JP2012166984A - Cupric oxide fine powder and copper ion feeding method of copper sulfate aqueous solution - Google Patents

Cupric oxide fine powder and copper ion feeding method of copper sulfate aqueous solution Download PDF

Info

Publication number
JP2012166984A
JP2012166984A JP2011029210A JP2011029210A JP2012166984A JP 2012166984 A JP2012166984 A JP 2012166984A JP 2011029210 A JP2011029210 A JP 2011029210A JP 2011029210 A JP2011029210 A JP 2011029210A JP 2012166984 A JP2012166984 A JP 2012166984A
Authority
JP
Japan
Prior art keywords
cupric oxide
fine powder
oxide fine
copper
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011029210A
Other languages
Japanese (ja)
Other versions
JP5648803B2 (en
Inventor
Takeshi Naganami
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011029210A priority Critical patent/JP5648803B2/en
Publication of JP2012166984A publication Critical patent/JP2012166984A/en
Application granted granted Critical
Publication of JP5648803B2 publication Critical patent/JP5648803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high grade cupric oxide fine powder in which the purity of copper oxide is high and the solubility to a plating liquid is high, and to provide a feeding method of a copper ion to a copper sulfate aqueous solution that is a plating bath of copper electroplating using the cupric oxide fine powder.SOLUTION: The cupric oxide fine powder is characterized in that the specific surface area is at least 1 m/g and at most 50 m/g, the average particle size is at least 20 nm and at most 1,100 nm, the X-ray diffraction 2θ=61.5°, the half width of a peak is at least 0.2° and at most 0.6°, the crystallite diameter at least 155 Å and at most 490 Å, and the CuO content is at least 98.5% by weight.

Description

本発明は、酸化第二銅微粉末および硫酸銅水溶液の銅イオン供給方法に関するものである。特に、硫酸銅水溶液に容易に溶解する酸化第二銅微粉末に関する。   The present invention relates to a copper ion supply method for cupric oxide fine powder and an aqueous copper sulfate solution. In particular, it relates to a cupric oxide fine powder that is easily dissolved in an aqueous copper sulfate solution.

酸化第二銅粉末は、顔料、塗料、触媒、陶磁器の着色剤や銅めっき液の補給用銅源などに使用されている。その製造方法は、湿式法と乾式法に大別される。
湿式法は、例えば、特許文献1に記載されるような、塩化第二銅や硫酸銅の水溶液に水酸化ナトリウムを反応させて水酸化銅を生成させた後、加熱する方法である。
より詳細には、塩化第二銅を含むプリント基板のエッチング廃液を苛性アルカリで中和し、その中和した銅溶液と苛性アルカリ水溶液とを、温度40〜50℃に保持した水溶液中に同時に滴下混合して、その混合した水溶液のpHを弱酸性から弱アルカリ性の範囲に維持しながら銅の水和物を生成させる。次いで、pH12〜13に調整し、70〜80℃の温度で30分間の維持後、水洗、固液分離して酸化第二銅を製造する方法が特許文献1に開示されている。
Cupric oxide powders are used in pigments, paints, catalysts, ceramic colorants, copper sources for replenishing copper plating solutions, and the like. The manufacturing method is roughly classified into a wet method and a dry method.
The wet method is, for example, a method described in Patent Document 1 in which sodium hydroxide is reacted with an aqueous solution of cupric chloride or copper sulfate to form copper hydroxide and then heated.
More specifically, the etching waste solution of the printed circuit board containing cupric chloride is neutralized with caustic alkali, and the neutralized copper solution and caustic aqueous solution are simultaneously dropped into an aqueous solution maintained at a temperature of 40 to 50 ° C. Mixing to form a copper hydrate while maintaining the pH of the mixed aqueous solution in a weakly acidic to weakly alkaline range. Next, Patent Document 1 discloses a method of preparing cupric oxide by adjusting the pH to 12 to 13 and maintaining it at a temperature of 70 to 80 ° C. for 30 minutes, followed by washing with water and solid-liquid separation.

しかし、不純物として塩化ナトリウム(NaCl)が副生することから、これら不純物除去のために水洗工程が必要であること、さらには水洗しても完全に除去することは困難である、といった問題を抱えている。   However, since sodium chloride (NaCl) is by-produced as an impurity, there is a problem that a water washing step is necessary to remove these impurities and that it is difficult to completely remove even after washing with water. ing.

また、特許文献2には、硫酸銅水溶液と水酸化ナトリウム水溶液とを30℃以下の温度で反応させて水酸化第二銅を生成し、次に60〜80℃の温度に加熱、熟成して酸化第二銅を形成する製造方法が開示されている。   In Patent Document 2, a copper sulfate aqueous solution and a sodium hydroxide aqueous solution are reacted at a temperature of 30 ° C. or lower to produce cupric hydroxide, and then heated and aged at a temperature of 60 to 80 ° C. A manufacturing method for forming cupric oxide is disclosed.

特許文献1、2に示す湿式法で製造された酸化第二銅粉末は、銅めっき液への溶解性が優れているものが多い。しかし、この方法で得られた酸化第二銅粉末は、不純物としてNaやSO体でのSの残留濃度が高い問題があり、めっき液の硫酸銅水溶液に使用するとその不純物などに起因するめっき不具合といった問題が生じ易かった。 Many cupric oxide powders manufactured by the wet method shown in Patent Documents 1 and 2 have excellent solubility in a copper plating solution. However, the cupric oxide powder obtained by this method has a problem that the residual concentration of S in Na and SO 4 bodies is high as an impurity, and when used in a copper sulfate aqueous solution of a plating solution, plating caused by the impurity and the like Problems such as defects were likely to occur.

もう一方の乾式法は、非特許文献1に記載されるように、硝酸銅、硫酸銅、炭酸銅、水酸化銅などを空気中で600℃程度で熱分解する方法で、湿式法に比べて生産性が高く、金属銅を原料とした場合、高純度の酸化第二銅粉末が得られる利点がある。しかし、乾式法では、熱分解温度が高いため、得られた酸化第二銅粉末は、焼結の影響でめっき液への溶解速度が極めて遅くなってしまう問題が生じていた。   The other dry method is a method in which copper nitrate, copper sulfate, copper carbonate, copper hydroxide, etc. are thermally decomposed at about 600 ° C. in the air as described in Non-Patent Document 1, compared with the wet method. Productivity is high, and when metallic copper is used as a raw material, there is an advantage that high-purity cupric oxide powder can be obtained. However, since the pyrolysis temperature is high in the dry method, the obtained cupric oxide powder has a problem that the dissolution rate in the plating solution becomes extremely slow due to the influence of sintering.

特開平5−319825号公報JP-A-5-31825 特開平3−80116号公報Japanese Patent Laid-Open No. 3-80116

第4版実験化学講座 無機化合物4th edition experimental chemistry course inorganic compounds

本発明は、生産性が高い乾式法の問題点、すなわち、めっき液への溶解性に着目してなされたもので、その課題とするところは、酸化銅の純度が高く、かつめっき液への溶解性が高い高純度の酸化第二銅微粉末と、その酸化第二銅微粉末を用いた銅電気めっきのめっき浴である硫酸銅水溶液への銅イオン供給方法を提供することにある。   The present invention was made by paying attention to the problem of the dry method with high productivity, that is, the solubility in the plating solution. The problem is that the purity of the copper oxide is high and the solution to the plating solution is high. An object of the present invention is to provide a high-purity cupric oxide fine powder having high solubility and a method for supplying copper ions to a copper sulfate aqueous solution which is a plating bath for copper electroplating using the cupric oxide fine powder.

そこで、上記課題を解決するため、本発明者は様々な物理特性を有する酸化第二銅微粉末と、銅電気めっきの硫酸銅めっき液への溶解性との関係について鋭意研究を行った。
その結果、酸化第二銅微粉末が特定範囲の比表面積、平均粒子径、半価幅および結晶子径を有するという物理特性を満たすとき、この酸化第二銅微粉末はめっき液に極めて溶け易くなるという現象を見出し、本発明を完成したものである。
Therefore, in order to solve the above-mentioned problems, the present inventor has intensively studied the relationship between cupric oxide fine powder having various physical properties and the solubility of copper electroplating in a copper sulfate plating solution.
As a result, when the cupric oxide fine powder satisfies the physical properties of specific surface area, average particle diameter, half width and crystallite diameter within a specific range, this cupric oxide fine powder is extremely soluble in the plating solution. As a result, the present invention has been completed.

すなわち、本発明の第1の発明は、比表面積が1m/g以上、50m/g以下であり、平均粒子径が20nm以上、1100nm以下で、X線回折2θ=61.5°、ピークの半価幅が0.2°以上、0.6°以下で、かつ結晶子径が155Å以上、490Å以下であって、CuO含有量が98.5重量%以上であることを特徴とする酸化第二銅微粉末である。 That is, the first invention of the present invention has a specific surface area of 1 m 2 / g or more and 50 m 2 / g or less, an average particle diameter of 20 nm or more and 1100 nm or less, X-ray diffraction 2θ = 61.5 °, peak The half width of the oxide is 0.2 ° or more and 0.6 ° or less, the crystallite diameter is 155 mm or more and 490 mm or less, and the CuO content is 98.5% by weight or more. Cupric fine powder.

本発明の第2の発明は、第1の発明における酸化第二銅微粉末が、CuSO・5HOを90g/L、HSOを220g/L、塩素イオンを60mg/Lの成分組成から成る25℃の硫酸銅水溶液、1リットルに7gを添加して、完全に溶けるまでの溶解時間が、2分未満であることを特徴とするものである。 According to a second aspect of the present invention, the cupric oxide fine powder according to the first aspect comprises CuSO 4 .5H 2 O at 90 g / L, H 2 SO 4 at 220 g / L, and chlorine ions at 60 mg / L. The aqueous solution of copper sulfate at 25 ° C. composed of the composition is characterized in that 7 g is added to 1 liter and the dissolution time until complete dissolution is less than 2 minutes.

本発明の第3の発明は、酸化第二銅微粉末を溶解させて硫酸銅水溶液の銅イオン濃度を調整する硫酸銅水溶液への銅イオンの供給方法であって、酸化第二銅微粉末が、第1又は第2の発明の酸化第二銅微粉末であり、その酸化第二銅微粉末を、CuSO・5HOを50〜130g/L、HSOを150〜240g/L、塩素イオンを30〜70mg/L含む硫酸銅水溶液に溶解させることを特徴とする。 3rd invention of this invention is a supply method of the copper ion to the copper sulfate aqueous solution which melt | dissolves cupric oxide fine powder and adjusts the copper ion concentration of copper sulfate aqueous solution, Comprising: The cupric oxide fine powder of the first or second invention, the cupric oxide fine powder, CuSO 4 .5H 2 O 50-130 g / L, H 2 SO 4 150-240 g / L And dissolved in a copper sulfate aqueous solution containing 30 to 70 mg / L of chlorine ions.

本発明に係る高純度酸化第二銅微粉末は、生産性が高い乾式法で製造しても銅電気めっきのめっき液である硫酸銅水溶液への溶解性が高いため、めっき液の補給用銅源として好適である。   The high-purity cupric oxide fine powder according to the present invention is highly soluble in an aqueous copper sulfate solution that is a plating solution for copper electroplating even when manufactured by a dry method with high productivity. Suitable as a source.

実施例1で作製したCuO微粉末aと比較例1で作製したCuO微粉末jのXRDパターンである。2 is an XRD pattern of a CuO fine powder a produced in Example 1 and a CuO fine powder j produced in Comparative Example 1. FIG. 実施例1で作製したCuO微粉末aと比較例1で作製したCuO微粉末jのSEM像である。2 is an SEM image of CuO fine powder a produced in Example 1 and CuO fine powder j produced in Comparative Example 1. FIG.

以下、本発明の実施の形態について、具体的に説明する。
様々な比表面積、平均粒子径、半価幅および結晶子径を有する酸化第二銅微粉末を製造し、めっき液への溶解試験を行った結果、銅微粉末の比表面積が1m/g以上、50m/g以下であり、平均粒子粒子径が20nm以上、1100nm以下で、2θ=61.5°ピークの半価幅が0.2°以上、0.6°以下で、かつ結晶子径が155Å以上、490Å以下の場合、銅めっき液、即ち硫酸銅水溶液への望ましい溶解性、すなわち、CuSO・5HOが90g/L、HSOが220g/L、塩素イオンが60mg/Lを含む水溶液を攪拌し、酸化第二銅微粒子7gを添加してから溶解するまでの時間が、従来よりも短い、易溶解性を発揮した。
Hereinafter, embodiments of the present invention will be specifically described.
As a result of producing cupric oxide fine powders having various specific surface areas, average particle diameters, half widths and crystallite diameters, and conducting dissolution tests in the plating solution, the specific surface area of the copper fine powders was 1 m 2 / g. Above, 50 m 2 / g or less, the average particle diameter is 20 nm or more and 1100 nm or less, the half width of 2θ = 61.5 ° peak is 0.2 ° or more and 0.6 ° or less, and the crystallite When the diameter is 155 mm or more and 490 mm or less, desirable solubility in a copper plating solution, that is, an aqueous copper sulfate solution, that is, CuSO 4 .5H 2 O is 90 g / L, H 2 SO 4 is 220 g / L, and chlorine ions are 60 mg. The aqueous solution containing / L was stirred, and the time from the addition of 7 g of cupric oxide fine particles to the dissolution thereof was shorter than that of the prior art, and exhibited easy solubility.

なお、本発明における平均粒子径とは、下記(1)式から求めた値である。
また、結晶子径は、2θ=61.5°の(113)面のピークを用いてScherrer法によって求めた値である。半価幅も結晶子径と同様に(113)面を用いた。
さらに、本発明の酸化第二銅微粉末は、CuO含有量が98.5重量%以上と高純度である。
In addition, the average particle diameter in this invention is the value calculated | required from the following (1) formula.
The crystallite diameter is a value obtained by the Scherrer method using a peak on the (113) plane at 2θ = 61.5 °. As for the half width, the (113) plane was used similarly to the crystallite diameter.
Furthermore, the cupric oxide fine powder of the present invention has a high purity with a CuO content of 98.5% by weight or more.

[酸化第二銅微粉末]
本発明に係る硫酸銅水溶液に対する易溶性に優れる酸化第二銅微粉末は、比表面積が1m/g以上、50m/g以下で、平均粒子径が20nm以上、1100nm以下で、2θ=61.5°、ピークの半価幅が0.2°以上、0.6°以下、かつ結晶子径が155Å以上、490Å以下である。
[Cupric oxide fine powder]
The cupric oxide fine powder having excellent solubility in an aqueous copper sulfate solution according to the present invention has a specific surface area of 1 m 2 / g or more and 50 m 2 / g or less, an average particle diameter of 20 nm or more and 1100 nm or less, and 2θ = 61. 0.5 °, the half width of the peak is 0.2 ° to 0.6 °, and the crystallite diameter is 155 to 490 °.

硫酸銅水溶液(めっき液)への溶解性からは、酸化第二銅微粉末の比表面積は広く、その平均粒子径は小さい方が望ましいが、酸化第二銅微粉末の比表面積が50m/gを超え、平均粒子径が20nm未満となると、微粉末を形成する際に粉砕処理を行う場合、そのコストが増すなどの生産コストの面から経済的ではない。特に、平均粒子径20nm未満の酸化第二銅微粉末を望むと、粉砕時間や設備コストが増大する問題が生じる一方、硫酸銅水溶液への溶解性(溶解時間の短縮)は大きく向上せず、コスト増に対する効果がない。より望ましくは、酸化第二銅微粉末の比表面積が22m/g以下である。一方、酸化第二銅微粉末の比表面積が1m/g未満で、平均粒子径が1100nmを超えると、硫酸銅水溶液への溶解性が劣る。 From the standpoint of solubility in an aqueous copper sulfate solution (plating solution), the specific surface area of the cupric oxide fine powder is wide and the average particle diameter is preferably small, but the specific surface area of the cupric oxide fine powder is 50 m 2 / If the average particle size exceeds g and the average particle size is less than 20 nm, it is not economical from the viewpoint of production cost such as an increase in cost when pulverization is performed when forming a fine powder. In particular, when a cupric oxide fine powder having an average particle size of less than 20 nm is desired, there arises a problem that the grinding time and equipment cost increase, while the solubility in copper sulfate aqueous solution (shortening of the dissolution time) is not greatly improved. There is no effect on cost increase. More desirably, the specific surface area of the cupric oxide fine powder is 22 m 2 / g or less. On the other hand, when the specific surface area of the cupric oxide fine powder is less than 1 m 2 / g and the average particle diameter exceeds 1100 nm, the solubility in an aqueous copper sulfate solution is poor.

また、酸化第二銅微粉末の結晶子径が、490Åを越えても結晶が成長しすぎて硫酸銅水溶液への溶解性が劣る。
さらに半価幅が0.6°を越えると結晶性が不十分となり、0.2°未満では粒成長し過ぎて、いずれも硫酸銅水溶液への溶解性が劣る。
この酸化第二銅微粉末の結晶子径と半価幅は、製造条件に大きく影響を受けるもので、原料から酸化第二銅粗粉末を経て、粉砕処理によって微粉末を得る製造方法の場合、熱処理条件や粉砕処理条件、およびその後の熱処理条件などの影響を受ける。粉砕処理によって、微粒子化するほど、結晶子径は小さくなって半価幅は大きくなる傾向がある。また、熱処理の温度が高くなるほど、その処理時間が長くなるほど、結晶子径は大きくなって半価幅は小さくなる傾向がある。
Further, even if the crystallite diameter of the cupric oxide fine powder exceeds 490 mm, the crystal grows too much and the solubility in the aqueous copper sulfate solution is poor.
Further, if the half width exceeds 0.6 °, the crystallinity becomes insufficient, and if it is less than 0.2 °, the grains grow too much, and both have poor solubility in an aqueous copper sulfate solution.
The crystallite diameter and half width of this cupric oxide fine powder are greatly affected by the production conditions, in the case of the production method for obtaining fine powder by pulverization treatment from the raw material through cupric oxide coarse powder, Influenced by heat treatment conditions, pulverization conditions, and subsequent heat treatment conditions. As the particle size is reduced by the pulverization treatment, the crystallite size tends to decrease and the half width tends to increase. In addition, the higher the heat treatment temperature and the longer the treatment time, the larger the crystallite diameter and the smaller the half width.

[硫酸銅水溶液(めっき液)の銅イオン供給方法]
銅を電解めっきする際に用いる銅めっき液(硫酸銅水溶液)は、硫酸銅、硫酸および塩素イオンを含有し、そのpHは1よりも低いものが用いられることが多い。そして、銅めっき液には、銅めっきの品質向上のため公知の添加剤が加えられている。
一方、銅の電解めっきを行うと、めっき液中の銅が析出し、めっき液の銅の濃度が低下する。そこで、めっき液の銅濃度の低下を防ぐ為、陽極に銅を用いて陽極を溶解しながら銅電解めっきを行う方法と、陽極に導電性酸化物セラミック等で覆われたチタン等からなる不溶性陽極を用い併せてめっき液へ銅を供給する機構を備えた不溶性陽極を用いる方法がある。
[Copper ion supply method for copper sulfate aqueous solution (plating solution)]
A copper plating solution (copper sulfate aqueous solution) used for electrolytic plating of copper contains copper sulfate, sulfuric acid, and chloride ions, and a pH lower than 1 is often used. A known additive is added to the copper plating solution to improve the quality of the copper plating.
On the other hand, when copper is electroplated, copper in the plating solution is deposited, and the concentration of copper in the plating solution is lowered. Therefore, in order to prevent a decrease in the copper concentration of the plating solution, a method of performing copper electroplating while dissolving the anode using copper as the anode, and an insoluble anode made of titanium or the like covered with a conductive oxide ceramic on the anode In addition, there is a method using an insoluble anode provided with a mechanism for supplying copper to the plating solution.

不溶性陽極を用いる場合、めっき液へどのように銅を補うかが問題となる。めっき液へ銅を供給するには、めっき液に銅または銅を含む化合物等の銅源が速やかに溶解することと、銅源が溶解することでめっき液のSO 2+イオンなどのバランスが崩れないこと、めっき液中の上述の添加剤が分解しないことが要求される。
このような要求に対して、酸化第二銅微粉末は、めっき液のSO 2+イオンなどのバランスを崩すことなく、また、各種添加剤の分解も少なく、めっき液へ銅を供給する銅源として好適である。
When using an insoluble anode, the problem is how to supplement the plating solution with copper. To supply copper to the plating solution, the copper source such as copper or a compound containing copper dissolves rapidly in the plating solution, and the balance of SO 4 2+ ions of the plating solution is lost due to the dissolution of the copper source. It is required that the above additives in the plating solution do not decompose.
In response to such requirements, cupric oxide fine powder is a copper source that supplies copper to the plating solution without losing the balance of SO 4 2+ ions in the plating solution and with little decomposition of various additives. It is suitable as.

また、めっき液への銅の供給は、めっき液中の銅が減少する都度、速やかに行う必要がある。具体的には、攪拌されたCuSO・5HOを90g/L、HSOを220g/L、塩素イオンを60mg/Lを含むめっき液に近似した水溶液1リットルに酸化第二銅粉末7gを投入した時に、2分以内、好ましくは1.5分以内に溶解する溶解速度が求められる。その溶解時間は、短ければより望ましく、攪拌中の1リットルの水溶液に7gの酸化第二銅粉末を投入して1分以内に溶解することがより望ましい。 Moreover, it is necessary to supply the copper to the plating solution promptly whenever the copper in the plating solution decreases. Specifically, cupric oxide powder in 1 liter of an aqueous solution approximating a plating solution containing 90 g / L of stirred CuSO 4 .5H 2 O, 220 g / L of H 2 SO 4 , and 60 mg / L of chlorine ions. When 7 g is added, a dissolution rate that dissolves within 2 minutes, preferably within 1.5 minutes, is required. It is more desirable that the dissolution time be short, and it is more desirable that 7 g of cupric oxide powder is added to 1 liter of aqueous solution being stirred and dissolved within 1 minute.

[酸化第二銅微粉末の易溶性]
本発明に係る酸化第二銅微粉末は、攪拌されたCuSO・5HOを90g/L、HSOを220g/L、塩素イオンを60mg/Lの成分組成から成るめっき液に近似した水溶液1リットルに投入すると2分未満で溶解する。
また、めっき液に投入する酸化第二銅微粉末は、溶解残渣が生じてはならないが、酸化第一銅はめっき液に溶解せずに残渣となる。そこで、本発明の酸化第二銅微粉末は、その製造の際に、異相となる酸化第一銅が発生しないような条件によって製造される。また、当該加熱条件では、媒体攪拌ミルで所望とする物理特性を有する酸化第二銅粗粉末が得られるので、結果的には、めっき液へ速やかに溶解する酸化第二銅微粉末が得られる。
[Easily soluble cupric oxide fine powder]
The cupric oxide fine powder according to the present invention is similar to a plating solution composed of 90 g / L of stirred CuSO 4 .5H 2 O, 220 g / L of H 2 SO 4 , and 60 mg / L of chlorine ions. When added to 1 liter of the aqueous solution, it dissolves in less than 2 minutes.
Further, the cupric oxide fine powder to be added to the plating solution should not have a dissolution residue, but the cuprous oxide does not dissolve in the plating solution and becomes a residue. Therefore, the cupric oxide fine powder of the present invention is produced under such conditions that cuprous oxide which is a different phase is not generated during the production. Moreover, since the cupric oxide coarse powder which has a desired physical characteristic with a medium stirring mill is obtained on the said heating conditions, the cupric oxide fine powder which melt | dissolves rapidly in a plating solution is obtained as a result. .

電解めっき装置で、本発明の硫酸銅水溶液への銅イオンの供給方法を実施するには、電解めっき装置のめっきを行うめっき槽と別に酸化第二銅微粉末を溶解する酸化第二銅溶解槽を設け、めっき槽と酸化第二銅溶解槽の間で水溶液(めっき液)を循環させればよい。
酸化第二銅溶解槽では、めっき槽から供給された水溶液に酸化第二銅微粉末を溶解させて、銅イオン濃度を高めた水溶液をめっき槽へ送り返す。この酸化第二銅溶解槽には、プロペラなどの攪拌機構を付属させることが好ましい。また、めっき槽と酸化第二溶解槽との間には、ゴミや異物等の除去のため公知の各種フィルターを備えても良い。
In order to carry out the method of supplying copper ions to the aqueous copper sulfate solution of the present invention in an electrolytic plating apparatus, a cupric oxide dissolution tank that dissolves cupric oxide fine powder separately from the plating tank for plating of the electrolytic plating apparatus And an aqueous solution (plating solution) may be circulated between the plating tank and the cupric oxide dissolution tank.
In the cupric oxide dissolution tank, cupric oxide fine powder is dissolved in the aqueous solution supplied from the plating tank, and the aqueous solution with an increased copper ion concentration is sent back to the plating tank. It is preferable to attach a stirring mechanism such as a propeller to the cupric oxide dissolution tank. Moreover, you may provide various well-known filters between a plating tank and a 2nd oxidation dissolution tank for removal of a dust, a foreign material, etc.

なお、本発明の硫酸銅水溶液の銅イオン供給方法に用いる硫酸銅水溶液は、硫酸銅を水に溶解した水溶液でもよいし、硫酸に本発明に係る酸化第二銅微粉末を溶解させた水溶液でも良い。   In addition, the copper sulfate aqueous solution used for the copper ion supply method of the copper sulfate aqueous solution of the present invention may be an aqueous solution in which copper sulfate is dissolved in water, or an aqueous solution in which the cupric oxide fine powder according to the present invention is dissolved in sulfuric acid. good.

以上、述べたように、酸化銅の純度が高く、かつめっき液への溶解性が高い易溶性酸化第二銅微粉末であることから、銅めっき用補給銅源として好適なものである。   As described above, since it is an easily soluble cupric oxide fine powder having high copper oxide purity and high solubility in a plating solution, it is suitable as a replenishing copper source for copper plating.

次に、本発明の易溶性の酸化第二銅微粉末を得る製造方法の一例を示す。本発明に係る易溶性の酸化第二銅微粉末は、この製造方法に限らず、その特性が「比表面積が1m/g以上、50m/g以下」で、「平均粒子径が20nm以上、1100nm以下」、「X線回折における2θ=61.5°、ピークの半価幅が0.2°以上、0.6°以下」、かつ「結晶子径が160Å以上、490Å以下」であって、「CuO含有量が98.5重量%以上」を満足する酸化第二銅微粉末を製造可能な方法であるなら良い。 Next, an example of the manufacturing method which obtains the easily soluble cupric oxide fine powder of this invention is shown. The easily soluble cupric oxide fine powder according to the present invention is not limited to this production method, and its characteristics are “specific surface area of 1 m 2 / g or more, 50 m 2 / g or less”, and “average particle diameter of 20 nm or more. 1100 nm or less ”,“ 2θ = 61.5 ° in X-ray diffraction, peak half-value width is 0.2 ° or more and 0.6 ° or less ”, and“ crystallite diameter is 160 mm or more and 490 mm or less ”. Thus, any method that can produce cupric oxide fine powder satisfying “CuO content of 98.5% by weight or more” may be used.

本発明の酸化第二銅微粉末は、銅粉を酸化して生成した酸化第二銅粗粉末を、粉砕、熱処理して得られるものである。
(1)酸化第二銅粗粉末の生成
酸化第二銅微粉末を得るには、銅粉を酸素含有雰囲気下の最高温度350℃〜800℃の条件で熱処理するか、硫酸銅を酸素含有雰囲気下の最高温度700℃〜1000℃で熱処理する方法のどちらかによって、酸化第二銅粗粉末を生成する。
The cupric oxide fine powder of the present invention is obtained by pulverizing and heat-treating a cupric oxide coarse powder produced by oxidizing copper powder.
(1) Generation of cupric oxide coarse powder To obtain cupric oxide fine powder, copper powder is heat-treated at a maximum temperature of 350 ° C. to 800 ° C. in an oxygen-containing atmosphere, or copper sulfate in an oxygen-containing atmosphere. The cupric oxide coarse powder is produced by one of the methods of heat treatment at the lower maximum temperature of 700 ° C. to 1000 ° C.

[銅粉から得る場合]
銅粉を熱処理する場合、原料としての銅粉は、特に限定されず、例えば電解銅粉、アトマイズ銅粉、化学還元銅粉を用いることができる。この銅粉末の粒径は、価格や酸化速度の観点から5μm〜100μm以下が好ましい。
[When obtaining from copper powder]
When heat-treating copper powder, the copper powder as a raw material is not particularly limited, and for example, electrolytic copper powder, atomized copper powder, and chemically reduced copper powder can be used. The particle size of the copper powder is preferably 5 μm to 100 μm or less from the viewpoint of price and oxidation rate.

その熱処理温度が350℃未満では酸化に長い時間を要したり、あるいは異相が混在してしまう。特に、問題となるのが、この異相の生成であり、特に異相のうち酸化第一銅は、めっき液に溶解しない。そのため、この異相の存在はめっき液の溶解性やめっき液の特性に悪影響を与える。
熱処理温度の上限は、粉砕性の点から求められ、例えば媒体攪拌ミルを用いた粉砕では、800℃が好ましい。この熱処理温度が、800℃を超えると、銅粉末の酸化第二銅粗粉末が焼結し粉砕しにくくなる。この雰囲気は適宜選択できるが、大気中で熱処理することもできる。
If the heat treatment temperature is less than 350 ° C., it takes a long time for the oxidation, or foreign phases are mixed. In particular, the problem is the generation of this heterogeneous phase. In particular, cuprous oxide in the heterogeneous phase does not dissolve in the plating solution. Therefore, the presence of this foreign phase adversely affects the solubility of the plating solution and the properties of the plating solution.
The upper limit of the heat treatment temperature is determined from the viewpoint of pulverization properties. For example, 800 ° C. is preferable in pulverization using a medium stirring mill. When this heat treatment temperature exceeds 800 ° C., the cupric oxide coarse powder of the copper powder is sintered and difficult to pulverize. Although this atmosphere can be selected as appropriate, it can be heat-treated in the air.

[硫酸銅から得る場合]
硫酸銅を熱処理する場合、酸素含有雰囲気下の最高温度700℃〜1000℃で熱処理することで酸化第二銅粗粉末を得ることができる。熱処理時に生成するSO(SO+1/2O)を除去することで、分解反応が促進される。処理温度が700℃未満では、完全に熱分解せず、異相が混在する。熱処理温度の上限は、銅粉を熱処理する場合と同様に粉砕性の点から1000℃が好ましい。
[When obtaining from copper sulfate]
When heat-treating copper sulfate, a cupric oxide crude powder can be obtained by heat-treating at a maximum temperature of 700 ° C. to 1000 ° C. in an oxygen-containing atmosphere. By removing SO 3 (SO 2 + 1 / 2O 2 ) generated during the heat treatment, the decomposition reaction is promoted. When the treatment temperature is less than 700 ° C., the thermal decomposition does not occur completely and heterogeneous phases are mixed. The upper limit of the heat treatment temperature is preferably 1000 ° C. from the viewpoint of grindability, as in the case of heat treating copper powder.

原料に銅粉を用いる場合、および硫酸銅を用いる場合ともに、熱処理設備は温度制御と酸素含有雰囲気の制御ができれば良く、公知の管状炉やボックス炉、ロータリーキルン等を用いることができる。また熱処理設備には発生ガスの回収を行う公知のガス回収装置を備えることで、環境への負荷も少なくできる。さらに、発生する粉塵などについても同様である。   In the case of using copper powder as a raw material and in the case of using copper sulfate, the heat treatment equipment only needs to be able to control the temperature and the oxygen-containing atmosphere, and a known tubular furnace, box furnace, rotary kiln, or the like can be used. Also, the heat treatment facility can be provided with a known gas recovery device that recovers the generated gas, thereby reducing the burden on the environment. The same applies to the generated dust.

熱処理における最高温度に至るまでの昇温条件、および最高温度からの降温条件ともに適宜選択でき、異相の有無や粉砕性を考慮して決定すれば良く、すなわち、原料を上記最高温度下の炉内に投入して短時間に昇温させてもよいし、温度を徐々に上昇させてもよいし、段階的に上昇させてもよい。降温の際も同様である。
また、原料を炉内へ供給するには、原料を雰囲気の気流と共に炉内へ導入してもよいし、キャリアガスにより炉内へ導入してもよいし、耐熱性の容器に入れた原料を炉内に導入してもよい。
The temperature raising conditions up to the maximum temperature in the heat treatment and the temperature lowering conditions from the maximum temperature can be selected as appropriate, and may be determined in consideration of the presence or absence of foreign phases and pulverization properties. The temperature may be raised in a short time, or the temperature may be gradually increased or may be increased stepwise. The same applies to the temperature drop.
In addition, in order to supply the raw material into the furnace, the raw material may be introduced into the furnace together with the air flow of the atmosphere, may be introduced into the furnace with a carrier gas, or the raw material placed in a heat resistant container may be introduced. It may be introduced into the furnace.

原料に銅粉を用いる場合および硫酸銅を用いる場合ともに、その熱処理時間は、適宜選択でき、酸化第二銅粗粉末の異相の有無や粉砕性から適宜選択すれば良い。   In both cases of using copper powder and copper sulfate as a raw material, the heat treatment time can be appropriately selected, and may be appropriately selected from the presence or absence of a different phase of the cupric oxide coarse powder and the pulverizability.

(2)粉砕工程
前工程で形成された酸化第二銅粗粉末は、粉砕され、次の二次熱処理工程を経ても比表面積が1m/g以上、平均粒子径が1100nm以下にされる。
酸化第二銅粗粉末の粉砕には、媒体攪拌ミルもしくは気流式ミルを用いることが望ましい。媒体攪拌ミルもしくは気流式ミルを用いると、平均粒子径を1100nm以下にすることができる。
(2) Pulverization step The cupric oxide coarse powder formed in the previous step is pulverized, and the specific surface area is 1 m 2 / g or more and the average particle size is 1100 nm or less even after the next secondary heat treatment step.
For grinding the cupric oxide coarse powder, it is desirable to use a medium stirring mill or an airflow mill. If a medium stirring mill or an airflow mill is used, the average particle size can be made 1100 nm or less.

媒体攪拌ミルは、ビーズなどの粉砕媒体と酸化第二銅粗粉末と溶媒を含むスラリーに、攪拌することにより運動エネルギーを与え、酸化第二銅粗粉末同士の衝突や粉砕媒体と酸化第二銅粗粉末のせん断応力により微粒子を得る装置である。
媒体攪拌ミルの攪拌機構は、ビーズのせん断応力が酸化第二銅粗粉末に効率よく伝達されれば良く、その機構や形状は特に限定されない。
The medium agitation mill gives kinetic energy to the slurry containing the grinding media such as beads, the cupric oxide coarse powder and the solvent by stirring, and the collision between the cupric oxide coarse powder and the grinding media and the cupric oxide. This is a device for obtaining fine particles by the shear stress of coarse powder.
The stirring mechanism of the medium stirring mill is not particularly limited as long as the shear stress of the beads is efficiently transmitted to the cupric oxide coarse powder.

粉砕媒体であるビーズ径は、目的とする酸化第二銅微粉末の最終粒子径によって選択することが一般的であるが、好ましくは直径1mm以下である。1mm以下であれば、粒子を微細に砕く効率が高くなる。また、ビーズ径は、小さいほど粉砕スピードが速く、粉砕される酸化銅粉末の粒子径も小さくなる。特に、めっき液への溶解性が高い粒子径に粉砕するには、特に直径0.3mm以下のビーズが好ましい。
ビーズの材質は特に限定されないが、例えば比重が小さいガラスビーズや比重が大きいZrOビーズ、YSZビーズが挙げられる。比重が大きいビーズでは、粉砕効率が高く、摩耗が少ないため、特に好ましい。
The bead diameter as a grinding medium is generally selected according to the final particle diameter of the desired cupric oxide fine powder, but is preferably 1 mm or less in diameter. If it is 1 mm or less, the efficiency which grinds particles finely will become high. Further, the smaller the bead diameter, the faster the pulverization speed and the smaller the particle diameter of the pulverized copper oxide powder. In particular, beads having a diameter of 0.3 mm or less are particularly preferable for pulverization to a particle diameter having high solubility in the plating solution.
The material of the beads is not particularly limited, and examples thereof include glass beads having a low specific gravity, ZrO 2 beads having a high specific gravity, and YSZ beads. Beads having a large specific gravity are particularly preferred because of high grinding efficiency and low wear.

媒体攪拌ミルは、特に限定されず、例えばビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどが挙げられる。これらの機材を用いた処理条件によって、主にビーズのせん断応力により微粒子化が進行する。   The medium stirring mill is not particularly limited, and examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer. Depending on the processing conditions using these equipment, micronization proceeds mainly due to the shear stress of the beads.

使用する溶媒は、特に限定されるものではなく、例えば、水、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル、エチルエーテル、プロピルエーテルなどのエーテル類、エステル類、またはアセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類といった各種の有機溶媒が使用可能である。   The solvent to be used is not particularly limited, and examples thereof include water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol and other ethers, methyl ether, ethyl ether, propyl ether and other ethers, Various organic solvents such as esters, or ketones such as acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, and isobutyl ketone can be used.

一方、気流式ミルは、高速のジェット気流中で酸化第二銅粗粉末を相互に衝突させることにより、微粉末を得る装置である。
なお、湿式媒体ミルを用いても気流式ミルを用いても、粉砕条件は、特に限定されるものではなく、得られる酸化第二銅微粉末が所望の比表面積や平均粒子径となるように適宜選択すればよい。
On the other hand, the airflow mill is a device that obtains fine powder by causing the cupric oxide coarse powder to collide with each other in a high-speed jet stream.
The pulverization conditions are not particularly limited regardless of whether the wet medium mill or the airflow mill is used, so that the obtained cupric oxide fine powder has a desired specific surface area and average particle diameter. What is necessary is just to select suitably.

(3)二次熱処理
上記(1)、(2)の工程を経て得られた酸化第二銅微粉末を、酸素含有雰囲気下の二次熱処理を施して、酸化第二銅微粉末とすることが望ましい。
この二次熱処理の温度は、350℃〜800℃が望ましく、熱処理時間も1〜3時間が望ましいが、最終的に完全なCuOの形態となるように適宜選択すれば良い。
この酸素含有雰囲気下で酸化第二銅微粉末を熱処理することによって、得られる酸化第二銅微粉末のめっき液への溶解性が、さらに高くなる。その理由としては、一部酸素欠損の状態(CuO1−x)から完全なCuOの状態になるためと推察している。
(3) Secondary heat treatment The cupric oxide fine powder obtained through the steps (1) and (2) is subjected to a secondary heat treatment in an oxygen-containing atmosphere to obtain a cupric oxide fine powder. Is desirable.
The temperature of the secondary heat treatment is preferably 350 ° C. to 800 ° C., and the heat treatment time is preferably 1 to 3 hours, but may be appropriately selected so as to finally form a complete CuO form.
By heat-treating the cupric oxide fine powder in this oxygen-containing atmosphere, the solubility of the obtained cupric oxide fine powder in the plating solution is further enhanced. The reason for this is presumed to be that a state of partial oxygen deficiency (CuO 1-x ) is changed to a complete CuO state.

なお、この二次熱処理では、粉砕工程を経た酸化第二銅微粉末を焼結させないことに留意しなければならない。そのため上記の熱処理温度と熱処理時間が望ましい。
また、このような二次熱処理は、酸化第二銅粗粉末を粉砕して微粉末化した酸化第二銅微粉末を二次熱処理するので、完全なCuOの形態となりやすい。
It should be noted that the secondary heat treatment does not sinter the cupric oxide fine powder that has undergone the pulverization step. Therefore, the above heat treatment temperature and heat treatment time are desirable.
In addition, since such secondary heat treatment secondarily heats the cupric oxide fine powder obtained by pulverizing and finely pulverizing the cupric oxide coarse powder, it tends to be in the form of complete CuO.

硫酸銅水溶液への溶解時間は、二次熱処理を実施することで短くなる。そのため、本発明の酸化第二銅微粉末は、銅めっき用補給銅源としてより望ましい。具体的には、本発明の製造方法で得られた酸化第二銅微粉末の7gの溶解時間は、CuSO・5HOを90g/L、HSOを220g/L、塩素イオンを60mg/Lの成分組成から成る25℃の攪拌されている1リットルの硫酸銅水溶液に投入すると、その溶解時間は2分未満を示す。 The dissolution time in the copper sulfate aqueous solution is shortened by performing the secondary heat treatment. Therefore, the cupric oxide fine powder of the present invention is more desirable as a replenishing copper source for copper plating. Specifically, the dissolution time of 7 g of the cupric oxide fine powder obtained by the production method of the present invention is 90 g / L for CuSO 4 .5H 2 O, 220 g / L for H 2 SO 4 , and chloride ions. When added to a 1 liter aqueous copper sulfate solution stirred at 25 ° C. having a component composition of 60 mg / L, the dissolution time is less than 2 minutes.

以下に、本発明の実施例を比較例とともに具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
なお、実施例1から実施例9の酸化第二銅微粉末はすべて黒色を呈し、電解重量分析の結果、CuO濃度は電解銅粉を原料に用いたものが99.6重量%、CuSO・5HO(硫酸銅)を原料に用いたものが98.6重量%であった。
Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples.
In addition, all the cupric oxide fine powders of Example 1 to Example 9 were black, and as a result of electrolytic gravimetric analysis, the CuO concentration was 99.6% by weight using electrolytic copper powder as a raw material, CuSO 4. 5H 2 O (copper sulphate) which was used as a raw material was 98.6 wt%.

三井金属製電解銅粉(グレード:MF−D2)10gを、大気雰囲気下500℃の温度で3時間加熱処理することによって酸化第二銅粗粉末aを得た。
次に、この酸化第二銅粗粉末aが20重量%、水が80重量%となるように秤量し、直径0.3mmのZrOビーズを入れたペイントシェーカーで、12時間粉砕処理した後、ビーズを分離した分散液を105℃で乾燥し、さらに大気雰囲気下500℃の温度で3時間熱処理することによって酸化第二銅微粉末aを得た。
得られた酸化第二銅微粉末aの粉末X線解析の結果、図1に示すようにCuO単一相であった、また、比表面積が13.33m/g、平均粒子径が75.5nm、ピークの半価幅が0.4439°、結晶子径が210.5Åであった。そのSEM像を図2に示す。
Cupric oxide coarse powder a was obtained by heat-treating 10 g of Mitsui Metals electrolytic copper powder (grade: MF-D2) at a temperature of 500 ° C. for 3 hours in an air atmosphere.
Next, the cupric oxide coarse powder a was weighed to 20% by weight and water to 80% by weight, and was pulverized for 12 hours with a paint shaker containing 0.3 mm diameter ZrO 2 beads. The dispersion from which the beads were separated was dried at 105 ° C., and further heat-treated at 500 ° C. for 3 hours in an air atmosphere to obtain cupric oxide fine powder a.
As a result of powder X-ray analysis of the obtained cupric oxide fine powder a, as shown in FIG. 1, it was a CuO single phase, the specific surface area was 13.33 m 2 / g, and the average particle size was 75. The half-width of the peak was 0.4439 ° and the crystallite diameter was 210.5 mm. The SEM image is shown in FIG.

次に、めっき液組成として、CuSO・5HOを68g/L、HSOを228g/L、Clイオンを60mg/Lとなるよう調製し、室温にてスターラーで攪拌しながら酸化第二銅微粉末aを7g添加したところ、12秒で溶解した。 Next, as the plating solution composition, CuSO 4 .5H 2 O was prepared to be 68 g / L, H 2 SO 4 to be 228 g / L, and Cl ions to 60 mg / L. When 7 g of fine copper powder a was added, it dissolved in 12 seconds.

実施例1において、ペイントシェーカーで粉砕した後の熱処理を、大気雰囲気下650℃の温度で3時間とした以外は、実施例1と同様にして実施例2に係る酸化第二銅微粉末bを得た。
酸化第二銅微粉末bの粉末X線解析の結果、CuO単一相であった。また、比表面積が8.32m/g、平均粒子径が120.9nm、ピークの半価幅が0.3605°、結晶子径が260.6Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、36秒で溶解した。
In Example 1, the heat treatment after pulverization with a paint shaker was performed at a temperature of 650 ° C. in an air atmosphere for 3 hours, and the cupric oxide fine powder b according to Example 2 was obtained in the same manner as in Example 1. Obtained.
As a result of the powder X-ray analysis of the cupric oxide fine powder b, it was a CuO single phase. The specific surface area was 8.32 m 2 / g, the average particle size was 120.9 nm, the peak half-value width was 0.3605 °, and the crystallite size was 260.6 mm.
Next, when a dissolution test in the plating solution was performed in the same manner as in Example 1, it was dissolved in 36 seconds.

実施例1において、ペイントシェーカーでの粉砕時間を6時間とした以外は、実施例1と同様にして実施例3に係る酸化第二銅微粉末cを得た。
酸化第二銅微粉末cの粉末X線解析の結果、CuO単一相であった。また、比表面積が12.01m/g、平均粒子径が83.7nm、ピークの半価幅が0.5084°、結晶子径が183.4Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、52秒で溶解した。
In Example 1, a cupric oxide fine powder c according to Example 3 was obtained in the same manner as in Example 1 except that the pulverization time in the paint shaker was changed to 6 hours.
As a result of powder X-ray analysis of cupric oxide fine powder c, it was a CuO single phase. The specific surface area was 12.01 m 2 / g, the average particle size was 83.7 nm, the half width of the peak was 0.5084 °, and the crystallite size was 183.4 mm.
Next, when a dissolution test in the plating solution was performed in the same manner as in Example 1, it was dissolved in 52 seconds.

実施例1において、ペイントシェーカーでの粉砕時間を3時間とした以外は、実施例1と同様にして実施例4に係る酸化第二銅微粉末dを得た。
酸化第二銅微粉末dの粉末X線解析の結果、CuO単一相であった。また、比表面積が9.35m/g、平均粒子径が107.6nm、ピークの半価幅が0.4750°、結晶子径が196.5Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、53秒で溶解した。
In Example 1, cupric oxide fine powder d according to Example 4 was obtained in the same manner as in Example 1 except that the pulverization time in the paint shaker was 3 hours.
As a result of powder X-ray analysis of cupric oxide fine powder d, it was a CuO single phase. The specific surface area was 9.35 m 2 / g, the average particle size was 107.6 nm, the half width of the peak was 0.4750 °, and the crystallite size was 196.5 mm.
Next, when a dissolution test in the plating solution was performed in the same manner as in Example 1, it was dissolved in 53 seconds.

実施例1において、ペイントシェーカーでの粉砕時間を1時間とした以外は、実施例1と同様にして実施例5に係る酸化第二銅微粉末eを得た。
酸化第二銅微粉末eの粉末X線解析の結果、CuO単一相であった。また、比表面積が6.04m/g、平均粒子径が166.5nm、ピークの半価幅が0.3601°、結晶子径が260.8Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、1分12秒で溶解した。
In Example 1, a cupric oxide fine powder e according to Example 5 was obtained in the same manner as in Example 1 except that the pulverization time in the paint shaker was set to 1 hour.
As a result of powder X-ray analysis of cupric oxide fine powder e, it was a CuO single phase. The specific surface area was 6.04 m 2 / g, the average particle size was 166.5 nm, the peak half-value width was 0.3601 °, and the crystallite size was 260.8 mm.
Next, when a dissolution test in the plating solution was performed in the same manner as in Example 1, it was dissolved in 1 minute and 12 seconds.

実施例1において、ペイントシェーカーでの粉砕時間を0.5時間とした以外は、実施例1と同様にして実施例6に係る酸化第二銅微粉末fを得た。
酸化第二銅微粉末fの粉末X線解析の結果、CuO単一相であった。また、比表面積が4.34m/g、平均粒子径が231.7nm、ピークの半価幅が0.2457°、結晶子径が389.3Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、1分30秒で溶解した。
In Example 1, cupric oxide fine powder f according to Example 6 was obtained in the same manner as in Example 1 except that the pulverization time in the paint shaker was changed to 0.5 hour.
As a result of powder X-ray analysis of cupric oxide fine powder f, it was a CuO single phase. The specific surface area was 4.34 m 2 / g, the average particle size was 231.7 nm, the peak half-value width was 0.2457 °, and the crystallite size was 389.3 mm.
Next, when the dissolution test in the plating solution was performed in the same manner as in Example 1, it was dissolved in 1 minute 30 seconds.

実施例1において、ペイントシェーカー後の乾燥粉に対して、大気雰囲気下500℃の温度で1時間熱処理した以外は、実施例1と同様にして実施例7に係る酸化第二銅微粉末gを得た。
酸化第二銅微粉末gの粉末X線解析の結果、CuO単一相であった。また、比表面積が14.80m/g、平均粒子径が68.0nm、ピークの半価幅が0.4439°、結晶子径が210.4Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、8秒で溶解した。
In Example 1, the cupric oxide fine powder g according to Example 7 was treated in the same manner as in Example 1 except that the dried powder after the paint shaker was heat-treated at 500 ° C. for 1 hour in the air atmosphere. Obtained.
As a result of powder X-ray analysis of cupric oxide fine powder g, it was a CuO single phase. The specific surface area was 14.80 m 2 / g, the average particle size was 68.0 nm, the half width of the peak was 0.4439 °, and the crystallite size was 210.4 mm.
Next, when a dissolution test in a plating solution was performed in the same manner as in Example 1, it was dissolved in 8 seconds.

実施例1において、ペイントシェーカー後の乾燥粉に対して、大気雰囲気下400℃の温度で3時間熱処理した以外は、実施例1と同様にして実施例8に係る酸化第二銅微粉末hを得た。
酸化第二銅微粉末hの粉末X線解析の結果、CuO単一相であった。また、比表面積が17.68m/g、平均粒子径が56.9nm、ピークの半価幅が0.4720°、結晶子径が197.6Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、19秒で溶解した。
In Example 1, the cupric oxide fine powder h according to Example 8 was obtained in the same manner as in Example 1 except that the dried powder after the paint shaker was heat-treated at 400 ° C. for 3 hours in the air atmosphere. Obtained.
As a result of powder X-ray analysis of cupric oxide fine powder h, it was a CuO single phase. The specific surface area was 17.68 m 2 / g, the average particle size was 56.9 nm, the half width of the peak was 0.4720 °, and the crystallite size was 197.6 mm.
Next, when a dissolution test in a plating solution was performed in the same manner as in Example 1, it was dissolved in 19 seconds.

CuSO・5HO10gを、大気雰囲気下900℃の温度で4時間加熱することによって酸化第二銅粗粉末を得た以外は、実施例1と同様にして実施例9に係る酸化第二銅微粉末iを得た。
酸化第二銅微粉末iの粉末X線解析の結果、CuO単一相であった。また、比表面積が13.15m/g、平均粒子径が76.5nm、ピークの半価幅が0.4977°、結晶子径が187.4Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、1分32秒で溶解した。
A cupric oxide according to Example 9 was obtained in the same manner as in Example 1 except that 10 g of CuSO 4 · 5H 2 O was heated at 900 ° C. in an air atmosphere for 4 hours to obtain a cupric oxide crude powder. A fine powder i was obtained.
As a result of powder X-ray analysis of cupric oxide fine powder i, it was a CuO single phase. The specific surface area was 13.15 m 2 / g, the average particle size was 76.5 nm, the half width of the peak was 0.4977 °, and the crystallite size was 187.4 mm.
Next, when a dissolution test in the plating solution was performed in the same manner as in Example 1, it was dissolved in 1 minute and 32 seconds.

(比較例1)
実施例1において、ペイントシェーカーでの粉砕後の熱処理を行わなかった以外は、実施例1と同様にして比較例1に係る酸化第二銅微粉末jを得た。
酸化第二銅微粉末jの粉末X線解析の結果、図1に示すようにCuO単一相であった。また、比表面積が22.12m/g、平均粒子径が45.5nm、ピークの半価幅が0.6042°、結晶子径が153.9Åであった。そのSEM像を図2に示す。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、6分で溶解した。
(Comparative Example 1)
In Example 1, cupric oxide fine powder j according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the heat treatment after pulverization with a paint shaker was not performed.
As a result of powder X-ray analysis of cupric oxide fine powder j, it was a CuO single phase as shown in FIG. The specific surface area was 22.12 m 2 / g, the average particle size was 45.5 nm, the half width of the peak was 0.6042 °, and the crystallite size was 153.9 mm. The SEM image is shown in FIG.
Next, when a dissolution test in the plating solution was performed in the same manner as in Example 1, it was dissolved in 6 minutes.

(比較例2)
実施例1において、大気雰囲気下での熱処理を500℃で6時間とし、ペイントシェーカーでの粉砕後の熱処理を行わなかった以外は、実施例1と同様にして比較例2に係る酸化第二銅微粉末kを得た。
酸化第二銅微粉末kの粉末X線解析の結果、CuO単一相であった。また、比表面積が24.49m/g、平均粒子径が41.1nm、ピークの半価幅が0.6019°結晶子径が154.5Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、5分で溶解した。
(Comparative Example 2)
In Example 1, the cupric oxide according to Comparative Example 2 was made in the same manner as in Example 1 except that the heat treatment in the air atmosphere was 500 ° C. for 6 hours and the heat treatment after pulverization with a paint shaker was not performed. A fine powder k was obtained.
As a result of powder X-ray analysis of cupric oxide fine powder k, it was a CuO single phase. The specific surface area was 24.49 m 2 / g, the average particle size was 41.1 nm, the half width of the peak was 0.6019 °, and the crystallite size was 154.5 mm.
Next, a dissolution test in a plating solution was performed in the same manner as in Example 1, and dissolution was performed in 5 minutes.

(比較例3)
実施例9において、ペイントシェーカーでの粉砕後の熱処理を行わなかった以外は、実施例1と同様にして比較例3に係る酸化第二銅微粉末lを得た。
酸化第二銅微粉末lの粉末X線解析の結果、CuO単一相であった。また、比表面積が24.57m/g、平均粒子径が40.9nm、ピークの半価幅が0.6138°、結晶子径が151.5Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、6分で溶解した。
(Comparative Example 3)
In Example 9, a cupric oxide fine powder l according to Comparative Example 3 was obtained in the same manner as in Example 1 except that the heat treatment after pulverization with a paint shaker was not performed.
As a result of powder X-ray analysis of cupric oxide fine powder l, it was a CuO single phase. The specific surface area was 24.57 m 2 / g, the average particle size was 40.9 nm, the peak half-value width was 0.6138 °, and the crystallite size was 151.5 mm.
Next, when a dissolution test in the plating solution was performed in the same manner as in Example 1, it was dissolved in 6 minutes.

(比較例4)
実施例1において、ペイントシェーカーで粉砕した後の熱処理を、大気雰囲気下800℃の温度で1時間とした以外は、実施例1と同様にして比較例4に係る酸化第二銅微粉末mを得た。
酸化第二銅微粉末mの粉末X線解析の結果、CuO単一相であった。また、比表面積が4.39m/g、平均粒子径が229.1nm、ピークの半価幅が0.1978°、結晶子径が493.0Åであった。
次に、実施例1と同様の方法でめっき液への溶解試験を行ったところ、2分で溶解した。
(Comparative Example 4)
In Example 1, the cupric oxide fine powder m according to Comparative Example 4 was prepared in the same manner as in Example 1 except that the heat treatment after pulverization with a paint shaker was performed at a temperature of 800 ° C. for 1 hour in an air atmosphere. Obtained.
As a result of powder X-ray analysis of cupric oxide fine powder m, it was a CuO single phase. The specific surface area was 4.39 m 2 / g, the average particle size was 229.1 nm, the peak half-value width was 0.1978 °, and the crystallite size was 493.0 mm.
Next, a dissolution test in a plating solution was performed in the same manner as in Example 1, and dissolution was performed in 2 minutes.

(参考例)
参考例として、実施例1における酸化第二銅粗粉末粉aの粉末X線解析の結果は、CuO単一相であった。また、比表面積は0.53m/g、平均粒子径が1897.6nm、ピークの半価幅が0.1666°、結晶子径が597.4Åであり、実施例1と同様の方法でめっき液への溶解試験を行ったところ、59分44秒で溶解した。
(Reference example)
As a reference example, the result of the powder X-ray analysis of the cupric oxide coarse powder a in Example 1 was a CuO single phase. The specific surface area was 0.53 m 2 / g, the average particle size was 1897.6 nm, the peak half-value width was 0.1666 °, and the crystallite size was 597.4 mm. When the dissolution test in the liquid was conducted, it was dissolved in 59 minutes and 44 seconds.

以上の結果をまとめて表1に示す。
表1から明らかなように、本発明の酸化第二銅微粉末は、比表面積が1m/g以上、50m/g以下であり、平均粒子粒子径が20nm以上、1100nm以下で、ピークの半価幅が0.2°以上、0.6°以下で、かつ結晶子径が155Å以上、490Å以下である場合、めっき液(硫酸銅水溶液)への溶解性が極めて高い、易溶性の酸化第二銅微粉末である。
The above results are summarized in Table 1.
As is apparent from Table 1, the cupric oxide fine powder of the present invention has a specific surface area of 1 m 2 / g or more and 50 m 2 / g or less, an average particle diameter of 20 nm or more and 1100 nm or less, When the half width is 0.2 ° or more and 0.6 ° or less and the crystallite diameter is 155 mm or more and 490 mm or less, the solubility in the plating solution (copper sulfate aqueous solution) is extremely high, and it is an easily soluble oxidation. Cupric fine powder.

Claims (3)

比表面積が1m/g以上、50m/g以下であり、平均粒子径が20nm以上1100nm以下で、X線回折2θ=61.5°、ピークの半価幅が0.2°以上0.6°以下で、かつ結晶子径が155Å以上、490Å以下であって、CuO含有量が98.5重量%以上であることを特徴とする酸化第二銅微粉末。 The specific surface area is 1 m 2 / g or more and 50 m 2 / g or less, the average particle diameter is 20 nm or more and 1100 nm or less, X-ray diffraction 2θ = 61.5 °, and the peak half-value width is 0.2 ° or more and 0.0. A cupric oxide fine powder having a crystallite diameter of 155 mm or more and 490 mm or less and a CuO content of 98.5% by weight or more at 6 ° or less. CuSO・5HOを90g/L、HSOを220g/L、塩素イオンを60mg/Lの成分組成から成る25℃の硫酸銅水溶液、1Lに、7gを添加して、完全に溶けるまでの溶解時間が、2分未満であることを特徴とする請求項1記載の酸化第二銅微粉末。 CuSO 4 · 5H 2 O 90 g / L, H 2 SO 4 220 g / L, chlorine ion 60 mg / L, 25 ° C. aqueous copper sulfate solution containing 7 g, 7 g added to 1 L, completely dissolved 2. The cupric oxide fine powder according to claim 1, wherein the dissolution time is less than 2 minutes. 酸化第二銅微粉末を溶解させて硫酸銅水溶液の銅イオン濃度を調整する硫酸銅水溶液への銅イオンの供給方法であって、
前記酸化第二銅微粉末が、請求項1又は2に記載の酸化第二銅微粉末であり、
前記酸化第二銅微粉末を、CuSO・5HOを50〜130g/L、HSOを150〜240g/L、塩素イオンを30〜70mg/L含む硫酸銅水溶液に溶解させることを特徴とする銅イオンの供給方法。
A method of supplying copper ions to an aqueous copper sulfate solution, wherein the cupric oxide fine powder is dissolved to adjust the copper ion concentration of the aqueous copper sulfate solution,
The cupric oxide fine powder is the cupric oxide fine powder according to claim 1 or 2,
The cupric oxide fine powder is dissolved in an aqueous copper sulfate solution containing 50 to 130 g / L of CuSO 4 .5H 2 O, 150 to 240 g / L of H 2 SO 4, and 30 to 70 mg / L of chlorine ions. A method for supplying copper ions.
JP2011029210A 2011-02-14 2011-02-14 Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution Active JP5648803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029210A JP5648803B2 (en) 2011-02-14 2011-02-14 Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029210A JP5648803B2 (en) 2011-02-14 2011-02-14 Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution

Publications (2)

Publication Number Publication Date
JP2012166984A true JP2012166984A (en) 2012-09-06
JP5648803B2 JP5648803B2 (en) 2015-01-07

Family

ID=46971510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029210A Active JP5648803B2 (en) 2011-02-14 2011-02-14 Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution

Country Status (1)

Country Link
JP (1) JP5648803B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057733A1 (en) * 2012-10-12 2014-04-17 住友金属鉱山株式会社 Cupric oxide powder and method for producing same
WO2014109088A1 (en) * 2013-01-08 2014-07-17 住友金属鉱山株式会社 Cupric oxide fine powder, and production method therefor
JP2015044699A (en) * 2013-08-27 2015-03-12 住友金属鉱山株式会社 Method for producing cupric oxide powder and cupric oxide fine powder
JP2016529192A (en) * 2013-07-18 2016-09-23 メト アンド コー Oxidized and / or phosphorous copper composite coating
JP2017510439A (en) * 2014-03-12 2017-04-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Improved catalyzed soot filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858267B2 (en) * 2011-03-23 2016-02-10 住友金属鉱山株式会社 Copper ion supply method to easily soluble cupric oxide fine powder and copper sulfate aqueous solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149389A (en) * 2002-10-31 2004-05-27 Nippon Shokubai Co Ltd Process for manufacturing metal oxide particle
JP2007238388A (en) * 2006-03-09 2007-09-20 Tsurumi Soda Co Ltd Copper oxide and its producing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149389A (en) * 2002-10-31 2004-05-27 Nippon Shokubai Co Ltd Process for manufacturing metal oxide particle
JP2007238388A (en) * 2006-03-09 2007-09-20 Tsurumi Soda Co Ltd Copper oxide and its producing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057733A1 (en) * 2012-10-12 2014-04-17 住友金属鉱山株式会社 Cupric oxide powder and method for producing same
JP2014080303A (en) * 2012-10-12 2014-05-08 Sumitomo Metal Mining Co Ltd Cupric oxide powder and production method thereof
TWI580642B (en) * 2012-10-12 2017-05-01 Sumitomo Metal Mining Co Copper oxide (II) oxide and a method for producing the same
WO2014109088A1 (en) * 2013-01-08 2014-07-17 住友金属鉱山株式会社 Cupric oxide fine powder, and production method therefor
JP2016529192A (en) * 2013-07-18 2016-09-23 メト アンド コー Oxidized and / or phosphorous copper composite coating
JP2015044699A (en) * 2013-08-27 2015-03-12 住友金属鉱山株式会社 Method for producing cupric oxide powder and cupric oxide fine powder
JP2017510439A (en) * 2014-03-12 2017-04-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Improved catalyzed soot filter

Also Published As

Publication number Publication date
JP5648803B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5648803B2 (en) Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution
JP5907169B2 (en) Nickel oxide fine powder and method for producing the same
JP6225783B2 (en) Copper fine particles, conductive paste composition, and production method thereof
JP5874910B2 (en) Method for producing high-purity cupric oxide fine powder and method for supplying copper ion in aqueous copper sulfate solution
JP6011992B2 (en) Method for producing electrolytic copper powder
JP4180632B2 (en) Cupric oxide powder and method for producing the same
JP5622108B2 (en) High purity cupric oxide fine powder and method for producing the same, and copper ion supply method for aqueous copper sulfate solution using high purity cupric oxide fine powder
JP2012126942A (en) Fine spherical copper powder and method for producing the same
JP2009155194A (en) Nickel oxide powder and method for manufacturing the same
JP2011225395A (en) Nickel oxide fine powder, and method for producing the same
JP2011157247A (en) Nickel oxide fine powder and process for producing the same
JP5817711B2 (en) Cupric oxide fine powder and method for producing the same
JP2012193068A (en) Method of producing high-purity cupric oxide fine powder and method of supplying copper ion to copper sulfate solution
JP2011042541A (en) Nickel oxide fine powder and method for producing the same
JP2015160780A (en) Method of producing nickel oxide, and nickel oxide fine powder obtainable therefrom
JP5858267B2 (en) Copper ion supply method to easily soluble cupric oxide fine powder and copper sulfate aqueous solution
CN106077694A (en) A kind of preparation method of spherical cobalt powder
WO2014109088A1 (en) Cupric oxide fine powder, and production method therefor
JP6056709B2 (en) Method for producing cupric oxide powder and cupric oxide fine powder
JP2011042528A (en) Nickel oxide powder and method for manufacturing the same
JP2005281030A (en) Method for manufacturing fine particle
JP2018024550A (en) Nickel oxide fine powder and production method of the same
JP2018123019A (en) Method for producing nickel oxide fine powders
JP6241491B2 (en) Nickel oxide fine powder and method for producing the same, nickel hydroxide powder for use in the raw material for producing the nickel oxide fine powder, and method for producing the same
JP5720651B2 (en) Cupric oxide powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141028

R150 Certificate of patent or registration of utility model

Ref document number: 5648803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150