JP2011026188A - Alkali metal titanate compound, process of producing the same, electrode-active material including the alkali metal titanate compound, and storage device using the electrode-active material - Google Patents

Alkali metal titanate compound, process of producing the same, electrode-active material including the alkali metal titanate compound, and storage device using the electrode-active material Download PDF

Info

Publication number
JP2011026188A
JP2011026188A JP2010143573A JP2010143573A JP2011026188A JP 2011026188 A JP2011026188 A JP 2011026188A JP 2010143573 A JP2010143573 A JP 2010143573A JP 2010143573 A JP2010143573 A JP 2010143573A JP 2011026188 A JP2011026188 A JP 2011026188A
Authority
JP
Japan
Prior art keywords
compound
alkali metal
formula
active material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010143573A
Other languages
Japanese (ja)
Other versions
JP5594663B2 (en
Inventor
Junji Akimoto
順二 秋本
Akemi Kawashima
明美 河島
Tokuo Fukita
徳雄 吹田
Masayuki Togawa
公志 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Ishihara Sangyo Kaisha Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2010143573A priority Critical patent/JP5594663B2/en
Publication of JP2011026188A publication Critical patent/JP2011026188A/en
Application granted granted Critical
Publication of JP5594663B2 publication Critical patent/JP5594663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel alkali metal titanate compound and a process of producing the same. <P>SOLUTION: The novel compound has a chemical composition expressed by the general formula: H<SB>2-x</SB>M<SB>x</SB>Ti<SB>12</SB>O<SB>25</SB>(0<x≤2; M represents an alkali metal atom; when x=2, Na is excluded from M) and preferably a one-dimensional tunnel structure. The compound is synthesized by reacting a compound having a chemical composition expressed by the general formula: H<SB>2</SB>Ti<SB>12</SB>O<SB>25</SB>and an alkali metal compound. A storage device using an electrode containing an electrode-active material produced from the compound as its constitutional member has an excellent charge/discharge cycle characteristic and expectedly a high capacity. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規なチタン酸アルカリ金属化合物及びその製造方法に関する。また、前記チタン酸アルカリ金属化合物を含む電極活物質及びこの電極活物質を用いた蓄電デバイスに関する。   The present invention relates to a novel alkali metal titanate compound and a method for producing the same. The present invention also relates to an electrode active material containing the alkali metal titanate compound and an electricity storage device using the electrode active material.

リチウム二次電池は、サイクル特性に優れていることから、近年急速に普及している。リチウム二次電池の電極活物質、特に負極活物質としては、エネルギー密度が高く、レート特性に優れたリチウム・チタン複合酸化物が普及しており、一方、放電電位が高く、安全性に優れたチタン酸化合物も注目されている。例えば、LiTi12で表されるスピネル型(特許文献1、非特許文献1)、LiTiで表されるラムズデライト型(特許文献2、非特許文献2)等のチタン酸リチウムや、HLiy−xTi(0<x≦y、0.8≦y≦2.7、1.3≦z≦2.2)(特許文献3)で表されるチタン酸水素リチウムを、電極活物質に用いる技術が知られている。あるいは、HTi1225で表されるチタン酸化合物(特許文献4)、HTi1.73(0.5≦x+y≦1.07、0≦y/(x+y)≦0.2、3.85≦z≦4.0、MはLi以外のアルカリ金属)(特許文献5)、ATi(AはNa、Li、Hから選ばれる少なくとも一種)(特許文献6)等で表されるチタン酸アルカリ金属化合物等を用いる技術も知られている。 Lithium secondary batteries have been rapidly spreading in recent years because of their excellent cycle characteristics. As an electrode active material of a lithium secondary battery, in particular, a negative electrode active material, a lithium-titanium composite oxide having a high energy density and excellent rate characteristics is widespread, while a discharge potential is high and safety is excellent. Titanate compounds are also attracting attention. For example, a spinel type represented by Li 4 Ti 5 O 12 (Patent Document 1, Non-Patent Document 1), a Ramsdelite type represented by Li 2 Ti 3 O 7 (Patent Document 2, Non-Patent Document 2), etc. It is represented by lithium titanate or H x Li y-x Ti z O 4 (0 <x ≦ y, 0.8 ≦ y ≦ 2.7, 1.3 ≦ z ≦ 2.2) (Patent Document 3). A technique using lithium hydrogen titanate as an electrode active material is known. Alternatively, titanate compounds represented by H 2 Ti 12 O 25 (Patent Document 4), H x M y Ti 1.73 O z (0.5 ≦ x + y ≦ 1.07,0 ≦ y / (x + y) ≦ 0.2, 3.85 ≦ z ≦ 4.0, M is an alkali metal other than Li (Patent Document 5), A 2 Ti 3 O 7 (A is at least one selected from Na, Li, and H) (Patent) A technique using an alkali metal titanate compound or the like represented by literature 6) is also known.

特開2002−270175号公報JP 2002-270175 A 特開2004−221523号公報JP 2004-221523 A 国際公開WO99/003784号パンフレットInternational Publication WO99 / 003784 Pamphlet 国際公開WO2008/111465号パンフレットInternational Publication WO2008 / 111465 Pamphlet 特開2007−220406号公報JP 2007-220406 A 特開2007−243233号公報JP 2007-243233 A

G.X.Wang, D.H.Bradhurst, S.X.Dou,H.K.Liu, Journal of Power Sources, 83(1999)P156-161G.X.Wang, D.H.Bradhurst, S.X.Dou, H.K.Liu, Journal of Power Sources, 83 (1999) P156-161 Jie Shu, Electrochimica Acta, 54(2009)P2869-2876Jie Shu, Electrochimica Acta, 54 (2009) P2869-2876

本発明は、電極活物質に用いることができる、新規なチタン酸アルカリ金属化合物を提供することを目的とする。   An object of this invention is to provide the novel alkali metal titanate compound which can be used for an electrode active material.

本発明者らは、鋭意研究を重ねた結果、一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとる新規な化合物を見出し、更に、このものを蓄電デバイスの活物質に用いると、優れた電池特性が得られることを見出して、本発明を完成させた。 As a result of extensive research, the present inventors have expressed (Formula 1) H 2-x M x Ti 12 O 25 (0 <x ≦ 2, M represents an alkali metal element, where x = 2 In this case, the present inventors have found a novel compound having a chemical composition of M (except for Na), and found that excellent battery characteristics can be obtained when this compound is used as an active material of an electricity storage device, thereby completing the present invention. .

即ち、本発明は、
(1)一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとる化合物、
(2)一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとり、結晶構造の特徴として、一次元のトンネル構造を有する化合物、
(3)一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとり、結晶構造の特徴として、一次元のトンネル構造を有し、単斜晶系に属し、且つX線回折パターンのピーク波形がHTi1225と相似であり、各々のピークの位置がHTi1225より高角側あるいは低角側にシフトしている化合物、
(4)一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとる化合物から作製された蓄電デバイス用電極活物質、
(5)正極、負極、セパレーター及び電解質を含む蓄電デバイスにおいて、前記の正極または負極が上記(4)項に記載の電極活物質を含有する蓄電デバイス、
である。
That is, the present invention
(1) the chemical composition of the general formula (the 0 <x ≦ 2, M is representative of the alkali metal element, provided that when the x = 2 M excluding Na) (Equation 1) H 2-x M x Ti 12 O 25 A compound that takes
(2) the chemical composition of the general formula (the 0 <x ≦ 2, M is representative of the alkali metal element, provided that when the x = 2 M excluding Na) (Equation 1) H 2-x M x Ti 12 O 25 A compound having a one-dimensional tunnel structure as a characteristic of the crystal structure,
(3) the chemical composition of the general formula (the 0 <x ≦ 2, M is representative of the alkali metal element, provided that when the x = 2 M excluding Na) (Equation 1) H 2-x M x Ti 12 O 25 As a characteristic of the crystal structure, it has a one-dimensional tunnel structure, belongs to the monoclinic system, and the peak waveform of the X-ray diffraction pattern is similar to that of H 2 Ti 12 O 25, and the position of each peak Is a compound in which H 2 Ti 12 O 25 is shifted to a high angle side or a low angle side,
(4) the chemical composition of the general formula (the 0 <x ≦ 2, M is representative of the alkali metal element, provided that when the x = 2 M excluding Na) (Equation 1) H 2-x M x Ti 12 O 25 An electrode active material for an electricity storage device made from a compound taking
(5) An electricity storage device including a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the positive electrode or the negative electrode contains the electrode active material according to (4) above,
It is.

本発明のチタン酸アルカリ金属化合物は、電極活物質に用いると、電池特性に優れた蓄電デバイスが得られる。   When the alkali metal titanate compound of the present invention is used as an electrode active material, an electricity storage device having excellent battery characteristics can be obtained.

本発明のH2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)が有する結晶構造を示す模式図である。FIG. 3 is a schematic diagram showing a crystal structure of H 2−x M x Ti 12 O 25 (0 <x ≦ 2, M represents an alkali metal element, where M is excluded Na when x = 2) of the present invention. . 既知のHTi1225のX線粉末回折図形である。 2 is an X-ray powder diffraction pattern of known H 2 Ti 12 O 25 . 実施例3で得られた本発明のH1.49Li0.52Ti1225(試料C)のX線粉末回折図形である。4 is an X-ray powder diffraction pattern of H 1.49 Li 0.52 Ti 12 O 25 (Sample C) of the present invention obtained in Example 3. FIG. 実施例4で得られた本発明のH1.57Li0.42Ti1225(試料D)のX線粉末回折図形である。4 is an X-ray powder diffraction pattern of H 1.57 Li 0.42 Ti 12 O 25 (sample D) of the present invention obtained in Example 4. FIG. 本発明のH2−xLiTi1225のX線粉末回折図形の特徴を、既知のHTi1225と比較したものである。The characteristics of the X-ray powder diffraction pattern of H 2-x Li x Ti 12 O 25 of the present invention are compared with known H 2 Ti 12 O 25 .

本発明の新規チタン酸アルカリ金属化合物(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)は、好ましくはその結晶構造の特徴として、一次元のトンネル構造を有する。
さらに好ましくは、式1の化合物は、単斜晶系に属し、且つX線回折パターンのピーク波形がHTi1225と相似であり、各々のピークの位置がHTi1225より高角側あるいは低角側にシフトしている。尚、「ピーク波形が相似である」とは、HTi1225の特徴的なピーク、すなわち、X線粉末回折測定(CuKα線使用)において2Θが14.0°、24.8°、28.7°、31.1°、43.5°、44.5°、48.6°、57.6°の位置に存在するピークに割り当てることのできるピークを高角側あるいは低角側にシフトした位置に有することをいう。各々のピーク強度あるいはピーク間の強度比は異なっていてもよい。
さらに、式1の化合物は、蓄電デバイス用の電極材料の電極活物質として使用できる。
New alkali metal titanate compounds of the present invention (Formula 1) H 2-x M x Ti 12 O 25 ( the 0 <x ≦ 2, M represents an alkali metal element, provided that when the x = 2 M excluding Na) Preferably has a one-dimensional tunnel structure as a characteristic of its crystal structure.
More preferably, the compound of formula 1 belongs to the monoclinic system, and the peak waveform of the X-ray diffraction pattern is similar to that of H 2 Ti 12 O 25, and the position of each peak is from H 2 Ti 12 O 25 . Shifted to the high angle side or the low angle side. Note that “the peak waveform is similar” means a characteristic peak of H 2 Ti 12 O 25 , that is, 2Θ is 14.0 ° and 24.8 ° in X-ray powder diffraction measurement (using CuK α- ray). , 28.7 °, 31.1 °, 43.5 °, 44.5 °, 48.6 °, 57.6 °, peaks that can be assigned to the high angle side or low angle side Having at a shifted position. Each peak intensity or intensity ratio between peaks may be different.
Furthermore, the compound of Formula 1 can be used as an electrode active material of an electrode material for an electricity storage device.

本発明の式1の新規チタン酸アルカリ金属化合物の有する一次元のトンネル構造とは、図1に示すようなTiO八面体が連結することにより構築された骨格構造によってトンネル構造を有し、好ましくはサイズの異なる2種のトンネル空間を有することをいう。このような結晶構造をとることから、トンネル内に大量のリチウムイオンを吸蔵することが可能となり、また一次元の伝導パスが確保されていることから、トンネル方向へはイオンの移動が容易であるという特徴を有し、電極活物質として好ましい。トンネル構造には一部、閉塞した部分があってもよい。 The one-dimensional tunnel structure of the novel alkali metal titanate compound of Formula 1 of the present invention preferably has a tunnel structure by a skeleton structure constructed by connecting TiO 6 octahedrons as shown in FIG. Means having two types of tunnel spaces of different sizes. With this crystal structure, a large amount of lithium ions can be occluded in the tunnel, and since a one-dimensional conduction path is secured, ions can easily move in the tunnel direction. And is preferable as an electrode active material. A part of the tunnel structure may be blocked.

さらに、本発明の式1の化合物は、トンネル構造を有することから前記の電極活物質以外にも、吸着剤、触媒等に用いることができる。式1中のMで表されるアルカリ金属元素としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられ、用いる用途に応じて適宜選択できる。特に、電極活物質に用いる場合、前記アルカリ金属元素がリチウムであれば、より優れた電池特性が得られ易いので好ましい。   Furthermore, since the compound of Formula 1 of the present invention has a tunnel structure, it can be used as an adsorbent, a catalyst, and the like in addition to the electrode active material. Examples of the alkali metal element represented by M in Formula 1 include lithium, sodium, potassium, rubidium, cesium, and the like, which can be appropriately selected depending on the intended use. In particular, when used as an electrode active material, it is preferable that the alkali metal element is lithium, because better battery characteristics are easily obtained.

式1の化合物の平均粒子径(レーザー散乱法によるメジアン径)は、特に制限を受けないが、通常は、0.05〜10μmの範囲にあり、0.1〜2μmの範囲であれば更に好ましい。また粒子形状は、球状、多面体状等の等方性形状、棒状、板状等の異方性形状、不定形状等特に制限は無い。このものの一次粒子を集合させて二次粒子とすると、流動性、付着性、充填性等の粉体特性が向上し、電極活物質に用いる場合には、サイクル特性等の電池特性も改良されるので好ましい。本発明における二次粒子とは、一次粒子同士が強固に結合した状態にあり、通常の混合、粉砕、濾過、水洗、搬送、秤量、袋詰め、堆積等の工業的操作では容易に崩壊せず、ほとんどが二次粒子として残るものである。二次粒子の平均粒子径(レーザー散乱法によるメジアン径)は、0.1〜20μmの範囲にあるのが好ましい。比表面積(BET法)は特に制限は無いが、0.1〜100m/gの範囲が好ましく、1〜100m/gの範囲が更に好ましい。粒子形状も、一次粒子と同様に制限は受けず、様々な形状のものを用いることができる。 The average particle diameter (median diameter by laser scattering method) of the compound of Formula 1 is not particularly limited, but is usually in the range of 0.05 to 10 μm, and more preferably in the range of 0.1 to 2 μm. . The particle shape is not particularly limited, such as an isotropic shape such as a spherical shape or a polyhedral shape, an anisotropic shape such as a rod shape or a plate shape, or an indefinite shape. When the primary particles are aggregated into secondary particles, powder characteristics such as fluidity, adhesion, and filling properties are improved, and battery characteristics such as cycle characteristics are improved when used as an electrode active material. Therefore, it is preferable. The secondary particles in the present invention are in a state in which the primary particles are firmly bonded to each other, and are not easily disintegrated by industrial operations such as normal mixing, pulverization, filtration, washing, transport, weighing, bagging, and deposition. Most of them remain as secondary particles. The average particle diameter (median diameter by laser scattering method) of the secondary particles is preferably in the range of 0.1 to 20 μm. Although the specific surface area (BET method) is not particularly limited, preferably in the range of 0.1 to 100 m 2 / g, more preferably in the range of 1 to 100 m 2 / g. The particle shape is not limited as in the case of the primary particle, and various shapes can be used.

式1の化合物の一次粒子あるいは二次粒子の粒子表面には、炭素や、シリカ、アルミナ等の無機化合物、界面活性剤、カップリング剤等の有機化合物から選ばれる少なくとも1種が被覆されていても良い。これらの被覆種は、1種を被覆することも、2種以上を積層したり、混合物や複合化物として被覆することもでき、特に、炭素で被覆すると電気伝導性が良くなるので、電極活物質として用いる場合には好ましい。炭素の被覆量は、TiO換算の式1の化合物に対し、C換算で0.05〜10重量%の範囲が好ましい。この範囲より少ないと所望の電気伝導性が得られず、多いと却って特性が低下する。より好ましい含有量は、0.1〜5重量%の範囲である。尚、炭素の含有量は、CHN分析法、高周波燃焼法等により分析できる。あるいは、チタン、アルカリ金属、水素、酸素以外の異種元素を、前記の結晶形を阻害しない範囲で、その結晶格子中にドープさせるなどして含有させることもできる。 The particle surfaces of the primary particles or secondary particles of the compound of Formula 1 are coated with at least one selected from inorganic compounds such as carbon, silica, and alumina, and organic compounds such as surfactants and coupling agents. Also good. These coating species can be coated as a single species, or can be laminated as two or more species, or can be coated as a mixture or composite. Especially, when coated with carbon, the electrical conductivity is improved. When using as, it is preferable. Coating amount of carbon, the compound of formula 1 in terms of TiO 2, 0.05 to 10 wt% is preferable in C terms. If it is less than this range, the desired electrical conductivity cannot be obtained, while if it is more, the characteristics deteriorate. A more preferable content is in the range of 0.1 to 5% by weight. The carbon content can be analyzed by a CHN analysis method, a high frequency combustion method, or the like. Alternatively, a different element other than titanium, alkali metal, hydrogen, and oxygen can be contained in the crystal lattice by doping, etc., as long as the crystal form is not inhibited.

本発明の式1で表される化合物は、一般式として(式2)HTi1225の化学組成をとる化合物とアルカリ金属化合物とを反応させる工程を含む製造方法によって得られる。式2の化合物とアルカリ金属化合物を反応させるには、両者を液相中で混合するなどして接触させる方法を用いても良く、固相中で混合するなどして接触させ加熱しても良い。液相中で反応を行なう場合、反応はスラリー中で行うのが好ましく、水性媒体を用いてスラリー化するのが更に好ましい。水性媒体を用いる場合は、アルカリ金属の水酸化物、炭酸塩等の水溶性アルカリ金属化合物を用いるのが好ましい。固相中で反応を行なう場合は、加熱によって、アルカリ金属化合物が溶融塩となって、式2の化合物と反応すると考えられ、アルカリ金属化合物としては、比較的融点が低いアルカリ金属の硝酸塩、塩化物塩、硫酸塩を用いるのが好ましい。加熱温度は、用いるアルカリ金属化合物によって適宜設定されるが、通常は、150〜400℃の範囲が好ましい。式1中のxの値の範囲は、アルカリ金属化合物による水素イオンの置換量を制御することで定まる。例えば、式2の化合物に含まれる水素イオンの一部をリチウムイオンと置換し、式1中のxの範囲を0<x<2に調整すれば、一般式としてH2−xLiTi1225(0<x<2)の化学組成をとる化合物が得られる。あるいは、式1中のxが2である化合物、即ち、一般式としてNaTi1225の化学組成をとるチタン酸ナトリウム以外の化合物を得るには、水素イオンの全部を置換すれば良い。 The compound represented by Formula 1 of the present invention is obtained by a production method including a step of reacting a compound having a chemical composition of (Formula 2) H 2 Ti 12 O 25 as a general formula with an alkali metal compound. In order to react the compound of formula 2 and the alkali metal compound, a method of contacting them by mixing them in a liquid phase may be used, or they may be contacted and heated by mixing them in a solid phase. . When the reaction is performed in the liquid phase, the reaction is preferably performed in a slurry, and more preferably slurried using an aqueous medium. When using an aqueous medium, it is preferable to use water-soluble alkali metal compounds such as alkali metal hydroxides and carbonates. When the reaction is carried out in the solid phase, it is considered that upon heating, the alkali metal compound becomes a molten salt and reacts with the compound of formula 2. As the alkali metal compound, an alkali metal nitrate, chloride, etc. having a relatively low melting point is considered. It is preferable to use a physical salt or a sulfate. Although heating temperature is suitably set with the alkali metal compound to be used, the range of 150-400 degreeC is preferable normally. The range of the value of x in Formula 1 is determined by controlling the amount of hydrogen ion substitution by the alkali metal compound. For example, if a part of hydrogen ions contained in the compound of Formula 2 is replaced with lithium ions and the range of x in Formula 1 is adjusted to 0 <x <2, H 2x Li x Ti 12 as a general formula A compound having a chemical composition of O 25 (0 <x <2) is obtained. Alternatively, in order to obtain a compound in which x in formula 1 is 2, that is, a compound other than sodium titanate having a chemical composition of Na 2 Ti 12 O 25 as a general formula, all of the hydrogen ions may be replaced.

(式1’)H2−xMxTi1225(0<x<2、Mはアルカリ金属を表す)で表される化合物を得るのに、式2の化合物と反応当量以上のアルカリ金属化合物と反応させて、一旦、式2の化合物に含まれる水素イオンの全部をアルカリ金属イオンと置換した後、得られた化合物に含まれるアルカリ金属イオンの一部を水素イオンと置換してもよい。この方法は、式1中のxを0<x<2の範囲に制御し易く、より好ましい方法である。この方法で、式2の化合物に含まれる水素イオンの全部を置換したものは、一般式として(式3)MTi1225(x≧2、Mはアルカリ金属元素を表す)の化学組成をとる化合物と考えられる。式3で表される化合物として、LiTi1225、KTi1225等を用いても良く、あるいは、組成式3中のxが2の場合、Mで表されるアルカリ金属元素がナトリウムである化合物も用いることもできる。式3中のxが2より大きい値をとり得るのは、式2の化合物が一次元のトンネル構造を有しており、過剰のアルカリ金属イオンが結晶構造中に取り込まれるためであると推測される。xの値に上限は無いが、3以下とすると、式3の化合物の構造が変化し難いので好ましい。アルカリ金属イオンと水素イオンとの置換は、式3の化合物と酸性化合物及び/又は水とを反応させることで行える。この化合物に含まれるアルカリ金属イオンは反応性が高いので、水を用いても置換反応が生じる。酸性化合物としては、塩酸、硫酸、硝酸、フッ酸等の無機酸を用いると反応が進み易く、塩酸、硫酸であれば工業的に有利に実施できるので好ましい。酸性化合物の濃度には特に制限は無いが、遊離酸の濃度は2規定以下にするのが好ましい。反応温度に特に制限は無いが、式3の化合物の構造が変化し難い100℃未満の範囲の温度下で行なうのが好ましい。水素イオンによる置換の程度は、酸性化合物を用いて置換反応を行う場合、たとえば、酸性化合物の使用量を制御することによって、水を用いる場合は、たとえば、水の使用量、温度、反応時間等を制御することによって、制御することができる。 In order to obtain a compound represented by (formula 1 ′) H 2-x MxTi 12 O 25 (0 <x <2, M represents an alkali metal), an alkali metal compound having a reaction equivalent or more than the compound of formula 2 After the reaction, once all of the hydrogen ions contained in the compound of formula 2 are replaced with alkali metal ions, some of the alkali metal ions contained in the obtained compound may be replaced with hydrogen ions. This method is more preferable because it is easy to control x in Formula 1 within the range of 0 <x <2. In this method, all hydrogen ions contained in the compound of formula 2 are substituted as a general formula (formula 3) M x Ti 12 O 25 (x ≧ 2, M represents an alkali metal element) It is considered as a compound that takes Li 2 Ti 12 O 25 , K 2 Ti 12 O 25 or the like may be used as the compound represented by Formula 3, or when x in composition formula 3 is 2, an alkali metal element represented by M A compound in which is sodium can also be used. The reason why x in formula 3 can take a value larger than 2 is presumed that the compound of formula 2 has a one-dimensional tunnel structure and excess alkali metal ions are taken into the crystal structure. The There is no upper limit to the value of x, but a value of 3 or less is preferable because the structure of the compound of Formula 3 is difficult to change. Substitution of alkali metal ions and hydrogen ions can be performed by reacting the compound of formula 3 with an acidic compound and / or water. Since alkali metal ions contained in this compound are highly reactive, a substitution reaction occurs even when water is used. As the acidic compound, use of an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, or hydrofluoric acid is preferable because the reaction can easily proceed, and hydrochloric acid or sulfuric acid can be advantageously implemented industrially. The concentration of the acidic compound is not particularly limited, but the free acid concentration is preferably 2 N or less. Although there is no restriction | limiting in particular in reaction temperature, It is preferable to carry out under the temperature of the range of less than 100 degreeC in which the structure of the compound of Formula 3 cannot change easily. The degree of substitution with hydrogen ions is determined when a substitution reaction is performed using an acidic compound, for example, by controlling the amount of acidic compound used, and when water is used, for example, the amount of water used, temperature, reaction time, etc. It can control by controlling.

得られた式1の化合物は、必要に応じて洗浄、固液分離した後、乾燥する。特に、洗浄を行なうと、残余のアルカリ金属化合物を除去できるので好ましく、そのような洗浄媒液として、例えば、水や極性非水溶媒が挙げられる。極性非水溶媒としては、エタノール、メタノール等のアルコール類、アセトン等のケトン類等が挙げられ、工業的には、エタノールが好ましい。あるいは、粒子同士の凝集の程度に応じて、公知の機器を用いて本発明の効果を損ねない範囲で粉砕してもよい。   The obtained compound of the formula 1 is washed, solid-liquid separated if necessary, and then dried. In particular, washing is preferable because the remaining alkali metal compound can be removed. Examples of such a cleaning medium include water and polar nonaqueous solvents. Examples of the polar non-aqueous solvent include alcohols such as ethanol and methanol, and ketones such as acetone. Industrially, ethanol is preferable. Or you may grind | pulverize in the range which does not impair the effect of this invention using a well-known apparatus according to the grade of aggregation of particle | grains.

本発明の製造方法で用いる式2の化合物は、一般式として(式4)MTi2y+1(y>2、Mはアルカリ金属元素を表す)の化学組成をとる化合物と酸性化合物とを反応させた後、適宜洗浄、固液分離、乾燥を行い、150〜400℃の範囲の温度で加熱脱水することで得られる。式4中のMで表されるアルカリ金属元素としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられ、中でもナトリウム、カリウム、セシウムは工業的に有利に実施できるので好ましい。式4中のyの値は2より大きければ特に制限は無いが、3〜5の範囲の整数であるのが好ましい。具体的には、Na2Ti37、K2Ti49、Cs2Ti511等が挙げられる。酸性化合物としては、塩酸、硫酸、硝酸、フッ酸等の無機酸を用いると反応が進み易く、塩酸、硫酸であれば工業的に有利に実施できるので好ましい。酸性化合物の量や濃度には特に制限は無いが、式4の化合物に含まれるアルカリ金属イオンの反応当量以上で、遊離酸の濃度を2規定以下にするのが好ましい。反応温度に特に制限は無いが、式4の化合物の構造が変化し難い100℃未満の範囲の温度で行なうのが好ましい。式4の化合物は、予め造粒しておくと、酸性化合物との反応性が高くなるので好ましく、造粒には噴霧乾燥を用いるのが工業的に好ましい。加熱脱水には、流動炉、静置炉ロータリーキルンを用いることができ、加熱雰囲気は、大気中、不活性ガス中のいずれであっても良い。 The compound of the formula 2 used in the production method of the present invention includes a compound having a general composition of (formula 4) M 2 Ti y O 2y + 1 (y> 2, M represents an alkali metal element) and an acidic compound. After the reaction, it is obtained by washing, solid-liquid separation and drying as appropriate, followed by heat dehydration at a temperature in the range of 150 to 400 ° C. Examples of the alkali metal element represented by M in Formula 4 include lithium, sodium, potassium, rubidium, cesium, and the like. Among them, sodium, potassium, and cesium are preferable because they can be implemented industrially advantageously. The value of y in Formula 4 is not particularly limited as long as it is greater than 2, but is preferably an integer in the range of 3 to 5. Specifically, Na 2 Ti 3 O 7, K 2 Ti 4 O 9, Cs 2 Ti 5 O 11 and the like. As the acidic compound, use of an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, or hydrofluoric acid is preferable because the reaction can easily proceed, and hydrochloric acid or sulfuric acid can be advantageously implemented industrially. Although there is no restriction | limiting in particular in the quantity and density | concentration of an acidic compound, It is preferable to make the density | concentration of a free acid 2 N or less above the reaction equivalent of the alkali metal ion contained in the compound of Formula 4. Although there is no restriction | limiting in particular in reaction temperature, It is preferable to carry out at the temperature of the range of less than 100 degreeC in which the structure of the compound of Formula 4 cannot change easily. It is preferable to granulate the compound of Formula 4 in advance because the reactivity with an acidic compound is increased, and it is industrially preferable to use spray drying for granulation. A fluidized furnace or a stationary furnace rotary kiln can be used for the heat dehydration, and the heating atmosphere may be either air or an inert gas.

式4の化合物は、チタン化合物とアルカリ金属化合物とを、乾式または湿式で混合した後、焼成することで得られる。チタン化合物としては、チタン酸化物やチタン塩化物等の無機チタン塩、及び、チタンアルコキシド等の有機チタン化合物を用いることができ、アルカリ金属化合物には、アルカリ金属の炭酸塩、水酸化物等を用いることができる。中でも、チタン酸化物とアルカリ金属炭酸塩を用いるのが好ましい。尚、チタン酸化物は、本発明では、チタンと酸素の化合物及びその含水素化合物、含水物または水和物を包含する化合物であり、例えば、二酸化チタン(TiO)等の酸化チタンのほか、メタチタン酸(HTiO)、オルトチタン酸(HTiO)等のチタン酸化合物等が挙げられ、これらから選ばれる1種あるいは2種以上を用いることができる。また、結晶性の化合物であっても、非晶質であってもよく、結晶性の場合は、ルチル型、アナターゼ型、ブルッカイト型等のいずれであってもよく、結晶形にも特に制限を受けない。焼成温度は600〜1000℃の範囲が好ましく、この範囲より低いと反応が進み難く、この範囲より高いと生成物同士の焼結が生じ易い。更に好ましい範囲は、700〜900℃である。反応を促進し、且つ生成物の焼結を抑制するために、焼成を2回以上繰り返して行うこともできる。焼成には、流動炉、静置炉、ロータリーキルン、トンネルキルン等の公知の焼成炉を用いることができる。焼成雰囲気としては、大気中及び非酸化性雰囲気を適宜選択できる。焼成機器は、焼成温度等に応じて適宜選択する。焼成後、焼結の程度に応じて、粉砕を行っても良い。粉砕は、ハンマーミル、ピンミル、遠心粉砕機等の衝撃粉砕機、ローラーミル等の摩砕粉砕機、ロールクラッシャー、ジョークラッシャー等の圧縮粉砕機、ジェットミル等の気流粉砕機等を用いて乾式で行なっても良く、サンドミル、ボールミル、ポットミル等を用いて湿式で行っても良い。 The compound of Formula 4 is obtained by mixing a titanium compound and an alkali metal compound in a dry or wet manner and then baking. As the titanium compound, inorganic titanium salts such as titanium oxide and titanium chloride, and organic titanium compounds such as titanium alkoxide can be used, and alkali metal carbonates such as alkali metal carbonates and hydroxides can be used. Can be used. Among these, it is preferable to use titanium oxide and alkali metal carbonate. In the present invention, the titanium oxide is a compound including a compound of titanium and oxygen and a hydrogen-containing compound, a hydrate or a hydrate thereof. For example, in addition to titanium oxide such as titanium dioxide (TiO 2 ), Examples thereof include titanic acid compounds such as metatitanic acid (H 2 TiO 3 ) and orthotitanic acid (H 4 TiO 4 ), and one or more selected from these can be used. Further, it may be a crystalline compound or amorphous, and in the case of crystallinity, it may be any of rutile type, anatase type, brookite type, etc. I do not receive it. The firing temperature is preferably in the range of 600 to 1000 ° C. When the temperature is lower than this range, the reaction hardly proceeds. When the temperature is higher than this range, the products are easily sintered. A more preferable range is 700 to 900 ° C. In order to accelerate the reaction and suppress the sintering of the product, the firing can be repeated twice or more. For firing, a known firing furnace such as a fluidized furnace, a stationary furnace, a rotary kiln, or a tunnel kiln can be used. As the firing atmosphere, air and a non-oxidizing atmosphere can be appropriately selected. The firing equipment is appropriately selected according to the firing temperature and the like. After firing, pulverization may be performed according to the degree of sintering. The pulverization is dry using an impact pulverizer such as a hammer mill, a pin mill, or a centrifugal pulverizer, a grinding pulverizer such as a roller mill, a compression pulverizer such as a roll crusher or a jaw crusher, or an airflow pulverizer such as a jet mill. It may be carried out by a wet method using a sand mill, a ball mill, a pot mill or the like.

式1の化合物の二次粒子を製造するには、式2の化合物とアルカリ金属化合物とを反応させる工程において、更に(1)式2の化合物とアルカリ金属化合物とを共に造粒後に反応させるか、(2)式2の化合物を造粒してアルカリ金属化合物と反応させるか、又は(3)式2の化合物をアルカリ金属化合物と反応させてから造粒する工程が含まれていれば良い。造粒には、乾燥造粒、撹拌造粒、圧密造粒等が挙げられ、二次粒子の粒子径や形状を調整し易いので、乾燥造粒が好ましい。乾燥造粒には、式2の化合物、アルカリ金属化合物あるいはこれらの反応生成物を含むスラリーを脱水後、乾燥して粉砕する;前記スラリーを脱水後、成型して乾燥する;前記スラリーを噴霧乾燥する等の方法が挙げられ、中でも噴霧乾燥が工業的に好ましい。二次粒子にすると、式2の化合物に含まれる水素イオンのアルカリ金属イオンによる置換が促進されるので、粉体特性や電池特性の改良ばかりでなく、水素イオンが全て置換されたLiTi1225、KTi1225等の式3の化合物を得るには好ましい方法である。得られた二次粒子を、200〜500℃の温度で加熱処理すると、水素イオンの置換が一層促進されるので、LiTi1225、KTi1225等の式3の化合物の製造には、より好ましい方法である。式1中のxの範囲を0<x<2に調整し、式1’の化合物の二次粒子を得るには、(1)〜(3)の方法で、式3の化合物の二次粒子を得た後、酸性化合物及び/又は水と反応させて、式3の化合物に含まれるアルカリ金属イオンの一部と水素イオンとを置換させると、xの値を制御し易く好ましい。 In order to produce secondary particles of the compound of formula 1, in the step of reacting the compound of formula 2 and the alkali metal compound, (1) whether the compound of formula 2 and the alkali metal compound are reacted together after granulation (2) The compound of Formula 2 may be granulated and reacted with an alkali metal compound, or (3) the step of granulating after reacting the compound of Formula 2 with an alkali metal compound may be included. Examples of granulation include dry granulation, stirring granulation, compaction granulation, and the like, and dry granulation is preferable because the particle diameter and shape of secondary particles can be easily adjusted. In dry granulation, a slurry containing the compound of formula 2, an alkali metal compound or a reaction product thereof is dehydrated, dried and pulverized; the slurry is dehydrated, molded and dried; and the slurry is spray dried. Among them, spray drying is industrially preferable. When secondary particles are used, substitution of hydrogen ions contained in the compound of Formula 2 with alkali metal ions is promoted, so that not only improvement in powder characteristics and battery characteristics but also Li 2 Ti 12 in which all hydrogen ions are substituted. This is a preferable method for obtaining a compound of formula 3 such as O 25 and K 2 Ti 12 O 25 . When the obtained secondary particles are heat-treated at a temperature of 200 to 500 ° C., substitution of hydrogen ions is further promoted, so that the compound of formula 3 such as Li 2 Ti 12 O 25 , K 2 Ti 12 O 25, etc. This is a more preferable method for production. In order to obtain the secondary particles of the compound of the formula 1 ′ by adjusting the range of x in the formula 1 to 0 <x <2, the secondary particles of the compound of the formula 3 are obtained by the methods (1) to (3). Then, it is preferable to react with an acidic compound and / or water to replace some of the alkali metal ions and hydrogen ions contained in the compound of Formula 3 so that the value of x can be easily controlled.

噴霧乾燥するのであれば、用いる噴霧乾燥機としては、ディスク式、圧力ノズル式、二流体ノズル式、四流体ノズル式などの乾燥機をスラリーの性状や処理能力に応じて適宜選択することができる。二次粒子径の制御は、例えば、スラリー中の固形分濃度を調整したり、あるいは、上記のディスク式ならディスクの回転数を、圧力ノズル式、二流体ノズル式、四流体ノズル式等なら噴霧圧やノズル径を調整する等して、噴霧される液滴の大きさを制御することにより行える。乾燥温度としては入り口温度を150〜250℃の範囲、出口温度を70〜120℃の範囲とするのが好ましい。スラリーの粘度が低く、造粒し難い場合や、粒子径の制御を更に容易にするために、有機系バインダーを適量、加えても良い。用いる有機系バインダーとしては、例えば、(1)ビニル系化合物(ポリビニルアルコール、ポリビニルピロリドン等)、(2)セルロース系化合物(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等)、(3)タンパク質系化合物(ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等)、(4)アクリル酸系化合物(ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等)、(5)天然高分子化合物(デンプン、デキストリン、寒天、アルギン酸ソーダ等)、(6)合成高分子化合物(ポリエチレングリコール等)等が挙げられ、これらから選ばれる少なくとも1種を用いることができる。中でも、ソーダ等の無機成分を含まないものは、加熱処理により分解、揮散し易いので更に好ましい。   If spray drying is performed, a spray dryer such as a disk type, a pressure nozzle type, a two-fluid nozzle type, or a four-fluid nozzle type can be appropriately selected depending on the properties and processing capacity of the slurry. . The secondary particle size can be controlled, for example, by adjusting the solid content concentration in the slurry, or by rotating the number of rotations of the disk in the case of the above-described disk type, and spraying in the case of a pressure nozzle type, two-fluid nozzle type, four-fluid nozzle type, etc. This can be done by controlling the size of the sprayed droplets by adjusting the pressure and nozzle diameter. As the drying temperature, the inlet temperature is preferably in the range of 150 to 250 ° C, and the outlet temperature is preferably in the range of 70 to 120 ° C. An appropriate amount of an organic binder may be added when the slurry has a low viscosity and is difficult to granulate, or in order to further facilitate the control of the particle diameter. Examples of the organic binder used include (1) vinyl compounds (polyvinyl alcohol, polyvinyl pyrrolidone, etc.), (2) cellulose compounds (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, etc.), and (3) protein compounds ( Gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, etc.), (4) acrylic acid compounds (sodium polyacrylate, ammonium polyacrylate, etc.), (5) natural polymer compounds (starch, dextrin, agar) , Sodium alginate, etc.), (6) synthetic polymer compounds (polyethylene glycol, etc.), etc., and at least one selected from these can be used. Especially, what does not contain inorganic components, such as soda, is more preferable because it is easily decomposed and volatilized by heat treatment.

また、本発明の式1の化合物を電極活物質として含有する電極を構成部材として用いた蓄電デバイスは、高容量で、かつ可逆的なリチウム挿入・脱離反応が可能であり、高い信頼性が期待できる蓄電デバイスである。   In addition, an electricity storage device using an electrode containing the compound of Formula 1 of the present invention as an electrode active material as a constituent member has a high capacity and a reversible lithium insertion / extraction reaction, and has high reliability. It is an electric storage device that can be expected.

蓄電デバイスとしては、具体的には、リチウム電池、キャパシタ等が挙げられ、これらは電極、対極及びセパレーターと電解液とを含み、電極は、前記電極活物質にカーボンブラックなどの導電材とフッ素樹脂などのバインダを加え、適宜成形または電極基板に塗布して得られる。リチウム電池の場合、前記電極活物質を正極に用い、対極として金属リチウム、リチウム合金など、または黒鉛などの炭素系材料などを用いることができる。あるいは、前記電極活物質を負極として用い、正極にリチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・バナジン複合酸化物等のリチウム・遷移金属複合酸化物、リチウム・鉄・複合リン酸化合物等のオリビン型化合物等を用いることができる。キャパシタの場合は、前記電極活物質と、黒鉛とを用いた非対称型キャパシタとすることができる。セパレーターには、いずれにも、多孔性ポリエチレンフィルムなどが用いられ、電解液としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、1,2−ジメトキシエタンなどの溶媒にLiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiBF4などのリチウム塩を溶解させたものなど常用の材料を用いることができる。蓄電デバイスの構造としては電極活物質を除き、上記の他、周知のものが使用でき、特に限定されない。 Specific examples of the electricity storage device include a lithium battery, a capacitor, and the like, which include an electrode, a counter electrode, a separator, and an electrolyte solution. The electrode includes a conductive material such as carbon black and a fluororesin as the electrode active material. It can be obtained by adding a binder such as or the like, and forming or coating the electrode substrate as appropriate. In the case of a lithium battery, the electrode active material can be used for a positive electrode, and metallic lithium, a lithium alloy, or a carbon-based material such as graphite can be used as a counter electrode. Alternatively, the electrode active material is used as a negative electrode, and a lithium / transition metal composite oxide such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, a lithium / nickel composite oxide, a lithium / vanadine composite oxide, Olivine type compounds such as lithium, iron, and complex phosphate compounds can be used. In the case of a capacitor, an asymmetric capacitor using the electrode active material and graphite can be used. As the separator, a porous polyethylene film or the like is used, and as the electrolyte, a solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, 1,2-dimethoxyethane, LiPF 6 , LiClO 4 , LiCF 3 SO is used. 3 , conventional materials such as those in which lithium salts such as LiN (CF 3 SO 2 ) 2 and LiBF 4 are dissolved can be used. The structure of the electricity storage device is not particularly limited, except for the electrode active material, and other well-known ones can be used.

以下に本発明の実施例を示すが、これらは本発明を限定するものではない。   Examples of the present invention are shown below, but these do not limit the present invention.

実施例1
市販のルチル型高純度二酸化チタン(PT−301:石原産業製)1000gと、炭酸ナトリウム451.1gに、純水を1284gを加え、攪拌してスラリー化した。このスラリーを噴霧乾燥機(MDL−050C型:藤崎電気製)を用いて、入口温度200℃、出口温度70〜90℃の条件で噴霧乾燥した。得られた噴霧乾燥品を、電気炉を用い、大気中で800℃の温度で10時間加熱焼成し、メジアン径が5.5μmの生成物を得た。
Example 1
1284 g of pure water was added to 1000 g of commercially available rutile type high-purity titanium dioxide (PT-301: manufactured by Ishihara Sangyo) and 451.1 g of sodium carbonate, and the mixture was stirred to form a slurry. This slurry was spray-dried under conditions of an inlet temperature of 200 ° C. and an outlet temperature of 70 to 90 ° C. using a spray dryer (MDL-050C type: manufactured by Fujisaki Electric). The obtained spray-dried product was heated and fired at 800 ° C. for 10 hours in the atmosphere using an electric furnace to obtain a product having a median diameter of 5.5 μm.

得られた試料について、ICP発光分析法(島津製作所製、商品名ICPS−7500)により、化学組成を分析したところ、Na:Ti=1.99:3.00(各元素の分析誤差0.04以内)となり、NaTiの化学式で妥当であった。さらに、X線粉末回折装置(リガク製、商品名RINT2550V)により、良好な結晶性を有する、単斜晶系、空間群P2/mの結晶構造の単一相であることが明らかとなった。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のNaTiとの値と良く一致していた。
a=9.131Å(誤差0.001Å以内)
b=3.804Å(誤差0.001Å以内)
c=8.569Å(誤差0.001Å以内)
β=101.60°(誤差0.01°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission analysis (trade name ICPS-7500, manufactured by Shimadzu Corporation), Na: Ti = 1.99: 3.00 (analysis error 0.04 of each element) And was valid in the chemical formula of Na 2 Ti 3 O 7 . Furthermore, an X-ray powder diffractometer (trade name RINT2550V, manufactured by Rigaku) has revealed that the crystal has a monoclinic system and a single phase with a crystal structure of the space group P2 1 / m having good crystallinity. . Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which were in good agreement with the values of known Na 2 Ti 3 O 7 .
a = 9.131 mm (within 0.001 mm error)
b = 3.804 mm (within 0.001 mm error)
c = 8.569mm (within 0.001mm error)
β = 101.60 ° (error within 0.01 °)

得られたNaTi1077gに、純水4310gを加え、ダイノミル(MULTI LAB型:シンマルエンタープライズ製)で湿式粉砕して、メジアン径が1.2μmの分散スラリーを得た。このスラリー4848gに64%硫酸739gを加え、攪拌しながら60℃の条件で5時間反応させてから、ろ過水洗した。ろ過ケーキに純水を加え3370gにしてから再分散させ、64%硫酸481gを加え、攪拌しながら80℃の条件で5時間反応させてから、ろ過水洗乾燥して生成物を得た。 4310 g of pure water was added to 1077 g of the obtained Na 2 Ti 3 O 7 , and wet pulverization was performed with Dino Mill (MULTI LAB type: manufactured by Shinmaru Enterprise) to obtain a dispersion slurry having a median diameter of 1.2 μm. To 4848 g of this slurry, 739 g of 64% sulfuric acid was added and reacted for 5 hours at 60 ° C. with stirring, followed by washing with filtered water. Pure water was added to the filter cake to make 3370 g, and then redispersed. 481 g of 64% sulfuric acid was added, and the mixture was reacted for 5 hours at 80 ° C. with stirring, washed with filtered water and dried to obtain a product.

得られた試料について、ICP発光分析法により、化学組成を分析したところ、ナトリウムは検出されず、ほぼ完全にプロトン交換されたHTiの化学式で妥当であった。さらに、X線粉末回折装置により、良好な結晶性を有する、単斜晶系、空間群C2/mの結晶構造のHTiの単一相であることが明らかとなった。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、公知のHTiとの値と良く一致していた。
a=16.032Å(誤差0.001Å以内)
b=3.751Å(誤差0.001Å以内)
c=9.194Å(誤差0.001Å以内)
β=101.44°(誤差0.01°以内)
When the chemical composition of the obtained sample was analyzed by ICP emission spectrometry, sodium was not detected, and the chemical formula of H 2 Ti 3 O 7 which was almost completely proton-exchanged was appropriate. Furthermore, it was revealed by an X-ray powder diffractometer that the crystal has a monoclinic system and a single phase of H 2 Ti 3 O 7 having a crystal structure of the space group C2 / m having good crystallinity. Further, when the lattice constant was determined by the least square method using each index and its surface spacing, the following value was obtained, which was in good agreement with the known H 2 Ti 3 O 7 value.
a = 16.032 mm (within 0.001 mm error)
b = 3.751 mm (within 0.001 mm error)
c = 9.194 mm (error within 0.001 mm)
β = 101.44 ° (within 0.01 ° error)

このようにして得られたHTiの粒子形状を走査型電子顕微鏡(SEM)(日本電子製、商品名JSM−5400)により調べたところ、出発原料であるNaTiの形状が保持された約1ミクロン角の等方的な形状を有していた。 When the particle shape of H 2 Ti 3 O 7 obtained in this way was examined with a scanning electron microscope (SEM) (manufactured by JEOL, trade name JSM-5400), Na 2 Ti 3 O 7 as a starting material was used. It had an isotropic shape of about 1 micron square with the shape of

得られたHTi300gを、電気炉を用い、大気中で260℃で10時間加熱脱水し、生成物を得た。 300 g of the obtained H 2 Ti 3 O 7 was dehydrated by heating at 260 ° C. for 10 hours in the atmosphere using an electric furnace to obtain a product.

得られた試料について、X線粉末回折装置により、X線回折データを測定し、良好な結晶性を有する、単斜晶系、空間群P2/mの結晶構造のHTi1225の単一相であることが明らかとなった。そのX線回折図形を図2に示す。また、各指数とその面間隔を用いて、最小二乗法により格子定数を求めたところ、以下の値となり、国際公開WO2008/111465号に開示されるHTi1225の値と良く一致していた。
a=14.82Å(誤差0.01Å以内)
b=3.890Å(誤差0.001Å以内)
c=9.866Å(誤差0.08Å以内)
β=111.06°(誤差0.08°以内)
About the obtained sample, X-ray diffraction data was measured with an X-ray powder diffractometer, and a monoclinic system having a good crystallinity and a single crystal structure of H 2 Ti 12 O 25 having a crystal structure of space group P2 / m. It became clear that it was one phase. The X-ray diffraction pattern is shown in FIG. In addition, when the lattice constant was determined by the least square method using each index and its surface spacing, the following values were obtained, which agreed well with the value of H 2 Ti 12 O 25 disclosed in International Publication WO2008 / 111465. It was.
a = 14.82 mm (within error of 0.01 mm)
b = 3.890 mm (error within 0.001 mm)
c = 9.866 mm (within 0.08 mm error)
β = 1111.06 ° (within 0.08 ° error)

また、化学組成の妥当性について、試料の250〜600℃の温度範囲における加熱減量を、示差熱天秤を用いて測定し、加熱減量が構造水に相当すると仮定して算出したところ、HTi1225の化学組成が妥当であることが確認された。 Moreover, the validity of the chemical composition, where the heat loss in the temperature range of 250 to 600 ° C. samples were measured using a differential thermal balance, heat loss was calculated on the assumption that corresponding to structural water, H 2 Ti The chemical composition of 12 O 25 was confirmed to be reasonable.

このようにして得られたHTi1225の粒子形状を走査型電子顕微鏡(SEM)により調べたところ、出発原料であるNaTi、前駆体であるHTiの形状が保持された約1ミクロン角の等方的な形状を有していた。 The particle shape of H 2 Ti 12 O 25 thus obtained was examined by a scanning electron microscope (SEM). As a result, Na 2 Ti 3 O 7 as a starting material and H 2 Ti 3 O 7 as a precursor were used. It had an isotropic shape of about 1 micron square with the shape of

得られたHTi1225153gに純水1リットルと水酸化リチウム一水和物13.1gを加えて撹拌しながら、60℃で3時間反応させた。その後、このスラリーを前記のNaTiと同じ条件で噴霧乾燥し、更に350℃の温度で10時間加熱処理して、メジアン径が5.3μmの本発明の式1の化合物を得た。(試料A) 1 liter of pure water and 13.1 g of lithium hydroxide monohydrate were added to 153 g of the obtained H 2 Ti 12 O 25 and reacted at 60 ° C. for 3 hours while stirring. Thereafter, this slurry is spray-dried under the same conditions as Na 2 Ti 3 O 7 and further heat-treated at a temperature of 350 ° C. for 10 hours to obtain a compound of formula 1 of the present invention having a median diameter of 5.3 μm. It was. (Sample A)

実施例2
実施例1で得られた試料A100gに、純水900ミリリットルを加え、60℃で3時間反応させた。その後ろ過水洗、100℃で乾燥して本発明の式1の化合物を得た。(試料B)
Example 2
To 100 g of the sample A obtained in Example 1, 900 ml of pure water was added and reacted at 60 ° C. for 3 hours. Thereafter, it was washed with filtered water and dried at 100 ° C. to obtain the compound of formula 1 of the present invention. (Sample B)

実施例3
実施例1で得られたHTi12250.5gに硝酸リチウム10gを混合して、電気炉を用い、270℃で5時間加熱し、反応させた。反応後、冷却し、純水で十分に洗浄して過剰の硝酸リチウムを除去し、ろ過水洗、100℃で乾燥して本発明の式1の化合物を得た。(試料C)
Example 3
10 g of lithium nitrate was mixed with 0.5 g of H 2 Ti 12 O 25 obtained in Example 1, and the mixture was heated and reacted at 270 ° C. for 5 hours using an electric furnace. After the reaction, the mixture was cooled, washed thoroughly with pure water to remove excess lithium nitrate, washed with filtered water, and dried at 100 ° C. to obtain the compound of formula 1 of the present invention. (Sample C)

実施例4
実施例3において、加熱時間を20時間とした以外は、実施例3と同様にして、本発明の式1の化合物を得た。(試料D)
Example 4
In Example 3, the compound of Formula 1 of the present invention was obtained in the same manner as in Example 3 except that the heating time was 20 hours. (Sample D)

実施例5
実施例3において、加熱時間を20時間とし、反応・冷却後の洗浄を純水に替えてエタノールを用いたこと以外は、実施例3と同様にして、本発明の式1の化合物を得た。(試料E)
Example 5
In Example 3, the compound of formula 1 of the present invention was obtained in the same manner as in Example 3 except that ethanol was used instead of pure water for the washing after the reaction and cooling, and the heating time was 20 hours. . (Sample E)

比較例1
実施例1で中間生成物として得られた式2の化合物 HTi1225を、比較対象とした。(試料F)
Comparative Example 1
The compound of formula 2 H 2 Ti 12 O 25 obtained as an intermediate product in Example 1 was used as a comparison target. (Sample F)

評価1:結晶性の確認、格子定数の測定
実施例3で得られた化合物(試料C)、及び実施例4で得られた化合物(試料D)について、X線粉末回折装置により、X線回折データを測定し、良好な結晶性を有する、単斜晶系で、且つX線回折パターンのピーク波形がHTi1225と相似であり、各々のピークの位置がHTi1225より高角側あるいは低角側にシフトしていることが明らかとなった。この時の粉末X線回折図形を図3および図4に示す。また、既知のHTi1225のピーク位置との違いが顕著なピークについて、図5で比較した。試料Cおよび試料Dにおけるピーク位置は、既知のHTi1225と比べ大きく高角側へシフトしていることが確認された。このようなX回折パターンは公知の化合物とは一致せず、新物質であることが明らかになった。
Evaluation 1: Confirmation of crystallinity and measurement of lattice constant The compound (sample C) obtained in Example 3 and the compound (sample D) obtained in Example 4 were subjected to X-ray diffraction using an X-ray powder diffractometer. The data was measured, the crystal was monoclinic with good crystallinity, and the peak waveform of the X-ray diffraction pattern was similar to H 2 Ti 12 O 25, and the position of each peak was H 2 Ti 12 O 25. It became clear that it shifted to the higher angle side or the lower angle side. The powder X-ray diffraction pattern at this time is shown in FIGS. Further, the peaks having a remarkable difference from the peak positions of known H 2 Ti 12 O 25 are compared in FIG. It was confirmed that the peak positions in Sample C and Sample D were greatly shifted to the high angle side as compared with known H 2 Ti 12 O 25 . Such an X-ray diffraction pattern was not consistent with known compounds, and was found to be a new substance.

評価2:結晶構造の確認
更に、粉末X線回折装置で測定した強度データを用いて粉末X線構造解析法(プログラムRIETAN2000使用)により、結晶構造解析を行なったところ、公知の物質であるNaTi1225と同じ骨格構造を有する一次元のトンネル構造を有することが明らかとなった。
Evaluation 2: Confirmation of crystal structure Further, when the crystal structure analysis was performed by the powder X-ray structure analysis method (using the program RIEtan 2000) using the intensity data measured by the powder X-ray diffractometer, Na 2 which is a known substance was used. It was revealed that it has a one-dimensional tunnel structure having the same skeleton structure as Ti 12 O 25 .

また、解析により明らかとなった結晶構造を図1に示す。TiO八面体が構築した骨格構造によって、サイズの異なる2種のトンネル空間が形成されていることが明らかとなった。 In addition, the crystal structure which has been clarified by analysis is shown in FIG. It was clarified that two kinds of tunnel spaces with different sizes were formed by the skeletal structure constructed by the TiO 6 octahedron.

評価3:組成の確認
実施例1〜5で得られた化合物(試料A〜E)を弗酸に熔解して、ICP分析法でチタンとリチウムの含有量を測定した。また、これらの試料の250〜600℃の温度範囲における加熱減量を、示差熱天秤を用いて測定し、加熱減量が構造水に相当すると仮定して、組成式1におけるxの値を算出した。結果を表1に示す。
Evaluation 3: Confirmation of composition The compounds (samples A to E) obtained in Examples 1 to 5 were dissolved in hydrofluoric acid, and the contents of titanium and lithium were measured by ICP analysis. Moreover, the heating loss of these samples in the temperature range of 250-600 degreeC was measured using the differential thermal balance, and the value of x in a composition formula 1 was computed on the assumption that a heating loss corresponded to structural water. The results are shown in Table 1.

評価4:充放電特性の評価(1)
実施例1〜4で得られた化合物(試料A〜D)を、電極活物質として用いて、リチウム二次電池を調製し、その充放電特性を評価した。電池の形態や測定条件について説明する。
Evaluation 4: Evaluation of charge / discharge characteristics (1)
Lithium secondary batteries were prepared using the compounds (samples A to D) obtained in Examples 1 to 4 as electrode active materials, and their charge / discharge characteristics were evaluated. The battery configuration and measurement conditions will be described.

上記各試料と、導電剤としてのアセチレンブラック粉末、及び結着剤としてのポリ四フッ化エチレン樹脂を重量比で5:4:1で混合し、乳鉢で練り合わせ、直径10mmの円形に成型してペレット状とした。ペレットの重量は10mgであった。このペレットに直径10mmに切り出したアルミニウム製のメッシュを重ね合わせ、9MPaでプレスして作用極とした。   Each sample, acetylene black powder as a conductive agent, and polytetrafluoroethylene resin as a binder are mixed at a weight ratio of 5: 4: 1, kneaded in a mortar, and molded into a circle with a diameter of 10 mm. It was in a pellet form. The weight of the pellet was 10 mg. An aluminum mesh cut to a diameter of 10 mm was placed on this pellet and pressed at 9 MPa to obtain a working electrode.

この作用極を100℃の温度で4時間真空乾燥した後、露点−70℃以下のグローブボックス中で、密閉可能なコイン型評価用セルに正極として組み込んだ。評価用セルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。負極には厚み0.5mmの金属リチウムを直径12mmの円形に成形したものを用いた。非水電解液として1モル/リットルとなる濃度でLiPFを溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を用いた。 This working electrode was vacuum-dried at a temperature of 100 ° C. for 4 hours, and then incorporated as a positive electrode in a sealable coin-type evaluation cell in a glove box having a dew point of −70 ° C. or lower. The evaluation cell used was made of stainless steel (SUS316) and had an outer diameter of 20 mm and a height of 3.2 mm. As the negative electrode, a metal lithium having a thickness of 0.5 mm formed into a circle having a diameter of 12 mm was used. As the non-aqueous electrolyte, a mixed solution of ethylene carbonate and dimethyl carbonate (mixed in a volume ratio of 1: 2) in which LiPF 6 was dissolved at a concentration of 1 mol / liter was used.

作用極は評価用セルの下部缶に置き、その上にセパレーターとして多孔性ポリプロピレンフィルムを置き、その上から非水電解液を滴下した。さらにその上に負極と、厚み調整用の0.5mm厚スペーサー及びスプリング(いずれもSUS316製)をのせ、ポリプロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封した。   The working electrode was placed in the lower can of the evaluation cell, a porous polypropylene film was placed thereon as a separator, and a non-aqueous electrolyte was dropped from above. Further, a negative electrode, a 0.5 mm-thickness spacer for adjusting the thickness, and a spring (both made of SUS316) were placed thereon, and an upper can with a polypropylene gasket was put on the outer peripheral edge portion and sealed.

充放電容量の測定は、電圧範囲を1.0〜2.5Vに、充放電電流を0.2mAに設定して、室温下、定電流で行った。2サイクル目と30サイクル目の充放容量を測定し、(30サイクル目の放電容量/2サイクル目の放電容量)×100をサイクル特性とした。この値が大きい程、サイクル特性が優れている。結果を表2に示す。本発明のチタン酸アルカリ金属化合物を用いた電極活物質は、サイクル特性に優れ、充放電容量が大きいことが判る。   The charge / discharge capacity was measured at a constant current at room temperature with the voltage range set to 1.0 to 2.5 V and the charge / discharge current set to 0.2 mA. The charge / discharge capacity at the second and 30th cycles was measured, and (discharge capacity at the 30th cycle / discharge capacity at the second cycle) × 100 was defined as the cycle characteristics. The larger this value, the better the cycle characteristics. The results are shown in Table 2. It can be seen that the electrode active material using the alkali metal titanate compound of the present invention has excellent cycle characteristics and a large charge / discharge capacity.

評価5:充放電特性の評価(2)
実施例1〜5、比較例1で得られた化合物(試料A〜F)について、評価4と同様にして、リチウム二次電池を調製し、その充放電特性を評価した。サイクル特性は、2サイクル目と30サイクル目の充放容量を測定し、(30サイクル目の放電容量/2サイクル目の放電容量)×100で算出した。結果を表3に示す。本発明のチタン酸アルカリ金属化合物を用いた電極活物質は、サイクル特性に優れていることが確認できる。
Evaluation 5: Evaluation of charge / discharge characteristics (2)
For the compounds (samples A to F) obtained in Examples 1 to 5 and Comparative Example 1, lithium secondary batteries were prepared in the same manner as in Evaluation 4, and their charge / discharge characteristics were evaluated. The cycle characteristics were calculated by measuring charge / discharge capacities at the second and thirty cycles and (discharge capacity at thirty cycles / discharge capacity at the second cycle) × 100. The results are shown in Table 3. It can be confirmed that the electrode active material using the alkali metal titanate compound of the present invention is excellent in cycle characteristics.

評価6:充放電特性の評価(3)
評価5において、室温下で行なった充放電を、60℃の恒温槽中で行なった以外は、評価5と同様にして、サイクル特性の評価を行なった。結果を表4に示す。本発明は、高温下で充放電を行なっても、サイクル特性に優れていることが判る。比較例1は、高温下では、実施例より初期容量が大きくなるものの、サイクル特性が著しく低下する。
Evaluation 6: Evaluation of charge / discharge characteristics (3)
In Evaluation 5, cycle characteristics were evaluated in the same manner as in Evaluation 5 except that charging / discharging performed at room temperature was performed in a constant temperature bath at 60 ° C. The results are shown in Table 4. It can be seen that the present invention is excellent in cycle characteristics even when charging and discharging are performed at a high temperature. In Comparative Example 1, the initial capacity is larger than that of the Example at a high temperature, but the cycle characteristics are remarkably deteriorated.

本発明の新規チタン酸アルカリ金属化合物H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)は、一次元的なトンネル空間を有するという結晶構造の特徴から、現行のスピネル型LiTi12よりも高容量であり、リチウムのスムースな吸蔵・放出に有利であり、かつ、初期充放電効率、サイクル特性の観点で優れた材料である。そのため、リチウム二次電池等の蓄電デバイス電極材料として実用性の高いものである。 New alkali metal titanate compound H 2-x M x Ti 12 O 25 of the present invention (0 <x ≦ 2, M represents an alkali metal element, M except the Na case where x = 2), the one-dimensional The characteristics of the crystal structure of having a typical tunnel space are higher in capacity than the current spinel type Li 4 Ti 5 O 12 , and are advantageous for smooth occlusion / release of lithium, and the initial charge / discharge efficiency, cycle It is an excellent material in terms of characteristics. Therefore, it is highly practical as a power storage device electrode material such as a lithium secondary battery.

また、その製造方法も、特別な装置を必要とせず、また、使用する原料も低価格であることから、低コストで高付加価値の材料を製造可能である。   Also, the manufacturing method does not require a special apparatus, and the raw material to be used is low in price, so that a high value-added material can be manufactured at a low cost.

さらに、本発明の新規チタン酸アルカリ金属化合物H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)を電極活物質として電極材料に適用した蓄電デバイスは、可逆的なリチウム挿入・脱離反応が可能で、長期にわたる充放電サイクルに対応可能であり、また高容量が期待できる蓄電デバイスである。 Furthermore, the novel alkali metal titanate compound H 2-x M x Ti 12 O 25 (0 <x ≦ 2, M represents an alkali metal element, provided that when the x = 2 M excludes Na) the electrode of the present invention An electricity storage device applied to an electrode material as an active material is an electricity storage device that can perform reversible lithium insertion / extraction reaction, can support a long charge / discharge cycle, and can be expected to have a high capacity.

Claims (12)

一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとる化合物。 A compound having a chemical composition of the general formula (Formula 1) H 2−x M x Ti 12 O 25 (0 <x ≦ 2, M represents an alkali metal element, but when x = 2, M excludes Na) . 一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとり、一次元のトンネル構造を有する化合物。 As a general formula, a chemical composition of (formula 1) H 2−x M x Ti 12 O 25 (0 <x ≦ 2, M represents an alkali metal element, but when x = 2, M excludes Na), A compound having a one-dimensional tunnel structure. 一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとり、一次元のトンネル構造を有し、単斜晶系に属し、且つX線回折パターンのピーク波形がHTi1225と相似であり、各々のピークの位置がHTi1225より高角側あるいは低角側にシフトしている化合物。 As a general formula, a chemical composition of (formula 1) H 2−x M x Ti 12 O 25 (0 <x ≦ 2, M represents an alkali metal element, but when x = 2, M excludes Na), It has a one-dimensional tunnel structure, belongs to the monoclinic system, and the peak waveform of the X-ray diffraction pattern is similar to that of H 2 Ti 12 O 25, and the position of each peak is higher than that of H 2 Ti 12 O 25. A compound that is shifted to the side or low angle side. 請求項1〜3のいずれか1項に記載に化合物の一次粒子を集合させた二次粒子である化合物。   The compound which is a secondary particle which aggregated the primary particle of the compound as described in any one of Claims 1-3. 一般式として(式1)H2−xTi1225(0<x≦2、Mはアルカリ金属元素を表す、但しx=2の場合MはNaを除く)の化学組成をとる化合物を含む蓄電デバイス用電極活物質。 A compound having a chemical composition of the general formula (Formula 1) H 2−x M x Ti 12 O 25 (0 <x ≦ 2, M represents an alkali metal element, but when x = 2, M excludes Na) An electrode active material for an electricity storage device. 式1中のMで表されるアルカリ金属元素がリチウム、ナトリウム、カリウム、セシウムから選ばれる少なくとも一種である請求項5記載の電極活物質。   The electrode active material according to claim 5, wherein the alkali metal element represented by M in Formula 1 is at least one selected from lithium, sodium, potassium, and cesium. 一般式として(式2)HTi1225の化学組成をとる化合物とアルカリ金属化合物とを反応させる工程を含む請求項1〜3のいずれか1項に記載の化合物の製造方法。 Process for the preparation of a compound according to claim 1, comprising the step of reacting a formula and (Equation 2) The compound takes the chemical composition of H 2 Ti 12 O 25 and an alkali metal compound. 式2の化合物とアルカリ金属化合物とを液相中で接触させて反応させる請求項7に記載の化合物の製造方法。   The method for producing a compound according to claim 7, wherein the compound of formula 2 and an alkali metal compound are reacted in contact with each other in a liquid phase. 式2の化合物とアルカリ金属化合物とを固相中で接触させ加熱して反応させる請求項7に記載の合物の製造方法。   The method for producing a compound according to claim 7, wherein the compound of formula 2 and the alkali metal compound are brought into contact with each other in the solid phase and heated to react. 一般式として(式2)HTi1225の化学組成をとる化合物とアルカリ金属化合物とを反応させる工程において、更に(1)式2の化合物とアルカリ金属化合物とを共に造粒後に反応させるか、(2)式2の化合物を造粒してアルカリ金属化合物と反応させるか、又は(3)式2の化合物とアルカリ金属化合物とを反応させてから造粒する工程を含む請求項4記載の化合物の製造方法。 In the step of reacting a compound having a chemical composition of (formula 2) H 2 Ti 12 O 25 as a general formula with an alkali metal compound, (1) the compound of formula 2 and the alkali metal compound are both reacted after granulation. Or (2) granulating the compound of formula 2 and reacting with the alkali metal compound, or (3) granulating the compound of formula 2 and the alkali metal compound. A method for producing the compound. (1)〜(3)のいずれかの工程によって一般式として(式3)MTi1225(x≧2、Mはアルカリ金属元素を表す)の化学組成をとる化合物の二次粒子を得た後、この二次粒子と酸性化合物及び/又は水とを反応させて、式1中のxを0<x<2の範囲に調整する請求項10に記載の化合物の製造方法。 Secondary particles of a compound having a chemical composition of (formula 3) M x Ti 12 O 25 (x ≧ 2, M represents an alkali metal element) as a general formula by any one of steps (1) to (3) 11. The method for producing a compound according to claim 10, wherein the secondary particle is reacted with an acidic compound and / or water to adjust x in the formula 1 in a range of 0 <x <2. 正極、負極、セパレーター及び電解質を含む蓄電デバイスにおいて、前記正極または負極が請求項5に記載の電極活物質を含有する蓄電デバイス。   The electrical storage device containing a positive electrode, a negative electrode, a separator, and an electrolyte, The electrical storage device in which the said positive electrode or negative electrode contains the electrode active material of Claim 5.
JP2010143573A 2009-06-25 2010-06-24 Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material Active JP5594663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143573A JP5594663B2 (en) 2009-06-25 2010-06-24 Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009150714 2009-06-25
JP2009150714 2009-06-25
JP2010143573A JP5594663B2 (en) 2009-06-25 2010-06-24 Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material

Publications (2)

Publication Number Publication Date
JP2011026188A true JP2011026188A (en) 2011-02-10
JP5594663B2 JP5594663B2 (en) 2014-09-24

Family

ID=43635381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143573A Active JP5594663B2 (en) 2009-06-25 2010-06-24 Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material

Country Status (1)

Country Link
JP (1) JP5594663B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136258A1 (en) 2010-04-28 2011-11-03 石原産業株式会社 Novel lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2011246342A (en) * 2010-04-28 2011-12-08 Ishihara Sangyo Kaisha Ltd Lithium titanate, method for producing the same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2012248333A (en) * 2011-05-25 2012-12-13 Ishihara Sangyo Kaisha Ltd Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
JP2013033685A (en) * 2011-08-03 2013-02-14 Showa Denko Kk Negative electrode for secondary battery, and secondary battery
JP2015097206A (en) * 2014-11-28 2015-05-21 石原産業株式会社 Electrode active material, manufacturing method thereof, and power storage device arranged by use of electrode active material
JP2017168263A (en) * 2016-03-15 2017-09-21 株式会社東芝 Active material, nonaqueous electrolyte battery, battery pack and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003784A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
WO2008111465A1 (en) * 2007-03-13 2008-09-18 National Institute Of Advanced Industrial Science And Technology New titanium oxide, process for producing the titanium oxide, and lithium rechargeable battery using the titanium oxide as active material
WO2009028530A1 (en) * 2007-08-28 2009-03-05 Ishihara Sangyo Kaisha, Ltd. Titanic acid compound, process for producing the titanic acid compound, electrode active material containing the titanic acid compound, and storage device using the electrode active material
JP2010150125A (en) * 2008-11-20 2010-07-08 National Institute Of Advanced Industrial Science & Technology Titanium oxide and method for production thereof
JP2013127974A (en) * 2009-03-25 2013-06-27 Toshiba Corp Nonaqueous electrolyte battery negative electrode active material, method of manufacturing the same, nonaqueous electrolyte battery, and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003784A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
WO2008111465A1 (en) * 2007-03-13 2008-09-18 National Institute Of Advanced Industrial Science And Technology New titanium oxide, process for producing the titanium oxide, and lithium rechargeable battery using the titanium oxide as active material
WO2009028530A1 (en) * 2007-08-28 2009-03-05 Ishihara Sangyo Kaisha, Ltd. Titanic acid compound, process for producing the titanic acid compound, electrode active material containing the titanic acid compound, and storage device using the electrode active material
JP2010150125A (en) * 2008-11-20 2010-07-08 National Institute Of Advanced Industrial Science & Technology Titanium oxide and method for production thereof
JP2013127974A (en) * 2009-03-25 2013-06-27 Toshiba Corp Nonaqueous electrolyte battery negative electrode active material, method of manufacturing the same, nonaqueous electrolyte battery, and battery pack

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136258A1 (en) 2010-04-28 2011-11-03 石原産業株式会社 Novel lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2011246342A (en) * 2010-04-28 2011-12-08 Ishihara Sangyo Kaisha Ltd Lithium titanate, method for producing the same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
CN102869612A (en) * 2010-04-28 2013-01-09 石原产业株式会社 Novel lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP5701863B2 (en) * 2010-04-28 2015-04-15 石原産業株式会社 Novel lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
US9150424B2 (en) 2010-04-28 2015-10-06 Ishihara Sangyo Kaisha, Ltd. Lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2012248333A (en) * 2011-05-25 2012-12-13 Ishihara Sangyo Kaisha Ltd Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
JP2013033685A (en) * 2011-08-03 2013-02-14 Showa Denko Kk Negative electrode for secondary battery, and secondary battery
JP2015097206A (en) * 2014-11-28 2015-05-21 石原産業株式会社 Electrode active material, manufacturing method thereof, and power storage device arranged by use of electrode active material
JP2017168263A (en) * 2016-03-15 2017-09-21 株式会社東芝 Active material, nonaqueous electrolyte battery, battery pack and vehicle
CN107195898A (en) * 2016-03-15 2017-09-22 株式会社东芝 Active material, nonaqueous electrolyte battery, battery bag and vehicle
US10854931B2 (en) 2016-03-15 2020-12-01 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle

Also Published As

Publication number Publication date
JP5594663B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5612856B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5612857B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5421644B2 (en) Method for producing titanic acid compound or titanium oxide
JP5701863B2 (en) Novel lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
JP3894778B2 (en) Lithium titanate and lithium battery using the same
JP5594663B2 (en) Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material
JP6472089B2 (en) Titanate compounds, alkali metal titanate compounds, methods for producing them, and electricity storage devices using them as active materials
JP4668539B2 (en) Method for producing lithium titanate and method for producing lithium battery
JP6243932B2 (en) Method for producing titanium niobium oxide, and method for producing titanium niobium oxide negative electrode active material using titanium niobium oxide obtained therefrom
JP4597546B2 (en) Method for producing lithium titanate and method for producing lithium battery
JP2012248333A (en) Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
JP6013435B2 (en) ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5270634B2 (en) Method for producing lithium titanate and method for producing lithium battery
JP6008610B2 (en) Positive electrode material for secondary battery and secondary battery using the positive electrode material
JP5830842B2 (en) Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery
JP5632794B2 (en) Lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
JP5718966B2 (en) Method for producing alkali metal titanate compound and method for producing electricity storage device
JP2017178688A (en) Lithium titanate precursor powder and manufacturing method thereof, manufacturing method of lithium titanate therewith, and lithium titanate, and electrode and electricity storage device therewith
JP2016150868A (en) Lithium titanate, production method thereof, and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5594663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250