JP2014080303A - Cupric oxide powder and production method thereof - Google Patents

Cupric oxide powder and production method thereof Download PDF

Info

Publication number
JP2014080303A
JP2014080303A JP2012227350A JP2012227350A JP2014080303A JP 2014080303 A JP2014080303 A JP 2014080303A JP 2012227350 A JP2012227350 A JP 2012227350A JP 2012227350 A JP2012227350 A JP 2012227350A JP 2014080303 A JP2014080303 A JP 2014080303A
Authority
JP
Japan
Prior art keywords
cupric oxide
oxide powder
powder
copper
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012227350A
Other languages
Japanese (ja)
Other versions
JP5720651B2 (en
JP2014080303A5 (en
Inventor
Hiroshi Okada
浩 岡田
Takeshi Yamashita
雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012227350A priority Critical patent/JP5720651B2/en
Priority to PCT/JP2013/072468 priority patent/WO2014057733A1/en
Priority to TW102136946A priority patent/TWI580642B/en
Publication of JP2014080303A publication Critical patent/JP2014080303A/en
Publication of JP2014080303A5 publication Critical patent/JP2014080303A5/ja
Application granted granted Critical
Publication of JP5720651B2 publication Critical patent/JP5720651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cupric oxide powder excellent in purity, solubility to a plating solution and flowability.SOLUTION: The production method includes a heating step S1 of heating an electrolytic copper powder in air atmosphere, a wet milling step S2 of adjusting a slurry concentration of a copper oxide powder obtained by the heating step S1 to 15 mass% to 65 mass% and milling the copper oxide slurry after the adjustment, and a spray dry step S3 of drying a cupric oxide powder obtained by the wet milling step S2 by a spray dry method. Before the heating step S1, an electrolytic copper powder recovery step S0 of electrolyzing and recovering copper in a copper sulfate solution may be included. In wet milling step S2, it is preferable that the copper oxide powder slurry is milled to an average particle diameter of 1 μm or less to obtain a cupric oxide powder having 8,000 mPa s or less. In the spray dry step S3, it is preferable that disc rotational speed is adjusted to 10,000 rpm to 50,000 rpm and the cupric oxide powder is dried at 100°C to 400°C.

Description

本発明は、酸化第二銅粉及びその製造方法に関する。   The present invention relates to cupric oxide powder and a method for producing the same.

酸化第二銅は、顔料、塗料、触媒、陶磁器の着色剤や銅めっき液の補給用銅源等に用いられ、その製造方法は、湿式法と乾式法に大別される。   Cupric oxide is used for pigments, paints, catalysts, porcelain colorants, copper sources for replenishing copper plating solutions, and the like, and the production methods are roughly classified into wet methods and dry methods.

湿式法の一例として、塩化第二銅や硫酸銅の水溶液に水酸化ナトリウムを加えて水酸化銅を生成させた後、この水酸化銅を加熱することが挙げられる(特許文献1参照)。より詳しくは、塩化第二銅を含むプリント基板のエッチング廃液を苛性アルカリ(NaOH)で中和し、その中和した銅溶液と苛性アルカリ水溶液とを、温度40〜50℃に保持した水溶液中に同時に滴下混合して、その混合した水溶液のpHを弱酸性から弱アルカリ性の範囲に維持しながら銅の水和物を生成させる。次いで、pHを12〜13に調製し、70〜80℃の温度に30分間保持した後、水洗、固液分離して酸化第二銅を製造することが挙げられる。   As an example of the wet method, sodium hydroxide is added to an aqueous solution of cupric chloride or copper sulfate to form copper hydroxide, and then the copper hydroxide is heated (see Patent Document 1). More specifically, the etching waste solution of the printed circuit board containing cupric chloride is neutralized with caustic alkali (NaOH), and the neutralized copper solution and caustic aqueous solution are contained in an aqueous solution maintained at a temperature of 40 to 50 ° C. At the same time, the mixture is added dropwise to produce a copper hydrate while maintaining the pH of the mixed aqueous solution in the range of weakly acidic to weakly alkaline. Then, after adjusting pH to 12-13 and hold | maintaining at the temperature of 70-80 degreeC for 30 minutes, washing with water and solid-liquid separation are mentioned and manufacturing cupric oxide is mentioned.

湿式法の他の一例として、硫酸銅水溶液と水酸化ナトリウム水溶液とを30℃以下の温度で反応させて水酸化第二銅を生成し、この水酸化第二銅を60〜80℃の温度に加熱、熟成して酸化第二銅を形成することが挙げられる(特許文献2参照)。一般に、湿式法で製造された酸化第二銅粉末は、銅めっき液への溶解性が速いという利点を有する。   As another example of the wet method, a copper sulfate aqueous solution and a sodium hydroxide aqueous solution are reacted at a temperature of 30 ° C. or lower to produce cupric hydroxide, and the cupric hydroxide is brought to a temperature of 60 to 80 ° C. Heating and aging to form cupric oxide (see Patent Document 2). In general, cupric oxide powder produced by a wet method has an advantage of fast solubility in a copper plating solution.

一方、乾式法の一例として、硝酸銅、硫酸銅、炭酸銅、水酸化銅等を空気中で600℃程度の温度に加熱して熱分解する方法が挙げられる(非特許文献1参照)。また、乾式法の他の一例として、銅粉を350℃〜800℃の条件で酸化して酸化第二銅にした後、この酸化第二銅を媒体撹拌ミルや気流式ミル等を用いて粉砕することが挙げられる(特許文献3参照)。一般に、乾式法は、湿式法に比べ、得られる酸化第二銅の純度が高く、めっき液への溶解性に優れる。   On the other hand, as an example of the dry method, there is a method in which copper nitrate, copper sulfate, copper carbonate, copper hydroxide or the like is thermally decomposed by heating to about 600 ° C. in air (see Non-Patent Document 1). As another example of the dry method, copper powder is oxidized at 350 ° C. to 800 ° C. to make cupric oxide, and then the cupric oxide is pulverized using a medium stirring mill or an airflow mill. (See Patent Document 3). In general, the dry method has a higher purity of cupric oxide obtained than the wet method, and is excellent in solubility in a plating solution.

特開平5−319825号公報JP-A-5-31825 特開平3−80116号公報Japanese Patent Laid-Open No. 3-80116 特開2012−144414号公報JP 2012-144414 A

第4版 実験化学講座 無機化合物,日本化学会編,丸善株式会社,1993年12月4th edition Experimental Chemistry Course Inorganic compounds, The Chemical Society of Japan, Maruzen Co., Ltd., December 1993

しかしながら、酸化第二銅粉末を湿式法で製造すると、Naのほか、硫酸イオンに由来するS等の残留濃度が比較的高くなりがちであるという課題を有する。不純物を多く含む酸化第二銅粉末をめっき液に加えると、不純物に起因してめっきの不具合を生じ得る。例えば、特許文献1に記載の方法では、使用するエッチング廃液中において、プリント基板をエッチングするときに溶解する銅以外の不純物が含まれることのほか、中和のときに不純物として塩化ナトリウム(NaCl)が副生すること等から、不純物除去のために水洗工程が必要となる。さらには水洗しても完全に除去することは困難であるといった課題もあり、引用文献1に記載の方法で製造した酸化銅は、不純物をめっき液中に添加することになるため、添加とともにめっき皮膜特性が劣化してめっき液を更新しなければならいという課題がある。   However, when cupric oxide powder is produced by a wet process, there is a problem that the residual concentration of S or the like derived from sulfate ions tends to be relatively high in addition to Na. If cupric oxide powder containing a large amount of impurities is added to the plating solution, plating defects may occur due to the impurities. For example, in the method described in Patent Document 1, impurities other than copper dissolved when etching a printed circuit board are included in the etching waste liquid used, and sodium chloride (NaCl) is used as an impurity during neutralization. As a by-product, etc., a water washing step is required to remove impurities. Furthermore, there is also a problem that it is difficult to completely remove even by washing with water, and the copper oxide produced by the method described in the cited document 1 adds impurities into the plating solution. There is a problem in that the coating properties deteriorate and the plating solution must be renewed.

また、スラリー状の酸化第二銅微粉末を乾燥する手法として、容器を加熱することで溶媒を気化して乾燥する方法や容器内を撹拌しながら加熱して乾燥する方法や熱風によって流動しているアルミナ等の媒体中にスラリーを投入し、媒体表面で乾燥した粉がはがれて熱風とともに排気されてサイクロン、バグフィルター等で乾燥粉体として回収する媒体流動式乾燥方法等が知られている。これらの方法は、乾燥方法としては工業的に確立された効率の良い方法である。しかしながら、乾燥された酸化第二銅微粉末の2次粒子を凝集形状に制御することが難しく、溶解性やハンドリング性を一定にコントロールすることが難しいという課題がある。   In addition, as a method of drying the slurry-like cupric oxide fine powder, a method of evaporating the solvent by heating the container, a method of drying by heating the container while stirring, or a method of heating with hot air There is known a medium fluidized drying method in which slurry is put into a medium such as alumina, powder dried on the surface of the medium is peeled off, exhausted with hot air, and recovered as a dry powder with a cyclone, bag filter or the like. These methods are industrially established and efficient methods as drying methods. However, there is a problem that it is difficult to control the secondary particles of the dried cupric oxide fine powder into an agglomerated shape, and it is difficult to control the solubility and handling properties to be constant.

また、乾式法では、湿式法に比べ、めっき液への溶解性に優れる一方、酸化第二銅粉末の熱分解温度が高いため、酸化第二銅粉末どうしで焼結しやすく、粗大化してめっき液への溶解速度が極めて遅くなることがあり得る。溶解性を向上させるためには、得られた酸化銅粉が微細な粉末状態であることが要求されるが、乾式法で得られる酸化第二銅粉は焼結によって粒子が大きくなるため、粉砕処理がさらに必要となる。特に、金属銅を原料に用いた場合、熱処理前に粉砕すると、金属銅は柔らかく延性を持つため、細かく粉砕することは難しい。   In addition, the dry method has better solubility in the plating solution than the wet method, but the pyrolysis temperature of the cupric oxide powder is high. The dissolution rate in the liquid can be very slow. In order to improve the solubility, the obtained copper oxide powder is required to be in a fine powder state, but the cupric oxide powder obtained by the dry method is pulverized because the particles become larger by sintering. Further processing is required. In particular, when metallic copper is used as a raw material, it is difficult to finely grind metal copper because it is soft and ductile when ground before heat treatment.

このため、完全に酸化銅まで熱処理を行うためには、より高温に加熱する必要があり、高温での熱処理によって再び銅粒子の焼結が発生するため、熱処理後再度粉砕する必要が生じる点で湿式法に比べて効率が劣る。   For this reason, in order to completely heat-treat the copper oxide, it is necessary to heat it to a higher temperature, and since the copper particles are sintered again by the heat-treatment at a high temperature, it is necessary to grind again after the heat treatment. The efficiency is inferior compared to the wet method.

また、工業規模で酸化第二銅を取り扱う場合、流動性が問題となる。具体的には、酸化第二銅粉をめっき液に溶解する場合に、酸化第二銅を投入する切り出し装置で徐々に投入する方法が用いられているが、流動性が悪い場合には、ホッパー内等でブリッジを起こしやすいため、切り出し装置内で酸化第二銅が詰まってしまう不具合が発生するため、酸化第二銅を製造する場合においては、流動性は重要な要素となる。   Moreover, when handling cupric oxide on an industrial scale, fluidity becomes a problem. Specifically, when cupric oxide powder is dissolved in the plating solution, a method of gradually adding it with a cutting device for adding cupric oxide is used. Since bridging is likely to occur in the inside and the like, there is a problem that cupric oxide is clogged in the cutting device, so that fluidity is an important factor in the production of cupric oxide.

特許文献3に記載の方法においても、できた酸化第二銅粉の流動性をコントロールすることについては示されておらず、特に、媒体撹拌ミルで粉砕した場合は、粉砕した酸化銅粉はスラリー状の状態で回収されるため、乾いた状態での酸化銅粉を得るためには、乾燥工程が必要となる。しかしながら、一般にスラリーを乾燥する場合、トレイ等の容器に入れて乾燥すると、酸化銅粉が凝集した状態で乾燥するため、固まった2次粒子の形状となり、溶解性やハンドリングで問題となる流動性に影響を及ぼす。   Even in the method described in Patent Document 3, there is no indication of controlling the fluidity of the cupric oxide powder thus produced. In particular, when pulverized with a medium stirring mill, the pulverized copper oxide powder is a slurry. In order to obtain the copper oxide powder in a dry state, a drying process is required. However, in general, when the slurry is dried, when it is put in a container such as a tray and dried, the copper oxide powder is dried in an aggregated state, so that it becomes a solid secondary particle shape, which causes a problem in solubility and handling. Affects.

乾燥方式をスプレードライ方式にすれば、酸化第二銅微粉末を乾燥しながら造粒できるが、スラリー状のものを乾燥して造粒する場合、造粒剤を添加するのが一般的である。造粒剤はいわば接着剤の作用を示すもので、粉は湿っているときは水の凝集作用によって固まりになるが、乾燥すると水の凝集作用がなくなるために、形成した形状が崩れてしまうため、造粒する場合には一般的に有機物等の造粒剤を添加する。   If the drying method is a spray-dry method, the cupric oxide fine powder can be granulated while drying, but when a slurry is dried and granulated, it is common to add a granulating agent. . The granulating agent shows the action of an adhesive, so when the powder is moist, it becomes hard due to the aggregating action of water, but when dried, the agglomerating action of water disappears, and the formed shape collapses. When granulating, generally a granulating agent such as an organic substance is added.

しかしながら、添加した造粒剤は、そのままめっき液に対して不純物となるため、めっき特性を著しく劣化させる原因となる。そのため、高純度酸化銅微粉末を製造する場合は、造粒剤のような薬剤をできるだけ添加することなく製造することが必要となる。   However, since the added granulating agent becomes an impurity with respect to the plating solution as it is, it causes a significant deterioration of the plating characteristics. Therefore, when manufacturing a high purity copper oxide fine powder, it is necessary to manufacture it without adding a chemical | medical agent like a granulating agent as much as possible.

本発明は、高純度な酸化第二銅粉を工業的に効率良く、かつ、低コストで製造するための問題点、すなわち、めっき液への溶解性と、めっき液に投入するときのホッパー等での詰まりに関する問題点に着目してなされたものであり、その課題とするところは、純度が高く、めっき液への溶解性が高く、流動性に優れた酸化第二銅粉を提供することである。   The present invention is a problem for producing high-purity cupric oxide powder industrially efficiently and at low cost, that is, the solubility in the plating solution, the hopper when being added to the plating solution, etc. The purpose of this work is to provide cupric oxide powder with high purity, high solubility in plating solution, and excellent fluidity. It is.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、酸化銅粉を15重量%以上65重量%以下のスラリー濃度に調整し、該調整後の酸化銅粉スラリーを粉砕した後、粉砕後の酸化第二銅微粉末をスプレードライ法で乾燥することで上記の目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors adjusted the copper oxide powder to a slurry concentration of 15 wt% or more and 65 wt% or less, and pulverized the adjusted copper oxide powder slurry. The present inventors have found that the above object can be achieved by drying the pulverized cupric oxide fine powder by a spray drying method, and have completed the present invention.

具体的には、本発明では、以下のようなものを提供する。   Specifically, the present invention provides the following.

(1)本発明は、電解銅粉を空気雰囲気で加熱する加熱工程と、前記加熱工程によって得られる酸化銅粉を15重量%以上65重量%以下のスラリー濃度に調整し、該調整後の酸化銅粉スラリーを粉砕する湿式粉砕工程と、前記湿式粉砕工程によって得られる酸化第二銅微粉末をスプレードライ法で乾燥するスプレードライ工程とを含む、酸化第二銅粉の製造方法である。   (1) In the present invention, the heating step of heating the electrolytic copper powder in an air atmosphere, and the copper oxide powder obtained by the heating step are adjusted to a slurry concentration of 15 wt% or more and 65 wt% or less, and the adjusted oxidation It is a manufacturing method of cupric oxide powder including the wet grinding process which grinds copper powder slurry, and the spray drying process which dries the cupric oxide fine powder obtained by the wet grinding process by the spray dry method.

(2)また、本発明は、前記加熱工程に先立ち、硫酸銅溶液中で銅の電気分解を行うことによって電極表面に電解銅粉を析出させ、回収する電解銅粉回収工程をさらに含む、(1)に記載の酸化第二銅粉の製造方法である。   (2) Moreover, this invention further includes the electrolytic copper powder collection | recovery process which deposits and collects electrolytic copper powder on the electrode surface by electrolyzing copper in a copper sulfate solution prior to the said heating process. It is a manufacturing method of cupric oxide powder given in 1).

(3)また、本発明は、前記加熱工程において、前記電解銅粉を空気雰囲気で500℃以上、900℃以下で加熱する、(1)又は(2)に記載の酸化第二銅粉の製造方法である。   (3) Moreover, this invention heats the said electrolytic copper powder at 500 degreeC or more and 900 degrees C or less in an air atmosphere in the said heating process, Manufacture of the cupric oxide powder as described in (1) or (2) Is the method.

(4)また、本発明は、前記湿式粉砕工程において、前記酸化銅粉スラリーを1次粒子平均粒径1μm以下に粉砕する、(1)から(3)のいずれかに記載の酸化第二銅粉の製造方法である。   (4) Moreover, this invention grind | pulverizes the said copper oxide powder slurry to a primary particle average particle diameter of 1 micrometer or less in the said wet grinding process, The cupric oxide in any one of (1) to (3) It is a manufacturing method of powder.

(5)また、本発明は、前記酸化第二銅微粉末の粘度が8,000mPa・s以下である、(1)から(4)のいずれかに記載の酸化第二銅粉の製造方法である。   (5) Moreover, this invention is a manufacturing method of the cupric oxide powder in any one of (1) to (4) whose viscosity of the said cupric oxide fine powder is 8,000 mPa * s or less. is there.

(6)また、本発明は、前記酸化第二銅粉が、2次粒子平均粒子径が20μm以上100μm以下であり、真球度が0.8以上である、(1)から(5)のいずれかに記載の酸化第二銅粉の製造方法である。   (6) Further, in the present invention, the cupric oxide powder has a secondary particle average particle size of 20 μm or more and 100 μm or less, and a sphericity of 0.8 or more. It is the manufacturing method of the cupric oxide powder in any one.

(7)また、本発明は、前記スプレードライ工程では、スプレードライ装置のディスク回転速度を10,000rpm以上50,000rpm以下の範囲に調整する、(1)から(6)のいずれかに記載の酸化第二銅粉の製造方法である。   (7) Moreover, this invention adjusts the disk rotational speed of a spray-drying apparatus in the range of 10,000 rpm or more and 50,000 rpm or less in the said spray-drying process, In any one of (1) to (6) It is a manufacturing method of cupric oxide powder.

(8)また、本発明は、前記スプレードライ工程における乾燥温度は100℃以上400℃以下である、(1)から(7)のいずれかに記載の酸化第二銅粉の製造方法である。   (8) Moreover, this invention is a manufacturing method of the cupric oxide powder in any one of (1) to (7) whose drying temperature in the said spray-drying process is 100 degreeC or more and 400 degrees C or less.

(9)また、本発明は、2次粒子平均粒子径が20μm以上100μm以下であり、安息角が50°以下であり、真球度が0.8以上であり、500℃、1時間の条件で加熱した後の硫酸銅めっき液に対する溶解時間が15秒以下である酸化第二銅粉である。   (9) Further, in the present invention, the secondary particle average particle diameter is 20 μm or more and 100 μm or less, the angle of repose is 50 ° or less, the sphericity is 0.8 or more, and the condition of 500 ° C. for 1 hour. The cupric oxide powder has a dissolution time of 15 seconds or less with respect to the copper sulfate plating solution after being heated at.

本発明によると、銅めっき液への溶解性が高く、流動性が高い酸化第二銅粉を、造粒剤を添加することなく提供できる。この酸化第二銅粉は、工業的に用いる銅めっき液の補給用銅源として好適である。   According to the present invention, cupric oxide powder having high solubility in a copper plating solution and high fluidity can be provided without adding a granulating agent. This cupric oxide powder is suitable as a copper source for supplying copper plating solution for industrial use.

本発明に係る製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method which concerns on this invention. 電解銅粉を乾燥することによって得られる酸化銅粉の走査電子顕微鏡画像(SEM画像)を示す。The scanning electron microscope image (SEM image) of the copper oxide powder obtained by drying electrolytic copper powder is shown. 実施例及び比較例に係る酸化第二銅微粉末(湿式粉砕後であって、粉砕後乾燥前の酸化第二銅微粉末)のX線回折パターンを示す。The X-ray-diffraction pattern of the cupric oxide fine powder (The cupric oxide fine powder after a wet grinding | pulverization and before a drying after grinding | pulverization) which concerns on an Example and a comparative example is shown. 実施例に係る酸化第二銅粉のSEM画像を示す。The SEM image of the cupric oxide powder which concerns on an Example is shown. 比較例に係る酸化第二銅粉のSEM画像を示す。The SEM image of the cupric oxide powder concerning a comparative example is shown.

以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. Can do.

本発明の製造方法は、電解銅粉を空気雰囲気で加熱する加熱工程S1と、この加熱工程S1によって得られる酸化銅粉を15重量%以上65重量%以下のスラリー濃度に調整し、この調整後の酸化銅粉スラリーを粉砕する湿式粉砕工程S2と、この湿式粉砕工程によって得られる酸化第二銅微粉末をスプレードライ法で乾燥するスプレードライ工程S3とを含む。   In the production method of the present invention, the heating step S1 for heating the electrolytic copper powder in an air atmosphere, and the copper oxide powder obtained by the heating step S1 are adjusted to a slurry concentration of 15 wt% or more and 65 wt% or less. A wet pulverization step S2 for pulverizing the copper oxide powder slurry, and a spray drying step S3 for drying cupric oxide fine powder obtained by the wet pulverization step by a spray drying method.

<電解銅粉回収工程S0>
本発明では、加熱工程S1に先立ち、硫酸銅溶液中で銅の電気分解を行うことによって電極表面に電解銅粉を析出させ、回収する電解銅粉回収工程S0をさらに含んでもよい。電解銅粉は、例えば、CuSO・5HO:5〜50g/L、遊離HSO:50〜250g/Lの浴組成で、電流密度5〜30A/dm、浴温20〜60℃の条件で電解し、陰極上に電析させることによって製造できる。
<Electrolytic copper powder recovery process S0>
In the present invention, prior to the heating step S1, an electrolytic copper powder recovery step S0 may be further included in which electrolytic copper powder is deposited on the surface of the electrode by electrolysis of copper in a copper sulfate solution and recovered. Electrolytic copper powder, for example, CuSO 4 · 5H 2 O: 5~50g / L, free H 2 SO 4: in bath composition of 50 to 250 g / L, current density 5~30A / dm 2, a bath temperature of 20 to 60 It can be produced by electrolysis under the condition of ° C. and electrodepositing on the cathode.

<加熱工程S1>
本発明は、電解銅粉を空気雰囲気で加熱する加熱工程S1を含む。加熱工程により、電解銅粉が酸化され、酸化第二銅粉となる。
<Heating step S1>
The present invention includes a heating step S1 for heating the electrolytic copper powder in an air atmosphere. By the heating step, the electrolytic copper powder is oxidized to become cupric oxide powder.

加熱条件は、空気雰囲気下であれば特に限定されるものでないが、500℃以上900℃以下であることが好ましい。500℃未満であると、酸化反応は進行するものの、反応速度が遅いために工業的には効率が悪い点で好ましくない。900℃を超えると、高温処理となるため、酸化反応は早く進行するものの、今度は酸化銅粉が焼結して大きな粒子になるため新たに粉砕する工程が工業的には必要になる点で好ましくない。なお、加熱処理する設備の形態によって電解銅粉を炉内に投入した後に温度を徐々に上昇させるようにしてもよいし、所定の温度に調整された炉内に電解銅粉を投入するようにしてもよい。なお、酸化反応は約300℃以上で進行する。   The heating conditions are not particularly limited as long as they are in an air atmosphere, but are preferably 500 ° C. or higher and 900 ° C. or lower. When the temperature is less than 500 ° C., the oxidation reaction proceeds, but the reaction rate is slow, which is not preferable in terms of industrial efficiency. When the temperature exceeds 900 ° C., the oxidation reaction proceeds quickly because of high-temperature treatment, but this time, the copper oxide powder sinters into large particles, so a new pulverization step is industrially required. It is not preferable. Note that the temperature may be gradually increased after the electrolytic copper powder is put into the furnace depending on the form of the heat treatment equipment, or the electrolytic copper powder is put into the furnace adjusted to a predetermined temperature. May be. The oxidation reaction proceeds at about 300 ° C. or higher.

加熱時間は、電解銅粉の粒子径や処理量等によって適宜選択できる。また、熱処理する設備は、温度制御と空気量を制御できれば良く、公知の管状炉やボックス炉、ロータリーキルン等を用いることができる。また、熱処理設備には発生ガスや粉塵を回収する装備を備えることで環境への負荷も少なくできる。   The heating time can be appropriately selected depending on the particle diameter of the electrolytic copper powder, the processing amount, and the like. In addition, the heat treatment equipment only needs to be able to control the temperature and the amount of air, and a known tubular furnace, box furnace, rotary kiln, or the like can be used. In addition, it is possible to reduce the burden on the environment by providing the heat treatment equipment with equipment for collecting generated gas and dust.

<湿式粉砕工程S2>
本発明は、加熱工程S1によって得られる酸化銅粉を15重量%以上65重量%以下のスラリー濃度に調整し、この調整後の酸化銅粉スラリーを粉砕する湿式粉砕工程S2を含む。粉砕処理には、媒体撹拌ミルを用いることが好ましい。媒体撹拌ミルを用いることで、平均粒子径を1μm以下にすることができる。粉砕後の酸化第二銅微粉末の平均粒子径が1μmを超えると、著しく溶解性が低下するため、好ましくない。
<Wet grinding process S2>
The present invention includes a wet pulverization step S2 in which the copper oxide powder obtained by the heating step S1 is adjusted to a slurry concentration of 15 wt% or more and 65 wt% or less and the adjusted copper oxide powder slurry is pulverized. It is preferable to use a medium stirring mill for the pulverization treatment. By using a medium stirring mill, the average particle diameter can be made 1 μm or less. If the average particle size of the fine cupric oxide powder after pulverization exceeds 1 μm, the solubility is significantly lowered, which is not preferable.

また、スラリー濃度を15重量%以上65重量%以下に調整することで、造粒剤を加えなくても、その後のスプレードライ工程S3を経て得られる酸化銅粉を球形に保つことができる。   Moreover, by adjusting the slurry concentration to 15 wt% or more and 65 wt% or less, the copper oxide powder obtained through the subsequent spray-drying step S <b> 3 can be kept spherical without adding a granulating agent.

媒体撹拌ミルは、ビーズ等の粉砕媒体と、被粉砕媒体であるスラリー状の酸化第二銅粉とに対し、撹拌により運動エネルギーを与え、酸化第二銅粉どうしの衝突のほか、粉砕媒体と酸化第二銅粉とのせん断応力等により微粉末を得る装置である。   The medium agitation mill gives kinetic energy to the pulverization medium such as beads and the slurry-like cupric oxide powder as the medium to be pulverized by agitation, in addition to the collision between the cupric oxide powders, It is an apparatus that obtains fine powder by shearing stress with cupric oxide powder.

酸化銅粉をスラリーにするための溶媒は、特に限定されるものではなく、例えば、水、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコール等のアルコール類、メチルエーテル、エチルエーテル、プロピルエーテル等のエーテル類、エステル類、またはアセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトン等のケトン類といった各種の溶媒を使用できる。   The solvent for making the copper oxide powder into a slurry is not particularly limited. For example, water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol and other alcohols, methyl ether, ethyl ether, Various solvents such as ethers such as propyl ether, esters, or ketones such as acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, and isobutyl ketone can be used.

また、スラリー濃度は15重量%以上65重量%以下に調整することが好ましく、20重量%以上50重量%以下に調整することがより好ましい。スラリー濃度が15重量%未満であると、その後のスプレードライ工程を経て得られる酸化銅粉を球形に保つことが難しい点で好ましくない。スラリー濃度が65重量%を超えると、スラリーの粘度が高くなりすぎるため、その後のスプレードライ工程において液滴にすることが難しく、酸化銅粉を球形で回収することが難しい点で好ましくない。   The slurry concentration is preferably adjusted to 15% by weight or more and 65% by weight or less, and more preferably 20% by weight or more and 50% by weight or less. When the slurry concentration is less than 15% by weight, it is not preferable because it is difficult to keep the copper oxide powder obtained through the subsequent spray drying process in a spherical shape. If the slurry concentration exceeds 65% by weight, the viscosity of the slurry becomes too high, so that it is difficult to form droplets in the subsequent spray drying process, and it is not preferable in that it is difficult to collect the copper oxide powder in a spherical shape.

媒体撹拌ミルの撹拌機構は、ビーズのせん断応力が酸化第二銅粗粉末に効率よく伝達されれば良く、その機構や形状は特に限定されない。   The stirring mechanism of the medium stirring mill is not particularly limited as long as the shear stress of the beads is efficiently transmitted to the cupric oxide coarse powder.

粉砕媒体であるビーズ径は、目的とする酸化第二銅微粉末の最終粒子径によって選択することが一般的であるが、好ましくは直径1mm以下である。直径1mm以下であれば、粒子を微細に砕く効率が高くなる。   The bead diameter as a grinding medium is generally selected according to the final particle diameter of the desired cupric oxide fine powder, but is preferably 1 mm or less in diameter. If it is 1 mm or less in diameter, the efficiency which grinds particles finely will become high.

さらに、ビーズ径は、小さいほど粉砕スピードが速く、粉砕される酸化銅粉末の粒子径も小さくなる。特に、めっき液への溶解性が高い粒子径に粉砕することを考えて、量産装置として使用する場合には、特に直径0.5mm以下のビーズが好ましい。   Furthermore, the smaller the bead diameter, the faster the pulverization speed and the smaller the particle diameter of the pulverized copper oxide powder. In particular, in consideration of pulverization to a particle size having high solubility in the plating solution, beads having a diameter of 0.5 mm or less are particularly preferred when used as a mass production apparatus.

ビーズの材質は特に限定されないが、例えば比重が小さいガラスビーズや比重が大きいZrO2ビーズ、YSZビーズが挙げられる。比重が大きいビーズでは、粉末砕効率が高く、摩耗が少なく、特に好ましい。   The material of the beads is not particularly limited, and examples thereof include glass beads having a small specific gravity, ZrO2 beads having a large specific gravity, and YSZ beads. Beads having a large specific gravity are particularly preferable because of high powder crushing efficiency and low wear.

媒体撹拌ミルは、特に限定されず、例えばビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザー等が挙げられる。なお、粉砕条件は、特に限定されるものではなく、得られる酸化第二銅微粉末が所望の平均粒子径となるように適宜選択すればよい。   The medium stirring mill is not particularly limited, and examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer. The pulverization conditions are not particularly limited, and may be appropriately selected so that the obtained cupric oxide fine powder has a desired average particle size.

得られる酸化第二銅微粉末の粘度は8,000mPa・s以下であることが好ましい。8,000mPa・s以下であることにより、その後のスプレードライ工程において酸化銅粉をほぼ球形で回収し易くなる。   The viscosity of the obtained cupric oxide fine powder is preferably 8,000 mPa · s or less. By being 8,000 mPa * s or less, it becomes easy to collect | recover copper oxide powder in a substantially spherical shape in a subsequent spray-drying process.

<スプレードライ工程S3>
本発明は、湿式粉砕工程S2によって得られる酸化第二銅微粉末をスプレードライ法で乾燥するスプレードライ工程S3を含む。スプレードライ方式は、スラリーをスプレーノズル又は回転ディスクで液滴にし、それを熱風で乾燥させるものであり、スプレードライ方式を用いることで、熱風の温度や液滴の作製条件によって酸化第二銅微粉末を乾燥するだけでなく、ほぼ球状に造粒できる。
<Spray drying process S3>
The present invention includes a spray drying step S3 in which the cupric oxide fine powder obtained by the wet pulverization step S2 is dried by a spray drying method. In the spray drying method, the slurry is made into droplets with a spray nozzle or a rotating disk and dried with hot air. By using the spray drying method, the cupric oxide fine particles are changed according to the temperature of the hot air and the preparation conditions of the droplets. Not only can the powder be dried, it can be granulated into a nearly spherical shape.

酸化第二銅粉の平均粒子径は20μm以上100μm以下であることが好ましい。20μm未満であると、流動性が低下する可能性があり、好ましくない。100μmを超えると、粉体をハンドリングする場合に形状が壊れてしまい流動性が低下する可能性があり、好ましくない。   The average particle diameter of the cupric oxide powder is preferably 20 μm or more and 100 μm or less. If it is less than 20 μm, the fluidity may decrease, which is not preferable. If it exceeds 100 μm, the shape is broken when the powder is handled, and the fluidity may be lowered, which is not preferable.

スプレードライ工程S3では、スプレードライ装置のディスク回転速度を10,000rpm以上50,000rpm以下の範囲に調整することが好ましい。10,000rpm未満であると、液滴を形成できなくなる可能性があり、好ましくない。50,000rpmを超えると、液滴が小さくなくりすぎて2次粒子の平均粒子径が20μm以下になる可能性があり、好ましくない。   In the spray drying step S3, it is preferable to adjust the disk rotation speed of the spray drying apparatus to a range of 10,000 rpm to 50,000 rpm. If it is less than 10,000 rpm, droplets may not be formed, which is not preferable. If it exceeds 50,000 rpm, the droplets may not be too small and the average particle size of the secondary particles may be 20 μm or less, which is not preferable.

スプレードライ工程S3における乾燥温度は100℃以上400℃以下であることが好ましい。100℃未満であると、スラリーに含まれる水分の蒸発速度が遅くなり未乾燥の上になる可能性があり、好ましくない。400℃を超えると、速く乾燥できるが、乾燥させるエネルギーよりも大きくなるため工業的にはエネルギーロスが大きく無駄になり、好ましくない。   The drying temperature in the spray drying step S3 is preferably 100 ° C. or higher and 400 ° C. or lower. When the temperature is lower than 100 ° C., the evaporation rate of water contained in the slurry is slow, and there is a possibility that it may become undried, which is not preferable. If it exceeds 400 ° C., it can be dried quickly, but since it is larger than the energy to be dried, the energy loss is industrially large and wasted, which is not preferable.

本発明は、スプレードライ工程S3を含むことで、接着剤となる造粒剤をスラリー状の酸化第二銅微粉末に添加することなく、酸化第二銅微粉末をほぼ球状に造粒できる。造粒剤はめっき液である硫酸銅水溶液に溶解した時にめっき液に残留し、これがめっき皮膜特性に影響を及ぼすことが考えられるため、造粒剤を加えずに酸化第二銅微粉末をほぼ球状に造粒できることは好ましい。なお、本発明において、造粒剤の添加はできるだけ控えることが好ましいが、造粒剤を含有する酸化第二銅粉を本発明の範囲から除外するものではない。   By including the spray drying step S3, the present invention can granulate cupric oxide fine powder into a substantially spherical shape without adding a granulating agent as an adhesive to the slurry cupric oxide fine powder. The granulating agent remains in the plating solution when dissolved in the copper sulfate aqueous solution, which is the plating solution, and this may affect the properties of the plating film, so almost no cupric oxide fine powder is added without adding the granulating agent. It is preferable that it can be granulated into a spherical shape. In the present invention, it is preferable to refrain from adding the granulating agent as much as possible, but cupric oxide powder containing the granulating agent is not excluded from the scope of the present invention.

本明細書では、球状の程度は、粒子の長径を短径で除した値で表される真球度によって定義される。本明細書では、真球度は次の手法によって算出されるものとする。
無作為にサンプリングした球形粒を走査電子顕微鏡で拡大した画像を撮影し、50個の球形粒について長軸の長さ(長径)と長軸の中点から垂直に引いた短軸の長さ(短径)を測定する。短径に対する長径の比(短径/長径)を求め、50個の平均値を算出する。
In the present specification, the degree of sphericity is defined by the sphericity expressed by a value obtained by dividing the major axis of the particle by the minor axis. In this specification, the sphericity is calculated by the following method.
An image obtained by magnifying randomly sampled spherical particles with a scanning electron microscope was taken, and the length of the major axis (major axis) and the length of the minor axis perpendicularly drawn from the midpoint of the major axis of 50 spherical particles ( Measure the minor axis. The ratio of the major axis to the minor axis (minor axis / major axis) is determined, and an average value of 50 is calculated.

本発明は、上記スプレードライ工程S3を含むため、真球度を0.8以上にすることができる。   Since the present invention includes the spray drying step S3, the sphericity can be made 0.8 or more.

以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting at all in these description.

Figure 2014080303
Figure 2014080303

<実施例1>
まず、8g/LのCuSO・5HOと、55g/Lの遊離HSOとを含有する硫酸銅水溶液を用いて、通電電流密度10A/dm、浴温25℃の条件で電解銅粉を調製した。この電解銅粉を十分に水洗した後、乾燥器を用いて105℃の温度で一晩乾燥した。
<Example 1>
First, using a copper sulfate aqueous solution containing 8 g / L of CuSO 4 .5H 2 O and 55 g / L of free H 2 SO 4 , electrolysis was performed under conditions of an energization current density of 10 A / dm 2 and a bath temperature of 25 ° C. Copper powder was prepared. The electrolytic copper powder was thoroughly washed with water and then dried overnight at a temperature of 105 ° C. using a dryer.

図2は、この乾燥によって得られる酸化銅粉の走査電子顕微鏡画像(以下、「SEM画像」ともいう。)を示す。SEM画像から算出した酸化銅粉の平均粒径は46μmであった。   FIG. 2 shows a scanning electron microscope image (hereinafter also referred to as “SEM image”) of the copper oxide powder obtained by this drying. The average particle diameter of the copper oxide powder calculated from the SEM image was 46 μm.

続いて、この酸化銅粉を湿式ビーズミルRMH−03(アイメックス社製)を用いて湿式粉砕した。湿式粉砕は、水を用いて上記酸化銅粉のスラリー濃度を40重量%に調整した後、このスラリーを、直径0.5mmのジルコニア粒子を用いて粉砕した。   Subsequently, the copper oxide powder was wet pulverized using a wet bead mill RMH-03 (manufactured by Imex Corporation). In the wet pulverization, the slurry concentration of the copper oxide powder was adjusted to 40% by weight using water, and then this slurry was pulverized using zirconia particles having a diameter of 0.5 mm.

続いて、粉砕後におけるスラリー状の酸化第二銅微粉末を、スプレードライ装置L8i(大川原化工機社製)を用い、熱風温度200℃、ディスク回転速度15000rpmの条件で乾燥するとともに、該酸化第二銅微粉末を造粒した。これにより、実施例1に係る酸化第二銅粉を得た。   Subsequently, the slurry-like cupric oxide fine powder after pulverization is dried using a spray drying apparatus L8i (manufactured by Okawara Chemical Co., Ltd.) under conditions of a hot air temperature of 200 ° C. and a disk rotation speed of 15000 rpm, and A cupric fine powder was granulated. Thereby, cupric oxide powder according to Example 1 was obtained.

<実施例2〜4>
湿式粉砕で用いるビーズとして直径0.3mmのジルコニア粒子を用いたこと、該湿式粉砕においてスラリー濃度を20重量%、50重量%又は65重量%に調整したこと以外は実施例1に記載の方法と同じ方法にて、実施例2〜4に係る酸化第二銅粉を得た。
<Examples 2 to 4>
The method described in Example 1 except that zirconia particles having a diameter of 0.3 mm were used as beads used in the wet pulverization, and that the slurry concentration was adjusted to 20% by weight, 50% by weight, or 65% by weight in the wet pulverization. By the same method, cupric oxide powder according to Examples 2 to 4 was obtained.

<実施例5>
湿式粉砕で用いるビーズとして直径0.3mmのジルコニア粒子を用い、溶媒としてエタノールを使用したことそれ以外は実施例1に記載の方法と同じ方法にて、実施例5に係る酸化第二銅粉を得た。
<Example 5>
The cupric oxide powder according to Example 5 was used in the same manner as described in Example 1 except that zirconia particles having a diameter of 0.3 mm were used as beads used in wet grinding and ethanol was used as a solvent. Obtained.

<比較例1,2>
湿式粉砕で用いるビーズとして直径0.3mmのジルコニア粒子を用いたこと、該湿式粉砕においてスラリー濃度を13重量%又は70重量%に調整したこと以外は実施例1に記載の方法と同じ方法にて、比較例1,2に係る酸化第二銅粉を得た。
<Comparative Examples 1 and 2>
The same method as described in Example 1 except that zirconia particles having a diameter of 0.3 mm were used as beads used in wet grinding, and that the slurry concentration was adjusted to 13% by weight or 70% by weight in the wet grinding. Then, cupric oxide powder according to Comparative Examples 1 and 2 was obtained.

<比較例3>
湿式粉砕後におけるスラリー状の酸化第二銅微粉末を、媒体流動式乾燥装置SFD(大川原製作所社製)を用いて乾燥したこと以外は、実施例1と同じ方法にて、比較例3に係る酸化第二銅粉を得た。乾燥の際、媒体として5mmのアルミナボールを使用し、熱風温度は200℃とした。
<Comparative Example 3>
The slurry-like cupric oxide fine powder after wet pulverization is the same method as in Example 1 except that it is dried using a medium fluidized drying device SFD (manufactured by Okawara Seisakusho). Cupric oxide powder was obtained. During drying, 5 mm alumina balls were used as the medium, and the hot air temperature was 200 ° C.

<湿式粉砕後の酸化第二銅微粉末の1次粒子平均粒子径>
湿式粉砕後の酸化第二銅微粉末の1次粒子平均粒子径を測定した。本明細書では、平均粒子径は、レーザー粒度分布測定器マクロトラック(日機装社製)を用いて測定した、体積球相当径によるものとする。結果を表2に示す。なお、本明細書では、湿式粉砕後であるが、乾燥前の粒子と、湿式粉砕後であり、乾燥・造粒後の粒子とを区別するため、前者を1次粒子といい、後者を2次粒子という。
<Average primary particle diameter of cupric oxide fine powder after wet grinding>
The primary particle average particle diameter of the cupric oxide fine powder after wet pulverization was measured. In this specification, an average particle diameter shall be based on a volume sphere equivalent diameter measured using the laser particle size distribution measuring device macro track (made by Nikkiso Co., Ltd.). The results are shown in Table 2. In this specification, although it is after wet pulverization, the former is referred to as primary particles and the latter is 2 in order to distinguish between particles before drying and particles after wet pulverization and after drying / granulation. The next particle.

<湿式粉砕後の酸化第二銅微粉末の粘度>
湿式粉砕後の酸化第二銅微粉末の粘度は、25℃の条件下で粘度計TVB−10M(東機産業社製)を用いることによって測定した。結果を表2に示す。
<Viscosity of cupric oxide fine powder after wet grinding>
The viscosity of the cupric oxide fine powder after the wet pulverization was measured by using a viscometer TVB-10M (manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. The results are shown in Table 2.

<酸化第二銅微粉末のX線回折(XRD)パターン>
実施例及び比較例に係る酸化第二銅微粉末(湿式粉砕後であって、粉砕後乾燥前の酸化第二銅微粉末)に対し、X線回折を行った。結果の一例を図3に示す。図3は、実施例1に係る酸化第二銅微粉末のXRDパターンである。このパターンにおいてCuO単一相が確認された試料は黒色を呈した。また、電解重量分析の結果、CuO濃度は99.6重量%であった。なお、図示は省略するが、他の実施例及び比較例に係る酸化第二銅微粉末も同様のXRDパターンを示した。また、これらのパターンにおいてCuO単一相が確認された試料は黒色を呈することが確認され、電解重量分析の結果、CuO濃度が99.6重量%であることも確認された。
<X-ray diffraction (XRD) pattern of cupric oxide fine powder>
X-ray diffraction was performed on the cupric oxide fine powders (after the wet pulverization but before pulverization and before drying) according to the examples and comparative examples. An example of the results is shown in FIG. FIG. 3 is an XRD pattern of the cupric oxide fine powder according to Example 1. The sample in which a CuO single phase was confirmed in this pattern exhibited a black color. As a result of electrolytic gravimetric analysis, the CuO concentration was 99.6% by weight. In addition, although illustration is abbreviate | omitted, the cupric oxide fine powder which concerns on another Example and a comparative example also showed the same XRD pattern. Moreover, it was confirmed that the sample in which the CuO single phase was confirmed in these patterns exhibited a black color, and as a result of electrogravimetric analysis, it was also confirmed that the CuO concentration was 99.6% by weight.

<酸化第二銅粉の形状>
実施例及び比較例に係る酸化第二銅粉(湿式粉砕し、さらに乾燥した後の酸化第二銅粉)の形状を、走査顕微鏡画像(以下「SEM画像」という。)を用いて確認した。一例として、実施例1に係る酸化第二銅粉のSEM画像を図4に示し、比較例3に係る酸化第二銅粉のSEM画像を図5に示す。
<Shape of cupric oxide powder>
The shape of cupric oxide powder (cupric oxide powder after wet pulverization and further drying) according to Examples and Comparative Examples was confirmed using a scanning microscope image (hereinafter referred to as “SEM image”). As an example, the SEM image of the cupric oxide powder according to Example 1 is shown in FIG. 4, and the SEM image of the cupric oxide powder according to Comparative Example 3 is shown in FIG.

<酸化銅粉の真球度>
実施例で形成した酸化銅の2次粒子の真球度は、無作為にサンプリングした酸化銅粉をSEMによって写真撮影し、球形粒の短軸と長軸との比とし、50個の酸化銅粉の平均値を算出することによって測定した。50個の酸化銅粉について長軸の長さ(長径)と長軸の中点から垂直に引いた短軸の長さ(短径)を測定し、短径に対する長径の比(短径/長径)を求め、50個の平均値を算出することで真球度を求めた。結果を表2に示す。
<Sphericality of copper oxide powder>
The sphericity of the secondary particles of copper oxide formed in the examples was obtained by taking a photograph of randomly sampled copper oxide powder by SEM and using the ratio of the short axis to the long axis of the spherical particles as 50 copper oxides. It was measured by calculating the average value of the powder. For 50 copper oxide powders, the length of the major axis (major axis) and the length of the minor axis (minor axis) drawn perpendicularly from the midpoint of the major axis were measured, and the ratio of the major axis to the minor axis (minor axis / major axis) ) And the average value of 50 was calculated to determine the sphericity. The results are shown in Table 2.

<酸化第二銅粉の2次粒子平均粒子径>
酸化第二銅粉の2次粒子平均粒子径を測定した。測定手法は、1次粒子平均粒子径の測定手法と同じである。結果を表2に示す。
<Secondary particle average particle diameter of cupric oxide powder>
The secondary particle average particle diameter of cupric oxide powder was measured. The measuring method is the same as the measuring method of the primary particle average particle size. The results are shown in Table 2.

<酸化第二銅粉の流動性の評価>
酸化第二銅粉の流動性は、実施例及び比較例に係る酸化第二銅粉(湿式粉砕し、さらに乾燥した後の酸化第二銅粉)の安息角を測定することによって行った。結果を表2に示す。安息角が低いほど流動性に優れるため、本発明において、安息角は50°以下であることが好ましく、40°以下であることがより好ましい。
<Evaluation of fluidity of cupric oxide powder>
The fluidity of the cupric oxide powder was measured by measuring the angle of repose of cupric oxide powder (cupric oxide powder after wet pulverization and further drying) according to Examples and Comparative Examples. The results are shown in Table 2. Since the lower the angle of repose, the better the fluidity, in the present invention, the angle of repose is preferably 50 ° or less, and more preferably 40 ° or less.

なお、本明細書において、安息角は、粉体試料を直径100mm、目開き300μmの篩を振動させながら通過させた後、水平面に100mmの高さの漏斗からテーブルに静かに落下させたときに、粉体によって形成された円錐体の母線と水平面のなす角を測定することで規定される。ここで、粉体は、安息角が実質的に安定するまで落下させるものとする。   In the present specification, the angle of repose is defined as when a powder sample is passed through a sieve having a diameter of 100 mm and an opening of 300 μm while vibrating and then gently dropped onto a table from a funnel having a height of 100 mm on a horizontal surface. It is defined by measuring the angle between the generatrix formed by the powder and the horizontal plane. Here, the powder is dropped until the angle of repose is substantially stabilized.

<めっき液に対する溶解性の評価>
めっき液に対する溶解性は、実施例及び比較例に係る酸化第二銅粉(湿式粉砕し、さらに乾燥した後の酸化第二銅粉)を500℃、1時間の条件で加熱した後、加熱後の酸化第二銅粉10gを室温にてスターラーで撹拌しながらめっき液に添加してから該酸化第二銅粉が完全に溶解するまでの時間を測定することによって評価した。めっき液は、68g/LのCuSO・5HOと、228g/Lの遊離HSOと、60mg/Lの塩化物イオンとを含有する溶液とした。結果を表2に示す。
<Evaluation of solubility in plating solution>
The solubility with respect to the plating solution is after heating the cupric oxide powder (cupric oxide powder after wet pulverization and further drying) according to Examples and Comparative Examples at 500 ° C. for 1 hour, and then after heating. Evaluation was made by measuring the time from adding 10 g of the cupric oxide powder to the plating solution while stirring with a stirrer at room temperature until the cupric oxide powder was completely dissolved. The plating solution was a solution containing 68 g / L CuSO 4 .5H 2 O, 228 g / L free H 2 SO 4 , and 60 mg / L chloride ions. The results are shown in Table 2.

Figure 2014080303
Figure 2014080303

電解銅粉を空気雰囲気で加熱する加熱工程と、この加熱工程によって得られる酸化銅粉を15重量%以上65重量%以下のスラリー濃度に調整し、この調整後の酸化銅粉スラリーを粉砕する湿式粉砕工程と、この湿式粉砕工程によって得られる酸化第二銅微粉末をスプレードライ法で乾燥するスプレードライ工程とを経ることによって得られる酸化第二銅粉は、図3に示すとおり銅の純度に優れ、表2及び図4に示すとおり、流動性及び銅めっき液への溶解性にも優れることが確認された(実施例1〜4)。とりわけ、スラリー濃度を20重量%以上50重量%以下に調整することが好ましく(実施例1〜3及び5)、湿式粉砕における溶媒は水であっても有機溶媒であってもほぼ同様の効果を奏する(実施例1及び5)ことが確認された。   A heating process for heating the electrolytic copper powder in an air atmosphere, and a wet process for adjusting the copper oxide powder obtained by the heating process to a slurry concentration of 15 wt% or more and 65 wt% or less, and pulverizing the copper oxide powder slurry after the adjustment The cupric oxide powder obtained through the pulverization step and the spray drying step of drying the cupric oxide fine powder obtained by the wet pulverization step by a spray drying method has a copper purity as shown in FIG. As shown in Table 2 and FIG. 4, it was confirmed that the fluidity and the solubility in the copper plating solution were also excellent (Examples 1 to 4). In particular, it is preferable to adjust the slurry concentration to 20% by weight or more and 50% by weight or less (Examples 1 to 3 and 5), and almost the same effect is obtained regardless of whether the solvent in the wet grinding is water or an organic solvent. It was confirmed that there was performance (Examples 1 and 5).

一方、湿式粉砕工程で調整するスラリー濃度が15重量%未満であると、液滴中に含まれる酸化第二銅粉の粒子が少なすぎるため、水分の蒸発量が多くなるため球形の形状に維持することが困難となり、造粒した2次粒子の形態で酸化第二銅粉を回収することが困難であった(比較例1)。また、湿式粉砕工程で調整するスラリー濃度が65重量%を超えると、スラリーの粘度が上昇して、スプレードライでは液滴にすることが困難になるため、造粒した2次粒子の形態で酸化第二銅粉を回収することが困難であった(比較例2)。また、酸化第二銅微粉末をスプレードライ法以外の方法で乾燥した場合、酸化第二銅粉の形状は、図5に示すとおり、形状の定まらない凝集した状態であった(比較例3)。また、安息角が高く、流動性が劣ることが確認された(同)。   On the other hand, if the slurry concentration adjusted in the wet pulverization process is less than 15% by weight, the amount of cupric oxide powder contained in the droplets is too small, and the amount of water evaporation increases, so that the spherical shape is maintained. It was difficult to recover the cupric oxide powder in the form of granulated secondary particles (Comparative Example 1). In addition, if the slurry concentration adjusted in the wet pulverization process exceeds 65% by weight, the viscosity of the slurry increases and it becomes difficult to form droplets by spray drying. Therefore, it is oxidized in the form of granulated secondary particles. It was difficult to recover cupric powder (Comparative Example 2). Moreover, when the cupric oxide fine powder was dried by a method other than the spray drying method, the shape of the cupric oxide powder was an agglomerated state whose shape was not fixed as shown in FIG. 5 (Comparative Example 3). . Moreover, it was confirmed that the angle of repose was high and the fluidity was inferior (the same).

Claims (9)

電解銅粉を空気雰囲気で加熱する加熱工程と、
前記加熱工程によって得られる酸化銅粉を15重量%以上65重量%以下のスラリー濃度に調整し、該調整後の酸化銅粉スラリーを粉砕する湿式粉砕工程と、
前記湿式粉砕工程によって得られる酸化第二銅微粉末をスプレードライ法で乾燥するスプレードライ工程とを含む、酸化第二銅粉の製造方法。
A heating step of heating the electrolytic copper powder in an air atmosphere;
A wet pulverization step of adjusting the copper oxide powder obtained by the heating step to a slurry concentration of 15 wt% or more and 65 wt% or less, and pulverizing the adjusted copper oxide powder slurry;
A method for producing cupric oxide powder, comprising: a spray drying step of drying cupric oxide fine powder obtained by the wet pulverization step by a spray drying method.
前記加熱工程に先立ち、硫酸銅溶液中で銅の電気分解を行うことによって電極表面に電解銅粉を析出させ、回収する電解銅粉回収工程をさらに含む、請求項1に記載の酸化第二銅粉の製造方法。   2. The cupric oxide according to claim 1, further comprising an electrolytic copper powder recovery step of depositing and recovering electrolytic copper powder on the electrode surface by electrolyzing copper in a copper sulfate solution prior to the heating step. Powder manufacturing method. 前記加熱工程において、前記電解銅粉を空気雰囲気で500℃以上、900℃以下で加熱する、請求項1又は2に記載の酸化第二銅粉の製造方法。   The manufacturing method of the cupric oxide powder of Claim 1 or 2 which heats the said electrolytic copper powder at 500 degreeC or more and 900 degrees C or less in an air atmosphere in the said heating process. 前記湿式粉砕工程において、前記酸化銅粉スラリーを1次粒子平均粒径1μm以下に粉砕する、請求項1から3のいずれかに記載の酸化第二銅粉の製造方法。   The manufacturing method of the cupric oxide powder in any one of Claim 1 to 3 which grind | pulverizes the said copper oxide powder slurry to a primary particle average particle diameter of 1 micrometer or less in the said wet grinding process. 前記酸化第二銅微粉末の粘度が8,000mPa・s以下である、請求項1から4のいずれかに記載の酸化第二銅粉の製造方法。   The manufacturing method of the cupric oxide powder in any one of Claim 1 to 4 whose viscosity of the said cupric oxide fine powder is 8,000 mPa * s or less. 前記酸化第二銅粉は、2次粒子平均粒子径が20μm以上100μm以下であり、真球度が0.8以上である、請求項1から5のいずれかに記載の酸化第二銅粉の製造方法。   The cupric oxide powder according to any one of claims 1 to 5, wherein the cupric oxide powder has a secondary particle average particle diameter of 20 µm to 100 µm and a sphericity of 0.8 or more. Production method. 前記スプレードライ工程では、スプレードライ装置のディスク回転速度を10,000rpm以上50,000rpm以下の範囲に調整する、請求項1から6のいずれかに記載の酸化第二銅粉の製造方法。   The manufacturing method of the cupric oxide powder in any one of Claim 1 to 6 which adjusts the disk rotational speed of a spray drying apparatus in the range of 10,000 rpm or more and 50,000 rpm or less in the said spray drying process. 前記スプレードライ工程における乾燥温度は100℃以上400℃以下である、請求項1から7のいずれかに記載の酸化第二銅粉の製造方法。   The manufacturing method of the cupric oxide powder in any one of Claim 1 to 7 whose drying temperature in the said spray drying process is 100 degreeC or more and 400 degrees C or less. 2次粒子平均粒子径が20μm以上100μm以下であり、安息角が50°以下であり、真球度が0.8以上であり、500℃、1時間の条件で加熱した後の硫酸銅めっき液に対する溶解時間が15秒以下である酸化第二銅粉。   Copper sulfate plating solution after heating under conditions of secondary particle average particle diameter of 20 μm or more and 100 μm or less, repose angle of 50 ° or less, sphericity of 0.8 or more, and 500 ° C. for 1 hour. Cupric oxide powder having a dissolution time of 15 seconds or less.
JP2012227350A 2012-10-12 2012-10-12 Cupric oxide powder and method for producing the same Expired - Fee Related JP5720651B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012227350A JP5720651B2 (en) 2012-10-12 2012-10-12 Cupric oxide powder and method for producing the same
PCT/JP2013/072468 WO2014057733A1 (en) 2012-10-12 2013-08-22 Cupric oxide powder and method for producing same
TW102136946A TWI580642B (en) 2012-10-12 2013-10-14 Copper oxide (II) oxide and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227350A JP5720651B2 (en) 2012-10-12 2012-10-12 Cupric oxide powder and method for producing the same

Publications (3)

Publication Number Publication Date
JP2014080303A true JP2014080303A (en) 2014-05-08
JP2014080303A5 JP2014080303A5 (en) 2015-03-12
JP5720651B2 JP5720651B2 (en) 2015-05-20

Family

ID=50477206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227350A Expired - Fee Related JP5720651B2 (en) 2012-10-12 2012-10-12 Cupric oxide powder and method for producing the same

Country Status (3)

Country Link
JP (1) JP5720651B2 (en)
TW (1) TWI580642B (en)
WO (1) WO2014057733A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143737A (en) * 2006-12-08 2008-06-26 Furukawa Co Ltd Cupric oxide powder and its manufacturing method
JP2012166984A (en) * 2011-02-14 2012-09-06 Sumitomo Metal Mining Co Ltd Cupric oxide fine powder and copper ion feeding method of copper sulfate aqueous solution
JP2012184154A (en) * 2011-02-14 2012-09-27 Sumitomo Metal Mining Co Ltd Method of manufacturing high-purity cupric oxide fine powder, and method of feeding copper ion of copper sulfate aqueous solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114475A (en) * 2007-11-02 2009-05-28 Mitsui Mining & Smelting Co Ltd Electrode for producing electrolytic copper powder and anode for producing electrolytic copper powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143737A (en) * 2006-12-08 2008-06-26 Furukawa Co Ltd Cupric oxide powder and its manufacturing method
JP2012166984A (en) * 2011-02-14 2012-09-06 Sumitomo Metal Mining Co Ltd Cupric oxide fine powder and copper ion feeding method of copper sulfate aqueous solution
JP2012184154A (en) * 2011-02-14 2012-09-27 Sumitomo Metal Mining Co Ltd Method of manufacturing high-purity cupric oxide fine powder, and method of feeding copper ion of copper sulfate aqueous solution

Also Published As

Publication number Publication date
JP5720651B2 (en) 2015-05-20
WO2014057733A1 (en) 2014-04-17
TW201414677A (en) 2014-04-16
TWI580642B (en) 2017-05-01

Similar Documents

Publication Publication Date Title
JP5495165B1 (en) Thermal spray material
WO2013012040A1 (en) Manufacturing method for molten glass and manufacturing method for glass article
JP5907169B2 (en) Nickel oxide fine powder and method for producing the same
JP4060187B2 (en) Method for producing ITO powder in which tin is dissolved in indium oxide and method for producing ITO target
JP5648803B2 (en) Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution
JP6011992B2 (en) Method for producing electrolytic copper powder
JP5874910B2 (en) Method for producing high-purity cupric oxide fine powder and method for supplying copper ion in aqueous copper sulfate solution
JP5622108B2 (en) High purity cupric oxide fine powder and method for producing the same, and copper ion supply method for aqueous copper sulfate solution using high purity cupric oxide fine powder
JP5640775B2 (en) Method for producing granular gallium oxide
JP2011026188A (en) Alkali metal titanate compound, process of producing the same, electrode-active material including the alkali metal titanate compound, and storage device using the electrode-active material
JP5720651B2 (en) Cupric oxide powder and method for producing the same
JP5817711B2 (en) Cupric oxide fine powder and method for producing the same
WO2014109088A1 (en) Cupric oxide fine powder, and production method therefor
JP2015160780A (en) Method of producing nickel oxide, and nickel oxide fine powder obtainable therefrom
JP2007261860A (en) Glass powder and method of manufacturing the same
JP2007261861A (en) Glass powder and its production method
JP4061902B2 (en) Method for producing porous potassium carbonate
JP4996016B2 (en) Niobium oxide slurry, niobium oxide powder and production method thereof
JP2012193068A (en) Method of producing high-purity cupric oxide fine powder and method of supplying copper ion to copper sulfate solution
JP2012184158A (en) Low valence titanium oxide powder and zinc oxide-based sintered body
JP4045178B2 (en) Tantalum oxide slurry, tantalum oxide powder and method for producing them
JP5494231B2 (en) Titanium dioxide particles and method for producing the same
JP6056709B2 (en) Method for producing cupric oxide powder and cupric oxide fine powder
JP2006264990A (en) Method for producing calcined powder
JP7383327B1 (en) Acicular alumina particle aggregate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150126

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees