JP2014101464A - Photosensitizer and photoelectric conversion element - Google Patents

Photosensitizer and photoelectric conversion element Download PDF

Info

Publication number
JP2014101464A
JP2014101464A JP2012255272A JP2012255272A JP2014101464A JP 2014101464 A JP2014101464 A JP 2014101464A JP 2012255272 A JP2012255272 A JP 2012255272A JP 2012255272 A JP2012255272 A JP 2012255272A JP 2014101464 A JP2014101464 A JP 2014101464A
Authority
JP
Japan
Prior art keywords
dye
photoelectric conversion
photosensitizer
integer
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012255272A
Other languages
Japanese (ja)
Inventor
Shingo Kajiyama
真吾 楮山
Yukiko Inoue
由紀子 井上
Shinji Tojima
伸治 東嶋
Taketoshi Miura
偉俊 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEMIKUREA KK
Chemicrea Inc
Original Assignee
KEMIKUREA KK
Chemicrea Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEMIKUREA KK, Chemicrea Inc filed Critical KEMIKUREA KK
Priority to JP2012255272A priority Critical patent/JP2014101464A/en
Publication of JP2014101464A publication Critical patent/JP2014101464A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photosensitizer excellent in photoelectric conversion efficiency and durability.SOLUTION: The photosensitizer is a dye represented by general formula (I) or (II) or a salt thereof. (In the formula (I) or (II), m represents an integer of 1-3; n represents an integer of 0-18; p represents an integer of 1-3; X represents an oxygen atom, a sulfur atom, or a substituted nitrogen atom; l represents 0 or 1; and DYE represents an organic dye containing no rare transition metal.)

Description

本発明は、光増感剤およびこの光増感剤を用いた光電変換素子に関するものである。   The present invention relates to a photosensitizer and a photoelectric conversion element using the photosensitizer.

近年地球の環境破壊が大きな社会問題になっている。その原因のひとつは化石燃料の大量消費による大気中の炭酸ガス増加に起因する地球温暖化によるものである。化石燃料の大量消費はその枯渇によるエネルギー不足をも引き起こし、原子力の利用にも翳りが見えた今、人類が早急に解決しなければならない最重要課題である。化石燃料にかわるエネルギー源が広く求められており、なかでも大気中の炭酸ガスを増加させないクリーンな太陽エネルギーが注目され、その利用がワールドワイドで精力的に研究されている。   In recent years, environmental destruction of the earth has become a major social problem. One of the causes is global warming caused by an increase in carbon dioxide in the atmosphere due to large consumption of fossil fuels. Mass consumption of fossil fuels is causing the energy shortage due to its depletion, and now that the use of nuclear energy has become angry, it is the most important issue for human beings to solve immediately. Energy sources that replace fossil fuels are widely demanded, and clean solar energy that does not increase carbon dioxide in the atmosphere has attracted attention, and its use has been energetically studied worldwide.

太陽エネルギーを直接利用する太陽電池の開発も世界的規模で行われており、既に実用化されているものもいくつかある。現在製品化されているのは結晶、多結晶、アモルファス等のシリコン系太陽電池、あるいはガリウムやカドミウムにヒ素などを組み合わせた無機系太陽電池に限られている。無機系太陽電池は高変換効率で耐久性も良いものが多い反面、製造にクリーンルームなどの特殊な設備を必要とするため製造コストが高いことに加えて、使用原料の毒性等から環境・資源的な問題を抱えているものが多い。このため低コストで環境負荷の少ない原料を用いた太陽電池が強く要望されている。   The development of solar cells that directly use solar energy has been carried out on a global scale, and there are some that have already been put into practical use. Currently, commercialized products are limited to silicon solar cells such as crystals, polycrystals, and amorphous materials, or inorganic solar cells in which arsenic is combined with gallium or cadmium. Inorganic solar cells often have high conversion efficiency and good durability, but they require special equipment such as a clean room for manufacturing. Many of them have problems. For this reason, there is a strong demand for solar cells using raw materials with low cost and low environmental impact.

低コストの次世代型太陽電池として近年特に注目を集めているのは有機系太陽電池である。有機系太陽電池には無機系太陽電池と同じp−n接合を利用した有機薄膜系と色素増感太陽電池(Dye Sensitized Solar Cell、以下、DSCともいう)がある。DSCは光合成に類似したメカニズムで作動し、他の太陽電池にはない特徴がある。基本構造は酸化チタンや酸化亜鉛などの無機酸化物半導体に光増感剤として色素を吸着させた修飾電極を作用電極として用い、白金等の対極の間を電解液で充たした溶液型電池である。DSCの製造にはクリーンルームなどの特殊な設備は不要であり、また材料も安価であるためコストを大幅に下げることができる可能性が高く、また各種色相が利用できるなどデザイン性にも優れており期待と注目を集めている(非特許文献1)。   In recent years, organic solar cells have attracted particular attention as low-cost next-generation solar cells. Organic solar cells include an organic thin film system using the same pn junction as an inorganic solar cell and a dye-sensitized solar cell (hereinafter also referred to as DSC). DSC operates by a mechanism similar to photosynthesis, and has characteristics not found in other solar cells. The basic structure is a solution-type battery in which a modified electrode in which a dye is adsorbed as a photosensitizer on an inorganic oxide semiconductor such as titanium oxide or zinc oxide is used as a working electrode, and a counter electrode such as platinum is filled with an electrolyte. . DSC production does not require special equipment such as a clean room, and since the materials are inexpensive, there is a high possibility that the cost can be greatly reduced, and various colors can be used, and the design is excellent. Expectation and attention are attracted (nonpatent literature 1).

DSCの中でも特にグレッツエル型と呼ばれるものは無機・有機ハイブリッド型モレキュラーデバイスともいうべき洗練された基本構造を持っている。作用極に酸化チタンのナノペーストの高温焼結で製作したラフネス・ファクターの大きい多孔質電極を用い、これに新開発の高性能増感色素であるルテニウム色素を単分子状態で吸着させ、さらに作用極と対極の間をヨウ素系電解液で満たすことにより12%を越す高変換効率が達成されている。このグレッツエル型DSCは低コストの次世代型太陽電池の有力候補として製品化も目前といわれている。   Among the DSCs, the so-called Gretzell type has a sophisticated basic structure that can be called an inorganic / organic hybrid molecular device. A porous electrode with a large roughness factor manufactured by high-temperature sintering of titanium oxide nanopaste is used as the working electrode, and ruthenium dye, a newly developed high-performance sensitizing dye, is adsorbed in a single molecule state and further functions. A high conversion efficiency exceeding 12% is achieved by filling the gap between the electrode and the counter electrode with an iodine-based electrolyte. The Gretzell-type DSC is said to be commercialized as a promising candidate for a low-cost next-generation solar cell.

しかしながら、このグレッツエル型DSCにおいても実用化、特にコストダウンのためにクリアーしなければならない課題がいくつか残っている。その一つが増感色素のコストである。現在知られている高性能色素のほとんどはルテニウム錯体に限られている(例えば特許文献1)。   However, there are still some problems that need to be cleared for practical use, particularly cost reduction, in this Gretzell-type DSC. One of them is the cost of the sensitizing dye. Most of the high-performance dyes currently known are limited to ruthenium complexes (for example, Patent Document 1).

ルテニウムは希少金属であり資源的およびコスト的な問題に加え、毒性が高いという問題もある。これを克服すべく、金属を含まないメタルフリー有機色素の開発が世界中で精力的に行われ、多くの報告があるが変換効率と耐久性の点でいまだ実用レベルに達していないのが現状である(例えば特許文献2)。このため、グレッツエル型DSCのコストダウンとさらなる性能向上のために、安価で高性能な新規増感色素の開発が強く望まれている。   Ruthenium is a rare metal and has a problem of high toxicity in addition to resource and cost. In order to overcome this, the development of metal-free organic pigments that do not contain metals has been vigorously carried out all over the world, and there are many reports, but the current situation is that the conversion efficiency and durability have not yet reached the practical level. (For example, Patent Document 2). For this reason, in order to reduce the cost and further improve the performance of the Gretzell-type DSC, the development of an inexpensive and high-performance new sensitizing dye is strongly desired.

また、グレッツエル型DSCの作用極としては、酸化チタンと異なり高温焼結が必須ではない酸化亜鉛が有望である。酸化亜鉛は低温で電極作製が可能であり、プラスチックDSC材料として特に優れている。しかしながら酸化亜鉛の増感は酸化チタンに比べてはるかに難しく、高性能なルテニウム色素を使っても3%程度の変換効率しかなく、さらに電極の安定化にも問題があるため耐久性が低い。このため、プラスチックDSCの早期開発のために、酸化亜鉛用の高性能増感色素も切望されている。   As a working electrode of a Gretzell-type DSC, unlike titanium oxide, zinc oxide that does not require high-temperature sintering is promising. Zinc oxide can be produced at low temperatures, and is particularly excellent as a plastic DSC material. However, the sensitization of zinc oxide is much more difficult than titanium oxide, and even if a high-performance ruthenium dye is used, the conversion efficiency is only about 3%, and further, there is a problem in the stabilization of the electrode, so the durability is low. For this reason, a high-performance sensitizing dye for zinc oxide is also desired for the early development of plastic DSC.

特許第3731752号公報Japanese Patent No. 3731552 特許第4080288号公報Japanese Patent No. 4080288

Nature,353,p737−740(1991)Nature, 353, p737-740 (1991)

本発明は上記事情に鑑みなされたものであり、具体的には従来の有機色素に比べ光電変換効率と耐久性に優れた新規有機色素を光増感剤として提供することを目的とするものである。また、本発明はこの光増感剤を用いた実用化レベルの光電変換素子を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and specifically aims to provide a novel organic dye having excellent photoelectric conversion efficiency and durability as a photosensitizer compared to conventional organic dyes. is there. Another object of the present invention is to provide a photoelectric conversion element at a practical level using this photosensitizer.

本発明者らが鋭意検討した結果、分子間相互作用が期待され、さらに架橋などの反応性を持つ置換基を色素に有効に組み込むことにより、光電変換効率と同時に保存性を改良することができることを見出し本発明に至った。
すなわち、本発明の光増感剤は、下記一般式(I)で示される末端ビニル基を有する色素またはその塩であることを特徴とするものである。
(式(I)において、式中mは1〜3の整数を示す。nは0〜18の整数を示す。pは1〜3の整数を示す。Xは酸素または硫黄原子、置換窒素原子であり、lは0または1を示す。DYEは希少遷移金属を含まない有機色素を示す。)

Figure 2014101464
As a result of intensive studies by the present inventors, intermolecular interaction is expected, and further, by incorporating a substituent having reactivity such as crosslinking into the dye, it is possible to improve the storage stability as well as the photoelectric conversion efficiency. And found the present invention.
That is, the photosensitizer of the present invention is a dye having a terminal vinyl group represented by the following general formula (I) or a salt thereof.
(In the formula (I), m represents an integer of 1 to 3. n represents an integer of 0 to 18. p represents an integer of 1 to 3. X represents an oxygen or sulfur atom or a substituted nitrogen atom. Yes, 1 represents 0 or 1. DYE represents an organic dye containing no rare transition metal.
Figure 2014101464

また、本発明の光増感剤は、下記一般式(II)で示される末端アセチレン基を有する色素またはその塩であることを特徴とするものである。

Figure 2014101464
(式(II)において、式中mは1〜3の整数を示す。nは0〜18の整数を示す。pは1〜3の整数を示す。Xは酸素または硫黄原子、置換窒素原子であり、lは0または1を示す。DYEは希少遷移金属を含まない有機色素を示す。) The photosensitizer of the present invention is a dye having a terminal acetylene group represented by the following general formula (II) or a salt thereof.
Figure 2014101464
(In formula (II), m represents an integer of 1 to 3. n represents an integer of 0 to 18. p represents an integer of 1 to 3. X represents an oxygen or sulfur atom or a substituted nitrogen atom. Yes, 1 represents 0 or 1. DYE represents an organic dye containing no rare transition metal.

本発明の光電変換素子は、上記の式(I)または(II)の光増感剤を吸着した半導体層を有することを特徴とするものである。   The photoelectric conversion element of the present invention is characterized by having a semiconductor layer adsorbing the photosensitizer of the above formula (I) or (II).

本発明の光増感剤は、上記一般式(I)または(II)で表される色素またはその塩であり、この新規色素を光電変換素子の半導体層に吸着させることで大幅に光電変換効率と耐久性の向上した光電変換素子を得ることが可能である。これらは本発明者らが初めて見いだしたもので、その作用機序は必ずしも明かではないが、上記一般式(I)または(II)で表される色素またはその塩の、末端のビニル基やアセチレン基によって、電極に吸着する際に色素の配向性が改善され電子移動効率が上がり、その結果として光電変換効率が向上するものと考えられる。また、色素吸着後の電極表面において置換基の末端にある上記の反応性の多重結合によって、分子間架橋反応やテロメリゼーション反応などが生じ、これにより色素の分子量の大幅な増加をもたらすために吸着安定性が上がり、耐久性の向上をもたらしたものと考えられる。   The photosensitizer of the present invention is a dye represented by the above general formula (I) or (II) or a salt thereof, and the photoelectric conversion efficiency is greatly improved by adsorbing the novel dye to the semiconductor layer of the photoelectric conversion element. It is possible to obtain a photoelectric conversion element with improved durability. These have been found for the first time by the present inventors, and the mechanism of action is not necessarily clear. However, the terminal vinyl group or acetylene of the dye represented by the above general formula (I) or (II) or a salt thereof is used. The group is considered to improve the orientation of the dye when adsorbed on the electrode, increase the electron transfer efficiency, and as a result, improve the photoelectric conversion efficiency. In addition, the above-mentioned reactive multiple bond at the end of the substituent on the electrode surface after dye adsorption causes intermolecular cross-linking reaction, telomerization reaction, etc., thereby causing a significant increase in the molecular weight of the dye It is considered that the adsorption stability has been improved and the durability has been improved.

以下、本発明を詳細に説明する。
本発明において上記一般式(I)または(II)で表される色素はフリーの酸またはその塩のいずれでも良い。上記一般式(I)または(II)で表される色素の塩としては、例えばカルボン酸のリチウム、ナトリウム、カリウム、マグネシウム、カルシウムなどのアルカリ金属塩又はアルカリ土類金属塩、又はアンモニウム、テトラメチルアンモニウム、テトラブチルアンモニウム、ピリジニウム、ピペリジニウム、イミダゾリウムなどのアンモニウム塩を挙げることができる。
Hereinafter, the present invention will be described in detail.
In the present invention, the dye represented by the above general formula (I) or (II) may be either a free acid or a salt thereof. Examples of the salt of the dye represented by the general formula (I) or (II) include alkali metal salts or alkaline earth metal salts such as lithium, sodium, potassium, magnesium and calcium of carboxylic acid, or ammonium and tetramethyl. Mention may be made of ammonium salts such as ammonium, tetrabutylammonium, pyridinium, piperidinium and imidazolium.

上記一般式(I)および(II)のXは酸素または硫黄原子、置換窒素原子である。ここで置換窒素原子としては、例えば、メチルアミノ、エチルアミノ、プロピルアミノ、ブチルアミノ、ヘキシルアミノ、2−エチルヘキシルアミノ、イソプロピルアミノ、t−ブチルアミノ、t−オクチルアミノ、シクロヘキシルアミノ、フェニルアミノ、ナフチルアミノなどが挙げられる。また、上記一般式(I)および(II)の式中nは0〜18の整数であり、好ましくは1〜10が望ましい。nが18までであれば電極に吸着する際の色素の配向性の効果は認められるが、19以上になると溶解度の低下とアルキレン鎖の自由度の増加に起因する分子の配向効果の減少により、変換効率の低下が認められる。   X in the above general formulas (I) and (II) is an oxygen or sulfur atom or a substituted nitrogen atom. Examples of the substituted nitrogen atom include methylamino, ethylamino, propylamino, butylamino, hexylamino, 2-ethylhexylamino, isopropylamino, t-butylamino, t-octylamino, cyclohexylamino, phenylamino, and naphthyl. Examples include amino. In the formulas (I) and (II), n is an integer of 0 to 18, preferably 1 to 10. If n is up to 18, the effect of the orientation of the dye when adsorbing to the electrode is recognized, but if it is 19 or more, the decrease in the solubility and the decrease in the molecular orientation effect due to the increase in the degree of freedom of the alkylene chain, A decrease in conversion efficiency is observed.

DYEは希少遷移金属を含まない有機色素であれば構造に関しては特に制限はない。ここで、希少遷移金属とはルテニウム、オスミウム、ロジウム、イリジウム、レニウムなどの金属を意味し、希少遷移金属ではない亜鉛、マグネシウム、鉄、コバルト、ニッケル、鉛、スズ等は含んでいてもよい。   As long as DYE is an organic dye that does not contain a rare transition metal, the structure is not particularly limited. Here, the rare transition metal means a metal such as ruthenium, osmium, rhodium, iridium, rhenium, and may contain zinc, magnesium, iron, cobalt, nickel, lead, tin, etc., which are not rare transition metals.

DYEとしては、下記式(III)で示されるインドリン骨格を有するインドリン系色素、下記式(IV)で示されるカルバゾール骨格を有するカルバゾール系色素、シアニン・メロシアニン系色素、ジアルキルアニリン系色素、トリアリルアミン系色素、クマリン系色素、フタロシアニン系色素、ポルフィリン系色素などの周知の有機色素が有効である。下記式(IV)中、Rはアルキル基またはアリール基を示す。 DYE includes an indoline dye having an indoline skeleton represented by the following formula (III), a carbazole dye having a carbazole skeleton represented by the following formula (IV), a cyanine / merocyanine dye, a dialkylaniline dye, and a triallylamine dye. Known organic dyes such as dyes, coumarin dyes, phthalocyanine dyes and porphyrin dyes are effective. In the following formula (IV), R C represents an alkyl group or an aryl group.

Figure 2014101464
Figure 2014101464
Figure 2014101464
Figure 2014101464

以下に本発明で使用する上記一般式(I)で表される化合物の具体例を示すが、もちろんこれに限られものではない。下記[化5A〜C]に示すインドリン系色素は3a位(*)に不斉炭素を有するものであり、その絶対配置はRまたはSどちらでも良い。また、該色素またはその塩のエナンチオマー過剰率は0%e.e.(ラセミ体)であっても良いし、1%e.e.以上であっても構わない。   Specific examples of the compound represented by the above general formula (I) used in the present invention are shown below, but of course not limited thereto. The indoline dyes shown in the following [Chemical 5A to C] have an asymmetric carbon at the 3a position (*), and the absolute configuration may be either R or S. The enantiomeric excess of the dye or salt thereof is 0% e.e. e. (Racemic) or 1% e.e. e. It may be above.

インドリン系色素

Figure 2014101464
Indoline pigment
Figure 2014101464

Figure 2014101464
Figure 2014101464

Figure 2014101464
Figure 2014101464

カルバゾール系色素

Figure 2014101464
Carbazole dye
Figure 2014101464

シアニン・メロシアニン系色素

Figure 2014101464
Cyanine / merocyanine dyes
Figure 2014101464

ジアルキルアニリン系色素

Figure 2014101464
Dialkylaniline dyes
Figure 2014101464

トリアリルアミン系色素

Figure 2014101464
Triallylamine dye
Figure 2014101464

クマリン系色素

Figure 2014101464
Coumarin dye
Figure 2014101464

フタロシアニン系色素

Figure 2014101464
Phthalocyanine dye
Figure 2014101464

ポルフィリン系色素

Figure 2014101464
Porphyrin pigment
Figure 2014101464

上記一般式(II)で表される化合物の具体例を以下に示すが、もちろんこれに限定されるものではない。下記[化13A〜C]に示すインドリン系色素は3a位(*)に不斉炭素を有するものであり、その絶対配置はRまたはSどちらでも良い。また、該色素またはその塩のエナンチオマー過剰率は0%e.e.(ラセミ体)であっても良いし、1%e.e.以上であっても構わない。   Specific examples of the compound represented by the general formula (II) are shown below, but of course not limited thereto. The indoline dyes shown in the following [Chemical 13A to C] are those having an asymmetric carbon at the 3a position (*), and the absolute configuration thereof may be either R or S. The enantiomeric excess of the dye or salt thereof is 0% e.e. e. (Racemic) or 1% e.e. e. It may be above.

インドリン系色素

Figure 2014101464
Indoline pigment
Figure 2014101464

Figure 2014101464
Figure 2014101464

Figure 2014101464
Figure 2014101464

カルバゾール系色素

Figure 2014101464
Carbazole dye
Figure 2014101464

シアニン・メロシアニン系色素

Figure 2014101464
Cyanine / merocyanine dyes
Figure 2014101464

ジアルキルアニリン系色素

Figure 2014101464
Dialkylaniline dyes
Figure 2014101464

トリアリルアミン系色素

Figure 2014101464
Triallylamine dye
Figure 2014101464

クマリン系色素

Figure 2014101464
Coumarin dye
Figure 2014101464

フタロシアニン系色素

Figure 2014101464
Phthalocyanine dye
Figure 2014101464

ポルフィリン系色素

Figure 2014101464
Porphyrin pigment
Figure 2014101464

本発明の光電変換素子は、導電性の基板上に酸化チタンや酸化亜鉛などの金属酸化物の半導体層を形成させ、これに増感色素を吸着させた作用電極と、白金や導電性カーボンなどの対極の間を有機ヨウ素系電解液で満たしたものであるが、電解液の代わりに導電性高分子や電荷移動剤などを積層して固体化、もしくは少量の有機溶剤やイオン液体などを加えて半固体化することもできる。   The photoelectric conversion element of the present invention includes a working electrode in which a metal oxide semiconductor layer such as titanium oxide or zinc oxide is formed on a conductive substrate, and a sensitizing dye adsorbed thereto, platinum, conductive carbon, etc. The electrode is filled with an organic iodine electrolyte solution, but instead of the electrolyte solution, a conductive polymer or charge transfer agent is laminated to solidify, or a small amount of organic solvent or ionic liquid is added. Semi-solid.

導電性基板としては、金属のように支持体そのものに導電性があるもの、あるいは表面に導電性を有するガラスあるいはプラスチックを支持体として用いることができる。導電層の材料としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、金、白金等やこれらを組み合わせたものを用いることができ、これを基板へ真空蒸着法、スパッタ蒸着法、イオンプレーティング法、化学気相成長法(CVD)などにより直接層を形成したり、導電性のフィルムを基板へ貼着させることによって作製することができる。   As the conductive substrate, a substrate such as a metal having conductivity in the support itself, or glass or plastic having conductivity on the surface can be used as the support. As the material of the conductive layer, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), gold, platinum, or a combination thereof can be used, and this can be applied to a substrate by vacuum deposition, sputter deposition, It can be produced by directly forming a layer by ion plating, chemical vapor deposition (CVD) or the like, or by attaching a conductive film to a substrate.

酸化物半導体の具体例としてはチタン、スズ、亜鉛、タングステン、ジルコニウム、ガリウム、インジウム、イットリウム、ニオブ、タンタル、バナジウムなどの金属酸化物が挙げられる。これらのうちチタン、スズ、亜鉛、ニオブ、タングステン等の酸化物が好ましく、このうち(1)安価であること、(2)多孔質体が容易に形成できること、(3)電極としての導電性、耐久性、安定性および安全性が確保できること、(4)本発明の光増感剤とのエネルギー準位の適合性などの観点から、酸化チタン、酸化亜鉛が特に好ましい。これらの酸化物材料は単一もしくは2種類以上を適宜併用してもよい。   Specific examples of the oxide semiconductor include metal oxides such as titanium, tin, zinc, tungsten, zirconium, gallium, indium, yttrium, niobium, tantalum, and vanadium. Of these, oxides such as titanium, tin, zinc, niobium, and tungsten are preferable. Among these, (1) it is inexpensive, (2) a porous body can be easily formed, (3) conductivity as an electrode, Titanium oxide and zinc oxide are particularly preferred from the viewpoints of ensuring durability, stability and safety, and (4) compatibility of energy levels with the photosensitizer of the present invention. These oxide materials may be used alone or in combination of two or more.

作用電極の製造は、上記の金属酸化物の微粒子をペースト状にして基板上に塗布し電気炉やマイクロ波等による加熱焼結処理により、あるいは酸化亜鉛の場合には電析法によって基板上に直接多孔質を形成させることもできる。   The working electrode is manufactured by applying the above metal oxide fine particles as a paste on a substrate and heating and sintering with an electric furnace or microwave, or in the case of zinc oxide, by electrodeposition. Direct porosity can also be formed.

電極上に色素を吸着させる際には、色素の溶液もしくは分散液に電極を浸漬する方法、もしくはスプレー塗布するなどの方法を用いることができる。色素溶液の濃度は色素によって適宜決めることができ、色素を溶解させるのに使用しうる溶媒の具体例としては、例えば、メタノール、エタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、アセトン、t−ブタノール等を利用することができる。   When the dye is adsorbed on the electrode, a method of immersing the electrode in a dye solution or dispersion, or a spray coating method can be used. The concentration of the dye solution can be appropriately determined depending on the dye. Specific examples of the solvent that can be used for dissolving the dye include methanol, ethanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, acetone, and t-butanol. Can be used.

なお、色素を吸着する際には、吸着をコントロールするために共吸着剤を色素溶液に添加してもよい。共吸着剤としては、コール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、デオキシコール酸、デヒドロコール酸、コール酸メチルエステル、コール酸ナトリウム等がより好ましい。   In adsorbing the dye, a co-adsorbent may be added to the dye solution in order to control the adsorption. Examples of the co-adsorbent include steroidal compounds such as cholic acid, crown ether, cyclodextrin, calixarene, polyethylene oxide, etc., but deoxycholic acid, dehydrocholic acid, cholic acid methyl ester, sodium cholate and the like preferable.

電解質層は、アセトニトリルとエチレンカーボネートの混合液や、メトキシプロピオニトリルなどを溶媒として、金属ヨウ素やヨウ化リチウムなどのヨウ化物からなる電解質等を加えた液体電解質や、高分子ゲル電解液などのゲル化電解質、p型半導体、ホール輸送剤などの固体電解質を用いて形成することもできる。   The electrolyte layer is a mixed liquid of acetonitrile and ethylene carbonate, a liquid electrolyte in which an electrolyte made of iodide such as metal iodine or lithium iodide is added using methoxypropionitrile as a solvent, a polymer gel electrolyte, etc. It can also be formed using a solid electrolyte such as a gelled electrolyte, a p-type semiconductor, or a hole transport agent.

対極は透明性が必要な場合は上記導電性を有する基板と同様に作製してもよく、透明性が必要でない場合には、導電性カーボンやポリアニリン等の導電性ポリマー、白金などの貴金属などを用いて作製することができる。
以下に本発明の光増感剤および光電変換素子を実施例を用いてさらに詳細に説明する。
If transparency is required, the counter electrode may be prepared in the same manner as the conductive substrate described above. If transparency is not required, a conductive polymer such as conductive carbon or polyaniline, or a noble metal such as platinum may be used. Can be used.
Hereinafter, the photosensitizer and the photoelectric conversion element of the present invention will be described in more detail with reference to examples.

(実施例1)
以下に本発明の色素の例として(I−7)の合成ルートを示す。
Example 1
The synthesis route of (I-7) is shown below as an example of the dye of the present invention.

Figure 2014101464
Figure 2014101464

(中間体(3)の合成)
Undecylenic acid 78g とホルムアミド23g(1.2eq)を混合し、撹拌しながら200℃に6時間加熱し低沸点分を留去する。放冷後アセトン450mlで抽出し、不溶物を濾過して除きアセトンを200ml程度留去後再結晶した。収量45.4g
(Synthesis of Intermediate (3))
Undecylic acid (78 g) and formamide (23 g, 1.2 eq) are mixed and heated to 200 ° C. for 6 hours with stirring to distill off low-boiling components. After allowing to cool, extraction was performed with 450 ml of acetone, insoluble matters were removed by filtration, and about 200 ml of acetone was distilled off and recrystallized. Yield 45.4g

(中間体(4)の合成)
Lithium Aluminum Hydride 2g をTHF 50mlに分散しreflux しておき、これにUndecylenamide 6gをTHF 30mlに溶かして15分かけて滴下した。さらに4時間加熱還流し放冷後、室温で水4mlをTHF20mlに溶かして滴下、ついで10%NaOH 3.2mlを滴下し室温で8時間撹拌した。不溶物をろ過し、ろ液を塩化メチレン200mlに溶かし、水洗、無水硫酸ナトリウムで乾燥後、溶媒を留去し粗製アミン(4)5.6gを油状物として得た。
(Synthesis of Intermediate (4))
2 g of Lithium Aluminum Hydride was dispersed in 50 ml of THF and refluxed. 6 g of Undecylamide was dissolved in 30 ml of THF and added dropwise over 15 minutes. The mixture was further heated and refluxed for 4 hours and allowed to cool, then 4 ml of water was dissolved in 20 ml of THF at room temperature and added dropwise. Then, 3.2 ml of 10% NaOH was added dropwise and stirred at room temperature for 8 hours. Insoluble matter was filtered, and the filtrate was dissolved in 200 ml of methylene chloride, washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off to obtain 5.6 g of crude amine (4) as an oil.

(中間体(5)の合成)
粗製アミン5.6gをエタノール50mlに溶かし、トリエチルアミン3.4gを加え、これに二硫化炭素2.52gを室温で滴下し、室温で30分撹拌した。さらにクロル酢酸3.2gをエタノール20mlに溶かして、室温で滴下し、1時間撹拌後4時間加熱還流した。放冷後溶媒を減圧留去し残渣を酢酸エチルに溶かし水洗、無水硫酸ナトリウムで乾燥後、溶媒を留去した。得られた油状物7.0gをシリカゲルクロマトグラフィ(n−ヘキサン:クロロホルム=2:1で展開)し粗製ロダニン(5)8.97gを油状物として得た。
(Synthesis of Intermediate (5))
5.6 g of the crude amine was dissolved in 50 ml of ethanol, 3.4 g of triethylamine was added, 2.52 g of carbon disulfide was added dropwise thereto at room temperature, and the mixture was stirred at room temperature for 30 minutes. Further, 3.2 g of chloroacetic acid was dissolved in 20 ml of ethanol, added dropwise at room temperature, stirred for 1 hour and then heated to reflux for 4 hours. After allowing to cool, the solvent was distilled off under reduced pressure, the residue was dissolved in ethyl acetate, washed with water, dried over anhydrous sodium sulfate, and the solvent was distilled off. 7.0 g of the obtained oily substance was subjected to silica gel chromatography (developed with n-hexane: chloroform = 2: 1) to obtain 8.97 g of crude rhodanine (5) as an oily substance.

(中間体(6)の合成)
粗製ロダニン19.8gをアセトニトリル300mlに溶かし、Ethyl−isothiocyanatoacetate 10.07gを加え、これにDBU 10.6gを室温で15分かけて滴下し、さらに室温で30分撹拌した。これにブロム酢酸エチル 11mlを室温で滴下し、アセトニトリルを減圧留去し残渣を3時間120℃で加熱撹拌した。放冷後に残渣をシリカゲルクロマトグラフィ(n−ヘキサン:クロロホルム=2:1から1:1で展開)で分離し粗製ダブルロダニン酢酸エチルエステル(6) 9.36gを黄色固体として得た。
(Synthesis of Intermediate (6))
19.8 g of crude rhodanine was dissolved in 300 ml of acetonitrile, and 10.07 g of Ethyl-isothiocyanatoacetate was added thereto, and 10.6 g of DBU was added dropwise at room temperature over 15 minutes, and further stirred at room temperature for 30 minutes. 11 ml of ethyl bromoacetate was added dropwise thereto at room temperature, acetonitrile was distilled off under reduced pressure, and the residue was heated and stirred at 120 ° C. for 3 hours. After cooling, the residue was separated by silica gel chromatography (developed with n-hexane: chloroform = 2: 1 to 1: 1) to obtain 9.36 g of crude doublerhodanine acetic acid ethyl ester (6) as a yellow solid.

1H NMR(CDCl3)
δ 5.81(1H, ddt, J=17.0, 10.0, 6.8Hz), 4.99(1H, dt, J=17.2, 1.6Hz), 4.90-4.95(1H, m), 4.68(2H, s), 4.31(2H, q, J=7.2Hz), 4.05(2H, dd, J=8.0, 7.6Hz), 3.90(2H, s), 2.03(2H, dt, J=7.6, 6.8Hz), 1.63-1.73(2H, m), 1.35(3H, t, J=6.8Hz), 1.24-1.40(12H, m)
13C NMR(CDCl3)
δ 189.4, 172.6, 169.8, 167.5, 150.0, 139.2, 114.1, 94.8, 62.9, 45.4, 44.9, 33.8, 33.6, 31.2, 29.4, 29.3, 29.1, 29.0, 28.9, 26.8, 14.1
1 H NMR (CDCl 3 )
δ 5.81 (1H, ddt, J = 17.0, 10.0, 6.8Hz), 4.99 (1H, dt, J = 17.2, 1.6Hz), 4.90-4.95 (1H, m), 4.68 (2H, s), 4.31 (2H , q, J = 7.2Hz), 4.05 (2H, dd, J = 8.0, 7.6Hz), 3.90 (2H, s), 2.03 (2H, dt, J = 7.6, 6.8Hz), 1.63-1.73 (2H, m), 1.35 (3H, t, J = 6.8Hz), 1.24-1.40 (12H, m)
13 C NMR (CDCl 3 )
δ 189.4, 172.6, 169.8, 167.5, 150.0, 139.2, 114.1, 94.8, 62.9, 45.4, 44.9, 33.8, 33.6, 31.2, 29.4, 29.3, 29.1, 29.0, 28.9, 26.8, 14.1

(中間体(7)の合成)
ダブルロダニン酢酸エチルエステル(6)1.2gをTHF 18mlに溶かし、PEG(400)0.2g、50%NaOH 0.6mlを加え、室温で2時間撹拌した。酢酸6mlを加えて溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィ(クロロホルム、メタノール:クロロホルム=1:20から1:10で展開)で分離し、目的の粗製ダブルロダニン酢酸(7)0.36gを黄色固体として得た。
(Synthesis of Intermediate (7))
1.2 g of double rhodanine acetic acid ethyl ester (6) was dissolved in 18 ml of THF, 0.2 g of PEG (400) and 0.6 ml of 50% NaOH were added, and the mixture was stirred at room temperature for 2 hours. 6 ml of acetic acid was added and the solvent was distilled off under reduced pressure. The residue was separated by silica gel chromatography (developed with chloroform, methanol: chloroform = 1: 20 to 1:10), and 0.36 g of the desired crude doublerhodanine acetic acid (7) was yellow. Obtained as a solid.

1H NMR(CDCl3)
δ 5.81(1H, ddt, J=17.0, 10.4, 6.8Hz), 4.99(1H, dt, J=17.2, 2.0Hz), 4.90-4.95(1H, m), 4.75(2H, s), 4.05(2H, dd, J=8.0, 7.6Hz), 3.91(2H, s), 2.94 (1H, brs), 2.03(2H, dt, J=7.2, 6.8Hz), 1.62-1.73(2H, m), 1.22-1.42(12H, m)
13C NMR(CDCl3)
δ189.1, 172.7, 169.3, 167.5, 149.7, 139.2, 114.1, 94.9, 45.1, 44.9, 33.8×2, 31.2, 29.4, 29.3, 29.1, 29.0, 28.9, 26.8
1 H NMR (CDCl 3 )
δ 5.81 (1H, ddt, J = 17.0, 10.4, 6.8Hz), 4.99 (1H, dt, J = 17.2, 2.0Hz), 4.90-4.95 (1H, m), 4.75 (2H, s), 4.05 (2H , dd, J = 8.0, 7.6Hz), 3.91 (2H, s), 2.94 (1H, brs), 2.03 (2H, dt, J = 7.2, 6.8Hz), 1.62-1.73 (2H, m), 1.22- 1.42 (12H, m)
13 C NMR (CDCl 3 )
δ189.1, 172.7, 169.3, 167.5, 149.7, 139.2, 114.1, 94.9, 45.1, 44.9, 33.8 × 2, 31.2, 29.4, 29.3, 29.1, 29.0, 28.9, 26.8

(色素(I−7)の合成)
ダブルロダニン酢酸(7)0.36gとアルデヒド中間体(A)0.35gを酢酸8mlに溶かし、酢酸アンモニウム0.04gを加え、3時間加熱還流した。放冷後に酢酸を減圧留去し、残渣をシリカゲルクロマトグラフィ(クロロホルム、メタノール:クロロホルム=1:20から1:10で展開)で分離し、目的の色素(I−7)0.36gを褐色固体として得た。
(Synthesis of Dye (I-7))
0.36 g of doublerhodanine acetic acid (7) and 0.35 g of aldehyde intermediate (A) were dissolved in 8 ml of acetic acid, 0.04 g of ammonium acetate was added, and the mixture was heated to reflux for 3 hours. After standing to cool, acetic acid was distilled off under reduced pressure, and the residue was separated by silica gel chromatography (developed with chloroform, methanol: chloroform = 1: 20 to 1:10), and 0.36 g of the target dye (I-7) was obtained as a brown solid. Obtained.

UV(CHCl3) λmax=554nm
1H NMR(d6-DMSO)
δ13.86(1H, br.s), 7.73(1H, s), 7.38-7.50(5H, m), 7.25-7.38(5H, m), 7.21(2H, dd, J=8.0, 1.2Hz), 7.16(2H, d, J=8.8Hz), 7.09(1H, s), 7.05(1H, s), 7.04(2H, d, J=8.8Hz), 5.77(1H, ddt, J=17.0, 11.2, 6.8Hz), 4.95-5.01(2H, m), 4.88-4.94(1H, m), 4.79(2H, s), 3.98(2H, dd, J=7.6, 7.2Hz), 3.83-3.91(1H, m), 2.04-2.12(1H, m), 1.95-2.03(2H, m), 1.73-1.83(2H, m), 1.54-1.71(4H, m), 1.18-1.38(13H, m)
13C NMR(d6-DMSO)
δ188.8, 168.0, 166.0×2, 149.0, 145.8, 142.5, 140.2, 140,0, 139.2, 138.7×2, 136.5, 134.9,132.8, 131.3, 130.2×2, 129.6×2, 129.0×2, 128.2×2, 127.6, 127.3, 127.0, 126.7×2, 123.6, 119.3, 114.5×2, 112.1, 108.0, 92.5, 68.4, 45.6, 44.2, 43.9, 34.8, 33.1, 32.7, 28.7, 28.6, 28.4×2, 28.1, 26.1, 26.0, 23.7
UV (CHCl 3 ) λ max = 554nm
1 H NMR (d 6 -DMSO)
δ13.86 (1H, br.s), 7.73 (1H, s), 7.38-7.50 (5H, m), 7.25-7.38 (5H, m), 7.21 (2H, dd, J = 8.0, 1.2Hz), 7.16 (2H, d, J = 8.8Hz), 7.09 (1H, s), 7.05 (1H, s), 7.04 (2H, d, J = 8.8Hz), 5.77 (1H, ddt, J = 17.0, 11.2, 6.8Hz), 4.95-5.01 (2H, m), 4.88-4.94 (1H, m), 4.79 (2H, s), 3.98 (2H, dd, J = 7.6, 7.2Hz), 3.83-3.91 (1H, m ), 2.04-2.12 (1H, m), 1.95-2.03 (2H, m), 1.73-1.83 (2H, m), 1.54-1.71 (4H, m), 1.18-1.38 (13H, m)
13 C NMR (d 6 -DMSO)
δ188.8, 168.0, 166.0 × 2, 149.0, 145.8, 142.5, 140.2, 140,0, 139.2, 138.7 × 2, 136.5, 134.9,132.8, 131.3, 130.2 × 2, 129.6 × 2, 129.0 × 2, 128.2 × 2, 127.6, 127.3, 127.0, 126.7 × 2, 123.6, 119.3, 114.5 × 2, 112.1, 108.0, 92.5, 68.4, 45.6, 44.2, 43.9, 34.8, 33.1, 32.7, 28.7, 28.6, 28.4 × 2, 28.1, 26.1, 26.0, 23.7

(実施例2)
以下に本発明の色素の例として(I−10)の合成ルートを示す。
(Example 2)
The synthesis route of (I-10) is shown below as an example of the dye of the present invention.

Figure 2014101464
Figure 2014101464

(中間体(2)’の合成)
Undecylenic acid 18.4g をクロロホルム100mlに溶かし、臭素6mlを室温で滴下した。放冷後溶剤を減圧留去し得られた油状物を、砕いたKOH25.2g をエタノール120mlに溶かしたものにゆっくり加え、撹拌しながら4時間加熱還流した。放冷後溶剤を半分程度減圧留去し水で薄めて、クロロホルムで抽出した。クロロホルム層を水洗し、無水硫酸ナトリウムで乾燥後、溶媒を留去し、粗製のブロムーカルボン酸(2)’25.8gを褐色油状物として得た。
(Synthesis of Intermediate (2) ')
18.4 g of undecylenic acid was dissolved in 100 ml of chloroform, and 6 ml of bromine was added dropwise at room temperature. After allowing to cool, the solvent was distilled off under reduced pressure, and the oily substance obtained was slowly added to a solution of 25.2 g of crushed KOH dissolved in 120 ml of ethanol and heated to reflux with stirring for 4 hours. After standing to cool, the solvent was distilled off under reduced pressure about half, diluted with water and extracted with chloroform. The chloroform layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off to obtain 25.8 g of crude bromocarboxylic acid (2) 'as a brown oil.

1H NMR(CDCl3)
δ11.37(1H, br.s), 5.55(1H, d, J=1.2Hz), 5.38(1H, d, J=1.2Hz), 2.41(2H, dd, J=7.6, 7.2Hz),2.35(2H, dd, J=7.6, 7.2Hz), 1.60-1.67(2H, m), 1.26-1.45(10H, m)
13C NMR(CDCl3)
δ180.0, 138.2, 116.3, 41.4, 34.0, 29.1×3, 29.0×2, 24.6
1 H NMR (CDCl 3 )
δ11.37 (1H, br.s), 5.55 (1H, d, J = 1.2Hz), 5.38 (1H, d, J = 1.2Hz), 2.41 (2H, dd, J = 7.6, 7.2Hz), 2.35 (2H, dd, J = 7.6, 7.2Hz), 1.60-1.67 (2H, m), 1.26-1.45 (10H, m)
13 C NMR (CDCl 3 )
δ180.0, 138.2, 116.3, 41.4, 34.0, 29.1 × 3, 29.0 × 2, 24.6

(中間体(3)’の合成)
粗製(2)’134gとホルムアミド27.5g(1.2eq)を混合し、撹拌しながら200℃に6時間加熱し低沸点分を留去する。放冷後熱アセトン450mlに溶かし、再結晶した。収量69.7g
(Synthesis of Intermediate (3) ')
The crude (2) '134 g and formamide 27.5 g (1.2 eq) are mixed and heated to 200 ° C. for 6 hours with stirring to distill off low-boiling components. After cooling, it was dissolved in 450 ml of hot acetone and recrystallized. Yield 69.7g

(中間体(4)’の合成)
Lithium Aluminum Hydride 7.61g をTHF 140mlに分散しreflux しておき、これに中間体(3)’35gをTHF 200mlに溶かして45分かけて滴下した。不溶物が多く、THFを200ml追加し、さらに6時間加熱還流した。放冷後、室温で水14mlをTHF20mlに溶かして滴下、ついで10%NaOH 11mlを滴下し、クロルホルム200mlを加えて1時間加熱還流した。放冷後、不溶物をろ過しろ液にクロロホルムを加え、有機層を水洗し無水硫酸ナトリウムで乾燥後、溶媒を留去し粗製アセチレンアミン37gを油状物として得た。
(Synthesis of Intermediate (4) ')
Lithium Aluminum Hydrode (7.61 g) was dispersed in 140 ml of THF and refluxed. Intermediate (3) '35 g was dissolved in 200 ml of THF and added dropwise over 45 minutes. There were many insoluble matters, 200 ml of THF was added, and the mixture was further heated to reflux for 6 hours. After allowing to cool, 14 ml of water was dissolved in 20 ml of THF at room temperature and dropped, then 11 ml of 10% NaOH was dropped, 200 ml of chloroform was added, and the mixture was heated to reflux for 1 hour. After standing to cool, insoluble matter was filtered off, chloroform was added to the filtrate, the organic layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off to obtain 37 g of crude acetylenic amine as an oil.

(中間体(5)’の合成)
粗製アセチレンアミン(4)’37gをエタノール200mlに溶かし、トリエチルアミン13.4gを加え、これに二硫化炭素8mlを室温で滴下し、室温で30分撹拌した。さらにクロル酢酸12.83gをエタノール50mlに溶かして、室温で滴下し、1時間撹拌後4時間加熱還流した。放冷後溶媒を減圧留去し残渣を酢酸エチルに溶かし水洗、無水硫酸ナトリウムで乾燥後、溶媒を留去した。得られた油状物7.0gをシリカゲルクロマトグラフィ(n−ヘキサン:クロロホルム=2:1で展開)し粗製ロダニン23.6gを油状物として得た。
(Synthesis of Intermediate (5) ')
37 g of crude acetylenic amine (4) 'was dissolved in 200 ml of ethanol, 13.4 g of triethylamine was added thereto, 8 ml of carbon disulfide was added dropwise at room temperature, and the mixture was stirred at room temperature for 30 minutes. Further, 12.83 g of chloroacetic acid was dissolved in 50 ml of ethanol, dropped at room temperature, stirred for 1 hour and then heated to reflux for 4 hours. After allowing to cool, the solvent was distilled off under reduced pressure, the residue was dissolved in ethyl acetate, washed with water, dried over anhydrous sodium sulfate, and the solvent was distilled off. 7.0 g of the obtained oily substance was subjected to silica gel chromatography (development with n-hexane: chloroform = 2: 1) to obtain 23.6 g of crude rhodanine as an oily substance.

1H NMR(CDCl3)
δ3.97(2H, s), 3.97(2H, t, J=7.6Hz), 2.18(2H, dt, J=7.2, 7.2Hz), 1.93-1.95(1H, m), 1.58-1.66(2H, m), 1.52(1H, dt, J=7.6, 7.2Hz), 1.22-1.41(10H, m)
13C NMR(CDCl3)
δ201.2, 173.9, 84.7, 68.1, 44.8, 35.3, 29.2, 29.0, 28.9, 28.6, 28.4, 26.7, 26.6, 18.4
1 H NMR (CDCl 3 )
δ3.97 (2H, s), 3.97 (2H, t, J = 7.6Hz), 2.18 (2H, dt, J = 7.2, 7.2Hz), 1.93-1.95 (1H, m), 1.58-1.66 (2H, m), 1.52 (1H, dt, J = 7.6, 7.2Hz), 1.22-1.41 (10H, m)
13 C NMR (CDCl 3 )
δ201.2, 173.9, 84.7, 68.1, 44.8, 35.3, 29.2, 29.0, 28.9, 28.6, 28.4, 26.7, 26.6, 18.4

(中間体(6)’の合成)
粗製ロダニン(5)’23.6gをアセトニトリル300mlに溶かし、Ethyl−isothiocyanatoacetate 12gを加え、これにDBU12.7gを室温で15分かけて滴下し、さらに室温で30分撹拌した。これにブロム酢酸エチル11.1mlを室温で滴下し、アセトニトリルを減圧留去し残渣を3時間120℃で加熱撹拌した。放冷後に残渣をシリカゲルクロマトグラフィ(n−ヘキサン:クロロホルム=2:1から1:1で展開)により分離し粗製ダブルロダニン酢酸エチルエステル(6)’10.36gを黄色固体として得た。
(Synthesis of Intermediate (6) ')
23.6 g of crude rhodanine (5) 'was dissolved in 300 ml of acetonitrile, 12 g of Ethyl-isothiocyanatoacetate was added thereto, and 12.7 g of DBU was added dropwise at room temperature over 15 minutes, and further stirred at room temperature for 30 minutes. To this was added dropwise 11.1 ml of ethyl bromoacetate at room temperature, acetonitrile was distilled off under reduced pressure, and the residue was heated and stirred at 120 ° C. for 3 hours. After standing to cool, the residue was separated by silica gel chromatography (developed with n-hexane: chloroform = 2: 1 to 1: 1) to obtain 10.36 g of crude doublerhodanine acetic acid ethyl ester (6) ′ as a yellow solid.

1H NMR(CDCl3)
δ4.68(2H, s), 4.30(2H, q, J=7.2Hz), 4.05(2H, dd, J=8.0, 7.6Hz), 3.90(2H, s), 2.18(2H, dt, J=7.2, 7.2Hz), 1.94(1H, t, J=2.8Hz), 1.63-1.72(2H, m), 1.52(2H, dt, J=8.0, 7.2Hz), 1.35(3H, t, J=7.2Hz), 1.24-1.42(10H, m)
1 H NMR (CDCl 3 )
δ4.68 (2H, s), 4.30 (2H, q, J = 7.2Hz), 4.05 (2H, dd, J = 8.0, 7.6Hz), 3.90 (2H, s), 2.18 (2H, dt, J = 7.2, 7.2Hz), 1.94 (1H, t, J = 2.8Hz), 1.63-1.72 (2H, m), 1.52 (2H, dt, J = 8.0, 7.2Hz), 1.35 (3H, t, J = 7.2 Hz), 1.24-1.42 (10H, m)

(中間体(7)’の合成)
ダブルロダニン酢酸エチルエステル(6)’6gを酢酸50mlに溶かし、濃塩酸25mlを加えて4時間加熱撹拌還流する。放冷後酢酸を減圧留去し、残渣に2回クロロホルム16mlを加えて溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィ(クロロホルム、メタノール:クロロホルム=1:20から1:10で展開)により分離し、目的の粗製ダブルロダニン酢酸(7)’1.88gを黄色固体として得た。
(Synthesis of Intermediate (7) ')
Dissolve 6 g of doublerhodanine acetic acid ethyl ester (6) in 50 ml of acetic acid, add 25 ml of concentrated hydrochloric acid and heat to reflux for 4 hours. After standing to cool, acetic acid was distilled off under reduced pressure, 16 ml of chloroform was added twice to the residue, the solvent was distilled off under reduced pressure, and the residue was separated by silica gel chromatography (developed with chloroform, methanol: chloroform = 1: 20 to 1:10). The desired crude double rhodanine acetic acid (7) '1.88 g was obtained as a yellow solid.

1H NMR(CDCl3)
δ4.75(2H, s), 4.05(2H, dd, J=8.0, 7.6Hz), 3.92(2H, s), 2.18(2H, dt, J=7.2, 7.2Hz), 1.95(1H, t, J=2.8Hz), 1.63-1.73(2H, m), 1.48-1.58(2H, m), 1.22-1.41(10H, m)
13C NMR(CDCl3)
δ189.1, 172.7, 169.8, 167.5, 149.7, 94.9, 84.8, 68.1, 45.0, 44.9, 39.1, 31.2, 29.2, 29.0, 28.9, 28.6, 28.4, 26.7×2
1 H NMR (CDCl 3 )
δ4.75 (2H, s), 4.05 (2H, dd, J = 8.0, 7.6Hz), 3.92 (2H, s), 2.18 (2H, dt, J = 7.2, 7.2Hz), 1.95 (1H, t, J = 2.8Hz), 1.63-1.73 (2H, m), 1.48-1.58 (2H, m), 1.22-1.41 (10H, m)
13 C NMR (CDCl 3 )
δ189.1, 172.7, 169.8, 167.5, 149.7, 94.9, 84.8, 68.1, 45.0, 44.9, 39.1, 31.2, 29.2, 29.0, 28.9, 28.6, 28.4, 26.7 × 2

(色素(I−10)の合成)
ダブルロダニン酢酸(7)’0.43gとアルデヒド中間体(A)0.43gを酢酸8mlに溶かし、酢酸アンモニウム0.04gを加え、3時間加熱還流した。放冷後に酢酸を減圧留去し、残渣をシリカゲルクロマトグラフィ(クロロホルム、メタノール:クロロホルム=1:20から10:1で展開)し、目的の色素(I−10)0.64gを褐色固体として得た。
(Synthesis of Dye (I-10))
0.43 g of double rhodanine acetic acid (7) and 0.43 g of aldehyde intermediate (A) were dissolved in 8 ml of acetic acid, 0.04 g of ammonium acetate was added, and the mixture was heated to reflux for 3 hours. After allowing to cool, acetic acid was distilled off under reduced pressure, and the residue was chromatographed on silica gel (chloroform, methanol: chloroform = 1: 20 to 10: 1) to obtain 0.64 g of the target dye (I-10) as a brown solid. .

UV(CHCl3) λmax=554nm
1H NMR(d6-DMSO)
δ13.86(1H, br.s), 7.72(1H, s), 7.40-7.50(5H, m), 7.26-7.38(5H, m), 7.20(2H, d, J=7.2Hz), 7.16(2H, d, J=8.8Hz), 7.09(1H, s), 7.05(1H, s), 7.03(2H, d, J=8.8Hz), 4.94-5.00(1H, m), 4.79(2H, s), 3.97(2H, d, J=7.2Hz), 3.83-3.90(1H, m), 2.04-2.17(3H, m), 1.99-2.01(1H, m), 1.74-1.82(2H, m), 1.56-1.71(4H, m), 1.39-1.52(2H, m), 1.20-1.37(11H, m)
13C NMR(d6-DMSO)
δ188.8, 168.0, 166.0×2, 148.9, 145.8, 142.5, 140.2, 140.0, 139.2, 138.1, 136.5, 134.9, 132.8, 131.3, 130.2×2, 129.6×2, 129.0×2, 128.2×2, 127.6, 127.3, 127.0, 126.7×2, 123.6, 119.3, 112.7, 108.0, 104.6, 92.5, 84.4, 71.0, 68.4, 45.6, 44.2, 43.9, 34.8, 32.7, 32.0, 28.6×2, 28.5, 28.4, 28.3, 26.0×2, 23.7
UV (CHCl 3 ) λ max = 554nm
1 H NMR (d 6 -DMSO)
δ13.86 (1H, br.s), 7.72 (1H, s), 7.40-7.50 (5H, m), 7.26-7.38 (5H, m), 7.20 (2H, d, J = 7.2Hz), 7.16 ( 2H, d, J = 8.8Hz), 7.09 (1H, s), 7.05 (1H, s), 7.03 (2H, d, J = 8.8Hz), 4.94-5.00 (1H, m), 4.79 (2H, s ), 3.97 (2H, d, J = 7.2Hz), 3.83-3.90 (1H, m), 2.04-2.17 (3H, m), 1.99-2.01 (1H, m), 1.74-1.82 (2H, m), 1.56-1.71 (4H, m), 1.39-1.52 (2H, m), 1.20-1.37 (11H, m)
13 C NMR (d 6 -DMSO)
δ188.8, 168.0, 166.0 × 2, 148.9, 145.8, 142.5, 140.2, 140.0, 139.2, 138.1, 136.5, 134.9, 132.8, 131.3, 130.2 × 2, 129.6 × 2, 129.0 × 2, 128.2 × 2, 127.6, 127.3, 127.0, 126.7 × 2, 123.6, 119.3, 112.7, 108.0, 104.6, 92.5, 84.4, 71.0, 68.4, 45.6, 44.2, 43.9, 34.8, 32.7, 32.0, 28.6 × 2, 28.5, 28.4, 28.3, 26.0 × 2, 23.7

(実施例色素)
下記、光電変換素子の作製に用いた実施例色素を以下に示す。なお、I−7およびI−10以外の色素も、上記実施例1および2に示す合成ルートと同様のルートで合成することができる。

Figure 2014101464
(Example dye)
Below, the Example pigment | dye used for preparation of the photoelectric conversion element is shown below. In addition, dyes other than I-7 and I-10 can be synthesized by the same route as the synthesis route shown in Examples 1 and 2 above.
Figure 2014101464

(比較用色素)
下記、光電変換素子の作製に用いた比較用色素を以下に示す。

Figure 2014101464
(Comparative dye)
The following comparative dyes used for the production of photoelectric conversion elements are shown below.
Figure 2014101464

〈光電変換素子の作製〉
(光電極層の作製)
電極基材として片面にFTO電極皮膜が形成されたFTOガラスを用いて、このFTOガラスの電極面に、塗布により厚さ12μmの酸化亜鉛膜を形成した。この酸化亜鉛膜が形成されたFTOガラスを、実施例I−1〜I−10および比較例D−1〜D−7で得られた各色素を濃度が500μMになるようにアセトニトリル/t−ブチルアルコール=1/1に溶解させ、この溶液に90分間浸漬し光電変換層を作製した。なお、添加剤としてこの色素溶液にコール酸濃度が1.0mMになるようにコール酸を加えた。
<Production of photoelectric conversion element>
(Preparation of photoelectrode layer)
Using an FTO glass having an FTO electrode film formed on one side as an electrode substrate, a zinc oxide film having a thickness of 12 μm was formed on the electrode surface of the FTO glass by coating. The FTO glass on which this zinc oxide film was formed was prepared from acetonitrile / t-butyl so that each dye obtained in Examples I-1 to I-10 and Comparative Examples D-1 to D-7 had a concentration of 500 μM. Alcohol was dissolved in 1/1 and immersed in this solution for 90 minutes to produce a photoelectric conversion layer. As an additive, cholic acid was added to this dye solution so that the concentration of cholic acid was 1.0 mM.

(電解質層の形成)
アセトニトリルとエチレンカーボネートとを体積比でアセトニトリル:エチレンカーボネート=1:4の割合で混合した溶液に、ヨウ化テトラプロピルアンモニウムとヨウ素とをヨウ化テトラプロピルアンモニウム1.0M、ヨウ素0.1Mとなるように混合し、電解質液とした。この電解質液を上記電極基材と同じFTOガラスを用いた対向基板と先述の光電極層との間に配し電解質層を形成した。
(Formation of electrolyte layer)
To a solution in which acetonitrile and ethylene carbonate are mixed at a volume ratio of acetonitrile: ethylene carbonate = 1: 4, tetrapropylammonium iodide and iodine are changed to 1.0 M tetrapropylammonium iodide and 0.1 M iodine. To obtain an electrolyte solution. This electrolyte solution was disposed between the counter substrate using the same FTO glass as the electrode base material and the above-described photoelectrode layer, thereby forming an electrolyte layer.

(評価)
上記で作製した各光電変換素子(受光面積0.20cm2)に分光計器株式会社製「CEP−2000」を用いて100mW/cm2の照射強度で光を当てて、光電変換素子の短絡電流(mA)と開放電圧(V)を測定し、短絡電流と受光面積より短絡電流密度(mA/cm2)を求めた。次いで、光電変換素子の電極間に接続する抵抗値を変化させて最大電力Wmax(mW)を観測し、形状因子と光電変換効率(%)を下記計算式により求めた。

Figure 2014101464
Figure 2014101464
(Evaluation)
Each photoelectric conversion element (light receiving area 0.20 cm 2 ) produced above was irradiated with light at an irradiation intensity of 100 mW / cm 2 using “CEP-2000” manufactured by Spectrometer Co., Ltd. mA) and the open circuit voltage (V) were measured, and the short circuit current density (mA / cm 2 ) was determined from the short circuit current and the light receiving area. Subsequently, the resistance value connected between the electrodes of the photoelectric conversion element was changed to observe the maximum power Wmax (mW), and the form factor and the photoelectric conversion efficiency (%) were obtained by the following formula.
Figure 2014101464
Figure 2014101464

求めた光電変換効率を以下の基準で評価した。
SS:6.0%以上
S :5.0%以上6.0%未満
AA:4.0%以上5.0%未満
A :3.0%以上4.0%未満
B :2.0%以上3.0%未満
C :2.0%未満
The obtained photoelectric conversion efficiency was evaluated according to the following criteria.
SS: 6.0% or more S: 5.0% or more and less than 6.0% AA: 4.0% or more and less than 5.0% A: 3.0% or more and less than 4.0% B: 2.0% or more Less than 3.0% C: Less than 2.0%

また、85℃、300時間暗所保存後の光電変換効率の低下率を以下の基準で評価した。結果を表1に示す。
AA:低下率10%以下
A :10%以上15%未満
B :15%以上20%未満
C :20%以上
Further, the rate of decrease in photoelectric conversion efficiency after storage at 85 ° C. for 300 hours in a dark place was evaluated according to the following criteria. The results are shown in Table 1.
AA: Decrease rate of 10% or less A: 10% or more and less than 15% B: 15% or more and less than 20% C: 20% or more

Figure 2014101464
Figure 2014101464

表1に示すように、すべての実験例において、本発明の新規増感色素を光増感剤として使用した光電変換素子は、対応する色素を使用したものと比較して、光電変換効率の向上および保存性の向上が認められた。その作用機構は必ずしも明らかではないが、末端のビニル基やアセチレン基によって、電極に吸着する際に分子の配向性が改善され電子移動効率が上がり、その結果として光電変換効率が向上したものと考えられる。従って、ビニル基やアセチレン基が末端にない場合には、電極に吸着する際の分子の配向性が改善されず、光電変換効率への寄与はないと考えられる。   As shown in Table 1, in all the experimental examples, the photoelectric conversion element using the novel sensitizing dye of the present invention as a photosensitizer has improved photoelectric conversion efficiency as compared with the one using the corresponding dye. In addition, improvement in storage stability was observed. The mechanism of its action is not always clear, but the terminal vinyl group or acetylene group improves molecular orientation when adsorbed to the electrode and increases electron transfer efficiency, resulting in improved photoelectric conversion efficiency. It is done. Therefore, when there is no vinyl group or acetylene group at the terminal, the molecular orientation upon adsorption to the electrode is not improved, and it is considered that there is no contribution to the photoelectric conversion efficiency.

また、末端のビニル基やアセチレン基の反応性の多重結合により、分子間架橋反応やテロメリゼーション反応などが生じ色素の分子量の大幅な増加をもたらし、電解液への溶出防止による安定性向上が得られた結果、光電変換効率が上昇するとともに、暗所保存後の低下率が抑制されたものと推定される。暗所保存後の低下率の抑制は光電変換素子の耐久性向上、長寿命化を促進することができ、非常に高性能な光電変換素子とすることができる。   In addition, the reactive multiple bond of the terminal vinyl group or acetylene group causes intermolecular crosslinking reaction or telomerization reaction, resulting in a significant increase in the molecular weight of the dye, and improved stability by preventing elution into the electrolyte. As a result, it is presumed that the photoelectric conversion efficiency increases and the decrease rate after storage in the dark is suppressed. Suppression of the rate of decrease after storage in the dark can promote improvement in durability and long life of the photoelectric conversion element, and can provide a very high-performance photoelectric conversion element.

なお、本発明の実施例においては電極に酸化亜鉛を用いているが、酸化亜鉛を用いても従来に比べて格段に高い光電変換効率が得られており、プラスチックDSC材料としても極めて優れており、安価で高性能な光電変換素子を提供することができる。   In the examples of the present invention, zinc oxide is used for the electrode. However, even if zinc oxide is used, the photoelectric conversion efficiency is remarkably higher than the conventional one, and it is extremely excellent as a plastic DSC material. An inexpensive and high-performance photoelectric conversion element can be provided.

Claims (3)

下記一般式(I)で示される色素またはその塩であることを特徴とする光増感剤。
Figure 2014101464
(式(I)において、式中mは1〜3の整数を示す。nは0〜18の整数を示す。pは1〜3の整数を示す。Xは酸素または硫黄原子、置換窒素原子であり、lは0または1を示す。DYEは希少遷移金属を含まない有機色素を示す。)
A photosensitizer characterized by being a dye represented by the following general formula (I) or a salt thereof.
Figure 2014101464
(In the formula (I), m represents an integer of 1 to 3. n represents an integer of 0 to 18. p represents an integer of 1 to 3. X represents an oxygen or sulfur atom or a substituted nitrogen atom. Yes, 1 represents 0 or 1. DYE represents an organic dye containing no rare transition metal.
下記一般式(II)で示される色素またはその塩であることを特徴とする光増感剤。
Figure 2014101464
(式(II)において、式中mは1〜3の整数を示す。nは0〜18の整数を示す。pは1〜3の整数を示す。Xは酸素または硫黄原子、置換窒素原子であり、lは0または1を示す。DYEは希少遷移金属を含まない有機色素を示す。)
A photosensitizer characterized by being a dye represented by the following general formula (II) or a salt thereof.
Figure 2014101464
(In formula (II), m represents an integer of 1 to 3. n represents an integer of 0 to 18. p represents an integer of 1 to 3. X represents an oxygen or sulfur atom or a substituted nitrogen atom. Yes, 1 represents 0 or 1. DYE represents an organic dye containing no rare transition metal.
請求項1または2記載の光増感剤を吸着した半導体層を有することを特徴とする光電変換素子。   It has a semiconductor layer which adsorb | sucked the photosensitizer of Claim 1 or 2. The photoelectric conversion element characterized by the above-mentioned.
JP2012255272A 2012-11-21 2012-11-21 Photosensitizer and photoelectric conversion element Pending JP2014101464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255272A JP2014101464A (en) 2012-11-21 2012-11-21 Photosensitizer and photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255272A JP2014101464A (en) 2012-11-21 2012-11-21 Photosensitizer and photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2014101464A true JP2014101464A (en) 2014-06-05

Family

ID=51024264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255272A Pending JP2014101464A (en) 2012-11-21 2012-11-21 Photosensitizer and photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2014101464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220148820A1 (en) * 2019-01-30 2022-05-12 Tégula Soluções Para Telhados Ltda Photovoltaic cell, method for manufacturing an encapsulated photovoltaic cell, electrical connection unit for a photovoltaic tile, and photovoltaic tile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220148820A1 (en) * 2019-01-30 2022-05-12 Tégula Soluções Para Telhados Ltda Photovoltaic cell, method for manufacturing an encapsulated photovoltaic cell, electrical connection unit for a photovoltaic tile, and photovoltaic tile

Similar Documents

Publication Publication Date Title
JP5106381B2 (en) Dye-sensitized photoelectric conversion element
Tan et al. Highly efficient and stable organic sensitizers with duplex starburst triphenylamine and carbazole donors for liquid and quasi-solid-state dye-sensitized solar cells
JP5576298B2 (en) Organic sensitizer
Gupta et al. Carbazole based A-π-D-π-A dyes with double electron acceptor for dye-sensitized solar cell
CN103492402A (en) Improved redox couple for electrochemical and optoelectronic devices
JP6278504B2 (en) Novel compound and photoelectric conversion element using the same
JPWO2006126538A1 (en) Dye-sensitized photoelectric conversion element
WO2006120939A1 (en) Novel amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
JP2009048925A (en) Dye-sensitized photoelectric conversion element
Tomkeviciene et al. Diphenylamino-substituted derivatives of 9-phenylcarbazole as glass-forming hole-transporting materials for solid state dye sensitized solar cells
Michaleviciute et al. Star-shaped carbazole derivative based efficient solid-state dye sensitized solar cell
JP2016216663A (en) Photosensitizer and photoelectric conversion element
KR101760492B1 (en) Novel compounds, method of preparation thereof and organic solar cell comprising the same
Kong et al. A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells
JP5530102B2 (en) Benzoindole compounds and dye-sensitized solar cells using the same
WO2008056567A1 (en) Novel amino group-containing aromatic compound, and sensitizing dye for photoelectric conversion, containing the aromatic compound
JP2013122912A (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP2014101464A (en) Photosensitizer and photoelectric conversion element
KR20080103683A (en) Novel julolidine-based dye and preparation thereof
KR101703570B1 (en) Hole transfer material, inorganic-organic hybrid solar cell using the same, and the manufacturing method thereof
KR101499476B1 (en) Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
JP6004808B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6616907B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
KR101066906B1 (en) Novel amphiphilic compounds, methods of preparing the compounds and dye-sensitized solar cells using dyes comprising the compounds
KR101760493B1 (en) Benzobisoxazole derivatives, method of preparation thereof and organic solar cell comprising the same