前記低周波数側欠陥検出部は、欠陥の大きさに見合った周波数成分の信号を時間経過に合わせて加算していき、上に凸または下に凸の信号を形成し、その長さに対応する時間に基づいて欠陥の長さを算出するようにしてもよい。さらに、前記高周波数側検出部の第2のバンドパスフィルターは、ハイパス側の下限カットオフ周波数が、検出したい欠陥長さの通過時間を一波長とした正弦波の周波数相当以上とすることが好ましい。装置により多少異なるので、実験により最適値を決めるとよい。
本発明によれば、2つ以上のバンドパスフィルターを並列させ、少なくとも、第1のバンドパスフィルターにより検出信号から相対的に低周波数側の周波数範囲の信号を通過させてその周波数範囲から欠陥を検出する低周波数側欠陥検出部と、第2のバンドパスフィルターにより検出信号から相対的に高周波数側の周波数範囲を通過させてその周波数範囲から欠陥を検出する高周波数側欠陥検出部とにより、それぞれ異なる特徴の欠陥を検出する。このため、欠陥の検出範囲を広げて、従来検出し難かった欠陥を検出することができ、従来よりも高精度で欠陥を検出することができる。
検査信号のうち欠陥の長さに見合った周波数成分を示す模式図である。 検査信号のうち欠陥のエッジ部(欠陥と鋼板の境界)から発生する周波数成分を示す模式図である。 図1の周波数成分の周波数帯域と図2の周波数成分の周波数帯域とを周波数軸に並べて記載した例を示す図である。 種々の周波数範囲のバンドパスフィルター通過後の波形の例を示す図である。 一つのバンドパスフィルターのハイパスフィルターの周波数(低周波数側)を変更した(下限を設けた)場合における検査出力が変化する状況を示す図であり、(a)にハイパスフィルターの周波数を変更した状況を示し、(b)に信号のS/N比および出力を示す。 本発明の実施形態に係る漏洩磁束式検査装置を示す概略構成図である。 図6の漏洩磁束式検査装置における欠陥検出ユニットの構成を示すブロック図である。 図1に示す欠陥の大きさに見合った周波数成分の信号を時間経過に合わせて加算した際の信号を示す図である。 低周波数側欠陥検出部における具体的な処理を示す図である。 低周波数側欠陥検出部の長さ抽出部における一度加算する前の信号のピーク間の時間を示す図である。 欠陥の特徴方向を説明するための図である。 従来の漏洩磁束式検査装置における測定原理を説明するための図である。 従来の漏洩磁束式検査装置における欠陥検出ユニットを示すブロック図である。
以下、添付図面を参照して本発明の実施の形態について説明する。
欠陥信号中の周波数成分は欠陥の特徴により、その成分内容が異なる場合があるので、信号成分を欠陥の特徴に合わせて分離処理すると特徴毎の処理が可能になる。
周波数成分の特徴には、欠陥の長さに対応した低い周波数(図1)と欠陥のエッジ部の変化である高い周波数(図2)とがある。
このように特徴のある周波数を個別に柔軟に処理してそれぞれの出力値を求め、欠陥の体積などの有害度と信号との検量線を求めることで、種々の形状の欠陥検出が可能となる。
本実施形態は、以上の点を前提としているが、本実施形態の内容をより理解しやすいように、最初に従来の欠陥検出手法について説明する。
(1)従来の欠陥検出手法
欠陥からの検査信号には、図1に示したような、欠陥の長さに見合った周波数成分と、図2に示したような、欠陥のエッジ部(欠陥と鋼板の境界)から発生する周波数成分があり、それぞれが含んでいる周波数に違いがあることが容易に理解することができる。つまり、エッジ部から発生する周波数成分の方が時間の周期が短くて周波数の高い成分を多く含んでいる。
図3は、図1の周波数成分の周波数帯域と図2の周波数成分の周波数帯域とを周波数軸に並べて記載した例を示す図である。図3において、図1および図2のそれぞれに対応した信号を得るには、図1および図2に対応したバンドパスフィルターを2種類(複数)用いるとよい。
しかし、従来は単独でバンドパスフィルターが用いられており、エッジで発生する高い周波数と、欠陥全体で発生する周波数を同時に増減して調整する。具体的な方法としては、上述の図13に示すように、ノイズを分離するために、バンドパスフィルターにおけるハイパスフィルターにより、振動、電源周波数、駆動モータからの誘導などのノイズを含む不要な低い周波数をカットする。これらの振動、電源周波数、駆動モータからの誘導などのノイズをカットした後でも、鋼板の磁気的に不均一な部分から発生する地合いノイズがあり、より小さな欠陥を見つけるには地合いノイズが大きな障害となる。そこで、鋼板の地合いノイズをカットするために、カットする周波数の値をさらに上げて行き、S/Nが最大になるように調整を行う。
高い周波数をカットオフするローパスフィルター(ローパス周波数)は広域のノイズの誘導防止を考慮して選定する。
図4に、種々の周波数範囲のバンドパスフィルター通過後の波形の例を示す。これらはあくまでも例示に過ぎず、使用する素子や構成により波形は異なってくる。周辺のノイズの混入量も一例である。
図5は一つのバンドパスフィルターのハイパスフィルターの周波数(低周波数側)を変更した(下限を設けた)場合における検査出力が変化する状況を示す図であり、(a)にハイパスフィルターの周波数を変更した状況を示し、(b)に信号のS/N比および出力を示す。図5の信号は、0.1mmφ程度のドリル穴の信号変化状況である。図5(b)に示すように、下限周波数1kHzでのカットオフでは検査出力が高いがS/Nが良くないことがわかる。下限周波数3kHzでのカットオフではS/Nは良くなるが、検査信号は小さくなることがわかる。
図4と図5から、0.1mmφのドリル穴程度の小さい欠陥を見つけたいときには、ハイパス側の下限カットオフ周波数を例えば2kHz以上と高くして、小さな欠陥でのS/Nが高くなる周波数帯を選択する。このとき、ハイパスフィルターの下限カットオフ周波数を高くしていくと信号の値が小さくなるので必要なゲイン調整も合わせて行う。この場合、大きな欠陥のエッジ信号が極端に小さくならないように確認しながら、検査対象鋼板のノイズと見つけたい欠陥の信号比、フィルターの最適値を求める。
しかし、このような従来の手法では、被検査体である鋼板に磁界をかける磁極が欠陥の流れ方向(鋼板の搬送方向)に配置されており、例えば、被検査体である鋼板が移動する方向に長く伸びた欠陥は、その信号が、同じ欠陥体積の他の形状の欠陥を同一処理した信号より小さくなる傾向がある。また、ハイパス側のカットオフ周波数を高くすることで小さい欠陥の検出には有利になるが、移動方向に長い欠陥などの変化の緩い欠陥には有利に働かない。したがって、従来の手法では、特に鋼板移動方向に長い欠陥を高精度で検出することは極めて困難であった。
(2)本実施形態に係る漏洩磁束式検査装置
図3に示す低周波数側の第1のバンドパスフィルター(BPF1)の出力は、欠陥の長さ情報を含んでいることが多いため、本実施形態では比較的小さい欠陥に対応する相対的に高周波数側の周波数範囲の信号処理と、長い欠陥が含まれる相対的に低周波数側の周波数範囲の信号処理とを別個に行い、それぞれの出力値を求め、種々の形状の欠陥を高精度で検出できるようにする。
図6(a),(b)は本発明の実施形態に係る漏洩磁束式検査装置を示す概略構成図、図7は図6の漏洩磁束式検査装置における欠陥検出ユニットの構成を示すブロック図である。本実施形態の漏洩磁束式検査装置(図6)は、搬送される鋼板1の幅方向に沿って複数設けられた磁化器10と、磁化器10に対応する鋼板1の表面近傍に設けられた漏洩磁束を検出する検出器(磁気センサ)13と、検出器13で検出された漏洩磁束信号から欠陥2を検出する欠陥検出ユニット20とを有している。なお、図6(a)で磁化器10と検出器13とが鋼板1を挟んで反対側に配置されている例を示し、図6(b)ではこれらが鋼板1の同じ側に配置されている例を示す。これらのうち図6(a)の装置は検出器13側に磁化器10が存在しないため、検出器13を緻密に配置することができるという利点を有する。
磁化器10は、ヨーク11と、ヨーク11に巻回された励磁コイル12とを有しており、励磁コイル12に電流を流すことにより、鋼板1を励磁し、漏洩磁束Mを発生させる。また、検出器(磁気センサ)13としては、磁気抵抗素子、検出コイル、マグネットダイオード、ホール素子が用いられる。なお、磁化器10と検出器13は一体化され、検出ヘッドが構成される。なお、図6(a)に示す符号14は中空ロールである。
本実施形態では、欠陥の特徴に対応して分離した周波数帯域を個別に柔軟に処理するために、欠陥検出ユニット20は、図7に示すように、検出器13で検出された信号を増幅するためのアンプ21と、増幅された信号のうち相対的に高周波数の信号から欠陥を検出する高周波数側欠陥検出部22と、増幅された信号のうち相対的に低周波数の信号から欠陥検出を行う低周波数側欠陥検出部23とを有する。
高周波数側欠陥検出部22は、高周波数側のバンドパスフィルター(BPF2)31(図3のBPF2に対応)と、信号を増幅するとともに全波整流するためのアンプ/全波整流器32と、感度調整器33と、信号の閾値処理を行って欠陥を検出する閾値処理部34とを有する。この高周波数側欠陥検出部22の構成のみは、図13に示す従来の欠陥検出ユニット110と同様である。
バンドパスフィルター(BPF2)31は、ハイパスフィルターとローパスフィルターとを組み合わせたものであり、下限カットオフ周波数を、検出したい欠陥長さの通過時間を一波長とした正弦波の周波数相当以上、例えば2kHz以上として、小さな欠陥でのS/Nが高くなる周波数帯を選択する。アンプ21で増幅された信号は、バンドパスフィルター(BPF2)31を通過した後、アンプ/全波整流器32により増幅および全波整流され、感度調整器33により欠陥信号を適正な信号レベルにされた後、閾値処理部34において、この信号に対して閾値判別が行われ、有害として定めた閾値を超えた信号が得られたときのみ「欠陥有り」とする。この閾値処理部34から従来と同様の出力である「出力1」が出力される。
次に、低周波数側欠陥検出部23は、低周波数側のバンドパスフィルター(BPF1)41(図3のBPF1に対応)と、入力信号を0V位置で分解する信号分解部42と、分解信号の中で所定の時間幅のみ抽出して選別する時間幅選別部43と、隣接する時間信号を加算する信号加算部44と、加算した信号から長さを抽出する長さ抽出部45と、欠陥の長さを含めた大きさを演算する大きさ演算部46と、長さを含めた大きさ判定部47と、長さ抽出部45で抽出された欠陥の長さ信号の閾値処理を行って欠陥の長さを検出する長さ閾値処理部48とを有する。バンドパスフィルター(BPF1)41もハイパスフィルターとローパスフィルターとを組み合わせたものであり、下限カットオフ周波数は例えば500Hz程度とする。
この低周波数側欠陥検出部23は、相対的に低周波数の信号を通過させるバンドパスフィルター(BPF1)41を通過した後の、図1に示す欠陥の大きさに見合った周波数成分の信号(図8(a))を時間経過に合わせて加算して行き、図8(b)のようなプラス方向に凸(上に凸)の信号(場合によっては、マイナス方向に凸(下に凸)の信号)を生成する。そして、時系列に加算処理した後の信号の0Vから0Vの間の時間を計測して鋼板の移動速度から欠陥の長さを算出し、算出された長さを判定して異常の発生の有無を検出する。
高周波数側欠陥検出部22のバンドパスフィルター(BPF2)と、低周波数側欠陥検出部23のバンドパスフィルター(BPF1)とは並列して設けられている。
低周波数側欠陥検出部23における具体的な処理を図9に示す。
最初に、(a)に示すバンドパスフィルター(BPF1)41を通過した信号(入力信号)を、(b)に示すように、信号分解部42により入力信号を0V位置で分解する。このように信号が0Vをクロスする部分で信号を分解(分離)することにより、データとして扱えるようにする。
次に(c)に示すように、時間幅選別部43により、0Vと0Vとの間の時間幅を所定の時間tの半分以上であるか否かを判定して所定の時間tの半分以上の時間幅のみ抽出して選別する。所定の時間tは、欠陥の長さに対応した検出素子の通過時間の関係数(図8の時間)とする。検出器の大きさ、欠陥との検出距離による時間の拡大や信号がエッジでピークとなる時間のずれを考慮して事前に求めておく。また、先端と尾端の形状の違いによる変化もあるので任意の値を選択できるようにしておく。
次に(d)に示すように、信号加算部44により、分解した信号ブロックの時間的に隣同士のものについて隣接時間加算を行う。加算の終端が大きく0Vからずれる場合や、tと大幅に異なる場合は、対象から除外する。時間を横成分、出力を縦成分として面積を求めて大きさの比較を行い、同じ程度のものを選別する方法でもよい。適度な大きさの信号のプラス側とマイナス側のペアを選択することができたら、長さ抽出部45において、図10に示すように、一度加算する前の信号のピーク間の時間を求めて、その時間と移動速度から欠陥の長さ特徴量を求める。なお、長さ特徴量の開始/停止の簡便の方法としては、検査出力の閾値判定のように、検査レベル判定(ノイズより大きい閾値)で行う方法もある。
この長さ抽出部45で抽出された欠陥の長さ特徴量信号に対し、長さ閾値処理部48で閾値処理を行い、有害として定めた長さ閾値を超えた信号が得られたときのみ「欠陥有り」とし、この長さ閾値処理部48から欠陥長さ特徴量の出力である「出力3」が出力される。以上のような閾値処理による欠陥長さ特徴量判定を随時行うことにより、欠陥の長さ異常の判定が可能となる。
一方、長さ抽出部45で抽出された欠陥信号と、高周波数側欠陥検出部22の閾値処理部34からの欠陥信号とを大きさ演算部46で演算し、欠陥の長さを含めた大きさ、すなわち欠陥の特徴量を有した信号を求める。そして、大きさ判定部47では、大きさ演算部46で得られた長さ特徴量を含めた欠陥の大きさが、有害として定めた欠陥の大きさ以上か否かを判定し、欠陥の大きさの出力である「出力2」が出力される。
図11に示すように、欠陥の特徴方向としては、厚み特徴方向、幅特徴方向、および長さ特徴方向がある。従来の検査出力は、主に欠陥の厚みや幅に対応した信号であるので、従来の信号に本実施形態のような長さの特徴量を加算すれば、体積的な大きさの判定を行うことが可能となる。すなわち、本発明に基づいて長い特徴的な信号を得ることにより、従来では見つけ難かった特徴の欠陥も容易に検出可能となる。
このように、従来では、バンドパスフィルターの下限カットオフ周波数を高くして、高い周波数の信号から欠陥の検出を行っていたが、本発明では、相対的に高い周波数の信号と、相対的に低い周波数の信号の少なくとも2つ以上の周波数範囲から欠陥の大きさの特徴をとらえることができ、例えば、従来では検出が困難であった欠陥の長さの特徴を捉えることができる。このため、欠陥の検出範囲を広げて、従来検出し難かった欠陥を検出することができ、従来よりも高精度で欠陥を検出することができる。
なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、2つのバンドパスフィルターを用いて、検出信号を相対的に高周波数側の周波数範囲と、相対的に低周波数側の周波数範囲とに分け、これらを別個に処理する例を示したが、周波数範囲を3つ以上に分けてもよい。また、上記実施形態では、相対的に低周波数側の周波数範囲から欠陥の長さの特徴をとらえる例を示したが、これに限定されるものではない。さらに、信号の処理方法は一例であって、他の種々の方法を採用することができる。また、漏洩磁束式検査装置は、図6(a),(b)に限らず、種々の方式に本発明を適用可能である。
1 鋼板
2 欠陥
10 磁化器
11 ヨーク
12 励磁コイル
13 検出器(磁気センサ)
14 中空ロール
20 欠陥検出ユニット
21 アンプ
22 高周波数側欠陥検出部
23 低周波数側欠陥検出部
31 バンドパスフィルター(BPF2)
32 アンプ/全波整流器
33 感度調整器
34 閾値処理部
41 バンドパスフィルター(BPF1)
42 信号分解部
43 時間幅選別部
44 信号加算部
45 長さ抽出部
46 大きさ演算部
47 大きさ判定部
48 長さ閾値処理部
M 漏洩磁束

Claims (10)

  1. 強磁性体金属からなる被検査体を磁化する磁化器と、
    前記磁化器により磁化された被検査体の表面または内部に存在する欠陥に起因する漏洩磁束を検出する検出器と、
    前記検出器からの検出信号を処理して被検査体の表面または内部に存在する欠陥を検出する欠陥検出ユニットと
    を具備し、
    前記欠陥検出ユニットは、2つ以上のバンドパスフィルターを並列させ、少なくとも、第1のバンドパスフィルターにより前記検出信号から相対的に低周波数側の周波数範囲の信号を通過させてその周波数範囲から欠陥を検出する低周波数側欠陥検出部と、第2のバンドパスフィルターにより前記検出信号から相対的に高周波数側の周波数範囲を通過させてその周波数範囲から欠陥を検出する高周波数側欠陥検出部とを有し、前記低周波数側欠陥検出部と前記高周波数側欠陥検出部とで欠陥の大きさの特徴を検出することを特徴とする漏洩磁束式検査装置。
  2. 前記低周波数側欠陥検出部は、欠陥の長さに見合った周波数成分を抽出して被検査体移動方向に長い欠陥を検出することを特徴とする請求項1に記載の漏洩磁束式検査装置。
  3. 前記低周波数側欠陥検出部の出力を用いて、欠陥の長さの判定を行い、前記高周波数側欠陥検出部の出力および前記低周波側欠陥検出部の出力を用いて、欠陥の長さを含めた大きさの判定を行うことを特徴とする請求項2に記載の漏洩磁束式検査装置。
  4. 前記低周波数側欠陥検出部は、欠陥の大きさに見合った周波数成分の信号を時間経過に合わせて加算していき、上に凸または下に凸の信号を形成し、その長さに対応する時間に基づいて欠陥の長さを算出することを特徴とする請求項2または請求項3に記載の漏洩磁束式検査装置。
  5. 前記高周波数側検出部の第2のバンドパスフィルターは、ハイパス側の下限カットオフ周波数が、検出したい欠陥長さの通過時間を一波長とした正弦波の周波数相当以上であることを特徴とする請求項1から請求項4のいずれか1項に記載の漏洩磁束式検査装置。
  6. 強磁性体金属からなる被検査体を磁化器により磁化し、被検査体の表面または内部に存在する欠陥に起因する漏洩磁束を検出器により検出し、前記検出器からの検出信号を処理して被検査体の表面または内部に存在する欠陥を検出する漏洩磁束式検査方法であって、
    2つ以上のバンドパスフィルターを並列させ、少なくとも、第1のバンドパスフィルターにより前記検出信号から相対的に低周波数側の周波数範囲の信号を通過させてその周波数範囲から欠陥を検出する低周波数側欠陥検出部と、第2のバンドパスフィルターにより前記検出信号から相対的に高周波数側の周波数範囲を通過させてその周波数範囲から欠陥を検出する高周波数側欠陥検出部とを用い、欠陥の大きさの特徴を検出することを特徴とする漏洩磁束式検査方法。
  7. 前記低周波数側欠陥検出部は、欠陥の長さに見合った周波数成分を抽出して被検査体移動方向に長い欠陥を検出することを特徴とする請求項6に記載の漏洩磁束式検査方法。
  8. 前記低周波数側欠陥検出部の出力を用いて、欠陥の長さの判定を行い、前記高周波数側欠陥検出部の出力および前記低周波側欠陥検出部の出力を用いて、欠陥の長さを含めた大きさの判定を行うことを特徴とする請求項7に記載の漏洩磁束式検査方法。
  9. 前記低周波数側欠陥検出部は、欠陥の大きさに見合った周波数成分の信号を時間経過に合わせて加算していき、上に凸または下に凸の信号を形成し、その長さに対応する時間に基づいて欠陥の長さを算出することを特徴とする請求項7または請求項8に記載の漏洩磁束式検査方法。
  10. 前記高周波数側検出部の第2のバンドパスフィルターは、ハイパス側の下限カットオフ周波数が、検出したい欠陥長さの通過時間を一波長とした正弦波の周波数相当以上であることを特徴とする請求項6から請求項9のいずれか1項に記載の漏洩磁束式検査方法。
JP2012259647A 2012-11-28 2012-11-28 漏洩磁束式検査装置および検査方法 Pending JP2014106136A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259647A JP2014106136A (ja) 2012-11-28 2012-11-28 漏洩磁束式検査装置および検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259647A JP2014106136A (ja) 2012-11-28 2012-11-28 漏洩磁束式検査装置および検査方法

Publications (1)

Publication Number Publication Date
JP2014106136A true JP2014106136A (ja) 2014-06-09

Family

ID=51027747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259647A Pending JP2014106136A (ja) 2012-11-28 2012-11-28 漏洩磁束式検査装置および検査方法

Country Status (1)

Country Link
JP (1) JP2014106136A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108784A (zh) * 2019-06-03 2019-08-09 中国计量大学 一种基于低频漏磁的焊缝检测便携式笔
JP7420302B1 (ja) 2023-03-23 2024-01-23 フジテック株式会社 信号処理装置および信号処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108784A (zh) * 2019-06-03 2019-08-09 中国计量大学 一种基于低频漏磁的焊缝检测便携式笔
JP7420302B1 (ja) 2023-03-23 2024-01-23 フジテック株式会社 信号処理装置および信号処理方法

Similar Documents

Publication Publication Date Title
US9254851B2 (en) Sensor assembly
JP4998821B2 (ja) 渦流検査方法及び該渦流検査方法を実施するための渦流検査装置
JP2008224494A (ja) 渦流検査方法、該渦流検査方法で検査した鋼管、及び該渦流検査方法を実施するための渦流検査装置
CN102759567A (zh) 直流磁化下钢管内外壁缺陷的涡流检测识别及评价方法
JP5269564B2 (ja) 管状体の欠陥評価方法及び管状体の欠陥評価装置
JP5544962B2 (ja) 漏洩磁束探傷方法及び漏洩磁束探傷装置
CN104833720A (zh) 单一线圈电磁谐振检测金属管道损伤的方法
JP5983556B2 (ja) 漏洩磁束式検査装置および検査方法
JP2013160739A (ja) 磁性体の探傷方法及び探傷装置
JP4835212B2 (ja) 渦流探傷方法及び渦流探傷装置
JP6562055B2 (ja) 方向性電磁鋼板の加工状態評価方法、加工状態評価装置、及び製造方法
JP2014106136A (ja) 漏洩磁束式検査装置および検査方法
CN108562640B (zh) 一种漏磁信号增强结构
JP2013148449A (ja) 磁気探傷装置および磁気探傷方法
JP6079504B2 (ja) 漏洩磁束式検査装置および検査方法
JP6607242B2 (ja) 方向性電磁鋼板の加工状態評価方法、加工状態評価装置、及び製造方法
CN102759565B (zh) 一种钢带纵横向缺陷检测并识别的漏磁检测装置及方法
JP2007292760A (ja) 材料の損傷を検出する装置
JP2004354240A (ja) 漏洩磁束探傷法および漏洩磁束探傷装置
JP2000227422A (ja) 渦流探傷法
JP2014122849A (ja) 渦流探傷装置および渦流探傷方法
CN108828058A (zh) 一种基于脉冲漏磁检测区分钢板上、下表面缺陷的方法
JP2009031224A (ja) 渦電流センサ、焼き入れ深さ検査装置、および焼入れ深さ検査方法
Willcox et al. An introduction to Barkhausen noise and its applications
JP6624099B2 (ja) 磁気計測方法及び磁気計測装置