JP2014060224A - Processing device - Google Patents

Processing device Download PDF

Info

Publication number
JP2014060224A
JP2014060224A JP2012203514A JP2012203514A JP2014060224A JP 2014060224 A JP2014060224 A JP 2014060224A JP 2012203514 A JP2012203514 A JP 2012203514A JP 2012203514 A JP2012203514 A JP 2012203514A JP 2014060224 A JP2014060224 A JP 2014060224A
Authority
JP
Japan
Prior art keywords
holding
wafer
processing
imaging
held
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012203514A
Other languages
Japanese (ja)
Other versions
JP6204008B2 (en
Inventor
Yukiyasu Masuda
幸容 増田
Junichi Kuki
潤一 九鬼
Takashi Sanpei
貴士 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2012203514A priority Critical patent/JP6204008B2/en
Priority to KR1020130109330A priority patent/KR102008532B1/en
Priority to CN201310415097.8A priority patent/CN103659002B/en
Publication of JP2014060224A publication Critical patent/JP2014060224A/en
Application granted granted Critical
Publication of JP6204008B2 publication Critical patent/JP6204008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing device capable of recognizing an outer periphery of a wafer held by holding means and determining a center of the wafer held by the holding means.SOLUTION: A processing device comprises holding means which holds a wafer having a circular shape, processing means which processes the wafer held by the holding means, and processing feeding means which relatively processes and feeds the holding means and the processing means in a processing feeding direction. The holding means comprises: imaging means which includes a table having a holding and sucking part for sucking and holding the wafer and an outer peripheral part for surrounding the sucking and holding part and a rotary driving mechanism for rotating the table, and which images the outer periphery part of the wafer held on the table; light-emitting means which is disposed facing the imaging means while sandwiching the table therebetween; projection means which is formed in the outer peripheral part of the table, and transmits the light emitted by the light-emitting means and projects the outer periphery of the wafer held by the sucking and holding part on the imaging means; and control means which determines a central position of the wafer held on the table on the basis of at least three locations in the outer periphery of the wafer held on the table imaged by the imaging means.

Description

本発明は、半導体ウエーハ等の被加工物を切削する切削装置や被加工物に所定のレーザー加工を施すレーザー加工装置等の加工装置に関する。   The present invention relates to a processing apparatus such as a cutting apparatus for cutting a workpiece such as a semiconductor wafer or a laser processing apparatus for performing predetermined laser processing on a workpiece.

半導体デバイス製造工程においては、略円板形状である半導体ウエーハの表面に格子状に配列されたストリートと呼ばれる分割予定ラインによって複数の領域が区画され、この区画された領域にIC、LSI等のデバイスを形成する。そして、半導体ウエーハをストリートに沿って切断することにより回路が形成された領域を分割して個々のデバイスを製造している。また、サファイヤ基板の表面に窒化ガリウム系化合物半導体等が積層された光デバイスウエーハもストリートに沿って切断することにより個々の発光ダイオード、レーザーダイオード等の光デバイスに分割され、電気機器に広く利用されている。   In the semiconductor device manufacturing process, a plurality of regions are partitioned by dividing lines called streets arranged in a lattice pattern on the surface of a substantially wafer-shaped semiconductor wafer, and devices such as ICs, LSIs, etc. are partitioned in the partitioned regions. Form. Then, the semiconductor wafer is cut along the streets to divide the region where the circuit is formed to manufacture individual devices. In addition, optical device wafers with gallium nitride compound semiconductors laminated on the surface of a sapphire substrate are also divided into individual optical devices such as light emitting diodes and laser diodes by cutting along the streets, and are widely used in electrical equipment. ing.

このような半導体ウエーハや光デバイスウエーハ等のウエーハの分割は切削装置やレーザー加工装置等の加工装置によって実施されている。切削装置やレーザー加工装置等の加工装置は、ウエーハを保持する保持手段と、該保持手段に保持されたウエーハに加工を施す加工手段と、保持手段と加工手段とを加工送り方向に相対的に加工送りする加工送り手段とを具備している。   Such division of a wafer such as a semiconductor wafer or an optical device wafer is performed by a processing apparatus such as a cutting apparatus or a laser processing apparatus. A processing device such as a cutting device or a laser processing device has a holding means for holding a wafer, a processing means for processing the wafer held by the holding means, and the holding means and the processing means relative to the processing feed direction. Machining feed means for machining feed.

上述した加工装置においては、ウエーハを所定の加工領域に確実に加工を施すためには、加工領域の始点と終点を認識する必要がある。加工領域の始点と終点を認識するために、保持手段に保持されたウエーハの外周を認識して保持手段に保持されたウエーハの中心を求める方法が提案されている。(例えば、特許文献1参照。)   In the processing apparatus described above, it is necessary to recognize the start point and end point of the processing region in order to reliably process the wafer in a predetermined processing region. In order to recognize the start point and end point of the machining area, a method has been proposed in which the outer periphery of the wafer held by the holding means is recognized and the center of the wafer held by the holding means is obtained. (For example, refer to Patent Document 1.)

特開2011−54715号公報JP 2011-54715 A

而して、ウエーハの表面に保護膜が被覆されている場合やウエーハの表面に特殊加工が施されている場合には、光の乱反射や吸収等に起因してウエーハの外周を確実に認識することができない場合がある。   Thus, when the wafer surface is covered with a protective film or when the wafer surface is specially processed, the outer periphery of the wafer is reliably recognized due to irregular reflection or absorption of light. It may not be possible.

本発明は上記事実に鑑みてなされたものであり、その主たる技術的課題は、保持手段に保持されたウエーハの外周を認識して確実に保持手段に保持されたウエーハの中心を求めることができる加工装置を提供することである。   The present invention has been made in view of the above facts, and the main technical problem thereof is to recognize the outer periphery of the wafer held by the holding means and to reliably determine the center of the wafer held by the holding means. It is to provide a processing apparatus.

上記主たる技術課題を解決するため、本発明によれば、円形を呈するウエーハを保持する保持手段と、該保持手段に保持されたウエーハに加工を施す加工手段と、該保持手段と該加工手段とを加工送り方向に相対的に加工送りする加工送り手段と、を具備する加工装置において、
該保持手段は、ウエーハを吸引保持する吸引保持部と該吸引保持部を囲繞する外周部とを有するテーブルと、該テーブルを回転する回転駆動機構とを備え、
該テーブルに保持されたウエーハの外周部を撮像する撮像手段と、
該テーブルを挟んで該撮像手段と対向して配設された発光手段と、
該テーブルの該外周部に形成され該発光手段が発する光を透過して該吸引保持部に保持されたウエーハの外周を該撮像手段に投影する投影手段と、
該撮像手段によって撮像された該テーブルに保持されたウエーハの外周の少なくとも3個所の座標値に基づいて該テーブルに保持されたウエーハの中心位置を算出する制御手段と、を具備している、
ことを特徴とする加工装置が提供される。
In order to solve the main technical problem, according to the present invention, a holding means for holding a wafer having a circular shape, a processing means for processing a wafer held by the holding means, the holding means, and the processing means, In a processing apparatus comprising a processing feed means for processing and feeding relative to the processing feed direction,
The holding means includes a table having a suction holding portion for sucking and holding the wafer, an outer peripheral portion surrounding the suction holding portion, and a rotation drive mechanism for rotating the table.
Imaging means for imaging the outer periphery of the wafer held on the table;
Light emitting means disposed opposite the imaging means across the table;
A projecting unit configured to project the outer periphery of the wafer formed on the outer peripheral portion of the table and transmitted from the light emitting unit and held by the suction holding unit onto the imaging unit;
Control means for calculating the center position of the wafer held in the table based on the coordinate values of at least three positions on the outer periphery of the wafer held in the table imaged by the imaging means.
The processing apparatus characterized by this is provided.

上記投影手段は、テーブルの外周部に形成された3個以上の貫通孔からなる。また、貫通孔には、透過性を有する材料からなる投影部材が埋設されている。   The projection means includes three or more through holes formed on the outer peripheral portion of the table. In addition, a projection member made of a material having permeability is embedded in the through hole.

本発明による加工装置においては、円形を呈するウエーハを保持する保持手段は、ウエーハを吸引保持する吸引保持部と該吸引保持部を囲繞する外周部とを有するテーブルと、該テーブルを回転する回転駆動機構とを備え、テーブルに保持されたウエーハの外周部を撮像する撮像手段と、テーブルを挟んで撮像手段と対向して配設された発光手段と、テーブルの外周部に形成され発光手段が発する光を透過して吸引保持部に保持されたウエーハの外周を撮像手段に投影する投影手段と、撮像手段によって撮像されたテーブルに保持されたウエーハの外周の少なくとも3個所の座標値に基づいてテーブルに保持されたウエーハの中心位置を算出する制御手段とを具備しているので、ウエーハの表面に保護膜が被覆されている場合やウエーハの表面に特殊加工が施されている場合であってもテーブル上に保持されたウエーハの外周を認識して確実にウエーハの中心を求めることができる。   In the processing apparatus according to the present invention, the holding means for holding the circular wafer includes a table having a suction holding portion for sucking and holding the wafer and an outer peripheral portion surrounding the suction holding portion, and a rotational drive for rotating the table. An imaging means for imaging the outer peripheral portion of the wafer held by the table, a light emitting means disposed opposite to the imaging means across the table, and a light emitting means formed on the outer peripheral portion of the table. Projection means for projecting the outer periphery of the wafer held by the suction holding portion through the light onto the imaging means, and a table based on the coordinate values of at least three locations on the outer circumference of the wafer held by the table imaged by the imaging means And a control means for calculating the center position of the wafer held on the wafer. It is possible to obtain the center of reliably wafer recognize periphery of the held wafer on when a there be a table where the special processing is applied to.

本発明に従って構成された加工装置としてのレーザー加工装置の斜視図。The perspective view of the laser processing apparatus as a processing apparatus comprised according to this invention. 図1に示すレーザー加工装置に装備される保持手段の斜視図。The perspective view of the holding means with which the laser processing apparatus shown in FIG. 1 is equipped. 図2に示す保持手段の構成部材を分解して示す斜視図。The perspective view which decomposes | disassembles and shows the structural member of the holding means shown in FIG. 図2に示す保持手段を構成するテーブルの断面図。Sectional drawing of the table which comprises the holding means shown in FIG. 図1に示すレーザー加工装置に装備される制御手段のブロック構成図。The block block diagram of the control means with which the laser processing apparatus shown in FIG. 1 is equipped. ウエーハとしての半導体ウエーハの斜視図。The perspective view of the semiconductor wafer as a wafer. 図6に示す半導体ウエーハを環状のフレームに装着されたダイシングテープに貼着した状態を示す斜視図。The perspective view which shows the state which affixed the semiconductor wafer shown in FIG. 6 on the dicing tape with which the cyclic | annular flame | frame was mounted | worn. 図2に示す保持手段を構成するテーブルに保持された半導体ウエーハの中心位置を求める方法を示す説明図。FIG. 3 is an explanatory view showing a method for obtaining the center position of a semiconductor wafer held on a table constituting the holding means shown in FIG. 2.

以下、本発明による加工装置の好適な実施形態について、添付図面を参照して、更に詳細に説明する。   Hereinafter, a preferred embodiment of a processing apparatus according to the present invention will be described in more detail with reference to the accompanying drawings.

図1には、本発明に従って構成された加工装置としてのレーザー加工装置の斜視図が示されている。図1に示すレーザー加工装置は、静止基台2と、該静止基台2に矢印Xで示す加工送り方向(X軸方向)に移動可能に配設され被加工物を保持する被加工物保持機構3と、静止基台2にX軸方向と直交する矢印Yで示す割り出し送り方向(Y軸方向)に移動可能に配設されたレーザー光線照射ユニット支持機構5と、該レーザー光線照射ユニット支持機構5に矢印Zで示す集光点位置調整方向(Z軸方向)に移動可能に配設されたレーザー光線照射ユニット6とを具備している。   FIG. 1 is a perspective view of a laser processing apparatus as a processing apparatus configured according to the present invention. The laser processing apparatus shown in FIG. 1 has a stationary base 2 and a workpiece holding unit that is disposed on the stationary base 2 so as to be movable in a machining feed direction (X-axis direction) indicated by an arrow X and holds the workpiece. A mechanism 3, a laser beam irradiation unit support mechanism 5 disposed on the stationary base 2 so as to be movable in an indexing feed direction (Y axis direction) indicated by an arrow Y orthogonal to the X axis direction, and the laser beam irradiation unit support mechanism 5 And a laser beam irradiation unit 6 disposed so as to be movable in a condensing point position adjustment direction (Z-axis direction) indicated by an arrow Z.

上記被加工物保持機構3は、静止基台2上に加工送り方向(X軸方向)に移動せしめる加工送り手段に沿って平行に配設された一対の案内レール31、31と、該案内レール31、31上にX軸方向に移動可能に配設された第1の滑動ブロック32と、該第1の滑動ブロック32上にY軸方向に移動可能に配設された第2の滑動ブロック33と、該第2の滑動ブロック33上に円筒部材34によって支持されたカバーテーブル35と、被加工物を保持する保持手段4を具備している。   The workpiece holding mechanism 3 includes a pair of guide rails 31 and 31 arranged in parallel along a processing feed means for moving the stationary base 2 in the processing feed direction (X-axis direction), and the guide rails. A first sliding block 32 disposed on the first sliding block 32 so as to be movable in the X-axis direction, and a second sliding block 33 disposed on the first sliding block 32 so as to be movable in the Y-axis direction. A cover table 35 supported by a cylindrical member 34 on the second sliding block 33, and a holding means 4 for holding the workpiece.

上記第1の滑動ブロック32は、その下面に上記一対の案内レール31、31と嵌合する一対の被案内溝321、321が設けられているとともに、その上面にY軸方向に沿って平行に形成された一対の案内レール322、322が設けられている。このように構成された第1の滑動ブロック32は、被案内溝321、321が一対の案内レール31、31に嵌合することにより、一対の案内レール31、31に沿ってX軸方向に移動可能に構成される。図示の実施形態における被加工物保持機構3は、第1の滑動ブロック32を一対の案内レール31、31に沿ってX軸方向に移動させるための加工送り手段37を具備している。この加工送り手段37は、上記一対の案内レール31と31の間に平行に配設された雄ネジロッド371と、該雄ネジロッド371を回転駆動するためのパルスモータ372等の駆動源を含んでいる。雄ネジロッド371は、その一端が上記静止基台2に固定された軸受ブロック373に回転自在に支持されており、その他端が上記パルスモータ372の出力軸に伝動連結されている。なお、雄ネジロッド371は、第1の滑動ブロック32の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ372によって雄ネジロッド371を正転および逆転駆動することにより、第1の滑動ブロック32は案内レール31、31に沿ってX軸方向に移動せしめられる。   The first sliding block 32 has a pair of guided grooves 321 and 321 fitted to the pair of guide rails 31 and 31 on the lower surface thereof, and is parallel to the upper surface along the Y-axis direction. A pair of formed guide rails 322 and 322 are provided. The first sliding block 32 configured in this way moves in the X-axis direction along the pair of guide rails 31, 31 when the guided grooves 321, 321 are fitted into the pair of guide rails 31, 31. Configured to be possible. The workpiece holding mechanism 3 in the illustrated embodiment includes a processing feed means 37 for moving the first sliding block 32 in the X-axis direction along the pair of guide rails 31, 31. The processing feed means 37 includes a male screw rod 371 disposed in parallel between the pair of guide rails 31 and 31, and a drive source such as a pulse motor 372 for rotationally driving the male screw rod 371. . One end of the male screw rod 371 is rotatably supported by a bearing block 373 fixed to the stationary base 2, and the other end is connected to the output shaft of the pulse motor 372 by transmission. The male screw rod 371 is screwed into a penetrating female screw hole formed in a female screw block (not shown) provided on the lower surface of the central portion of the first sliding block 32. Therefore, when the male screw rod 371 is driven forward and backward by the pulse motor 372, the first sliding block 32 is moved along the guide rails 31, 31 in the X-axis direction.

図示の実施形態におけるレーザー加工装置は、上記保持手段4の加工送り量即ちX軸方向位置を検出するためのX軸方向位置検出手段374を備えている。X軸方向位置検出手段374は、案内レール31に沿って配設されたリニアスケール374aと、第1の滑動ブロック32に配設され第1の滑動ブロック32とともにリニアスケール374aに沿って移動する読み取りヘッド374bとからなっている。このX軸方向位置検出手段374の読み取りヘッド374bは、図示の実施形態においては1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして後述する制御手段は、入力したパルス信号をカウントすることにより、保持手段4の加工送り量即ちX軸方向の位置を検出する。なお、上記加工送り手段37の駆動源としてパルスモータ372を用いた場合には、パルスモータ372に駆動信号を出力する後述する制御手段の駆動パルスをカウントすることにより、保持手段4の加工送り量即ちX軸方向の位置を検出することもできる。   The laser processing apparatus in the illustrated embodiment includes X-axis direction position detection means 374 for detecting the processing feed amount of the holding means 4, that is, the X-axis direction position. The X-axis direction position detecting means 374 is a linear scale 374a disposed along the guide rail 31, and a reading that is disposed along the linear scale 374a together with the first sliding block 32 disposed along the first sliding block 32. It consists of a head 374b. In the illustrated embodiment, the reading head 374b of the X-axis direction position detecting means 374 sends a pulse signal of one pulse every 1 μm to the control means described later. Then, the control means, which will be described later, detects the machining feed amount of the holding means 4, that is, the position in the X-axis direction, by counting the input pulse signals. When the pulse motor 372 is used as the drive source for the machining feed means 37, the machining feed amount of the holding means 4 is counted by counting the drive pulses of the control means to be described later that outputs a drive signal to the pulse motor 372. That is, the position in the X-axis direction can also be detected.

上記第2の滑動ブロック33は、その下面に上記第1の滑動ブロック32の上面に設けられた一対の案内レール322、322と嵌合する一対の被案内溝331、331が設けられており、この被案内溝331、331を一対の案内レール322、322に嵌合することにより、Y軸方向に移動可能に構成される。図示の実施形態における被加工物保持機構3は、第2の滑動ブロック33を第1の滑動ブロック32に設けられた一対の案内レール322、322に沿ってY軸方向に移動させるための第1の割り出し送り手段38を具備している。この第1の割り出し送り手段38は、上記一対の案内レール322と322の間に平行に配設された雄ネジロッド381と、該雄ネジロッド381を回転駆動するためのパルスモータ382等の駆動源を含んでいる。雄ネジロッド381は、その一端が上記第1の滑動ブロック32の上面に固定された軸受ブロック383に回転自在に支持されており、その他端が上記パルスモータ382の出力軸に伝動連結されている。なお、雄ネジロッド381は、第2の滑動ブロック33の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ382によって雄ネジロッド381を正転および逆転駆動することにより、第2の滑動ブロック33は案内レール322、322に沿ってY軸方向に移動せしめられる。   The second sliding block 33 is provided with a pair of guided grooves 331 and 331 which are fitted to a pair of guide rails 322 and 322 provided on the upper surface of the first sliding block 32 on the lower surface thereof. By fitting the guided grooves 331 and 331 to the pair of guide rails 322 and 322, the guided grooves 331 and 331 are configured to be movable in the Y-axis direction. The workpiece holding mechanism 3 in the illustrated embodiment is a first for moving the second slide block 33 in the Y-axis direction along a pair of guide rails 322 and 322 provided in the first slide block 32. The indexing and feeding means 38 is provided. The first index feed means 38 includes a drive source such as a male screw rod 381 disposed in parallel between the pair of guide rails 322 and 322 and a pulse motor 382 for rotationally driving the male screw rod 381. Contains. One end of the male screw rod 381 is rotatably supported by a bearing block 383 fixed to the upper surface of the first slide block 32, and the other end is connected to the output shaft of the pulse motor 382. The male screw rod 381 is screwed into a through female screw hole formed in a female screw block (not shown) provided on the lower surface of the center portion of the second sliding block 33. Therefore, the second sliding block 33 is moved in the Y-axis direction along the guide rails 322 and 322 by driving the male screw rod 381 forward and backward by the pulse motor 382.

図示の実施形態におけるレーザー加工装置は、上記第2の滑動ブロック33の割り出し加工送り量即ちY軸方向位置を検出するためのY軸方向位置検出手段384を備えている。このY軸方向位置検出手段384は、案内レール322に沿って配設されたリニアスケール384aと、第2の滑動ブロック33に配設され第2の滑動ブロック33とともにリニアスケール384aに沿って移動する読み取りヘッド384bとからなっている。このY軸方向位置検出手段384の読み取りヘッド384bは、図示の実施形態においては1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして後述する制御手段は、入力したパルス信号をカウントすることにより、保持手段4の割り出し送り量即ちY軸方向の位置を検出する。なお、上記第1の割り出し送り手段38の駆動源としてパルスモータ382を用いた場合には、パルスモータ382に駆動信号を出力する後述する制御手段の駆動パルスをカウントすることにより、保持手段4の割り出し送り量即ちY軸方向の位置を検出することもできる。   The laser processing apparatus in the illustrated embodiment includes Y-axis direction position detecting means 384 for detecting the indexing processing feed amount of the second sliding block 33, that is, the Y-axis direction position. The Y-axis direction position detecting means 384 moves along the linear scale 384a together with the linear scale 384a disposed along the guide rail 322 and the second sliding block 33. And a reading head 384b. In the illustrated embodiment, the reading head 384b of the Y-axis direction position detecting means 384 sends a pulse signal of one pulse every 1 μm to the control means described later. Then, the control means, which will be described later, detects the index feed amount of the holding means 4, that is, the position in the Y-axis direction, by counting the input pulse signals. In the case where the pulse motor 382 is used as the drive source of the first index feed means 38, the drive means of the holding means 4 is counted by counting the drive pulses of the control means to be described later which outputs a drive signal to the pulse motor 382. It is also possible to detect the index feed amount, that is, the position in the Y-axis direction.

次に、上記被加工物を保持する保持手段4について、図2乃至図4を参照して説明する。
保持手段4は、図3に示すように被加工物である円形状のウエーハを保持するテーブル41と、該テーブル41の下面に接続された回転軸42と、該回転軸42を回転可能に支持する支持ハウジング43を具備している。テーブル41は、図4に示すようにステンレス鋼等の金属材によって円板状に形成されており、上面に円形の嵌合凹部411が形成されており、この嵌合凹部411の底面外周部に環状の載置棚412が設けられている。そして、嵌合凹部411に無数の吸引孔を備えたポーラスなセラミックス等からなる多孔性部材によって形成された吸引保持部としての吸着チャック413が嵌合される。このように構成されたテーブル41は、吸着チャック413からなる吸引保持部と該吸着チャック413からなる吸引保持部を囲繞する外周部410を有している。また、テーブル41には、上記嵌合凹部411に開口するとともに回転軸42に開口する連通路421が設けられており、この連通路421が図示しない吸引手段に連通されている。回転軸42は支持ハウジング43に回転可能に支持され、図3に示すように支持ハウジング43内に配設された回転駆動機構44によって回転せしめられる。なお、テーブル41の下面には、図2および図3に示すように4個のクランプ45が適宜の固定手段によって取付けられている。
Next, the holding means 4 for holding the workpiece will be described with reference to FIGS.
As shown in FIG. 3, the holding means 4 has a table 41 for holding a circular wafer as a workpiece, a rotating shaft 42 connected to the lower surface of the table 41, and a rotating shaft 42 that rotatably supports the rotating shaft 42. A support housing 43 is provided. As shown in FIG. 4, the table 41 is formed in a disk shape with a metal material such as stainless steel, and a circular fitting recess 411 is formed on the upper surface, and a bottom outer peripheral portion of the fitting recess 411 is formed. An annular mounting shelf 412 is provided. Then, a suction chuck 413 as a suction holding portion formed by a porous member made of porous ceramics or the like having countless suction holes is fitted in the fitting recess 411. The table 41 configured as described above has a suction holding portion made of the suction chuck 413 and an outer peripheral portion 410 surrounding the suction holding portion made of the suction chuck 413. The table 41 is provided with a communication passage 421 that opens to the fitting recess 411 and opens to the rotary shaft 42. The communication passage 421 communicates with suction means (not shown). The rotation shaft 42 is rotatably supported by the support housing 43 and is rotated by a rotation drive mechanism 44 disposed in the support housing 43 as shown in FIG. As shown in FIGS. 2 and 3, four clamps 45 are attached to the lower surface of the table 41 by appropriate fixing means.

上述した保持手段4を構成するテーブル41の外周部410には、上記吸引保持部としての吸着チャック413との境界部に上下方向に貫通する投影手段としての複数(図示の実施形態においては7個)の貫通孔410aが形成されている。この貫通孔410aは、1か所を除いて互に45度の間隔をおいて設けられている。貫通孔410aには、ガラス等の透過性を有する材料からなる投影部材46が埋設されている。保持手段4を構成する支持ハウジング43には、図3に示すように上記投影手段としての貫通孔410aが通過する下方位置にLED等からなる発光手段47が配設されている。   In the outer peripheral portion 410 of the table 41 constituting the holding means 4 described above, a plurality (7 in the illustrated embodiment) as projection means penetrating vertically in the boundary portion with the suction chuck 413 as the suction holding portion. ) Through-hole 410a. The through-holes 410a are provided at intervals of 45 degrees except for one place. A projection member 46 made of a transparent material such as glass is embedded in the through hole 410a. In the support housing 43 constituting the holding means 4, as shown in FIG. 3, a light emitting means 47 made of LEDs or the like is disposed at a lower position through which the through hole 410 a as the projection means passes.

図1に戻って説明を続けると、上記レーザー光線照射ユニット支持機構5は、静止基台2上にY軸方向に沿って平行に配設された一対の案内レール51、51と、該案内レール51、51上に矢印Yで示す方向に移動可能に配設された可動支持基台52を具備している。この可動支持基台52は、案内レール51、51上に移動可能に配設された移動支持部521と、該移動支持部521に取り付けられた装着部522とからなっている。装着部522は、一側面にZ軸方向に延びる一対の案内レール523、523が平行に設けられている。図示の実施形態におけるレーザー光線照射ユニット支持機構5は、可動支持基台52を一対の案内レール51、51に沿ってY軸方向に移動させるための第2の割り出し送り手段53を具備している。この第2の割り出し送り手段53は、上記一対の案内レール51、51の間に平行に配設された雄ネジロッド531と、該雄ネジロッド531を回転駆動するためのパルスモータ532等の駆動源を含んでいる。雄ネジロッド531は、その一端が上記静止基台2に固定された図示しない軸受ブロックに回転自在に支持されており、その他端が上記パルスモータ532の出力軸に伝動連結されている。なお、雄ネジロッド531は、可動支持基台52を構成する移動支持部521の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された雌ネジ穴に螺合されている。このため、パルスモータ532によって雄ネジロッド531を正転および逆転駆動することにより、可動支持基台52は案内レール51、51に沿ってY軸方向に移動せしめられる。   Referring back to FIG. 1, the laser beam irradiation unit support mechanism 5 includes a pair of guide rails 51, 51 disposed in parallel along the Y-axis direction on the stationary base 2, and the guide rail 51. , 51 is provided with a movable support base 52 disposed so as to be movable in a direction indicated by an arrow Y. The movable support base 52 includes a movement support portion 521 that is movably disposed on the guide rails 51, 51, and a mounting portion 522 that is attached to the movement support portion 521. The mounting portion 522 is provided with a pair of guide rails 523 and 523 extending in the Z-axis direction on one side surface in parallel. The laser beam irradiation unit support mechanism 5 in the illustrated embodiment includes a second index feeding means 53 for moving the movable support base 52 along the pair of guide rails 51 and 51 in the Y-axis direction. The second index feeding means 53 includes a drive source such as a male screw rod 531 disposed in parallel between the pair of guide rails 51 and 51 and a pulse motor 532 for rotating the male screw rod 531. Contains. One end of the male screw rod 531 is rotatably supported by a bearing block (not shown) fixed to the stationary base 2, and the other end is connected to the output shaft of the pulse motor 532. The male screw rod 531 is screwed into a female screw hole formed in a female screw block (not shown) provided on the lower surface of the central portion of the moving support portion 521 constituting the movable support base 52. Therefore, the movable support base 52 is moved along the guide rails 51 and 51 in the Y-axis direction by driving the male screw rod 531 forward and backward by the pulse motor 532.

図示の実施形態のおけるレーザー光線照射ユニット6は、ユニットホルダ61と、該ユニットホルダ61に取り付けられたレーザー光線照射手段62を具備している。ユニットホルダ61は、上記装着部522に設けられた一対の案内レール523、523に摺動可能に嵌合する一対の被案内溝611、611が設けられており、この被案内溝611、611を上記案内レール523、523に嵌合することにより、Z軸方向に移動可能に支持される。   The laser beam irradiation unit 6 in the illustrated embodiment includes a unit holder 61 and laser beam irradiation means 62 attached to the unit holder 61. The unit holder 61 is provided with a pair of guided grooves 611 and 611 that are slidably fitted to a pair of guide rails 523 and 523 provided in the mounting portion 522. By being fitted to the guide rails 523 and 523, the guide rails 523 and 523 are supported so as to be movable in the Z-axis direction.

図示の実施形態におけるレーザー光線照射ユニット6は、ユニットホルダ61を一対の案内レール523、523に沿ってZ軸方向に移動させるための集光点位置調整手段63を具備している。集光点位置調整手段63は、一対の案内レール523、523の間に配設された雄ネジロッド(図示せず)と、該雄ネジロッドを回転駆動するためのパルスモータ632等の駆動源を含んでおり、パルスモータ632によって図示しない雄ネジロッドを正転および逆転駆動することにより、ユニットホルダ61およびレーザー光線照射手段62を案内レール523、523に沿ってZ軸方向に移動せしめる。なお、図示の実施形態においてはパルスモータ632を正転駆動することによりレーザー光線照射手段62を上方に移動し、パルスモータ632を逆転駆動することによりレーザー光線照射手段62を下方に移動するようになっている。   The laser beam irradiation unit 6 in the illustrated embodiment includes a condensing point position adjusting unit 63 for moving the unit holder 61 along the pair of guide rails 523 and 523 in the Z-axis direction. The condensing point position adjusting unit 63 includes a male screw rod (not shown) disposed between the pair of guide rails 523 and 523 and a driving source such as a pulse motor 632 for rotationally driving the male screw rod. Thus, the unit holder 61 and the laser beam irradiation means 62 are moved along the guide rails 523 and 523 in the Z-axis direction by driving the male screw rod (not shown) in the forward and reverse directions by the pulse motor 632. In the illustrated embodiment, the laser beam irradiation means 62 is moved upward by driving the pulse motor 632 forward, and the laser beam irradiation means 62 is moved downward by driving the pulse motor 632 in the reverse direction. Yes.

上記レーザー光線照射手段62は、実質上水平に配置された円筒形状のケーシング621を含んでいる。ケーシング621内には図示しないYAGレーザー発振器或いはYVO4レーザー発振器からなるパルスレーザー光線発振器や繰り返し周波数設定手段を備えたパルスレーザー光線発振手段が配設されている。上記ケーシング621の先端部には、パルスレーザー光線発振手段から発振されたパルスレーザー光線を集光するための集光器624が装着されている。   The laser beam irradiation means 62 includes a cylindrical casing 621 disposed substantially horizontally. In the casing 621, a pulse laser beam oscillation means including a pulse laser beam oscillator and a repetition frequency setting means (not shown) including a YAG laser oscillator or a YVO4 laser oscillator are arranged. A condenser 624 for condensing the pulse laser beam oscillated from the pulse laser beam oscillating means is attached to the tip of the casing 621.

上記レーザー光線照射手段62を構成するケーシング621の先端部には、レーザー光線照射手段62によってレーザー加工すべき加工領域を検出する撮像手段7が配設されている。この撮像手段7は、顕微鏡やCCDカメラ等の光学手段からなっており、撮像した画像信号を後述する制御手段に送る。   An imaging means 7 for detecting a processing region to be laser processed by the laser beam irradiation means 62 is disposed at the tip of the casing 621 constituting the laser beam irradiation means 62. The image pickup means 7 is composed of optical means such as a microscope and a CCD camera, and sends the picked-up image signal to a control means described later.

図示の実施形態におけるレーザー加工装置は、図5に示す制御手段8を具備している。制御手段8はコンピュータによって構成されており、制御プログラムに従って演算処理する中央処理装置(CPU)81と、制御プログラム等を格納するリードオンリメモリ(ROM)82と、演算結果等を格納する読み書き可能なランダムアクセスメモリ(RAM)83と、カウンター84と、入力インターフェース85および出力インターフェース86とを備えている。制御手段8の入力インターフェース85には、上記X軸方向位置検出手段374、Y軸方向位置検出手段384、撮像手段7等からの検出信号が入力される。そして、制御手段8の出力インターフェース86からは、上記パルスモータ372、パルスモータ382、パルスモータ532、回転駆動機構44、発光手段47等に制御信号を出力する。   The laser processing apparatus in the illustrated embodiment includes a control means 8 shown in FIG. The control means 8 is constituted by a computer, and a central processing unit (CPU) 81 that performs arithmetic processing according to a control program, a read-only memory (ROM) 82 that stores a control program and the like, and a readable and writable memory that stores arithmetic results and the like. A random access memory (RAM) 83, a counter 84, an input interface 85 and an output interface 86 are provided. Detection signals from the X-axis direction position detection unit 374, the Y-axis direction position detection unit 384, the imaging unit 7 and the like are input to the input interface 85 of the control unit 8. A control signal is output from the output interface 86 of the control means 8 to the pulse motor 372, the pulse motor 382, the pulse motor 532, the rotation drive mechanism 44, the light emitting means 47, and the like.

図示の実施形態におけるレーザー加工装置は以上のように構成されており、以下保持手段4のテーブル41上に保持された被加工物としてのウエーハの中心位置を求める方法について説明する。
図6には、被加工物としてのウエーハとしての半導体ウエーハ10の斜視図が示されている。図6に示す半導体ウエーハ10は、シリコンウエーハからなり表面10aに格子状に配列された複数のストリート101によって複数の領域が区画され、この区画された領域にIC、LSI等のデバイス102が形成されている。このように形成された半導体ウエーハ10は、図7の(a)および(b)に示すように環状のフレームFの内側開口部を覆うように外周部が装着されたダイシングテープTの表面に裏面10bを貼着する(ウエーハ支持工程)。
The laser processing apparatus in the illustrated embodiment is configured as described above, and a method for obtaining the center position of the wafer as the workpiece held on the table 41 of the holding means 4 will be described below.
FIG. 6 shows a perspective view of a semiconductor wafer 10 as a wafer as a workpiece. A semiconductor wafer 10 shown in FIG. 6 is made of a silicon wafer, and a plurality of areas are defined by a plurality of streets 101 arranged in a lattice pattern on a surface 10a, and devices 102 such as ICs and LSIs are formed in the partitioned areas. ing. The semiconductor wafer 10 thus formed has a back surface on the surface of the dicing tape T having an outer peripheral portion mounted so as to cover the inner opening of the annular frame F as shown in FIGS. 7 (a) and 7 (b). 10b is attached (wafer supporting step).

上述したウエーハ支持工程を実施したならば、図1に示すレーザー加工装置のテーブル41上に半導体ウエーハ10のダイシングテープT側を載置する。そして、図示しない吸引手段を作動することにより、ダイシングテープTを介して半導体ウエーハ10を保持手段4のテーブル41上に吸引保持する(ウエーハ保持工程)。従って、保持手段4のテーブル41に保持された半導体ウエーハ10は、表面10aが上側となる。なお、ダイシングテープTが装着されている環状のフレームFは、保持手段4に配設されたクランプ45によって固定される。   When the wafer support process described above is performed, the dicing tape T side of the semiconductor wafer 10 is placed on the table 41 of the laser processing apparatus shown in FIG. Then, by operating a suction means (not shown), the semiconductor wafer 10 is sucked and held on the table 41 of the holding means 4 via the dicing tape T (wafer holding process). Therefore, the surface 10a of the semiconductor wafer 10 held on the table 41 of the holding means 4 is on the upper side. The annular frame F on which the dicing tape T is mounted is fixed by a clamp 45 disposed on the holding means 4.

上述したようにウエーハ保持工程を実施したならば、加工送り手段37を作動して保持手段4を撮像手段7の直下に移動し、図8の(a)で示すようにテーブル41に保持された半導体ウエーハ10のA点を発光手段47の直上に位置付ける。このようにして位置付けられたテーブル41の回転中心(P)の座標値を(x0,y0)とし、テーブル41に保持された半導体ウエーハ10の中心(Pa)の座標値を(x0´,y0´)とし、テーブル41の回転中心(P)と半導体ウエーハ10の中心(Pa)との間隔を(r)とし、X軸と(r)とのなす角度を(θ)とすると、(x0´)は下記数式1によって求められ、(y0´)は、下記数式2によって求められる。   When the wafer holding step is performed as described above, the processing feeding means 37 is operated to move the holding means 4 directly below the imaging means 7 and held on the table 41 as shown in FIG. A point A of the semiconductor wafer 10 is positioned immediately above the light emitting means 47. The coordinate value of the rotation center (P) of the table 41 positioned in this way is set as (x0, y0), and the coordinate value of the center (Pa) of the semiconductor wafer 10 held in the table 41 is set as (x0 ′, y0 ′). ), The distance between the rotation center (P) of the table 41 and the center (Pa) of the semiconductor wafer 10 is (r), and the angle between the X axis and (r) is (θ), (x0 ′) Is obtained by the following equation 1, and (y0 ′) is obtained by the following equation 2.

上記図8の(a)で示す状態で発光手段47を点灯し投影部材46を介して半導体ウエーハ10のA点部を投影するとともに、撮像手段7によって投影された画像を撮像する。そして、撮像手段7は撮像した画像信号を制御手段8に送る。制御手段8は、撮像手段7から送られた画像信号に基づいて半導体ウエーハ10のA点の座標値(x1,y1)を求め、ランダムアクセスメモリ(RAM)83に格納する。   In the state shown in FIG. 8A, the light emitting means 47 is turned on to project the point A of the semiconductor wafer 10 through the projection member 46, and the image projected by the imaging means 7 is taken. Then, the imaging unit 7 sends the captured image signal to the control unit 8. The control means 8 obtains the coordinate value (x1, y1) of the point A of the semiconductor wafer 10 based on the image signal sent from the imaging means 7 and stores it in the random access memory (RAM) 83.

次に、図8の(a)で示す状態からテーブル41を矢印で示す方向に90度回転し、図8の(b)で示すように半導体ウエーハ10のB点部を発光手段47の直上に位置付ける。次に、発光手段47を点灯し投影部材46を介して半導体ウエーハ10のB点部を投影するとともに、撮像手段7によって投影された画像を撮像する。そして、撮像手段7は撮像した画像信号を制御手段8に送る。制御手段8は、撮像手段7から送られた画像信号に基づいて半導体ウエーハ10のB点の座標値(x2,y2)を求め、ランダムアクセスメモリ(RAM)83に格納する。   Next, the table 41 is rotated 90 degrees in the direction indicated by the arrow from the state shown in FIG. 8A, and the point B of the semiconductor wafer 10 is directly above the light emitting means 47 as shown in FIG. 8B. Position. Next, the light emitting unit 47 is turned on to project the point B of the semiconductor wafer 10 through the projection member 46 and the image projected by the imaging unit 7 is captured. Then, the imaging unit 7 sends the captured image signal to the control unit 8. The control means 8 obtains the coordinate value (x2, y2) of point B of the semiconductor wafer 10 based on the image signal sent from the imaging means 7 and stores it in the random access memory (RAM) 83.

次に、図8の(b)で示す状態からテーブル41を矢印で示す方向に90度回転し、図8の(c)で示すように半導体ウエーハ10のC点部を発光手段47の直上に位置付ける。次に、発光手段47を点灯し投影部材46を介して半導体ウエーハ10のC点部を投影するとともに、撮像手段7によって投影された画像を撮像する。そして、撮像手段7は撮像した画像信号を制御手段8に送る。制御手段8は、撮像手段7から送られた画像信号に基づいて半導体ウエーハ10のC点の座標値(x3,y3)を求め、ランダムアクセスメモリ(RAM)83に格納する。   Next, the table 41 is rotated 90 degrees in the direction indicated by the arrow from the state shown in FIG. 8B, and the point C of the semiconductor wafer 10 is directly above the light emitting means 47 as shown in FIG. Position. Next, the light emitting unit 47 is turned on to project the point C of the semiconductor wafer 10 through the projection member 46 and the image projected by the imaging unit 7 is captured. Then, the imaging unit 7 sends the captured image signal to the control unit 8. The control means 8 obtains the coordinate value (x3, y3) of the C point of the semiconductor wafer 10 based on the image signal sent from the imaging means 7 and stores it in the random access memory (RAM) 83.

上記数式1と数式2およびA点の座標値(x1,y1)とB点の座標値(x2,y2)とC点の座標値(x3,y3)から下記数式3および数式4が成り立つ。   From the above Equations 1 and 2, the coordinate values (x1, y1) of the A point, the coordinate values (x2, y2) of the B point, and the coordinate values (x3, y3) of the C point, the following Equations 3 and 4 are established.

上記数式1、数式2、数式3、数式4からテーブル41に保持された半導体ウエーハ10の中心(Pa)を(x0´,y0´)を求め、下記数式5によって半導体ウエーハ10の半径(R)を求めることができる。   The center (Pa) of the semiconductor wafer 10 held in the table 41 is obtained from the above Equation 1, Equation 2, Equation 3, and Equation 4 to obtain (x0 ′, y0 ′), and the radius (R) of the semiconductor wafer 10 is obtained by Equation 5 below. Can be requested.

以上のように、図示の実施形態におけるレーザー加工装置においては、保持手段4のテーブル41に保持された半導体ウエーハ10の外周部を撮像する撮像手段7と、テーブル41を挟んで撮像手段7と対向して配設された発光手段47と、テーブル41の外周部に形成され発光手段47が発する光を透過してテーブル41に保持された半導体ウエーハ10の外周を撮像手段7に投影する投影部材46と、制御手段8を具備し、制御手段8が撮像手段7によって撮像されたテーブル41に保持された半導体ウエーハ10の外周におけるA点の座標値(x1,y1)とB点の座標値(x2,y2)とC点の座標値(x3,y3)に基づいてテーブル41に保持された半導体ウエーハ10の中心位置を算出するので、半導体ウエーハ10の表面に保護膜が被覆されている場合や半導体ウエーハ10の表面に特殊加工が施されている場合であってもテーブル41上に保持された半導体ウエーハ10の外周を認識して確実に半導体ウエーハ10の中心を求めることができる。   As described above, in the laser processing apparatus in the illustrated embodiment, the imaging unit 7 that images the outer peripheral portion of the semiconductor wafer 10 held by the table 41 of the holding unit 4, and the imaging unit 7 that faces the table 41 are sandwiched. And a projection member 46 that projects the outer periphery of the semiconductor wafer 10 held on the table 41 through the light emitted from the light emitting unit 47 and formed on the outer periphery of the table 41. The control means 8 is provided, and the control means 8 has coordinate values (x1, y1) of the point A and coordinate values (x2) of the point B on the outer periphery of the semiconductor wafer 10 held in the table 41 imaged by the imaging means 7. , y2) and the coordinate value (x3, y3) of the C point, the center position of the semiconductor wafer 10 held on the table 41 is calculated. Therefore, when the surface of the semiconductor wafer 10 is covered with a protective film or half Guidance Surface special processing of the wafer 10 can obtain the center of the outer peripheral recognize reliably semiconductor wafer 10 of semiconductor wafer 10 held also on the table 41 in a case that is applied.

以上のようにしてテーブル41上に保持された半導体ウエーハ10の中心を求めることにより、レーザー加工を実施する際にはX軸方向位置検出手段374とY軸方向位置検出手段384からの信号に基づいてテーブル41上に保持された半導体ウエーハ10における予め設定された加工すべき領域に確実にレーザー加工を施すことができる。   By obtaining the center of the semiconductor wafer 10 held on the table 41 as described above, the laser processing is performed based on signals from the X-axis direction position detecting means 374 and the Y-axis direction position detecting means 384. Thus, laser processing can be reliably performed on a predetermined region to be processed in the semiconductor wafer 10 held on the table 41.

以上、本発明をレーザー加工装置に適用した例を示したが、本発明は保持手段に保持されたウエーハをストリートに沿って切削する切削装置等の他の加工装置に適用することができる。   As mentioned above, although the example which applied this invention to the laser processing apparatus was shown, this invention can be applied to other processing apparatuses, such as a cutting apparatus which cuts the wafer hold | maintained at the holding means along a street.

2:静止基台
3:被加工物保持機構
37:加工送り手段
38:第1の割り出し送り手段
4:保持手段
41:テーブル
42:回転軸
413:吸着チャック
44:回転駆動機構
46:投影部材
5:レーザー光線照射ユニット支持機構
53:第2の割り出し送り手段
6:レーザー光線照射ユニット
62:レーザー光線照射手段
624:集光器
63:集光点位置調整手段
7:撮像手段
8:制御手段
10:半導体ウエーハ
F:環状のフレーム
T:ダイシングテープ
2: Stationary base 3: Workpiece holding mechanism 37: Processing feed means 38: First indexing feed means 4: Holding means 41: Table 42: Rotating shaft 413: Suction chuck 44: Rotation drive mechanism 46: Projection member 5 : Laser beam irradiation unit support mechanism 53: Second indexing and feeding means 6: Laser beam irradiation unit 62: Laser beam irradiation means 624: Condenser 63: Condensing point position adjusting means 7: Imaging means 8: Control means 10: Semiconductor wafer F : Ring frame T: Dicing tape

Claims (3)

円形を呈するウエーハを保持する保持手段と、該保持手段に保持されたウエーハに加工を施す加工手段と、該保持手段と該加工手段とを加工送り方向に相対的に加工送りする加工送り手段と、を具備する加工装置において、
該保持手段は、ウエーハを吸引保持する吸引保持部と該吸引保持部を囲繞する外周部とを有するテーブルと、該テーブルを回転する回転駆動機構とを備え、
該テーブルに保持されたウエーハの外周部を撮像する撮像手段と、
該テーブルを挟んで該撮像手段と対向して配設された発光手段と、
該テーブルの該外周部に形成され該発光手段が発する光を透過して該吸引保持部に保持されたウエーハの外周を該撮像手段に投影する投影手段と、
該撮像手段によって撮像された該テーブルに保持されたウエーハの外周の少なくとも3個所の座標値に基づいて該テーブルに保持されたウエーハの中心位置を算出する制御手段と、を具備している、
ことを特徴とする加工装置。
A holding means for holding a wafer having a circular shape, a processing means for processing the wafer held by the holding means, and a processing feed means for processing and feeding the holding means and the processing means relative to each other in the processing feed direction; In a processing apparatus comprising:
The holding means includes a table having a suction holding portion for sucking and holding the wafer, an outer peripheral portion surrounding the suction holding portion, and a rotation drive mechanism for rotating the table.
Imaging means for imaging the outer periphery of the wafer held on the table;
Light emitting means disposed opposite the imaging means across the table;
A projecting unit configured to project the outer periphery of the wafer formed on the outer peripheral portion of the table and transmitted from the light emitting unit and held by the suction holding unit onto the imaging unit;
Control means for calculating the center position of the wafer held in the table based on the coordinate values of at least three positions on the outer periphery of the wafer held in the table imaged by the imaging means.
A processing apparatus characterized by that.
該投影手段は、該テーブルの外周部に形成された3個以上の貫通孔からなる、請求項1記載の加工装置。   The processing apparatus according to claim 1, wherein the projection unit includes three or more through holes formed in an outer peripheral portion of the table. 該貫通孔には、透過性を有する材料からなる投影部材が埋設されている、請求項2記載の加工装置。   The processing apparatus according to claim 2, wherein a projection member made of a permeable material is embedded in the through hole.
JP2012203514A 2012-09-14 2012-09-14 Processing equipment Active JP6204008B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012203514A JP6204008B2 (en) 2012-09-14 2012-09-14 Processing equipment
KR1020130109330A KR102008532B1 (en) 2012-09-14 2013-09-11 Machining apparatus
CN201310415097.8A CN103659002B (en) 2012-09-14 2013-09-12 Processing unit (plant)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203514A JP6204008B2 (en) 2012-09-14 2012-09-14 Processing equipment

Publications (2)

Publication Number Publication Date
JP2014060224A true JP2014060224A (en) 2014-04-03
JP6204008B2 JP6204008B2 (en) 2017-09-27

Family

ID=50298438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203514A Active JP6204008B2 (en) 2012-09-14 2012-09-14 Processing equipment

Country Status (3)

Country Link
JP (1) JP6204008B2 (en)
KR (1) KR102008532B1 (en)
CN (1) CN103659002B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046138A (en) * 2016-09-14 2018-03-22 株式会社ディスコ Processing device
JP2018126830A (en) * 2017-02-09 2018-08-16 株式会社ディスコ Processing system
JP2019195015A (en) * 2018-05-01 2019-11-07 株式会社ディスコ Processing device
KR20200029352A (en) 2018-09-10 2020-03-18 가부시기가이샤 디스코 Machining apparatus
US20210370465A1 (en) * 2020-05-26 2021-12-02 Disco Corporation Grinding method of bonded workpiece obtained by bonding transparent components or semitransparent components to each other
DE102023200634A1 (en) 2022-02-02 2023-08-03 Disco Corporation PROCESSING DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635860B2 (en) * 2016-04-07 2020-01-29 株式会社ディスコ Processing method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378055A (en) * 1986-09-20 1988-04-08 Fujitsu Ltd Micropattern detector
JPH11295046A (en) * 1998-04-09 1999-10-29 Mitsutoyo Corp Machining tool, optical measuring apparatus using the same and machining equipment provided therewith
JPH11330013A (en) * 1998-05-20 1999-11-30 Tokyo Seimitsu Co Ltd Pattern image pickup device for wafer
JP2004200643A (en) * 2002-10-24 2004-07-15 Lintec Corp Alignment device
JP2004349416A (en) * 2003-05-21 2004-12-09 Nikon Corp Method of manufacturing mems
JP2007298500A (en) * 2006-04-03 2007-11-15 Matsushita Electric Ind Co Ltd Rotational angle detector
JP2008053341A (en) * 2006-08-23 2008-03-06 Disco Abrasive Syst Ltd Wafer processing method
JP2008109015A (en) * 2006-10-27 2008-05-08 Disco Abrasive Syst Ltd Method and apparatus for dividing semiconductor wafer
JP2009021317A (en) * 2007-07-11 2009-01-29 Disco Abrasive Syst Ltd Alignment method of machining device
JP2009253091A (en) * 2008-04-08 2009-10-29 Lintec Corp Alignment device
JP2010186863A (en) * 2009-02-12 2010-08-26 Disco Abrasive Syst Ltd Aligning mechanism, working device and aligning method
JP2011054715A (en) * 2009-09-01 2011-03-17 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2012119489A (en) * 2010-11-30 2012-06-21 Takata Corp Mounting table apparatus for processing object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264488A (en) * 1995-03-22 1996-10-11 Nec Corp Wafer scribing apparatus and method
JP4479402B2 (en) * 2004-07-29 2010-06-09 株式会社デンソー Dicing line positioning method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378055A (en) * 1986-09-20 1988-04-08 Fujitsu Ltd Micropattern detector
JPH11295046A (en) * 1998-04-09 1999-10-29 Mitsutoyo Corp Machining tool, optical measuring apparatus using the same and machining equipment provided therewith
JPH11330013A (en) * 1998-05-20 1999-11-30 Tokyo Seimitsu Co Ltd Pattern image pickup device for wafer
JP2004200643A (en) * 2002-10-24 2004-07-15 Lintec Corp Alignment device
JP2004349416A (en) * 2003-05-21 2004-12-09 Nikon Corp Method of manufacturing mems
JP2007298500A (en) * 2006-04-03 2007-11-15 Matsushita Electric Ind Co Ltd Rotational angle detector
JP2008053341A (en) * 2006-08-23 2008-03-06 Disco Abrasive Syst Ltd Wafer processing method
JP2008109015A (en) * 2006-10-27 2008-05-08 Disco Abrasive Syst Ltd Method and apparatus for dividing semiconductor wafer
JP2009021317A (en) * 2007-07-11 2009-01-29 Disco Abrasive Syst Ltd Alignment method of machining device
JP2009253091A (en) * 2008-04-08 2009-10-29 Lintec Corp Alignment device
JP2010186863A (en) * 2009-02-12 2010-08-26 Disco Abrasive Syst Ltd Aligning mechanism, working device and aligning method
JP2011054715A (en) * 2009-09-01 2011-03-17 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2012119489A (en) * 2010-11-30 2012-06-21 Takata Corp Mounting table apparatus for processing object

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046138A (en) * 2016-09-14 2018-03-22 株式会社ディスコ Processing device
JP2018126830A (en) * 2017-02-09 2018-08-16 株式会社ディスコ Processing system
JP2019195015A (en) * 2018-05-01 2019-11-07 株式会社ディスコ Processing device
JP7061012B2 (en) 2018-05-01 2022-04-27 株式会社ディスコ Processing equipment
KR20200029352A (en) 2018-09-10 2020-03-18 가부시기가이샤 디스코 Machining apparatus
JP2020043186A (en) * 2018-09-10 2020-03-19 株式会社ディスコ Processing device
US11031277B2 (en) 2018-09-10 2021-06-08 Disco Corporation Processing apparatus
KR102491740B1 (en) 2018-09-10 2023-01-25 가부시기가이샤 디스코 Machining apparatus
US20210370465A1 (en) * 2020-05-26 2021-12-02 Disco Corporation Grinding method of bonded workpiece obtained by bonding transparent components or semitransparent components to each other
US11577363B2 (en) * 2020-05-26 2023-02-14 Disco Corporation Grinding method of bonded workpiece obtained by bonding transparent components or semitransparent components to each other
DE102023200634A1 (en) 2022-02-02 2023-08-03 Disco Corporation PROCESSING DEVICE

Also Published As

Publication number Publication date
JP6204008B2 (en) 2017-09-27
CN103659002B (en) 2017-03-29
CN103659002A (en) 2014-03-26
KR102008532B1 (en) 2019-08-07
KR20140035839A (en) 2014-03-24

Similar Documents

Publication Publication Date Title
JP6204008B2 (en) Processing equipment
JP5980504B2 (en) Wafer processing method and laser processing apparatus
US9789567B2 (en) Laser beam spot shape detection method
JP5154838B2 (en) Laser processing equipment
JP5122880B2 (en) Alignment method for laser processing equipment
US7655541B2 (en) Wafer processing method and laser processing apparatus
JP5192213B2 (en) Laser processing equipment
JP6215730B2 (en) Wafer center detection method in processing equipment
JP6138503B2 (en) Chuck table
KR20130012557A (en) Method for detecting laser beam spot shape
JP5902490B2 (en) Laser beam spot shape detection method and spot shape detection device
JP4786997B2 (en) Laser processing equipment
JP5722071B2 (en) Semiconductor device manufacturing method and laser processing apparatus
JP2013237097A (en) Modified layer forming method
JP2010145230A (en) Height position measuring device of workpiece held on chuck table
JP2015099026A (en) Detector
JP6013894B2 (en) Laser processing equipment
JP5940783B2 (en) Processing method of plate
JP5872814B2 (en) Displacement detection method and laser processing apparatus
JP2013141683A (en) Condensing spot position detecting method of laser beam machining apparatus
KR20130005227A (en) Sapphire substrate processing method
JP2013173160A (en) Laser beam machining method and laser beam machining apparatus
JP2007149743A (en) Laser-machining method for wafer
JP5829455B2 (en) Processing equipment
JP2012192415A (en) Laser processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170831

R150 Certificate of patent or registration of utility model

Ref document number: 6204008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250