JP2014068756A - 超音波検査装置、超音波画像データ生成方法およびプログラム - Google Patents

超音波検査装置、超音波画像データ生成方法およびプログラム Download PDF

Info

Publication number
JP2014068756A
JP2014068756A JP2012216215A JP2012216215A JP2014068756A JP 2014068756 A JP2014068756 A JP 2014068756A JP 2012216215 A JP2012216215 A JP 2012216215A JP 2012216215 A JP2012216215 A JP 2012216215A JP 2014068756 A JP2014068756 A JP 2014068756A
Authority
JP
Japan
Prior art keywords
ultrasonic
element data
focus
transmission
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012216215A
Other languages
English (en)
Inventor
Hiroaki Yamamoto
拓明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012216215A priority Critical patent/JP2014068756A/ja
Priority to PCT/JP2013/075535 priority patent/WO2014050756A1/ja
Publication of JP2014068756A publication Critical patent/JP2014068756A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52047Techniques for image enhancement involving transmitter or receiver for elimination of side lobes or of grating lobes; for increasing resolving power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Multimedia (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】焦点を収束させることが困難な領域であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートで、高い解像度の超音波画像を得ることができる超音波検査装置を提供する。
【解決手段】焦点設定部96により設定された送信焦点が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点を異なる位置に再設定する焦点再設定部98と、複数の超音波ビームの送信で得られた第1の素子データから、焦点再設定部98で再設定された送信焦点に超音波ビームを送信して得られた第1の素子データに対応する第2の素子データを生成する素子データ処理部22とを備える。
【選択図】図1

Description

本発明は、超音波ビームを送受信することにより生体内の臓器等の検査対象物の撮像を行って、検査対象物の検査や診断のために用いられる超音波画像を生成する超音波検査装置、超音波画像データ生成方法およびプログラムに関する。
従来から、医療分野において、超音波画像を利用した超音波画像診断装置等の超音波検査装置が実用化されている。一般に、この種の超音波検査装置は、複数の素子(超音波トランスデューサ)を内蔵した超音波探触子(超音波プローブ)と、この超音波探触子に接続された装置本体とを有しており、超音波探触子の複数の素子から検査対象物(被検体)に向けて超音波ビームを送信し、被検体からの超音波エコーを超音波探触子で受信して、その受信した超音波エコー信号を装置本体で電気的に処理することにより超音波画像が生成される。
超音波検査装置においては、超音波画像を生成するとき、被検体の検査対象領域、例えば、生体内の臓器やその臓器内の病巣等に探触子の複数の素子から焦点を合わせて超音波ビームを送信し、検査対象領域の反射体、例えば臓器や病巣等の表面や界面からの超音波エコーを複数の素子を介して受信しているが、同一の反射体で反射された超音波エコーを複数の素子で受信するので、送信素子から送信された超音波ビームの焦点位置に位置する反射体で反射され、送信素子で受信された超音波エコー信号に対して、同一の反射体で反射され、送信素子と異なるその他の素子で受信された超音波エコー信号は遅延することになるので、複数の素子で受信した超音波エコー信号をA/D(アナログ/デジタル)変換して素子データにとした後、素子データを受信フォーカス処理して、即ち遅延補正して位相を合わせ整相加算して音線信号を生成し、こうして得られた音線信号に基づいて超音波画像を生成している。
このような超音波検査技術において、超音波画像の画質を向上させるために、複数の異なる焦点で送信した信号を足し合わせることで、従来よりも信号の質を改善することが行われている。
例えば、特許文献1には、送信用振動素子群を構成する複数個の振動素子から放射される送信超音波を送信集束点に集束させることにより仮想的な点音源を形成し、そして、この点音源から放射される送信超音波によって連続した複数の観測点から反射する受信超音波を、受信用振動素子群を構成する複数個の振動素子によって受信し、得られたチャンネル分の受信信号に対し観測点が受信集束点となるような受信整相加算を行う。更に、前記受信用振動素子群と振動素子の配列方向に順次シフトさせた送信用振動素子群の各々を用いて得られた受信信号に対しても同様の受信整相加算を行い、これら受信整相加算後の受信信号に対し各々の送信集束点から観測点までの伝搬距離の差異に起因した送信遅延を補正する送信整相加算を行う超音波診断装置が開示されている。
特許文献1では、複数の振動素子から得られた受信信号に対して受信整相加算と送信整相加算を行なうことにより被検体の深さ方向に対してほぼ一様な細いビーム幅を有した送信ビーム及び受信ビームを高精度かつ高感度で形成することができる。このため、特許文献3は、空間分解能、コントラスト分解能及びS/Nに優れた画像データの生成と表示が可能となることを開示している。
特開2009−240700号公報
しかしながら、特許文献1に開示の技術では、従来技術よりも高画質な画像が得られるが、1ラインのデータを作るのに複数の送信ビームを、送信位置を変えて発生させる必要があり、従来技術よりも送信回数が増えるためフレームレートが低下し、リアルタイム性が悪くなるという問題があった。また、特許文献1では、焦点を仮想的な点音源とみなしているが、実際は、点音源とみなせるほど焦点は収束しておらず、焦点に近い領域の画像ほどSN比や解像度が低下するという問題があった。
また、通常、超音波画像を取得する際には、着目する領域の近傍に焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成することができる。しかしながら、表層や深層では原理的に超音波ビームを焦点に収束させることが難しいため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。
本発明の目的は、上記従来技術の問題点を解消し、焦点を収束させることが困難な領域であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる超音波検査装置、超音波画像データ生成方法およびプログラムを提供することにある。
上記目的を達成するために、本発明は、超音波ビームを用いて検査対象物を検査する超音波診断装置であって、超音波ビームを送信し、かつ、検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、検査対象物内に、複数の送信焦点を設定する焦点設定部と、焦点設定部により設定された送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の位置を異なる位置に再設定する焦点再設定部と、焦点再設定部で所定の範囲外と判断された送信焦点、および、再設定された送信焦点それぞれに対して、探触子に、複数の前記素子を用い、超音波ビームを送信させる送信部と、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、複数の超音波ビームの送信で得られた第1の素子データから、焦点再設定部で再設定された送信焦点に超音波ビームを送信して得られた第1の素子データに対応する第2の素子データを生成する素子データ処理部と、を備えることを特徴とする超音波検査装置を提供する。
ここで、焦点再設定部は、焦点設定部が設定した送信焦点とは異なる深さに送信焦点を再設定することが好ましい。
また、焦点再設定部は、焦点設定部が設定した送信焦点に対して超音波ビームを送信するラインと同一ライン上において異なる位置に送信焦点を再設定することが好ましい。
また、焦点再設定部は、焦点設定部により設定された送信焦点の深さが所定の深さよりも浅い場合に、該送信焦点の位置を焦点設定部により設定された位置よりも深い位置に再設定することが好ましい。
また、焦点再設定部は、焦点設定部により設定された送信焦点の深さが所定の深さよりも深い場合に、該送信焦点の位置を焦点設定部により設定された位置よりも浅い位置に再設定することが好ましい。
また、送信部は、送信焦点それぞれに対して、探触子に、複数の素子を用い、超音波ビームを送信させることを、中心となる素子を変更して行わせることが好ましい。
また、素子データ処理部は、中心となる素子が異なる、複数の超音波ビームの送信で得られた第1の素子データを用いることが好ましい。
また、素子データ処理部は、超音波ビームの送信領域が重なり合う、複数の超音波ビームの送信で得られた第1の素子データを用いることが好ましい。
また、素子データ処理部は、素子が超音波エコーを受信した受信時間および素子の位置に応じて複数の第1の素子データを重ね合わせて、第1の素子データに対応する第2の素子データを生成することが好ましい。
また、素子データ処理部は、素子の配列方向に連続する素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の第1の素子データを合成して、第2の素子データを生成することが好ましい。
また、素子データ処理部は、送信焦点が再設定された超音波ビームに対応する中心となる素子の両隣の同数の素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の第1の素子データを合成して、第2の素子データを生成することが好ましい。
また、素子データ処理部は、2以上の第1の素子データの遅延時間を算出する遅延時間算出部と、2以上の第1の素子データを算出された遅延時間及び受信された探触子の素子の位置に基づいて重ね合わせ、第2の素子データを生成する重ね合わせ処理部とを有することが好ましい。
さらに、遅延時間算出部は、事前に取得された探触子、検査対象物の音速、超音波ビームの送信焦点の位置、送信部による探触子の送信開口、及び受信部による探触子の受信開口に関する少なくとも1つの情報に基づいて、2以上の第1の素子データの遅延時間を算出し、重ね合わせ処理部は、予め設定された、2以上の第1の素子データのうち重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて2以上の第1の素子データを重ね合わせ、第2の素子データを生成することが好ましい。
また、素子データ処理部は、2以上の第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせることが好ましい。
また、送信部は、探触子に対して、焦点再設定部で所定の範囲内と判断された再設定前の送信焦点にも超音波ビームを送信させることが好ましい。
また、受信部が出力した第1の素子データのすべてを保持する素子データ保持部を有することが好ましい。
また、上記目的を達成するため、本発明は、超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、超音波ビームを発生して、検査対象物を検査し、超音波画像データを生成する超音波画像データ生成方法であって、検査対象物内に、所定の送信焦点を設定する焦点設定ステップと、焦点設定ステップにより設定された送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の位置を異なる位置に再設定する焦点再設定ステップと、前記焦点再設定部で所定の範囲外と判断された前記送信焦点、および、再設定された送信焦点それぞれに対して、探触子に、複数の素子を用い、超音波ビームを送信させる送信ステップと、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信ステップと、受信ステップが処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、複数の超音波ビームの送信で得られた第1の素子データから、焦点再設定ステップで再設定された送信焦点に超音波ビームを送信して得られた第1の素子データに対応する第2の素子データを生成する素子データ処理ステップと、を有することを特徴とする超音波画像データ生成方法を提供する。
また、上記目的を達成するため、本発明は、超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、超音波ビームを発生して、検査対象物を検査し、超音波画像データを生成することをコンピュータに実行させる超音波画像データ生成プログラムであって、検査対象物内に、所定の送信焦点を設定する焦点設定ステップと、焦点設定ステップにより設定された送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の位置を異なる位置に再設定する焦点再設定ステップと、前記焦点再設定部で所定の範囲外と判断された前記送信焦点、および、再設定された送信焦点それぞれに対して、探触子に、複数の素子を用い、超音波ビームを送信させる送信ステップと、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信ステップと、受信ステップが処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、複数の超音波ビームの送信で得られた第1の素子データから、焦点再設定ステップで再設定された送信焦点に超音波ビームを送信して得られた第1の素子データに対応する第2の素子データを生成する素子データ処理ステップと、をコンピュータに実行させることを特徴とする超音波画像データ生成プログラムを提供する。
本発明によれば、設定された焦点位置が所定の範囲にある場合に、焦点の位置を再設定し、異なる2以上の第1の素子データを合成して第2の素子データ生成することで、表層や深層などの、超音波ビームの焦点収束させることが困難な領域であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
本発明に係る超音波検査装置の構成の一例を概念的に示すブロック図である。 (A)〜(C)は、焦点位置の再設定を説明するための概念図である。 図1に示す超音波検査装置の素子データ処理部の構成の一例を概念的に示すブロック図である。 (a)及び(c)は、それぞれ理想的な超音波ビームを被検体の反射点の真上の素子及び真上でない素子から送信する場合の説明図であり、(b)及び(d)は、それぞれ得られる素子データを示す説明図である。 (a)及び(c)は、それぞれ実際の超音波ビームを被検体の反射点の真上の素子及び真上でない素子から送信する場合の説明図であり、(b)及び(d)は、それぞれ得られる素子データを示す説明図である。 (a)及び(b)は、それぞれ真の反射超音波エコーとゴーストの反射信号の場合の超音波ビームの送信経路及び受信経路の距離を説明する説明図であり、(c)及び(d)は、それぞれ複数の素子で得られる素子データ及びそれらの遅延時間を示す説明図である。 (a)、(b)及び(c)並びに(d)、(e)及び(f)は、それぞれ真の信号の場合並びにゴーストの場合の複数の素子で得られる素子データ、それらの遅延時間及び素子データの重ね合わせ状態を示す説明図であり、(g)及び(h)は、それぞれ複数の素子に対応する素子データの重ね合わせ状態及びその結果を示す説明図である。 図1に示す超音波検査装置の動作を説明するためのフローチャートである。 (A)および(B)は、本発明の係る超音波検査装置の他の一例の動作を説明するためのフローチャートである。
本発明に係る超音波検査装置、超音波画像データ生成方法およびプログラムを添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。
図1は、本発明の超音波検査装置の構成の一実施例を概念的に示すブロック図である。
図1に示すように、超音波検査装置10は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、素子データ処理部22と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34と、焦点設定部96と、焦点再設定部98とを有する。
超音波プローブ(超音波探触子)12は、通常の超音波検査装置に用いられる振動子アレイ36を有する。
振動子アレイ36は、1次元又は2次元アレイ状に配列された複数の素子、即ち超音波トランスデューサを有している。これらの超音波トランスデューサは、検査対象物(以下、被検体という)の超音波画像の撮像の際に、それぞれ送信部14から供給される駆動信号に従って超音波ビームを被検体に送信すると共に、被検体からの超音波エコーを受信して受信信号(アナログ素子信号)を出力する。本実施形態では、振動子アレイ36の複数の超音波トランスデューサの内の一組を成す所定数の超音波トランスデューサの各々は、1つの超音波ビームの各成分を発生し、一組の所定数の超音波トランスデューサは、被検体に送信する1つの超音波ビームを発生する。
各超音波トランスデューサは、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子、PMN−PT(マグネシウムニオブ酸・チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した素子、即ち振動子によって構成される。
このような振動子の電極に、パルス状又は連続波状の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波状の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号(アナログ素子信号)として出力される。
焦点設定部96は、操作部32から入力された送信焦点の情報(焦点の位置情報)に応じて、振動子アレイ36が超音波ビームを送信する際の、複数の送信ライン、および、各送信ライン上の焦点位置を設定する。
具体的には、従来の超音波検査装置と同様に、焦点設定部96は、操作部32から入力された表示領域(検査範囲)、深度(depth)等の設定、ならびに、振動子アレイ36の振動子の配置間隔等に応じて、超音波ビームを送信する複数の送信ラインを設定し、各送信ライン上に超音波ビームの焦点となる位置を自動的に設定する。
なお、焦点設定部96は、操作者が操作部32から直接、入力した焦点の位置情報から、焦点位置を設定するようにしてもよい。
図2(A)〜(C)に、設定された焦点位置の一例を示す。
図2(A)〜(C)に示す例では、振動子アレイ36の各素子(超音波トランスデューサ)に対応して、各素子と同一ライン上に、それぞれ1つの送信ラインが設定されている。また、各送信ライン上には、同一の深さに、それぞれ1つの焦点位置が設定されている。
設定された焦点位置の情報は、焦点再設定部98に供給される。
焦点再設定部98は、焦点設定部96で設定された各焦点位置が、所定の深さ範囲にあるか否かを判断し、所定の範囲にある場合には、焦点位置を異なる深さに再設定する。
具体的には、焦点再設定部98は、焦点設定部96で設定された焦点の位置が、所定の深さZaよりも浅い場合には、焦点設定部96で設定された位置よりも深い位置に焦点位置を再設定し、焦点設定部96で設定された焦点の位置が、所定の深さZbよりも深い場合には、焦点設定部96で設定された位置よりも浅い位置に焦点位置を再設定する。また、焦点再設定部98は、焦点設定部96で設定された焦点の位置が、所定の範囲にない場合、すなわち、ZaとZbとの間の深さにある場合には、焦点位置を再設定せず、焦点設定部96で設定された位置を焦点位置とする。
図2(A)〜(C)を用いて、焦点位置の再設定をより詳細に説明する。
図2(A)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZaよりも浅い位置にある場合には、各焦点位置を、それぞれ同一の送信ライン上でより深い位置に、図示例においては、Zbよりも深い位置に再設定する。
また、図2(B)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZbよりも深い位置にある場合には、各焦点位置を、それぞれ同一の送信ライン上でより浅い位置に、図示例においては、Zaよりも浅い位置に再設定する。
また、図2(C)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZaよりも深く、Zbよりも浅い場合(ZaとZbとの間の深さにある場合)には、焦点位置を再設定せず、焦点設定部96で設定された位置を焦点位置とする。
ここで、焦点再設定部98が、焦点位置を再設定するか否かを判断する所定の深さZaおよびZbには、特に限定はないが、所定の深さZaは、超音波ビームを十分に収束させることができる深さよりも浅い深さ、例えば、1cm程度とすることが好ましく、また、所定の深さZbは、送信開口数が最大時に、超音波ビームを十分に収束させることができる深さよりも深い深さとすることが好ましい。すなわち、焦点位置が、超音波ビームを十分に収束させることができる位置(ZaとZbとの間)にある場合には、焦点位置の再設定は行わず、超音波ビームを十分に収束させることができない位置にある場合には、焦点位置の再設定を行うことが好ましい。
超音波ビームの収束度合が十分か否かの判断は、超音波プローブの性能や、要求されるSN比、解像度等に応じて決定すればよい。
また、焦点再設定部98が、焦点位置を再設定する際の焦点の深さには、特に限定はないが、焦点設定部96で設定された焦点位置が、所定の深さZaよりも浅い場合には、所定の深さZaよりも深い位置に再設定するのが好ましく、焦点が結べる範囲でできるだけ深い位置に再設定するのがさらに好ましい。同様に、焦点設定部96で設定された焦点位置が、所定の深さZbよりも深い場合には、所定の深さZbよりも浅い位置に再設定するのが好ましく、焦点が結べる範囲でできるだけ浅い位置に再設定するのがさらに好ましい。
焦点再設定部98は、再設定した焦点位置の情報を送信部14および制御部30に供給する。
送信部14は、例えば、複数のパルサを含んでおり、制御部30からの制御信号および焦点再設定部98からの焦点位置の情報に応じて選択された送信遅延パターンに基づいて、振動子アレイ36の一組の所定数の超音波トランスデューサ(以下、超音波素子という)から送信される超音波ビーム成分が1つの超音波ビームを形成し、設定/再設定された焦点位置に焦点を形成するようにそれぞれの駆動信号の遅延量を調節して組を成す複数の超音波素子に供給する。
具体的には、送信部14は、設定された送信ラインと同一ライン上にある超音波素子を中心素子として、この中心素子と両隣の複数の超音波素子とを一組の送信素子(送信開口)として、設定/再設定された焦点位置に焦点を形成する超音波ビームを送信するように、駆動信号を供給する。
ここで、送信部14は、少なくとも、焦点再設定部98で所定の範囲以外と判断された送信焦点、および、焦点再設定部98で所定の範囲内と判断され再設定された送信焦点に対して、超音波ビームを送信するように、振動子アレイ36に駆動信号を供給することが好ましい。
なお、送信部14は、焦点再設定部98で所定の範囲以外と判断された、再設定前の送信焦点にも、超音波ビームを送信するようにしてもよい。
受信部16は、制御部30からの制御信号に応じて、振動子アレイ36から送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを、振動子アレイ36が受信して出力した、受信信号、即ち超音波素子毎のアナログ素子信号を増幅して出力する。
具体的には、受信部16は、対応する超音波ビームを送信した際の中心素子と、この中心素子の両隣の複数の超音波素子とを一組の受信素子(受信開口)として、被検体内で反射された超音波エコーを受信する。
ここで、受信部16は、1回の超音波ビームの送信に対応して、複数の超音波素子が受信した複数のアナログ素子信号を、受信した超音波素子の情報および受信時間の情報を含む、1つのアナログの素子データ(第1の素子データ)として出力する。すなわち、素子データ(第1の素子データ)は、素子の位置と受信時間とに対する受信信号の強度を表すデータである(図4等参照)。
また、受信部16は、送信部14による1回の超音波ビームの送信ごとに、超音波エコーを受信してアナログの素子データを出力する。したがって、送信部14が、設定された送信ラインに応じて、複数回の超音波ビームの送信を行うことにより、各送信に対応した複数のアナログの素子データを出力する。
受信部16は、アナログの素子データをA/D変換部18に供給する。
A/D変換部18は、受信部16に接続され、受信部16から供給されたアナログの素子データを、デジタルの素子データ(第1の素子データ)に変換する。A/D変換部18は、A/D変換されたデジタルの素子データを素子データ記憶部20に供給する。
素子データ記憶部20は、A/D変換部18から出力されるデジタルの素子データを順次格納する。また、素子データ記憶部20は、制御部30から入力されるフレームレートに関する情報(例えば、超音波の反射位置の深度、走査線の密度、視野幅を示すパラメータ)を上記のデジタルの素子データ(以下、単に素子データという)に関連付けて格納する。
素子データ記憶部20は、制御部30による制御に基づいて、焦点再設定部98により焦点位置が再設定された際に、焦点位置が再設定された送信ラインで超音波ビームを送受信して得られた素子データ、および、この素子データを含み、互いに異なる送信ラインに超音波ビームを送信して得られた2以上の素子データを記憶保持する。
素子データ処理部22は、制御部30による制御に基づいて、焦点再設定部98において焦点位置が再設定された際に、焦点位置が再設定された送信ラインに超音波ビームを送信して得られた素子データに対して、この素子データと、この素子データとは異なる送信ラインに対応する2以上の素子データ(以下、未処理素子データともいう)を素子データ記憶部20から読み出して、受信時間の情報および超音波素子の幾何学的な配置の情報に基づいて、時間および位置を補正して重ね合わせて、重ね合わせ処理後素子データ(第2の素子データ、以下、処理済素子データという)を生成する。
素子データ処理部22は、処理済素子データを画像生成部24(整相加算部38)に供給する。
前述のとおり、通常、超音波画像を取得する際には、着目する領域の近傍に焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成することできるが、浅い位置(表層)や深い位置(深層)では、原理的に超音波ビームを焦点に収束させることが難しい。そのため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。
これに対して、本発明は、超音波ビームの焦点の位置が、表層にある場合には、より深い位置に焦点位置を再設定し、また、深層にある場合には、より浅い位置に焦点位置を再設定して、超音波の送受信を行い、得られた複数の素子データを、素子の幾何学的な配置および受信時間の情報に基づいて合成して、新たな素子データを生成することにより、焦点を収束させることが困難な表層や深層であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
素子データ処理部22の詳細については、後述する。
なお、素子データ処理部22は、焦点位置が再設定されなかった場合にも、未処理素子データの重ね合わせ処理を行い、処理済素子データを生成してもよいし、未処理素子データの重ね合わせ処理を行わずに、未処理素子データを処理済素子データとして画像生成部24に供給してもよい。
画像生成部24は、制御部30による制御下で、素子データ処理部22から供給された処理済素子データから音線信号(受信データ)を生成し、この音線信号から超音波画像を生成するものである。
画像生成部24は、整相加算部38、検波処理部40、DSC42、画像作成部44、および、画像メモリ46を有する。
整相加算部38は、制御部30において設定された受信方向に応じて、予め記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンを選択し、選択された受信遅延パターンに基づいて、素子データの素子ごとの信号にそれぞれの遅延を与えて加算することにより、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれた受信データ(音線信号)が生成される。
整相加算部38は、受信データを検波処理部40に供給する。
検波処理部40は、整相加算部38で生成された受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。
DSC(digital scan converter)48は、検波処理部40で生成されたBモード画像データを通常のテレビジョン信号の走査方式に従う画像データに変換(ラスター変換)する。
画像作成部44は、DSC42から入力されるBモード画像データに階調処理等の各種の必要な画像処理を施して検査や表示に供するためのBモード画像データを作成した後、作成された検査用又は表示用Bモード画像データを表示のために表示制御部26に出力する、或いは画像メモリ46に格納する。
画像メモリ46は、画像作成部44で作成された検査用Bモード画像データを一旦格納する。画像メモリ46に格納された検査用Bモード画像データは、必要に応じて、表示部28で表示するために表示制御部26に読み出される。
表示制御部26は、画像作成部44によって画像処理が施された検査用Bモード画像信号に基づいて、表示部28に超音波画像を表示させる。
表示部28は、例えば、LCD等のディスプレイ装置を含んでおり、表示制御部26の制御の下で、超音波画像を表示する。
制御部30は、操作者により操作部32から入力された指令に基づいて超音波検査装置10の各部の制御を行う。
ここで、制御部30は、操作者によって操作部32を介して種々の情報、特に、焦点設定部96および焦点再設定部98で焦点を設定するために必要な情報、および、素子データ処理部22で素子データを処理するために必要な情報の入力が行われた際に、操作部32から入力された上述の種々の情報を、必要に応じて、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24、表示制御部26、焦点設定部96および焦点再設定部98等の各部に供給する。
操作部32は、操作者が入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパネル等から形成することができる。
また、操作部32は、操作者が必要に応じて各種の情報、特に上述の焦点位置の設定に用いられる表示領域(検査範囲)、深度(depth)、振動子アレイ36、焦点位置等に関する情報、ならびに、素子データ処理に用いられる被検体の検査対象領域の音速、振動子アレイ36の送信開口及び受信開口等に関する情報、並びに重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等を入力操作するための入力装置を備えている。
格納部34は、操作部32から入力された各種の情報、特に、上述の表示領域、深度、プローブ12(振動子アレイ36)、音速、焦点位置、送信開口及び受信開口等に関する情報、重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等や、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24及び表示制御部26等の制御部30で制御される各部の処理や動作に必要な情報、並びに、各部の処理や動作を実行させるための動作プログラムや処理プログラム等を格納するもので、ハードディスク、フレキシブルディスク、MO、MT、RAM、CD−ROM、DVD−ROM等の記録媒体を用いることができる。
なお、素子データ処理部22、整相加算部38、検波処理部40、DSC42、画像作成部44、焦点設定部96、焦点再設定部98及び表示制御部26は、CPUと、CPUに各種の処理を行わせるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。
ここで、素子データ処理部22を、図3に基づいて詳細に説明する。
同図に示すように、素子データ処理部22は、遅延時間算出部48と、重ね合わせ処理部50とを有する。
遅延時間算出部48は、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されているプローブ12の振動子アレイ36の複数の超音波素子、被検体の検査対象領域の音速、振動子アレイ36の送信開口及び受信開口等に関する情報、ならびに、焦点再設定部98が再設定した焦点位置を事前に取得しておき、超音波ビームを形成し送信する、送信開口の超音波素子(送信素子)と、被検体からの、超音波ビームによる超音波エコーを受信する、受信開口の超音波素子(受信素子)との幾何学的配置に基づいて、受信開口の各超音波素子で受信される素子データの遅延時間を算出する。
重ね合わせ処理部50は、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されている、重ね合わせる素子データの数及び重ね合わせ処理方法等の素子データ処理に関する情報に基づいて、素子データ記憶部20によって記憶保持された、互いに異なる送信ラインに超音波ビームを送信して得られた2以上の素子データを読み出して、重ね合わせ処理を行うべき注目ラインの所定の点(サンプリング点)に注目して、遅延時間算出部48でそれぞれ算出された遅延時間に基づいて、2以上の未処理素子データを受信時間上で、即ち時間を合わせて、かつ、受信された探触子の素子の絶対的な位置を合わせて、重ね合わせて処理済素子データを生成する。
所定のサンプリング点に注目して、複数の未処理素子データを重ね合わせることで、このサンプリング点に焦点を合わせたような素子データが得られる。
なお、注目ラインの少なくとも1つの点をサンプリング点として未処理素子データの重ね合わせを行って生成した処理済素子データを、この注目ラインの素子データとすればよく、注目ラインを複数の領域に分けて、各領域にサンプリング点を設定して、未処理素子データの重ね合わせを行って処理済素子データを生成し、注目ラインの各領域の素子データとしてもよい。あるいは、超音波画像を生成する際の画素位置に対応して、すべての画素位置をサンプリング点として処理済素子データの生成を行ってもよい。
特に、焦点設定部96が焦点位置を設定した位置、すなわち、再設定される前の焦点位置にサンプリング点を設定することが好ましい。焦点設定部96が焦点位置を設定した位置(深さ)は、操作者が着目している領域、見たい領域である可能性が高い。したがって、焦点設定部96が設定した焦点位置にサンプリング点を設定して、未処理素子データを重ね合わせることで、操作者が着目している見たい領域に焦点を合わせたような素子データを得ることができる。
次に、素子データ処理部22で行う素子データ処理について詳細に説明する。
まず、超音波プローブ12の振動子アレイ36の送信開口をなす超音波素子(以下、単に送信素子という)から超音波ビーム(以下、送信ビームという)を被検体に送信し、被検体との間の相互作用によって発生された超音波エコーを振動子アレイ36の受信開口をなす超音波素子(以下、単に受信素子という)で受信して素子データ(未処理素子データ)を得る場合において、送信素子からの送信ビームと受信素子で得られる素子データとの関係について説明する。
図4(a)及び(c)は、一例として、超音波素子の配列方向と直交する方向に、各超音波素子に対応して、送信ラインが設定され、各送信ラインに1つの焦点位置が設定(再設定)された場合の、各超音波素子、超音波ビーム、焦点位置および超音波エコーを模式的に示す図である。
図4(a)及び(c)に示すように、それぞれ3つの超音波素子52c〜52e及び52d〜52fを送信素子として、それぞれ7つの超音波素子(以下、単に、素子ともいう)52a〜52g及び52b〜52hを受信素子として超音波エコーを受信して素子データを取得する時、反射点54を含む検査対象領域に送信する送信ビーム56が理想的に素子間隔以下に絞れている理想的な場合には、図4(a)のように、検査対象領域内の反射点54の真上にある、素子52a〜52gの中心の素子52dを中心素子とする素子52c〜52eを送信素子として、素子52dに対応する送信ラインに送信ビーム56を送信し、受信素子52a〜52gで超音波エコーを受信して素子データを取得する場合、送信ビーム56の焦点58は、素子54dと反射点54とを結ぶ一直線上にあり、送信ビーム56は、反射点54まで送信されるので、反射点54から反射される超音波エコーが生成される。反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a〜52gに受信され、受信素子52a〜52gによって、図4(b)に示すような素子データ62が得られることになる。
これに対し、図4(c)に示すように、送信素子の中心が、反射点54に対して1素子分、素子の方向(図中右方向)にずれている場合、すなわち、反射点54の真上にある素子52dに隣接する素子52eを中心素子とする素子52d〜52fを送信素子として、素子52eに対応する送信ラインに送信ビーム56を送信し、受信素子52b〜52hで超音波エコーを受信する場合には、送信ビーム56の送信方向、即ち、送信素子52eと焦点58とを結ぶ直線上(送信ライン上)に反射点54が存在しないため、送信ビーム56は、反射点54に送信されない。このため、反射点54から反射される超音波エコーは生成されず、受信素子52b〜52hでは、超音波エコーを受信しないので、図4(d)に示すように、素子データは信号強度が0のデータになる。
しかしながら、図5(a)及び(c)に示すように、実際の送信ビーム64は、素子間隔より幅が広い。
ここで、図5(a)のように、反射点54の真上にある素子52dを中心素子とする素子52c〜52eを送信素子として、素子52dに対応する送信ラインに送信ビーム64を送信した場合には、図4(a)の場合と同様に、送信ビーム56が幅広であっても、その焦点58は、素子54dと反射点54とを結ぶ一直線上にあり、送信ビーム64は、反射点54で反射され、超音波エコーが生成される。その結果、図4(a)の場合と同様に、反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a〜52gに受信され、受信素子52a〜52gによって、図5(b)に示すような真の素子データ66が得られることになる。
一方、図5(c)に示すように、図4(c)の場合と同様に、送信素子の中心が、反射点54に対して1素子分、素子の方向(図中右方向)にずれている場合、すなわち、反射点54の真上にある素子52dに隣接する素子52eを中心素子とする素子52d〜52fを送信素子として、素子52eに対応する送信ラインに送信ビーム64を送信し、受信素子52b〜52hで超音波エコーを受信する場合、送信ビーム64は幅広であるため、その送信方向、即ち、送信素子52eと焦点58とを結ぶ直線上に反射点54が存在していなくても、送信ビーム64は、反射点54に送信されることになる。このため、反射点54から反射された超音波エコーは、所定角度に広がる受信経路60を通って受信素子52b〜52hに受信され、受信素子52b〜52hによって、図5(d)に示すような反射点の影響を受けた素子データ68が得られることになる。
このような送信ライン上以外の反射点の影響を受けた素子データ68(以下、ゴーストの素子データ、ともいう)から音線信号を生成して、超音波画像を生成すると、素子52eに対応するラインの画像に、実際には存在しない反射点の映像が再生され、所謂ゴーストが発生し、超音波画像の精度を低下させる原因となる。
ここで、図5(c)に示す送信ビーム64が送信素子52eから焦点58を経由して反射点54に至る送信経路と反射点54からの超音波エコーが各受信素子52b〜52hに至る受信経路との和(伝播距離)は、それぞれ図5(a)に示す送信ビーム64が送信素子52dから焦点58を経由して反射点54に至る送信経路と反射した超音波エコーが反射点54から各受信素子52a〜52gに至る受信経路との和(伝播距離)より長くなる。そのため、図5(d)に示すようなゴーストの素子データ68は、図5(b)に示すような真の素子データ66に対して遅延することになる。
本発明の素子データ処理部22の遅延時間算出部48においては、注目する送信ライン上のサンプリング点と、各送信ラインに対応する中心素子との幾何学的な配置から、注目する送信ラインに超音波を送受信して得られた素子データ(以下、注目素子データ、ともいう)と、注目する送信ラインとは異なる送信ラインに超音波を送受信して得られた素子データ(以下、非注目素子データ、ともいう)との時間差、即ち遅延時間を算出する。したがって、遅延時間の計算には、超音波プローブ12(振動子アレイ36)の形状(素子間隔、リニア、コンベックスなど)、被検体の検査対象領域の音速、焦点位置、送信開口、受信開口などの情報が必要であり、遅延時間算出部48では、焦点再設定部98で再設定された焦点位置の情報、操作部32によって入力された、若しくは格納部34に格納されたこれらの情報を取得して遅延時間の計算を行う。遅延時間は、例えば、送信素子、超音波ビームの焦点、サンプリング点、及び受信素子の幾何学的配置から算出される、送信素子から焦点を経てサンプリング点に至る送信ビームの送信経路及びサンプリング点から受信素子に至る反射信号の受信経路の合計長さ(伝播距離)とその音速によって算出される伝搬時間の差から算出することができる。
本発明では、例えば、図6(a)及び図6(b)に示すようにして、注目素子データと、非注目素子データそれぞれの送信ビームの送信経路及び超音波エコーの受信経路の長さを求めることができる。図6(a)及び図6(b)においては、説明のため、注目送信ライン上のサンプリング点に反射点54があるとしている。
図6(a)に示すように、注目素子データの場合、すなわち、注目する送信ラインと、超音波ビームを送信した送信ラインが一致する場合は、送信素子52c〜52eの中心素子と、受信素子52a〜52gの中心素子とが、一致し、その真下に、焦点58及び反射点54が配置されている。反射点54の真上の素子52dの位置をxy2次元座標上の座標(x0、0)とし、素子間隔をLe、焦点58の位置を座標(x0、df)、反射点54の位置を座標(x0、z)とする時、送信素子52dの位置も反射点54の真上の素子52dと同じく座標(x0、0)となり、送信素子52dから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltaは、及び、反射点54から受信素子52dに至る超音波エコーの受信経路60の長さ(受信経路距離)Lraは、Lta=Lra=zによって算出することができる。
したがって、注目素子データの場合の超音波の伝播距離Luaは、Lua=Lta+Lra=2zとなる。
一方、図(b)に示すように、非注目素子データの場合、すなわち、注目する送信ラインと隣接する送信ラインに超音波ビームを送信する場合は、送信素子52d〜52fの中心素子の位置が反射点54(サンプリング点)に対して1素子分横(x方向:図中右方向)にずれて、焦点58は中心素子である素子52eの真下に配置されるが、反射点54は受信素子52dの真下に配置されている。反射点54の真上の受信素子52dの位置を、図6(a)の場合と同じくxy2次元座標上の座標(x0、0)とし、素子間隔をLe、反射点54の位置を座標(x0、z)とすると、送信素子52eの位置は座標(x0+Le、0)、焦点58の位置は座標(x0+Le、df)となるので、送信素子52eから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltbは、Ltb=df+√{(z−df)+Le}によって算出することができ、反射点54から受信素子52dに至る超音波エコーの受信経路60の長さ(受信経路距離)Lrbは、Lrb=zによって算出することができる。
したがって、非注目素子データの場合の超音波の伝播距離Lubは、Lub=Ltb+Lrb=df+√{(z−df)+Le}+zとなる。
こうして、図6(a)に示す幾何学配置で求めた送信経路61の距離Ltaと受信経路60の距離Lraを合計した超音波の伝播距離Luaを音速で割った値が、注目する素子データを取得するために超音波を送受信した時の、超音波素子とサンプリング点との間の伝播時間となる。また、図6(b)に示す幾何学配置で求めた送信経路61の距離Ltbと受信経路60の距離Lrbを合計した超音波の伝播距離Lubを音速で割った値が、注目する素子データの送信ラインの隣の送信ラインで超音波を送受信した時の、超音波素子とサンプリング点との間の伝搬時間となる。
遅延時間の算出は、注目素子データを取得する際の超音波素子とサンプリング点との間の超音波の伝搬時間と、非注目素子データを取得する際の超音波素子とサンプリング点との間の超音波の伝搬時間の差から遅延時間を求める。
なお、図6(a)及び図6(b)の幾何学モデルでは、送信経路61が焦点58を経由したモデルになっているが、本発明はこれに限定されず、例えば、焦点58を経由せずに直接反射点54に至る経路であっても良い。
なお、この遅延時間の計算方法は、或る素子を中心素子とする超音波の送受信において、サンプリング点の直下に位置する素子52における遅延時間を代表値として、この代表値を、この送受信における全素子の遅延時間として用いている。
しかしながら、本発明は、これに限定はされず、例えば、素子52cや素子52bなど、x方向の位置がサンプリング点、すなわち、直下の素子52dとは異なる素子の受信経路距離Lrbは、直下の素子52dからの素子数nに応じて、Lrb=√{(n×Le)2+z2}で算出してもよい。
また、図6(a)及び図6(b)の幾何学モデルはリニアプローブの場合であるが、これに限らず他のプローブにおいても、プローブの形状から同様の幾何学計算を行うことができる。例えば、コンベックスプローブの場合、プローブの半径と素子間隔の角度から幾何学モデルを設定して同じように計算することができる。
また、ステア送信の場合には、送信角度などの情報を考慮した幾何学モデル(図示せず)を用い、送信素子とサンプリング点との位置関係から注目素子データ及びその周辺の非注目素子データの遅延時間を算出することができる。
さらに、幾何学モデルによって遅延時間を算出する方法に限らず、あらかじめ装置の計測条件に合わせて高輝度反射点を計測した計測結果から、計測条件毎に遅延時間を求めておき、その遅延時間を装置内に記憶しておくことで、同じ計測条件の遅延時間を読み出すようにしておいてもよい。
図6(c)に、中央に、送信ライン上に反射点がある場合の素子データである真の素子データ66、両側に、この反射点の影響でゴーストが発生しているゴーストの素子データ68を示し、図6(d)に、上述の幾何学的な計算から得られた、中央の真の素子データ66を注目素子データとしたときの、非注目素子データであるゴーストの素子データ68の遅延時間の一例を示す。真の素子データ66を注目素子データとした場合に、ゴーストの素子データ68は、対称的に時間が遅れることが示されている。
なお、こうして、素子データ処理部22の遅延時間算出部48において算出された遅延時間を整相加算部38における遅延補正に用いることもできる。
次に、本発明の素子データ処理部22の重ね合わせ処理部50においては、こうして遅延時間算出部48において算出された遅延時間を用いて、注目する送信ラインの注目素子データ及びその周辺の送信ラインの素子データである非注目素子データの重ね合わせ処理を行う。
重ね合わせ処理部50における重ね合わせ処理では、重ね合わせる時の重ね合わせ素子データ数と重ね合わせ処理方法の情報が必要になるが、これらは、予め、操作部32によって入力しておいても良いし、格納部34に格納しておいても良い。
図7(a)〜(h)に、重ね合わせ処理部50で行われる、素子データ数が5つ、重ね合わせ素子データ数が3つの場合の重ね合わせ処理の一具体例を示す。
図7(a)は、隣接する5つの素子をそれぞれ中心素子とする送信ラインで、超音波の送受信を行って得られた5つの素子データを横に並べて表示しており、素子データ毎に、超音波ビームを送信し、反射信号を受信した様子を表している。各素子データの横軸は、受信素子を表しており、それぞれの素子データにおいて超音波ビームの送信時における中心の素子を中心にして表示している。縦軸は、受信時間を表す。
5つの素子データのうち、真中の素子データでは、素子データの中心の素子(受信素子の中心の素子)、即ち、送信時における中心素子(送信素子)の真下に反射点が存在しており、反射点からの反射信号(超音波エコー)が受信されている。つまり、この反射信号は真の信号であり、真中の素子データは、真の素子データを表す。
真中の素子データ以外の両側2つの素子データについては、送信時における中心の素子の真下には反射点は存在していないが、送信した超音波ビームの広がりによって、真中の素子データの送信素子の真下に存在する反射点に超音波ビームが当たることで生じた反射信号、即ちゴーストが写り込んでいる。ゴーストは、真の信号から離れるほど反射点までの超音波の伝播時間が長くなるため、真の素子データよりも受信時間が遅くなる。また、反射点からの反射信号が初めに受信される受信素子の位置は、反射点の真上の素子であるが、素子データの横軸は超音波ビームの送信時における中心素子を中心にしているため、素子データ毎にこの中心素子を1素子ずつずらして、すなわち、送信ラインを1ラインずつずらして送信していることから、各素子データにおいて素子の絶対位置は1素子ずつずれている。つまり、真中の素子データでは、反射点からの反射信号がはじめに受信される受信素子は真中の素子であるが、両隣の素子データにおいては、真中の素子データよりも1素子ずれており、右側の素子データでは左に1素子ずれ、左側の素子データでは右に1素子ずれている。更に、両端の素子データでは、真中の素子データよりも2素子ずれており、右端の素子データでは左に2素子ずれ、左端の素子データでは右に2素子ずれている。このように、ゴーストの信号は、真の信号に対して、受信時間が遅れるだけでなく、受信素子の方向に対してもずれを生じている。
図7(b)に、図7(a)に示す5素子分の素子データの真中の素子データを注目素子データとした場合に対する受信時間の遅延時間の一例を示す。
重ね合わせ処理部50では、図7(b)に示す遅延時間を用いて、真中の素子データを注目素子データとした場合に、注目素子データを中心に、重ね合わせ素子データ数分、図示例では3つの素子データに対して遅延時間補正を行うと共に、注目素子データの送信ラインに対応する中心素子(注目素子)と、各中心素子とのずれ量分、図示例では両側に1素子分だけ横方向にシフトさせて、即ち位相を合わせて3つの送信ライン分の未処理素子データを重ね合わせ、注目送信ラインの所定のサンプリング点に対応する1つの重ね合わせ処理済素子データとして求める。このような重ね合わせ処理を注目送信ライン上の各サンプリング点で行うことにより、送信ライン上の各サンプリング点で焦点が絞りこまれたような素子データを得ることができる。
こうして得られた注目する送信ラインの重ね合わせ処理済素子データを図7(c)に示す。
図7(a)に示す注目素子の素子データは、真の信号の素子データであることから、注目素子の両側の隣接素子の未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行うと、図7(c)に示すように、隣接素子の未処理素子データと、注目素子の未処理素子データとは、位相が合うので高輝度位置で重なり合う。したがって、これらの素子データを、例えば加算すると素子データ値は大きな値(高輝度値)を示し、例えば、平均して平均値を求めても強調された値(高輝度値)を示す。
これに対し、図7(d)は、図7(a)と同じ素子データ群であるが、真中の素子データの左隣の素子データ、つまりゴーストの素子データを注目素子データとした場合の一例を示す。
図7(e)は、真中の左隣を注目素子とした場合の受信時間の遅延時間の一例を示すものである。図7(a)と図7dは、同じ素子データ群であるので、図7(e)に示す遅延時間は、注目素子が異なるのみで、図7(b)と同様である。
重ね合わせ処理部50では、図7(e)に示す遅延時間を用いて、注目素子を中心に、重ね合わせ素子データ分、図示例では3つの素子データに対して遅延時間補正を行うと共に、注目素子と各中心素子とのずれ量分、図示例では両側に1素子分だけ横方向にシフトさせて、3つの送信ライン分の未処理素子データを重ね合わせ、注目送信ラインの所定のサンプリング点に対応する1つの重ね合わせ処理済素子データとして求める。このような重ね合わせ処理を注目送信ライン上の各サンプリング点で行うことにより、送信ライン上の各サンプリング点で焦点が絞りこまれたような素子データを得ることができる。
こうして得られた注目送信ラインの重ね合わせ処理済素子データを図7(f)に示す。
図7(d)に示す注目素子の素子データは、ゴーストの素子データであることから、注目素子の両側の隣接素子の未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行っても、図7(f)に示すように、隣接素子の各未処理素子データと注目素子の未処理素子データとは、それぞれ位相が合わないので重なり合わない。このため、これらの3つの素子データを、例えば加算しても、位相が合っていないために、位相が反転している信号などは信号が打ち消しあうため、加算値は大きくならず、例えば、平均して平均値を求めると小さな値を示すことになる。
他の素子データに関しても、注目素子データとして同様の遅延時間補正及び横方向のシフトを行った結果、図示例の5つの素子データについての隣接する3つの送信ラインの素子データの重なり状態を図7(g)に示し、これらに対して、重ね合わせ処理として、例えば、加算処理、若しくは平均処理した結果を図7(h)に示す。
図7(h)に示すように、図7(a)に示す送信素子の中心素子と反射点との座標が一致している時(送信ライン上に反射点がある時)の注目送信ラインでは、真の信号の素子データが高輝度値を持つ重ね合わせ処理済素子データとして求められ、その両側の各2素子の全4素子では、ゴーストの素子データは互いに位相が合わない素子データを加算し、又は平均するので、互いに打ち消し合うことになるため、ゴーストの重ね合わせ処理済素子データは、その値が真の信号の素子データである高輝度値を持つ重ね合わせ処理済素子データに対して小さくなり、真の信号の素子データに対してゴーストの素子データの影響を低減させることができ、又は、その影響を無視できる程、小さくすることができる。
なお、重ね合わせ処理部50における重ね合わせ処理方法としては、単に、加算するだけでなく、平均値や中央値をとってもよいし、係数を掛け合わせた上で加算してもよい。なお、平均値や中央値を取ることは、素子データレベルでの平均化フィルタやメディアンフィルタを掛けることに相当すると考えられるが、平均化フィルタやメディアンフィルタの代わりに、通常の画像処理で行われる逆フィルタなども適用してもよい。或いは、重ね合わせる各素子データ同士を比較し、類似している場合には最大値、類似していない場合には平均値、分布の偏りがある場合には中間値をとるなど、これに限らず、重ね合わせる各素子データの特徴量に基づいて重ね合わせ処理を変えてもよい。
また、重ね合わせる素子データ数は、超音波ビームのビーム幅の広がり程度に合わせた方が望ましい。従って、深さによってビーム幅が変わる場合には、重ね合わせ素子データ数も深さによって変更してもよい。また、ビーム幅は送信開口数に依存することから、送信開口数に応じて重ね合わせ素子データ数を変更してもよい。或いは、画像の輝度値などの特徴量に基づいて重ね合わせ素子データ数を変更してもよいし、重ね合わせ素子データ数を複数パターン変えて作成した画像から最適な重ね合わせ素子データ数を選択してもよい。
重ね合わせた結果、上述したように、真の信号の素子データでは信号の位相が合うが、ゴーストでは信号の位相が合わないため、加算などの重ね合わせ処理の結果、様々な位相の信号がお互いに打ち消し合い、信号が弱くなる。結果的に、真の信号は、有効な値を持つ、例えば高輝度の素子データとして残り、ゴーストの信号は、減弱した値を持つ、例えば低輝度の素子データとして得ることができる。
本発明は、超音波ビームの焦点の位置が、所定の範囲にある場合に、焦点の位置を再設定して、超音波の送受信を行い、得られた素子データに対して、上述した素子データの重ね合わせ処理を行い、新たな素子データを生成し、焦点位置を再設定した送信ラインに対応する素子データとする。
前述のとおり、従来、超音波画像を取得する際には、着目する領域の近傍に超音波ビームの焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成していた。しかしながら、超音波プローブに近い位置(表層)や、超音波プローブから遠い位置(深層)では、原理的に超音波ビームを設定した焦点位置に収束させることが難しく、そのため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。
これに対して、本発明は、超音波ビームの焦点位置が、所定の範囲内にある場合に、焦点の位置を再設定して、複数の超音波ビームの送信で得られた第1の素子データから、第2の素子データを生成する。具体的には、超音波ビームの焦点位置が、所定の深さZaより浅い(表層にある)場合には、より深い位置に焦点位置を再設定し、また、所定の深さZbより深い(深層にある)場合には、より浅い位置に焦点位置を再設定して、再設定した焦点位置に超音波の送受信を行い、得られた複数の未処理素子データ(第1の素子データ)を、素子の幾何学的な配置および受信時間の情報に基づいて合成して、新たな処理済素子データ(第2の素子データ)を生成する。
これにより、焦点位置を再設定することにより、設定した焦点位置に超音波ビームを十分に収束させて、素子データ(第1の素子データ)を得ることができるので、素子データの質を改善することができる。さらに、焦点位置を再設定して得られた複数の第1の素子データを合成することにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、送信ライン上の各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。したがって、焦点を収束させることが困難な表層や深層であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
また、質の高い素子データを得ることができるので、この素子データを用いて検査対象領域内の領域ごとの最適な音速を求める場合にも、高精度に最適な音速を求めることができる。
本発明の超音波検査装置の動作、作用及び超音波画像の作成方法について説明する。
図8は、図1に示す超音波検査装置の動作を説明するためのフローチャートである。
まず、操作部32からの入力された情報に応じて、焦点設定部96が焦点の位置を設定し、設定した焦点位置の情報を焦点再設定部98に供給する。
焦点再設定部98は、設定された焦点位置が所定の深さ範囲にあるか否かを判断し、所定の深さZaよりも浅い場合には、より深い位置に焦点位置を再設定し、所定の深さZbよりも深い場合には、より浅い位置に焦点位置を再設定し、ZaとZbとの間の深さにある場合には、焦点位置を変更せずに、焦点位置の情報を送信部14に供給する。
操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って振動子アレイ36から超音波ビームが送信され、被検体からの超音波エコーを、振動子アレイ36が受信し、受信信号としてアナログ素子信号を出力する。このとき、送信部14は、焦点再設定部98から供給された焦点位置に焦点を形成する超音波ビームを送信するように、振動子アレイ36を駆動する。
受信部16は、各素子が出力するアナログ素子信号を1つのアナログの素子データとして出力し、A/D変換部18に供給する。A/D変換部18は、アナログの素子データをデジタルの素子データに変換して素子データ記憶部20に供給して、記憶保持させる。
素子データ処理部22は、遅延時間算出部48(図3)において、注目する送信ラインの未処理素子データと、周辺の送信ラインの未処理素子データとの遅延時間(例えば、図7(b)、図7(e)、どちらも同じものである。)を、送信素子、焦点、反射点、及び受信素子の幾何学的配置、及び予め入力されて設定されている被検体の検査対象領域の音速等から算出する(例えば、図6の幾何学モデルを用いて算出する)。
次に、素子データ処理部22は、未処理素子データを素子データ記憶部20から読み出し、処理を行う素子データを注目素子データとし、重ね合わせ処理部50(図3)において、遅延時間算出部48で算出された遅延時間を用いて、注目素子データとその周辺の送信ラインの未処理素子データ(非注目素子データ)とを位相合わせて重ね合わせて処理済素子データを求める。これにより、真の信号を含む未処理素子データであれば、強調された処理済素子データが求まると共に、ゴーストの未処理素子データであれば減弱した処理済素子データが求まる。
素子データ処理部22は、焦点再設定部98が焦点位置を再設定した場合、および、焦点位置を再設定しなかった場合に、各送信ラインについて、送信ライン上の各サンプリング点で、重ね合わせ処理を行い、処理済素子データを求める。こうして求めた処理済素子データを画像生成部24の整相加算部38に供給する。
画像生成部24の整相加算部38は、処理済素子データに受信フォーカス処理を施して受信データ(音線信号)を生成し、検波処理部40に供給する。検波処理部40は、音線信号を処理してBモード画像信号を生成する。Bモード画像信号を、DSC42がラスター変換し、画像作成部44が画像処理を施し、超音波画像が生成される。生成された超音波画像は、画像メモリ46に格納されると共に、表示制御部26により超音波画像が表示部28に表示される。
このように本発明の超音波検査装置10は、超音波ビームの焦点の位置が、所定の範囲にある場合に、焦点の位置を再設定して、超音波の送受信を行い、得られた素子データに対して、上述した素子データの重ね合わせ処理を行い、新たな素子データを生成し、焦点位置を再設定した送信ラインに対応する素子データとする。これにより、焦点位置を再設定することにより、設定した焦点位置に超音波ビームを十分に収束させて、素子データ(第1の素子データ)を得ることができるので、素子データの質を改善することができる。さらに、焦点位置を再設定して得られた複数の第1の素子データを合成することにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、送信ライン上の各点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。したがって、焦点を収束させることが困難な表層や深層であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
なお、上記実施例においては、焦点位置が、所定の深さZaより浅い場合、あるいは、所定の深さZbより深い場合に、焦点の位置を変更する構成としたが、本発明はこれに限定はされず、図9(A)のフローチャートに示すように、所定の深さZaよりも浅い場合に、Zaよりも深い位置に焦点位置を再設定する構成としてもよい。あるいは、図9(B)のフローチャートに示すように、所定の深さZbよりも深い場合に、Zbよりも浅い位置に焦点位置を再設定する構成としてもよい。
また、図示例においては、焦点設定部96が設定する焦点位置は、すべての送信ラインで同じ深さとしたが、本発明はこれに限定はされず、焦点設定部96は、送信ラインごとに異なる深さに焦点位置を設定してもよい。この場合には、焦点再設定部98は、送信ラインごとに焦点の深さを判断し、焦点位置が所定の深さ範囲にある送信ラインについて、焦点位置を再設定すればよい。また、このとき、素子データ処理部が、焦点位置を再設定した送信ラインの素子データを注目素子データとして、重ね合わせ処理を行う際には、重ね合わせる非注目素子データは、焦点位置を再設定した送信ラインの素子データであっても、焦点位置を再設定していない送信ラインの素子データであってもよい。
また、上記実施例においては、注目素子データと重ね合わせる素子データは、注目素子データの送信ラインと隣接する送信ラインの素子データとしたが、本発明はこれに限定はされず、注目素子データの送信ラインとは異なる送信ラインであればよい。なお、素子データを重ね合わせる際には、各素子データを取得する時に送信した送信ビームの領域が、注目素子データを取得する時に送信した送信ビームの領域と重複していることが好ましい。したがって、注目素子データと重ね合わせる素子データは、隣接する送信ライン、あるいは、近傍の送信ラインの素子データであることが好ましい。
また、注目素子データと重ね合わせる素子データは、注目素子データの送信ラインを中心に対称な送信ラインで取得した素子データであることが好ましい。
また、上記実施例においては、超音波素子の配列方向とは直交する方向に、超音波ビームを送信する構成としたが、これに限定はされず、超音波素子の配列方向に対して、傾斜している方向(ステア)に超音波ビームを送信する構成としてもよい。また、上記実施例においては、一組の送信素子(送信開口)と1回の超音波ビームの送信とが1対1で対応する構成としたが、これに限定はされず、同じ一組の送信素子を用いて、異なる方向に複数の超音波ビームを送信する構成としてもよい。
また、本実施形態の超音波検査装置は、図示を省略した制御部に付属したメモリに格納された超音波画像データ生成プログラムによって制御される。すなわち、制御部によってメモリから超音波画像データ生成プログラムが読み出され、該超音波画像データ生成プログラムに従って、焦点の位置を設定/再設定して、設定/再設定された焦点に応じて、被検者に向けて超音波ビームを送信するとともに、被検者から反射された超音波エコーを受信し、受信して得られた第1の素子データを合成して、第2の素子データを生成する機能が実行される。
なお、超音波画像データ生成プログラムは、このように制御部に付属のメモリに格納されるものに限定されず、該超音波画像データ生成プログラムを、例えば、CD−ROMなど、本超音波画像処理装置に着脱可能に構成されるメモリ媒体(リムーバブル媒体)に記録しておき、リムーバブル媒体に対応するインターフェイスを介して本装置に読み込むように構成してもよい。
以上、本発明の超音波検査装置、超音波画像データ生成方法およびプログラムについて詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
10 超音波検査装置
12 超音波プローブ
14 送信部
16 受信部
18 A/D変換部
20 素子データ記憶部
22 素子データ処理部
24 画像生成部
26 表示制御部
28 表示部
30 制御部
32 操作部
34 格納部
36 振動子アレイ
38 整相加算部
40 検波処理部
42 DSC
44 画像作成部
46 画像メモリ
48 遅延時間算出部
50 重ね合わせ処理部
52 素子
54 反射点
56 送信ビーム
58 焦点
60 受信経路
62 素子データ
64 送信ビーム
66 真の素子データ
68 ゴーストの素子データ
96 焦点設定部
98 焦点再設定部

Claims (18)

  1. 超音波ビームを用いて検査対象物を検査する超音波診断装置であって、
    前記超音波ビームを送信し、かつ、前記検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、
    前記検査対象物内に、複数の送信焦点を設定する焦点設定部と、
    前記焦点設定部により設定された送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の位置を異なる位置に再設定する焦点再設定部と、
    前記焦点再設定部で所定の範囲外と判断された前記送信焦点、および、再設定された前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させる送信部と、
    前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、
    前記受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、
    複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記焦点再設定部で再設定された前記送信焦点に前記超音波ビームを送信して得られた前記第1の素子データに対応する第2の素子データを生成する素子データ処理部と、を備えることを特徴とする超音波検査装置。
  2. 前記焦点再設定部は、前記焦点設定部が設定した送信焦点とは異なる深さに送信焦点を再設定する、請求項1に記載の超音波検査装置。
  3. 前記焦点再設定部は、前記焦点設定部が設定した前記送信焦点に対して前記超音波ビームを送信するラインと同一ライン上において異なる位置に送信焦点を再設定する、請求項1または2に記載の超音波検査装置。
  4. 前記焦点再設定部は、前記焦点設定部により設定された前記送信焦点の深さが所定の深さよりも浅い場合に、該送信焦点の位置を前記焦点設定部により設定された位置よりも深い位置に再設定する請求項1〜3のいずれかに記載の超音波検査装置。
  5. 前記焦点再設定部は、前記焦点設定部により設定された前記送信焦点の深さが所定の深さよりも深い場合に、該送信焦点の位置を前記焦点設定部により設定された位置よりも浅い位置に再設定する請求項1〜4のいずれかに記載の超音波検査装置。
  6. 前記送信部は、前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させることを、中心となる素子を変更して行わせる請求項1〜5のいずれかに記載の超音波検査装置。
  7. 前記素子データ処理部は、中心となる素子が異なる、複数の前記超音波ビームの送信で得られた前記第1の素子データを用いる請求項1〜6いずれかに記載の超音波診断装置。
  8. 前記素子データ処理部は、超音波ビームの送信領域が重なり合う、複数の前記超音波ビームの送信で得られた前記第1の素子データを用いる請求項1〜7のいずれかに記載の超音波診断装置。
  9. 前記素子データ処理部は、前記素子が超音波エコーを受信した受信時間および前記素子の位置に応じて複数の前記第1の素子データを重ね合わせて、前記第1の素子データに対応する第2の素子データを生成する請求項1〜8のいずれかに記載の超音波診断装置。
  10. 前記素子データ処理部は、前記素子の配列方向に連続する素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の前記第1の素子データを合成して、前記第2の素子データを生成する請求項1〜9のいずれかに記載の超音波検査装置。
  11. 前記素子データ処理部は、前記送信焦点が再設定された超音波ビームに対応する中心となる素子の両隣の同数の素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の前記第1の素子データを合成して、前記第2の素子データを生成する請求項1〜10のいずれかに記載の超音波検査装置。
  12. 前記素子データ処理部は、2以上の前記第1の素子データの遅延時間を算出する遅延時間算出部と、2以上の前記第1の素子データを算出された遅延時間及び受信された前記探触子の素子の位置に基づいて重ね合わせ、前記第2の素子データを生成する重ね合わせ処理部とを有する請求項1〜11のいずれかに記載の超音波検査装置。
  13. 前記遅延時間算出部は、事前に取得された前記探触子、前記検査対象物の音速、前記超音波ビームの送信焦点の位置、前記送信部による前記探触子の送信開口、及び前記受信部による前記探触子の受信開口に関する少なくとも1つの情報に基づいて、2以上の前記第1の素子データの遅延時間を算出し、
    前記重ね合わせ処理部は、予め設定された、2以上の前記第1の素子データのうち重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて2以上の前記第1の素子データを重ね合わせ、前記第2の素子データを生成する請求項12に記載の超音波検査装置。
  14. 前記素子データ処理部は、2以上の前記第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせる請求項1〜13のいずれかに記載の超音波検査装置。
  15. 前記送信部は、前記探触子に対して、前記焦点再設定部で所定の範囲内と判断された再設定前の前記送信焦点にも前記超音波ビームを送信させる請求項1〜14のいずれかに記載の超音波検査装置。
  16. 前記受信部が出力した前記第1の素子データのすべてを保持する素子データ保持部を有する請求項1〜15のいずれかに記載の超音波検査装置。
  17. 超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、前記超音波ビームを発生して、前記検査対象物を検査し、超音波画像データを生成する超音波画像データ生成方法であって、
    前記検査対象物内に、所定の送信焦点を設定する焦点設定ステップと、
    前記焦点設定ステップにより設定された前記送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある前記送信焦点の位置を異なる位置に再設定する焦点再設定ステップと、
    前記焦点再設定部で所定の範囲外と判断された前記送信焦点、および、再設定された前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させる送信ステップと、
    前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が出力したアナログ素子信号を受け、所定の処理を施す受信ステップと、
    前記受信ステップが処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、
    複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記焦点再設定ステップで再設定された前記送信焦点に前記超音波ビームを送信して得られた前記第1の素子データに対応する第2の素子データを生成する素子データ処理ステップと、を有することを特徴とする超音波画像データ生成方法。
  18. 超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、前記超音波ビームを発生して、前記検査対象物を検査し、超音波画像データを生成することをコンピュータに実行させる超音波画像データ生成プログラムであって、
    前記検査対象物内に、所定の送信焦点を設定する焦点設定ステップと、
    前記焦点設定ステップにより設定された前記送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある前記送信焦点の位置を異なる位置に再設定する焦点再設定ステップと、
    前記焦点再設定部で所定の範囲外と判断された前記送信焦点、および、再設定された前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させる送信ステップと、
    前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が出力したアナログ素子信号を受け、所定の処理を施す受信ステップと、
    前記受信ステップが処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、
    複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記焦点再設定ステップで再設定された前記送信焦点に前記超音波ビームを送信して得られた前記第1の素子データに対応する第2の素子データを生成する素子データ処理ステップと、をコンピュータに実行させることを特徴とする超音波画像データ生成プログラム。
JP2012216215A 2012-09-28 2012-09-28 超音波検査装置、超音波画像データ生成方法およびプログラム Pending JP2014068756A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012216215A JP2014068756A (ja) 2012-09-28 2012-09-28 超音波検査装置、超音波画像データ生成方法およびプログラム
PCT/JP2013/075535 WO2014050756A1 (ja) 2012-09-28 2013-09-20 超音波検査装置、超音波画像データ生成方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012216215A JP2014068756A (ja) 2012-09-28 2012-09-28 超音波検査装置、超音波画像データ生成方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2014068756A true JP2014068756A (ja) 2014-04-21

Family

ID=50388160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012216215A Pending JP2014068756A (ja) 2012-09-28 2012-09-28 超音波検査装置、超音波画像データ生成方法およびプログラム

Country Status (2)

Country Link
JP (1) JP2014068756A (ja)
WO (1) WO2014050756A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277116A (ja) * 1992-03-31 1993-10-26 Matsushita Electric Ind Co Ltd 超音波診断装置
JP3523307B2 (ja) * 1993-12-13 2004-04-26 フクダ電子株式会社 超音波診断装置
JP2002238896A (ja) * 2001-02-21 2002-08-27 Hitachi Medical Corp 超音波診断装置
JP2003135460A (ja) * 2001-11-01 2003-05-13 Fuji Photo Film Co Ltd 超音波送信方法、超音波送信装置、超音波撮像方法及び超音波撮像装置
JP5355924B2 (ja) * 2008-03-31 2013-11-27 株式会社東芝 超音波診断装置
JP5645421B2 (ja) * 2010-02-23 2014-12-24 キヤノン株式会社 超音波画像装置および遅延制御方法

Also Published As

Publication number Publication date
WO2014050756A1 (ja) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5946427B2 (ja) 超音波検査装置、超音波検査方法、プログラム及び記録媒体
JP5905856B2 (ja) 超音波検査装置
US11439368B2 (en) Acoustic wave processing device, signal processing method for acoustic wave processing device, and program
JP6000197B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP5905808B2 (ja) 超音波検査装置、超音波画像データ生成方法およびプログラム
US10231709B2 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
JP6165089B2 (ja) 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
US10980515B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
JP6000196B2 (ja) 超音波診断装置、音速決定方法およびプログラム
JP5964774B2 (ja) 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
JP5873412B2 (ja) 超音波診断装置、音速決定方法およびプログラム
US10383601B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
JP6047041B2 (ja) 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
WO2014050756A1 (ja) 超音波検査装置、超音波画像データ生成方法およびプログラム
WO2014050847A1 (ja) 超音波診断装置、超音波画像データ生成方法およびプログラム
JP2014233402A (ja) 超音波診断装置、超音波診断装置の音線信号生成方法、及び超音波診断装置の音線信号生成プログラム
WO2014050897A1 (ja) 超音波検査装置、超音波画像データ生成方法およびプログラム