JP2014041767A - Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack - Google Patents

Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack Download PDF

Info

Publication number
JP2014041767A
JP2014041767A JP2012183614A JP2012183614A JP2014041767A JP 2014041767 A JP2014041767 A JP 2014041767A JP 2012183614 A JP2012183614 A JP 2012183614A JP 2012183614 A JP2012183614 A JP 2012183614A JP 2014041767 A JP2014041767 A JP 2014041767A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
aqueous electrolyte
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012183614A
Other languages
Japanese (ja)
Inventor
Akira Fujiwara
亮 藤原
Tsubasa Kagata
翼 加賀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012183614A priority Critical patent/JP2014041767A/en
Publication of JP2014041767A publication Critical patent/JP2014041767A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a negative electrode plate for a nonaqueous electrolyte secondary battery, causing no runout of a nonaqueous electrolyte even after charge and discharge are repeated, so that cycle characteristics are not deteriorated; a nonaqueous electrolyte secondary battery; and a battery pack using the negative electrode plate and the nonaqueous electrolyte secondary battery.SOLUTION: A negative electrode plate for a nonaqueous electrolyte secondary battery includes a negative electrode collector and one or two or more negative electrode active material layers provided on the negative electrode collector. A resin layer capable of absorbing and discharging a nonaqueous electrolyte is provided between the negative electrode collector and the negative electrode active material layers or between the mutual negative electrode active material layers.

Description

本発明は、非水電解液二次電池用負極板、非水電解液二次電池、および電池パックに関する。   The present invention relates to a negative electrode plate for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a battery pack.

リチウムイオン二次電池等に代表される非水電解液二次電池は、高エネルギー密度、高電圧を有し、また充放電時にいわゆるメモリ効果と呼ばれる完全に放電させる前に電池の充電を行なうと次第に電池容量が減少していく現象が無いことから、携帯機器、ノート型パソコン、ポータブル機器など様々な分野で用いられている。   A non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery has a high energy density and a high voltage, and when the battery is charged before being completely discharged, which is called a memory effect at the time of charge / discharge. Since there is no phenomenon in which the battery capacity gradually decreases, it is used in various fields such as portable devices, notebook computers, and portable devices.

現在、地球温暖化防止の対策として、世界規模でCO2排出抑制の取り組みが行われているなかで、石油依存度を低減し、低環境負荷で走行可能とすることで、CO2削減に大いに寄与することができるプラグインハイブリッド自動車、電気自動車に代表される次世代クリーンエネルギー自動車の開発・普及が急務とされている。これらの次世代クリーンエネルギー自動車の駆動力として非水電解液二次電池を利用することができれば、ガソリンに依存する必要がなく、CO2削減に大いに寄与することができ、地球温暖化防止に大いに貢献することができる。一方で、次世代クリーンエネルギー自動車の駆動力として二次電池が利用されるためには、長期にわたって安定的な使用が可能であることが必要とされている。 Currently, as a measure to prevent global warming, efforts to reduce CO 2 emissions are being carried out on a global scale. By reducing the dependence on oil and allowing it to travel with a low environmental load, it can greatly reduce CO 2 emissions. There is an urgent need to develop and promote next-generation clean energy vehicles represented by plug-in hybrid vehicles and electric vehicles that can contribute. If non-aqueous electrolyte secondary batteries can be used as the driving force for these next-generation clean energy vehicles, there is no need to rely on gasoline, which can greatly contribute to CO 2 reduction and greatly prevent global warming. Can contribute. On the other hand, in order for a secondary battery to be used as a driving force for a next-generation clean energy vehicle, it is required that the battery can be used stably over a long period of time.

現在、各種の提案がされている非水電解液二次電池は、正極板、負極板、セパレータ、及び非水電解液から構成される。正極板としては、金属箔などの集電体表面に、正極活物質粒子が固着されてなる正極活物質層を備えるものが一般的である。また負極板としては、銅やアルミニウムなどの集電体表面に、各種炭素材料を含む負極活物質粒子が固着されてなる負極活物質層を備えるものが一般的である(例えば、特許文献1)。   Currently, various proposals of non-aqueous electrolyte secondary batteries include a positive electrode plate, a negative electrode plate, a separator, and a non-aqueous electrolyte solution. The positive electrode plate is generally provided with a positive electrode active material layer in which positive electrode active material particles are fixed to the surface of a current collector such as a metal foil. Moreover, as a negative electrode plate, what is equipped with the negative electrode active material layer by which the negative electrode active material particle | grains containing various carbon materials adhere to the collector surface, such as copper and aluminum, is common (for example, patent document 1). .

また、近年においては、負極活物質としてケイ素(Si)系の材料やスズ(Sn)系の材料を用いることが検討されている。これらの材料は炭素系の材料に比べて理論容量が高いことが知られており、近時の非水電解液二次電池の高容量化に対する要請に伴い、注目が高まりつつある。   In recent years, it has been studied to use a silicon (Si) -based material or a tin (Sn) -based material as a negative electrode active material. These materials are known to have a higher theoretical capacity than carbon-based materials, and attention is increasing with the recent demand for higher capacity of non-aqueous electrolyte secondary batteries.

特開2006−310010号公報JP 2006-310010 A

ところで、前記ケイ素(Si)系の材料やスズ(Sn)系の材料を用いた負極活物質に、リチウムイオン等のアルカリ金属イオンが電気化学的に挿入されると、負極活物質の体積は充電前の体積の3〜4倍程度まで膨張し、放電時には充電前の体積まで収縮する。したがって、これらの材料を用いた負極活物質が含まれる非水電解液二次電池においては、充放電を繰り返すことにより負極活物質も膨張収縮を繰り返すこととなる。   By the way, when an alkali metal ion such as lithium ion is electrochemically inserted into the negative electrode active material using the silicon (Si) material or the tin (Sn) material, the volume of the negative electrode active material is charged. It expands to about 3 to 4 times the previous volume, and contracts to the volume before charging during discharging. Therefore, in a non-aqueous electrolyte secondary battery including a negative electrode active material using these materials, the negative electrode active material repeatedly expands and contracts by repeating charge and discharge.

そうすると、膨張収縮の繰り返しにより、ケイ素(Si)系の材料やスズ(Sn)系の材料を用いた負極活物質層に微細なクラックが生じることがあり、毛細管現象によって当該クラック中に非水電解液が入り込み、さらに、当該クラック中において非水電解液に含まれている溶媒や溶質(アルカリ金属イオン)と負極活物質とが反応し、負極の表面にSEI(Solid Electrolyte Interface)被膜が形成されることとなる。そして、この一連の流れによって、非水電解液の全体量が減少し、いわゆる液涸れが生じ、非水電解液二次電池のサイクル特性が低下するおそれがある。   Then, by repeated expansion and contraction, a fine crack may be generated in the negative electrode active material layer using a silicon (Si) -based material or a tin (Sn) -based material, and non-aqueous electrolysis is generated in the crack due to a capillary phenomenon. The liquid enters, and further, the solvent or solute (alkali metal ion) contained in the non-aqueous electrolyte in the crack reacts with the negative electrode active material, and a SEI (Solid Electrolyte Interface) film is formed on the surface of the negative electrode. The Rukoto. This series of flows reduces the total amount of the non-aqueous electrolyte, causing so-called liquid dripping, and possibly reducing the cycle characteristics of the non-aqueous electrolyte secondary battery.

本発明は、このような状況下に鑑みてなされたものであり、充放電を繰り返しても、非水電解液の液涸れが生じることがなく、よってサイクル特性が低下しない非水電解液二次電池用負極板、非水電解液二次電池および、これらを用いた電池パックを提供することを主たる課題とする。   The present invention has been made in view of such a situation, and even if charging and discharging are repeated, the non-aqueous electrolyte does not spill and therefore the cycle characteristics do not deteriorate. It is a main subject to provide a negative electrode plate for a battery, a non-aqueous electrolyte secondary battery, and a battery pack using these.

上記課題を解決するための本発明は、負極集電体と、前記負極集電体上に設けられる1または2以上の負極活物質層とを含む非水電解液二次電池用負極板であって、前記負極集電体と前記負極活物質層との間、または前記負極活物質層同士の間には、非水電解液を吸収し、かつ放出することが可能な樹脂層が設けられていることを特徴とする。   The present invention for solving the above problems is a negative electrode plate for a non-aqueous electrolyte secondary battery including a negative electrode current collector and one or more negative electrode active material layers provided on the negative electrode current collector. In addition, a resin layer capable of absorbing and releasing a non-aqueous electrolyte is provided between the negative electrode current collector and the negative electrode active material layer or between the negative electrode active material layers. It is characterized by being.

また、上記の発明にあっては、前記樹脂層の非水電解液に対する膨潤度が20%以上であってもよい。   In the above invention, the degree of swelling of the resin layer with respect to the non-aqueous electrolyte may be 20% or more.

上記課題を解決するための別の発明は、正極板と、負極板と、セパレータと、非水電解液とを含む非水電解液二次電池であって、前記負極板は、負極集電体と、前記負極集電体上に設けられる1または2以上の負極活物質層とを含み、前記負極集電体と前記負極活物質層との間、または前記負極活物質層同士の間には、非水電解液を吸収し、かつ放出することが可能な樹脂層が設けられていることを特徴とする。   Another invention for solving the above problem is a non-aqueous electrolyte secondary battery including a positive electrode plate, a negative electrode plate, a separator, and a non-aqueous electrolyte, wherein the negative electrode plate is a negative electrode current collector. And one or more negative electrode active material layers provided on the negative electrode current collector, between the negative electrode current collector and the negative electrode active material layer, or between the negative electrode active material layers. A resin layer capable of absorbing and releasing the non-aqueous electrolyte is provided.

さらに、上記課題を解決するための別の発明は、収納ケースと、正極端子および負極端子を備える非水電解液二次電池と、過充電および過放電保護機能を有する保護回路とを少なくとも備え、前記収納ケースに非水電解液二次電池および前記保護回路が収納されて構成される電池パックであって、前記非水電解液二次電池は、正極板と、負極板と、セパレータと、非水電解液とを含み、前記負極板は、負極集電体と、前記負極集電体上に設けられる1または2以上の負極活物質層とを含み、前記負極集電体と前記負極活物質層との間、または前記負極活物質層同士の間には、非水電解液を吸収し、かつ放出することが可能な樹脂層が設けられていることを特徴とする。   Furthermore, another invention for solving the above-described problem includes at least a storage case, a nonaqueous electrolyte secondary battery including a positive electrode terminal and a negative electrode terminal, and a protection circuit having an overcharge and overdischarge protection function, A battery pack configured to store the nonaqueous electrolyte secondary battery and the protection circuit in the storage case, wherein the nonaqueous electrolyte secondary battery includes a positive electrode plate, a negative electrode plate, a separator, A negative electrode current collector and one or more negative electrode active material layers provided on the negative electrode current collector, the negative electrode current collector and the negative electrode active material. A resin layer capable of absorbing and releasing a non-aqueous electrolyte is provided between the layers or between the negative electrode active material layers.

本発明の非水電解液二次電池用負極板によれば、前記負極集電体と前記負極活物質層との間、または前記負極活物質層同士の間に、非水電解液を吸収し、かつ放出することが可能な樹脂層が設けられているため、当該樹脂層中に非水電解液を貯蔵しておくことができる。したがって、充放電が繰り返され、負極活物質層が膨張収縮を繰り返し、クラックが生じた場合であっても、当該樹脂層中に貯蔵された非水電解液が染み出し、供給されるので、いわゆる液涸れを防止することができる。また、本発明の二次電池用負極板を用いた二次電池、電池パックにあっても前記と同様の効果を奏することができる。   According to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte is absorbed between the negative electrode current collector and the negative electrode active material layer or between the negative electrode active material layers. And since the resin layer which can be discharge | released is provided, the non-aqueous electrolyte can be stored in the said resin layer. Therefore, even when charge and discharge are repeated, the negative electrode active material layer repeatedly expands and contracts, and cracks occur, the nonaqueous electrolyte stored in the resin layer oozes out and is supplied, so-called Liquid dripping can be prevented. In addition, the same effects as described above can be obtained even in a secondary battery or a battery pack using the secondary battery negative electrode plate of the present invention.

本願の実施形態にかかる非水電解液二次電池用負極板の構成を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the structure of the negative electrode plate for nonaqueous electrolyte secondary batteries concerning embodiment of this application. 他の実施形態にかかる非水電解液二次電池用負極板の構成を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the structure of the negative electrode plate for nonaqueous electrolyte secondary batteries concerning other embodiment. 他の実施形態にかかる非水電解液二次電池用負極板の構成を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the structure of the negative electrode plate for nonaqueous electrolyte secondary batteries concerning other embodiment. 実施形態にかかる非水電解液二次電池を示す概略図である。It is the schematic which shows the nonaqueous electrolyte secondary battery concerning embodiment. 実施形態にかかる電池パックを示す概略分解図である。1 is a schematic exploded view showing a battery pack according to an embodiment.

以下、本発明の非水電解液二次電池用負極板、当該非水電解液二次電池用負極板を用いた非水電解液二次電池、及び電池パックについて説明する。   Hereinafter, the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, the nonaqueous electrolyte secondary battery using the negative electrode plate for the nonaqueous electrolyte secondary battery, and a battery pack will be described.

<<非水電解液二次電池用負極板>>
図1は、本願の実施形態にかかる非水電解液二次電池用負極板10(本発明の負極板10という場合もある。)の構成を説明するための概略断面図である。
<< Non-aqueous electrolyte secondary battery negative electrode plate >>
FIG. 1 is a schematic cross-sectional view for explaining the configuration of a negative electrode plate 10 for a nonaqueous electrolyte secondary battery according to an embodiment of the present application (sometimes referred to as the negative electrode plate 10 of the present invention).

図1に示すように、本願の実施形態にかかる非水電解液二次電池用負極板10は、負極集電体1と、負極集電体1上に設けられる負極活物質層2と、を含み、負極集電体1と負極活物質層2との間には、非水電解液を吸収し、かつ放出することが可能な樹脂層3が設けられている。   As shown in FIG. 1, a negative electrode plate 10 for a non-aqueous electrolyte secondary battery according to an embodiment of the present application includes a negative electrode current collector 1 and a negative electrode active material layer 2 provided on the negative electrode current collector 1. In addition, a resin layer 3 capable of absorbing and releasing the non-aqueous electrolyte is provided between the negative electrode current collector 1 and the negative electrode active material layer 2.

このように、非水電解液を吸収し、かつ放出することが可能な樹脂層3を設けることにより、当該非水電解液二次電池用負極板10を用いて電池を構成した場合に、当該樹脂層3中に非水電解液を吸収せしめ、これを貯蔵しておくことが可能となる。そして、充放電が繰り返された結果、負極活物質層2にクラックが生じた場合であっても、樹脂層3に吸収されている、換言すれば貯蔵されている非水電解液を放出することにより、当該クラック中に非水電解液を供給することができるので、非水電解液の液涸れを防止することができる。   Thus, by providing the resin layer 3 capable of absorbing and releasing the non-aqueous electrolyte, when the battery is configured using the negative electrode plate 10 for the non-aqueous electrolyte secondary battery, The non-aqueous electrolyte can be absorbed in the resin layer 3 and stored. Even when the negative electrode active material layer 2 is cracked as a result of repeated charge and discharge, the non-aqueous electrolyte stored in the resin layer 3, in other words, stored, is discharged. Thus, since the non-aqueous electrolyte can be supplied into the crack, the non-aqueous electrolyte can be prevented from dripping.

また、本実施形態にかかる非水電解液二次電池用負極板10においては、上記の作用効果を奏する樹脂層3が負極集電体1と負極活物質層2との間に設けられており、当該位置は負極活物質層2に非常に近い位置であるため、非水電解液の供給を素早く行うことができ、クラック中でSEI(Solid Electrolyte Interface)被膜を素早く形成することができる点でも優位である。   Moreover, in the negative electrode plate 10 for a non-aqueous electrolyte secondary battery according to the present embodiment, the resin layer 3 having the above-described effects is provided between the negative electrode current collector 1 and the negative electrode active material layer 2. Since the position is very close to the negative electrode active material layer 2, the non-aqueous electrolyte can be supplied quickly, and a SEI (Solid Electrolyte Interface) film can be formed quickly in the crack. It is an advantage.

以下に、このような非水電解液二次電池用負極板10の各構成について具体的に説明する。   Below, each structure of the negative electrode plate 10 for such nonaqueous electrolyte secondary batteries is demonstrated concretely.

<負極集電体>
負極集電体1について特に限定はなく、非水電解液二次電池用負極板に用いられる従来公知の負極集電体を適宜選択して用いることができる。例えば、アルミニウム箔、ニッケル箔、銅箔などの単体又は合金から形成された負極集電体を好ましく用いることができる。また、ここでいう負極集電体1には、その表面に導電性を担保するための物質が積層されたものや、何らかの表面処理がなされたものも含まれる。その表面に表面加工処理がなされている負極集電体1としては、導電性物質が集電機能を有する材料の表面に積層された負極集電体、化学研磨処理、コロナ処理、酸素プラズマ処理がなされた負極集電体等が挙げられる。すなわち、負極集電体1には、集電機能を有する材料のみから形成される集電体のみならず、その表面に導電性を担保するための物質が積層されたものや、何らかの表面処理がなされたものも含まれる。
<Negative electrode current collector>
There is no limitation in particular about the negative electrode collector 1, The conventionally well-known negative electrode collector used for the negative electrode plate for nonaqueous electrolyte secondary batteries can be selected suitably, and can be used. For example, a negative electrode current collector formed of a simple substance such as an aluminum foil, a nickel foil, or a copper foil or an alloy can be preferably used. In addition, the negative electrode current collector 1 herein includes one in which a material for ensuring conductivity is laminated on the surface thereof, and one in which some surface treatment is performed. As the negative electrode current collector 1 whose surface is processed on the surface, a negative electrode current collector in which a conductive substance is laminated on the surface of a material having a current collecting function, chemical polishing treatment, corona treatment, oxygen plasma treatment are used. Examples thereof include a negative electrode current collector made. That is, the negative electrode current collector 1 includes not only a current collector formed of only a material having a current collecting function, but also a surface in which a substance for ensuring conductivity is laminated, or some surface treatment. Also included are those made.

負極集電体1の厚みは、非水電解液二次電池用負極板の負極集電体として使用可能な厚みであれば特に限定されないが、5〜200μmであることが好ましく、10〜50μmであることがより好ましい。   The thickness of the negative electrode current collector 1 is not particularly limited as long as it is a thickness that can be used as a negative electrode current collector of a negative electrode plate for a non-aqueous electrolyte secondary battery, but is preferably 5 to 200 μm, preferably 10 to 50 μm. More preferably.

<負極活物質層>
図1に示す負極板10においては、負極活物質層2は一層のみからなる単層構造であるが、これに限定されることはなく、複数の負極活物質層2、2・・・を直接または間接的に積層した積層構造であってもよい。積層構造の場合については後述する。
<Negative electrode active material layer>
In the negative electrode plate 10 shown in FIG. 1, the negative electrode active material layer 2 has a single-layer structure composed of only one layer, but is not limited to this, and a plurality of negative electrode active material layers 2, 2. Alternatively, a laminated structure in which layers are indirectly laminated may be used. The case of the laminated structure will be described later.

負極活物質層2は、負極活物質粒子とバインダーとを含む。   The negative electrode active material layer 2 includes negative electrode active material particles and a binder.

(負極活物質粒子)
負極活物質層2に含まれる負極活物質粒子としては、特に限定されることはなく、非水電解液二次電池の分野において用いられる従来公知のものを適宜選択して用いることができる。例えば、天然黒鉛、人造黒鉛、アモルファス炭素、カーボンブラック、またはこれらの成分に異種元素を添加した炭素材料や、金属リチウム及びその合金、スズ、ケイ素及びそれらの合金や、スズ、ケイ素、チタンコバルトの酸化物、マンガン、鉄、コバルトの窒化物など、アルカリ金属イオンを吸蔵放出可能な材料を挙げることができる。
(Negative electrode active material particles)
The negative electrode active material particles contained in the negative electrode active material layer 2 are not particularly limited, and conventionally known particles used in the field of non-aqueous electrolyte secondary batteries can be appropriately selected and used. For example, natural graphite, artificial graphite, amorphous carbon, carbon black, carbon materials obtained by adding different elements to these components, metallic lithium and its alloys, tin, silicon and their alloys, tin, silicon, titanium cobalt Examples thereof include materials capable of occluding and releasing alkali metal ions, such as oxides, manganese, iron, and cobalt nitrides.

中でも、本実施形態では、炭素材料と比較して理論容量の高いケイ素、スズ、およびこれらの合金、あるいはこれらの酸化物、すなわちケイ素系材料またはスズ系材料を、負極活物質粒子として好適に用いることができる。これらの材料を負極活物質粒子として用いた負極板では、アルカリ金属イオンが電気的に挿入されると、その体積が3〜4倍程度に膨張する可能性があるが、本実施形態の負極板10においては、樹脂層3が設けられているため、非水電解液の液涸れが発生することがなく、よってサイクル特性が低下することもないからである。   Among these, in the present embodiment, silicon, tin, and alloys thereof having a higher theoretical capacity than carbon materials, or oxides thereof, that is, silicon-based materials or tin-based materials are preferably used as negative electrode active material particles. be able to. In a negative electrode plate using these materials as negative electrode active material particles, when alkali metal ions are electrically inserted, the volume of the negative electrode plate may expand to about 3 to 4 times. In No. 10, since the resin layer 3 is provided, the non-aqueous electrolyte does not spill and therefore the cycle characteristics are not deteriorated.

上記ケイ素の合金としては、ケイ素とケイ素以外の元素との合金を挙げることができる。ケイ素以外の元素としては、例えば、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Sn、Ti等を挙げることができる。スズの合金としては、スズとスズ以外の元素との合金を挙げることができる。スズ以外の元素としては、Ni、Mg、Fe、Cu、Ti等を挙げることができる。これら、ケイ素、スズと合金をなす元素は、1種を単独で使用してもよく、2種以上を組み合わせて使用することもできる。   Examples of the silicon alloy include an alloy of silicon and an element other than silicon. Examples of elements other than silicon include Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti. Examples of tin alloys include alloys of tin and elements other than tin. Examples of elements other than tin include Ni, Mg, Fe, Cu, and Ti. These elements forming an alloy with silicon and tin may be used alone or in combination of two or more.

負極活物質粒子の形状についても特に限定はなく、例えば、鱗片形状、扁平形状、紡錘形状、球状のものを用いることができる。また、負極活物質粒子の粒子についても特に限定はなく、設計される負極活物質層2の厚みなどを勘案して、任意の大きさのものを適宜選択して使用することができる。ただし、負極活物質粒子の粒子径が小さいほど、単位重量当たりの表面積を増大し、レート特性の向上を図ることができる。したがって、より高いレート特性を求める場合には、負極活物質粒子は、粒子径の寸法の小さいもの、具体的には、10μm未満であることが好ましく、5μm以下、特には1μm以下が好ましい。   The shape of the negative electrode active material particles is not particularly limited, and for example, a scale shape, a flat shape, a spindle shape, or a spherical shape can be used. Further, the particles of the negative electrode active material particles are not particularly limited, and those having an arbitrary size can be appropriately selected and used in consideration of the thickness of the designed negative electrode active material layer 2 and the like. However, as the particle diameter of the negative electrode active material particles is smaller, the surface area per unit weight can be increased and the rate characteristics can be improved. Therefore, when higher rate characteristics are required, the negative electrode active material particles have a small particle diameter, specifically less than 10 μm, preferably 5 μm or less, and particularly preferably 1 μm or less.

負極活物質粒子の粒子径は、レーザー回折/散乱式粒度分布測定により測定される平均粒子径(体積中位粒径:D50)である。また、負極活物質の粒子径は、測定された電子顕微鏡観察結果のデータを粒子認識ツールを用いて識別し、認識された粒子の画像から取得した形状データをもとに粒度分布のグラフを作成し、この粒度分布のグラフから算出することができる。粒度分布のグラフは、例えば、電子顕微鏡観察結果を画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、MAC VIEW)を用いて作成可能である。   The particle diameter of the negative electrode active material particles is an average particle diameter (volume median particle diameter: D50) measured by laser diffraction / scattering particle size distribution measurement. In addition, the particle size of the negative electrode active material is determined by identifying the measured electron microscope observation data using a particle recognition tool and creating a particle size distribution graph based on the shape data obtained from the recognized particle image. The particle size distribution can be calculated from the graph. The particle size distribution graph can be created, for example, by using an image analysis type particle size distribution measurement software (manufactured by Mount Tech Co., Ltd., MAC VIEW) based on an electron microscope observation result.

また、本実施形態の負極板10における電池特性は、負極活物質層2に含まれる負極活物質粒子の合計量等に応じて決定される。したがって、この点を考慮して、負極活物質粒子の材料、及び含有量を決定すればよく、負極活物質粒子の材料や、含有量について特に限定はない。   Further, the battery characteristics in the negative electrode plate 10 of the present embodiment are determined according to the total amount of negative electrode active material particles contained in the negative electrode active material layer 2 and the like. Therefore, considering this point, the material and content of the negative electrode active material particles may be determined, and the material and content of the negative electrode active material particles are not particularly limited.

負極活物質層2の厚さについても特に限定されることはなく、適宜設計可能であるが、例えば、50μm以下とすることが好ましい。このような範囲とすることで、負極活物質層2と負極集電体1との距離を短くすることができ、負極板10のインピーダンスを下げることができる。   The thickness of the negative electrode active material layer 2 is not particularly limited, and can be designed as appropriate. For example, the thickness is preferably 50 μm or less. By setting it as such a range, the distance of the negative electrode active material layer 2 and the negative electrode electrical power collector 1 can be shortened, and the impedance of the negative electrode plate 10 can be reduced.

(バインダー)
負極活物質層2にはバインダーが含まれており、当該バインダーにより負極活物質粒子が固着せしめられている。バインダーの種類について特に限定はなく、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフッ化ビニリデン樹脂等を使用することができる。中でも、ポリイミド樹脂や、ポリアミドイミド樹脂は、密着力や引張強度が高く、かつ耐久性の高い点で、負極活物質粒子同士を固着させるのに好適である。なお、これら以外の樹脂等をバインダーとして使用可能であることは言うまでもなく、従来公知のあらゆる樹脂等を使用可能である。
(binder)
The negative electrode active material layer 2 contains a binder, and the negative electrode active material particles are fixed by the binder. There is no limitation in particular about the kind of binder, A polyimide resin, a polyamideimide resin, a polyvinylidene fluoride resin, etc. can be used. Among these, polyimide resins and polyamideimide resins are suitable for fixing the negative electrode active material particles to each other in terms of high adhesion and tensile strength and high durability. In addition, it cannot be overemphasized that resin other than these can be used as a binder, and all conventionally well-known resin etc. can be used.

(任意の成分)
負極活物質層2は、上記負極活物質粒子およびバインダーのみならず、必要に応じてこれら以外の成分が含まれていてもよい。例えば、より優れた導電性が望まれる場合などには、導電材を使用することとしてもよい。
(Optional ingredients)
The negative electrode active material layer 2 may contain not only the negative electrode active material particles and the binder but also other components as necessary. For example, when better conductivity is desired, a conductive material may be used.

<樹脂層>
上述の通り、本実施形態に係る負極板10にあっては、負極集電体1と負極活物質層2との間に、非水電解液を吸収し、かつこれを放出することが可能な樹脂層3が設けられている点に特徴を有している。
<Resin layer>
As described above, in the negative electrode plate 10 according to the present embodiment, it is possible to absorb and release the nonaqueous electrolytic solution between the negative electrode current collector 1 and the negative electrode active material layer 2. It is characterized in that the resin layer 3 is provided.

このような樹脂層3としては、所定量の非水電解液を吸収することができ、これを放出することが可能な、換言すれば非水電解液を一時的に貯蔵することができる樹脂であればよい。例えば、非水電解液に対する膨潤度が20%以上であるような樹脂を用いることが好ましく、膨潤度が40%以上であればさらに好ましく、膨潤度が100%を超えるような樹脂が最も好ましい。非水電解液に対する膨潤度が20%よりも小さい場合、非水電解液の吸収および放出が不十分となってしまう場合が想定されるからである。一方で、膨潤度が40%を超える場合、特に100%を超える場合には、非水電解液の吸収および放出をするにあたり充分な貯蔵量であると考えられる。なお、非水電解液に対する膨潤度の上限については、樹脂が非水電解液を一時的に貯蔵できる限り特に限定されないが、一般な樹脂であれば概ね300%以下であると考えられる。   Such a resin layer 3 is a resin that can absorb and release a predetermined amount of nonaqueous electrolyte, in other words, a resin that can temporarily store the nonaqueous electrolyte. I just need it. For example, it is preferable to use a resin having a degree of swelling of 20% or more with respect to the non-aqueous electrolyte, more preferably a degree of swelling of 40% or more, and most preferably a resin having a degree of swelling exceeding 100%. This is because when the degree of swelling with respect to the non-aqueous electrolyte is smaller than 20%, it may be assumed that the non-aqueous electrolyte is not sufficiently absorbed and released. On the other hand, when the degree of swelling exceeds 40%, particularly when it exceeds 100%, it is considered that the amount of storage is sufficient for absorbing and releasing the non-aqueous electrolyte. The upper limit of the degree of swelling with respect to the non-aqueous electrolyte solution is not particularly limited as long as the resin can temporarily store the non-aqueous electrolyte solution, but it is considered to be approximately 300% or less for a general resin.

ここで、本願における非水電解液に対する膨潤度とは、JIS K 7114(2001年、プラスチック−液体薬品への浸漬効果を求める試験方法)に準拠した方法により測定された値である。具体的には、非水電解液保持材としてのシート(1mm厚)を準備し、これを充分な量の非水電解液に常温で7日間浸漬せしめ、その後、シート表面に付着した非水電解液を直ちに拭き取り、質量(M2)を測定する。そして、浸漬前のシートの質量(M1)に対する浸漬後の質量(M2)の質量変化率Mを、次式により算出した値である。
M=(M2−M1)/M1×100
Here, the degree of swelling with respect to the non-aqueous electrolyte in the present application is a value measured by a method based on JIS K 7114 (2001, a test method for determining an immersion effect in plastic liquid chemicals). Specifically, a sheet (1 mm thickness) as a non-aqueous electrolyte holding material is prepared, and this is immersed in a sufficient amount of non-aqueous electrolyte at room temperature for 7 days, and then non-aqueous electrolysis adhered to the sheet surface. The liquid is wiped off immediately and the mass (M2) is measured. And the mass change rate M of the mass (M2) after immersion with respect to the mass (M1) of the sheet | seat before immersion is the value computed by following Formula.
M = (M2-M1) / M1 × 100

当該樹脂層3に用いることが可能な樹脂としては、例えば、ポリフッ化ビニリデン、PVDF−HFP(ポリフッ化ビニリデンとヘキサフルオロポリプロピレンの共重合体)、ポリアクリロニトリル、ポリエチレンオキサイドなどを挙げることができる。   Examples of the resin that can be used for the resin layer 3 include polyvinylidene fluoride, PVDF-HFP (a copolymer of polyvinylidene fluoride and hexafluoropolypropylene), polyacrylonitrile, polyethylene oxide, and the like.

このような樹脂層3の厚さについては特に限定することはないが、負極集電体1と負極活物質層2との導電性を担保する必要があるため、厚すぎることは好ましくなく、例えば
1〜100μm程度とすることが好ましく、特に5〜20μmとすることが好ましい。また、樹脂層3には導電性を担保するため、各種導電材料を適宜含有せしめてもよい。
The thickness of the resin layer 3 is not particularly limited. However, since it is necessary to ensure the conductivity between the negative electrode current collector 1 and the negative electrode active material layer 2, it is not preferable that the thickness is too large. It is preferable to set it as about 1-100 micrometers, and it is preferable to set it as 5-20 micrometers especially. Moreover, in order to ensure electroconductivity, you may make the resin layer 3 contain various electroconductive materials suitably.

<<非水電解液二次電池用負極板の他の実施形態>>
図2および図3は、他の実施形態にかかる非水電解液二次電池用負極板10の構成を説明するための概略断面図である。
<< Other Embodiments of Negative Electrode Plate for Nonaqueous Electrolyte Secondary Battery >>
2 and 3 are schematic cross-sectional views for explaining the configuration of a negative electrode plate 10 for a non-aqueous electrolyte secondary battery according to another embodiment.

図2に示す負極板10は、図1に示した負極板10と異なり、負極活物質層2、2が二層構造となっており、当該負極活物質層2同士の間に、非水電解液を吸収し、かつこれを放出することが可能な樹脂層3が設けられている点に特徴を有している。   A negative electrode plate 10 shown in FIG. 2 is different from the negative electrode plate 10 shown in FIG. 1 in that the negative electrode active material layers 2 and 2 have a two-layer structure. It is characterized in that a resin layer 3 capable of absorbing and discharging the liquid is provided.

また、図3に示す負極活物質は、図2に示した負極板10と同様、負極活物質層2、2が二層構造となっており、当該負極活物質層2同士の間に、非水電解液を吸収し、かつこれを放出することが可能な樹脂層3が設けられており、さらに、図1に示した負極板10と同様、負極活物質層2と負極集電体1との間にも、前記樹脂層3が設けられている点に特徴を有している。   Further, the negative electrode active material shown in FIG. 3 has a two-layer structure of the negative electrode active material layers 2 and 2 as in the negative electrode plate 10 shown in FIG. A resin layer 3 capable of absorbing and releasing the water electrolyte is provided. Further, similarly to the negative electrode plate 10 shown in FIG. 1, the negative electrode active material layer 2, the negative electrode current collector 1, It is characterized in that the resin layer 3 is provided between them.

なお、図2および図3においては、図1と共通する構成については同じ符号を用いており、各構成についての詳細は図1と同じであるあるため、ここでの説明は省略する。   2 and 3, the same reference numerals are used for the same components as those in FIG. 1, and the details of each component are the same as those in FIG. 1, and thus the description thereof is omitted here.

図2や図3に示すように、本発明の非水電解液二次電池用負極板10においては負極集電体1と負極活物質層2との間、または負極活物質層2同士の間の少なくとも一方に非水電解液を吸収し、かつこれを放出することが可能な樹脂層3が設けられていればよく、その双方に設けられていてもよい。負極活物質層2同士の間に樹脂層3を設けた場合、当該負極活物質層2、2が膨張した際に、その間に位置する樹脂層3に圧力がかかり、当該圧力によって樹脂層3中に吸収されていた非水電解液が放出されることとなり好ましい。   As shown in FIG. 2 and FIG. 3, in the negative electrode plate 10 for a non-aqueous electrolyte secondary battery of the present invention, between the negative electrode current collector 1 and the negative electrode active material layer 2 or between the negative electrode active material layers 2. As long as at least one of them is provided with the resin layer 3 capable of absorbing and releasing the non-aqueous electrolyte, it may be provided on both of them. When the resin layer 3 is provided between the negative electrode active material layers 2, when the negative electrode active material layers 2, 2 expand, pressure is applied to the resin layer 3 positioned therebetween, and the pressure causes This is preferable because the non-aqueous electrolyte that has been absorbed in the water is released.

上記で説明した実施形態にかかる負極板10の製造方法については、特に限定されることはなく、バインダーを選定し、選定されたバインダー、負極活物質粒子を適当な溶媒に分散あるいは溶解した負極活物質層用塗工液と、非水電解液を吸収し、かつ放出することが可能な樹脂を適当な溶媒に分散あるいは溶解した樹脂層用塗工液と、を準備し、負極集電体上に印刷法、スピンコート、ディップコート、バーコート、スプレーコート等によって、各層を形成していけばよい、また、負極集電体1の表面が多孔質であったり、凹凸が多数設けられていたり、三次元立体構造を有したりする場合には、上記の方法以外に手動で塗布することも可能である。なお、実施形態にかかる負極板10は、この製造方法によって製造されたものに限定されることはなく、各種の真空プロセス等を用いて製造することもできる。   The manufacturing method of the negative electrode plate 10 according to the embodiment described above is not particularly limited, and a negative electrode active material obtained by selecting a binder and dispersing or dissolving the selected binder and negative electrode active material particles in an appropriate solvent. A material layer coating solution and a resin layer coating solution in which a resin capable of absorbing and releasing a non-aqueous electrolyte is dispersed or dissolved in a suitable solvent are prepared on the negative electrode current collector. In addition, each layer may be formed by a printing method, spin coating, dip coating, bar coating, spray coating, or the like, and the surface of the negative electrode current collector 1 is porous or has many irregularities. In addition, when it has a three-dimensional structure, it can be manually applied in addition to the above method. In addition, the negative electrode plate 10 concerning embodiment is not limited to what was manufactured by this manufacturing method, It can also manufacture using various vacuum processes etc.

<<二次電池>>
次に、上記で説明した実施形態にかかる負極板10を用いた非水電解液二次電池について図4を用いて説明する。
<< Secondary battery >>
Next, a non-aqueous electrolyte secondary battery using the negative electrode plate 10 according to the embodiment described above will be described with reference to FIG.

図4は、実施形態にかかる非水電解液二次電池を示す概略図である。 FIG. 4 is a schematic diagram illustrating the nonaqueous electrolyte secondary battery according to the embodiment.

図4に示すように、非水電解液二次電池100は、負極集電体1の一方面側に負極板10、及び、これに組合される正極集電体55の一方面側に正極活物質層54が設けられてなる正極板50と、負極板10と正極板50との間に必要に応じて設けられるセパレータ70とから構成され、これらが、外装81、82で構成される容器内に収容され、かつ、容器内に電解質90が充填された状態で密封された構成をとる。ここで、非水電解液二次電池100は、負極板10が上記で説明した本発明の負極板であることを特徴とする。   As shown in FIG. 4, the non-aqueous electrolyte secondary battery 100 includes a negative electrode plate 10 on one side of the negative electrode current collector 1 and a positive electrode active on one side of a positive electrode current collector 55 combined therewith. It is comprised from the positive electrode plate 50 in which the material layer 54 is provided, and the separator 70 provided as needed between the negative electrode plate 10 and the positive electrode plate 50, and these are the inside of the container comprised by the exteriors 81 and 82 And the container is hermetically sealed with the electrolyte 90 filled therein. Here, the non-aqueous electrolyte secondary battery 100 is characterized in that the negative electrode plate 10 is the negative electrode plate of the present invention described above.

以下に、上記で説明した負極板10以外の構成について説明する。負極板については、上記本発明の負極板10で説明した通りであり、ここでの詳細な説明は省略する。また、以下では、非水電解液二次電池が、リチウムイオン二次電池である場合を中心に説明を行うが、非水電解液二次電池100は、リチウムイオン二次電池以外の非水電解液二次電池、例えば、マグネシウムイオン二次電池、カルシウムイオン二次電池、アルミニウムイオン二次電池などとすることもできる。   Hereinafter, configurations other than the negative electrode plate 10 described above will be described. The negative electrode plate is as described in the negative electrode plate 10 of the present invention, and a detailed description thereof is omitted here. In the following description, the case where the non-aqueous electrolyte secondary battery is a lithium ion secondary battery will be mainly described. However, the non-aqueous electrolyte secondary battery 100 is a non-aqueous electrolyte other than a lithium ion secondary battery. It can also be set as a liquid secondary battery, for example, a magnesium ion secondary battery, a calcium ion secondary battery, an aluminum ion secondary battery etc.

(正極板)
非水電解液二次電池100を構成する正極板50については、特に限定されることはなく、非水電解液二次電池の種別に応じ従来公知の正極板を適宜選択して用いることができる。例えば、リチウムイオン二次電池の正極板としては、上記で説明した負極板10において用いられる負極集電体1と同材料の正極集電体55の表面の一部に、リチウム遷移金属複合酸化物などの正極活物質粒子、導電材、樹脂製の結着物質などが分散された溶液を塗布・乾燥し、必要に応じてプレスすることで正極活物質層54が形成されてなる正極板等を挙げることができる。
(Positive electrode plate)
The positive electrode plate 50 constituting the nonaqueous electrolyte secondary battery 100 is not particularly limited, and a conventionally known positive electrode plate can be appropriately selected and used according to the type of the nonaqueous electrolyte secondary battery. . For example, as a positive electrode plate of a lithium ion secondary battery, a lithium transition metal composite oxide is formed on a part of the surface of the positive electrode current collector 55 made of the same material as the negative electrode current collector 1 used in the negative electrode plate 10 described above. A positive electrode plate or the like in which the positive electrode active material layer 54 is formed by applying and drying a solution in which positive electrode active material particles, a conductive material, a resin binder, and the like are dispersed, and pressing as necessary. Can be mentioned.

(セパレータ)
セパレータ70についても特に限定はなく、非水電解液二次電池の分野で従来公知のセパレータを適宜選択して使用することができる。例えば、マイクロポアを有するリチウムイオン透過性のポリエチレンフィルムを、多孔性のリチウムイオン透過性のポリプロピレンフィルムで挟んだ三層構造としたものなどを好適に使用可能である。
(Separator)
The separator 70 is not particularly limited, and a conventionally known separator can be appropriately selected and used in the field of non-aqueous electrolyte secondary batteries. For example, a three-layer structure in which a lithium ion permeable polyethylene film having micropores is sandwiched between porous lithium ion permeable polypropylene films can be suitably used.

(非水電解液)
本発明に用いられる非水電解液90は、非水電解液二次電池の種類に応じて適宜選択可能であり、特に限定されることはない。非水電解液は、液状なので流動性が高く、樹脂層に吸収されかつ樹脂層から放出されやすい。非水電解液としては、流動性の観点から、電解質を有機溶媒やイオン液体に溶解させたものが好ましい。例えば、リチウムイオン二次電池の場合には、リチウム塩を有機溶媒に溶解させた非水電解液等を用いることができる。
(Nonaqueous electrolyte)
The non-aqueous electrolyte 90 used in the present invention can be appropriately selected according to the type of the non-aqueous electrolyte secondary battery, and is not particularly limited. Since the non-aqueous electrolyte is liquid, it has high fluidity and is easily absorbed by the resin layer and released from the resin layer. The non-aqueous electrolyte is preferably one in which an electrolyte is dissolved in an organic solvent or ionic liquid from the viewpoint of fluidity. For example, in the case of a lithium ion secondary battery, a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent can be used.

上記リチウム塩の例としては、LiClO4、LiBF4、LiPF6、LiAsF6、LiCl、及びLiBr等の無機リチウム塩;LiB(C654、LiN(SO2CF32、LiC(SO2CF33、LiOSO2CF3、LiOSO225、LiOSO249、LiOSO2511、LiOSO2613、及びLiOSO2715等の有機リチウム塩;等が代表的に挙げられる。 Examples of the lithium salt include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, and LiBr; LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC ( Organic compounds such as SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C 4 F 9 , LiOSO 2 C 5 F 11 , LiOSO 2 C 6 F 13 , and LiOSO 2 C 7 F 15 Typical examples include lithium salts.

リチウム塩の溶解に用いられる有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、及び鎖状エーテル類等が挙げられる。   Examples of the organic solvent used for dissolving the lithium salt include cyclic esters, chain esters, cyclic ethers, and chain ethers.

上記負極板10、正極板50、セパレータ70、非水電解液90を用いて製造される非水電解液二次電池100の構造としては、従来公知の構造を適宜選択して用いることができる。例えば、上記の負極板10及び正極板50を、セパレータ70を介して渦巻状に巻き回して、電池容器内に収納する構造が挙げられる。また別の態様としては、所定の形状に切り出した正極板50及び負極板10をセパレータ70を介して積層して固定し、これを電池容器内に収納する構造を採用してもよい。いずれの構造においても、正極板50及び負極板10を電池容器内に収納後、正極板に取り付けられたリード線を外装容器に設けられた正極端子に接続し、一方、負極板に取り付けられたリード線を外装容器内に設けられた負極端子に接続し、さらに電池容器内に非水電解液を充填した後、密閉することによって非水電解液二次電池が製造される。   As the structure of the nonaqueous electrolyte secondary battery 100 manufactured using the negative electrode plate 10, the positive electrode plate 50, the separator 70, and the nonaqueous electrolyte solution 90, a conventionally known structure can be appropriately selected and used. For example, the structure which winds said negative electrode plate 10 and the positive electrode plate 50 in the shape of a spiral via the separator 70, and accommodates in a battery container is mentioned. As another aspect, a structure in which the positive electrode plate 50 and the negative electrode plate 10 cut into a predetermined shape are stacked and fixed via a separator 70, and this is housed in a battery container may be employed. In any structure, after the positive electrode plate 50 and the negative electrode plate 10 were accommodated in the battery container, the lead wire attached to the positive electrode plate was connected to the positive electrode terminal provided in the outer container, while being attached to the negative electrode plate. A non-aqueous electrolyte secondary battery is manufactured by connecting the lead wire to a negative electrode terminal provided in the exterior container, and further filling the battery container with a non-aqueous electrolyte and then sealing the battery container.

以上説明した実施形態にかかる非水電解液二次電池100は、上記で説明した本発明の負極板10が含まれることから、非水電解液の液涸れが生じることがなく、サイクル特性の低下を防止することができる。   Since the non-aqueous electrolyte secondary battery 100 according to the embodiment described above includes the negative electrode plate 10 of the present invention described above, the non-aqueous electrolyte does not spill and deterioration of cycle characteristics is caused. Can be prevented.

<<電池パック>>
次に、図5を用いて、前記非水電解液二次電池100を用いて構成される電池パック200について説明する。
<< Battery pack >>
Next, a battery pack 200 configured using the non-aqueous electrolyte secondary battery 100 will be described with reference to FIG.

図5は、実施形態にかかる電池パック200を示す概略分解図である。   FIG. 5 is a schematic exploded view showing the battery pack 200 according to the embodiment.

図5に示すように電池パック200は、非水電解液二次電池100が樹脂容器36a、樹脂容器36b、および端部ケース37に収納されて構成される。また、非水電解液二次電池の一端面であって、正極端子32および負極端子33を備える面と、端部ケース37との間には、過充電や過放電を防止するための保護回路基板34が設けられている。   As shown in FIG. 5, the battery pack 200 is configured by storing the nonaqueous electrolyte secondary battery 100 in a resin container 36 a, a resin container 36 b, and an end case 37. Further, a protection circuit for preventing overcharge and overdischarge between one end face of the nonaqueous electrolyte secondary battery, which is a face including the positive electrode terminal 32 and the negative electrode terminal 33, and the end case 37. A substrate 34 is provided.

保護回路基板34は、外部接続コネクタ35を備えており、外部接続コネクタ35は、樹脂容器36aに設けられた外部接続用窓38a、および、端部ケース37に設けられた外部接続用窓38bに挿入され外部端子と接続される。また、保護回路基板34には、図示しない、充放電を制御するための充放電安全回路、外部接続端子と非水電解液二次電池100とを導通させるための配線回路などが搭載されている。   The protection circuit board 34 includes an external connection connector 35. The external connection connector 35 is connected to an external connection window 38a provided in the resin container 36a and an external connection window 38b provided in the end case 37. Inserted and connected to external terminals. The protection circuit board 34 is mounted with a charge / discharge safety circuit (not shown) for controlling charge / discharge, a wiring circuit for connecting the external connection terminal and the nonaqueous electrolyte secondary battery 100, and the like. .

電池パック200は、本発明の負極板10が用いられた本発明の二次電池100を用いること以外は、従来公知の電池パックの構成を適宜選択することができる。図示しないが、電池パック200は、非水電解液二次電地100と端部ケース37との間に、正極端子32と接続する正極リード板、負極端子33と接続する負極リード板、絶縁体などを適宜備えていてもよい。   As the battery pack 200, a configuration of a conventionally known battery pack can be appropriately selected except that the secondary battery 100 of the present invention using the negative electrode plate 10 of the present invention is used. Although not shown, the battery pack 200 includes a positive electrode lead plate connected to the positive electrode terminal 32, a negative electrode lead plate connected to the negative electrode terminal 33, and an insulator between the nonaqueous electrolyte secondary ground 100 and the end case 37. Etc. may be provided as appropriate.

なお、本発明の負極板10を用いた本発明の非水電解液二次電池100は、電池パックへの使用態様以外に、上記保護回路に、さらに過大電流の遮断、電池温度モニター等の機能を備え、且つ、該保護回路を二次電池に一体化させて取り付けられる態様に用いられてもよい。かかる態様では、電池パックを構成することなく、保護機能および保護回路を備える二次電池として使用することができ、汎用性が高い。なお、上記で説明したいくつかの態様は、例示に過ぎず、本発明の負極板10、あるいは本発明の二次電池100の使用を何ら限定するものではない。   In addition, the nonaqueous electrolyte secondary battery 100 of the present invention using the negative electrode plate 10 of the present invention is not limited to the usage mode for the battery pack, and further functions such as blocking of excessive current, battery temperature monitoring, etc. And the protection circuit may be used by being integrated with the secondary battery. In such an embodiment, the battery pack can be used as a secondary battery having a protection function and a protection circuit without constituting a battery pack, and is highly versatile. In addition, some aspects demonstrated above are only illustrations, and do not limit the use of the negative electrode plate 10 of this invention, or the secondary battery 100 of this invention at all.

以上説明した電池パック200を構成する二次電池には、上記で説明した本発明の負極板10が含まれることから、実施形態にかかる電池パック200においても上記と同様の効果を奏することができる。   Since the secondary battery constituting the battery pack 200 described above includes the negative electrode plate 10 of the present invention described above, the battery pack 200 according to the embodiment can achieve the same effects as described above. .

次に実施例及び比較例を挙げて本発明を更に具体的に説明する。以下、特に断りのない限り、部または%は質量基準である。   Next, the present invention will be described more specifically with reference to examples and comparative examples. Hereinafter, unless otherwise specified, parts or% is based on mass.

(実施例1)
平均粒径2.7μmのSi金属20.0g(関東金属工業(株)製)に、ポリイミド樹脂(PIX‐L110 日立化成工業株式会社)10.0gとNMP(N−メチル−2−ピロリドン)(三菱化学(株)製)5.0gを分散させ、エクセルオートホモジナイザー((株)日本精機製作所製)で4000rpmの回転数で10分間攪拌することで分散液を得た。次いで、前記分散液に、アセチレンブラック粉状(電気化学工業株式会社製、デンカブラック)1.0gとシランカップリング剤(KBE985)(信越シリコーン(株)製)1.0gと、NMP(N−メチル−2−ピロリドン)(三菱化学(株)製)7.0gを分散させ、エクセルオートホモジナイザー((株)日本精機製作所製)で4000rpmの回転数で15分間混練することによって負極活物質層用塗工液を調製した。
Example 1
To 20.0 g of Si metal having an average particle size of 2.7 μm (manufactured by Kanto Metal Industry Co., Ltd.), 10.0 g of polyimide resin (PIX-L110 Hitachi Chemical Co., Ltd.) and NMP (N-methyl-2-pyrrolidone) ( 5.0 g (Mitsubishi Chemical Co., Ltd.) was dispersed, and a dispersion was obtained by stirring for 10 minutes at 4000 rpm with an Excel auto homogenizer (Nihon Seiki Seisakusho Co., Ltd.). Next, 1.0 g of acetylene black powder (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), 1.0 g of silane coupling agent (KBE985) (manufactured by Shin-Etsu Silicone Co., Ltd.), NMP (N- Methyl-2-pyrrolidone) (Mitsubishi Chemical Co., Ltd.) 7.0 g was dispersed and kneaded with an Excel auto homogenizer (Nihon Seiki Seisakusho Co., Ltd.) at a rotational speed of 4000 rpm for 15 minutes. A coating solution was prepared.

次に、アセチレンブラック粉状(電気化学工業株式会社製、デンカブラック)8g、ポリエチレンオキサイド(PEO)2g、および水7.0gを上記負極活物質層用塗工液と同様の方法により分散、攪拌させて樹脂層用塗工液を調製した。   Next, 8 g of acetylene black powder (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), 2 g of polyethylene oxide (PEO), and 7.0 g of water were dispersed and stirred in the same manner as the coating liquid for negative electrode active material layer. Thus, a resin layer coating solution was prepared.

集電体として厚さ10umの銅箔(日本製箔(株)製)を準備し、最終的に得られる第1の負極活物質層が14g/m2となる量で、当該集電体の一面側に上記にて調製した負極活物質用塗工液をアプリケーターで塗布し、120℃の乾燥炉内に設置し、10分乾燥した後、雰囲気電気炉(N2置換、酸素濃度200ppm以下)内に設置し、室温から60分かけて300℃まで加熱し、300℃で60分保持した後、室温まで冷却することで、集電体上に負極活物質層を形成した。 A copper foil having a thickness of 10 μm (manufactured by Nihon Foil Co., Ltd.) is prepared as a current collector, and the amount of the current collector is 14 g / m 2 in the amount of the first negative electrode active material layer finally obtained. On one side, the negative electrode active material coating solution prepared above was applied with an applicator, placed in a 120 ° C. drying furnace, dried for 10 minutes, and then an atmospheric electric furnace (N 2 substitution, oxygen concentration 200 ppm or less) The anode active material layer was formed on the current collector by heating to 300 ° C. over 60 minutes from room temperature and holding at 300 ° C. for 60 minutes, followed by cooling to room temperature.

次いで、前記負極活物質層上に、最終的に得られる樹脂層が1g/m2となる量で、前記樹脂層用塗工液を塗布し、120℃の乾燥炉内に設置し、10分乾燥することで樹脂層を形成した。 Next, the resin layer coating solution is applied onto the negative electrode active material layer in such an amount that the resin layer finally obtained is 1 g / m 2 and placed in a drying furnace at 120 ° C. for 10 minutes. A resin layer was formed by drying.

さらに、前記樹脂層上に前記と同様の要領で二層目の負極活物質層を形成し、負極板を得た。   Further, a second negative electrode active material layer was formed on the resin layer in the same manner as described above to obtain a negative electrode plate.

前記負極板を直径15mmの円盤状に裁断し、これを実施例1の負極板とした。   The negative electrode plate was cut into a disk shape having a diameter of 15 mm, and this was used as the negative electrode plate of Example 1.

(実施例2)
樹脂層に含まれる樹脂として、ポリエチレンオキサイド(PEO)に代えてポリアクリロニトリルを用いた他、すべて実施例1と同様の条件により、実施例2の負極板を得た。
(Example 2)
A negative electrode plate of Example 2 was obtained under the same conditions as in Example 1 except that polyacrylonitrile was used instead of polyethylene oxide (PEO) as the resin contained in the resin layer.

(実施例3)
樹脂層に含まれる樹脂として、ポリエチレンオキサイド(PEO)に代えてPVDF−HFPを用いた他、すべて実施例1と同様の条件により、実施例3の負極板を得た。
(Example 3)
A negative electrode plate of Example 3 was obtained under the same conditions as in Example 1 except that PVDF-HFP was used instead of polyethylene oxide (PEO) as the resin contained in the resin layer.

(比較例1)
樹脂層を形成することなく、負極活物質層を一層構造とし、最終的に得られる負極活物質層が28g/m2となる量で、負極活物質層用塗工液を塗工した他、すべて実施例1と同様の条件により、比較例1の負極板を得た。
(Comparative Example 1)
Without forming a resin layer, the negative electrode active material layer was made into a single layer structure, and the negative electrode active material layer finally obtained was applied in an amount of 28 g / m 2 , A negative electrode plate of Comparative Example 1 was obtained under the same conditions as in Example 1.

(参考例1)
樹脂層に含まれる樹脂として、ポリエチレンオキサイド(PEO)に代えてスチレンブタジエンゴム(SBR)を用いた他、すべて実施例1と同様の条件により、参考例1の負極板を得た。
(Reference Example 1)
A negative electrode plate of Reference Example 1 was obtained under the same conditions as in Example 1 except that styrene butadiene rubber (SBR) was used instead of polyethylene oxide (PEO) as the resin contained in the resin layer.

(樹脂層の膨潤度試験)
実施例1〜3および比較例1の負極板に用いられている各樹脂層に使用されている樹脂と同質の樹脂シート(1mm厚)を準備し、当該シートを充分な量の非水電解液に常温で7日間浸漬せしめ、その後、表面に付着した非水電解液を直ちに拭き取って、各シートの質量(M2)を測定した。そして、浸漬前の各シートの質量(M1)に対する浸漬後の質量(M2)の膨潤度(質量変化率)M(%)を、次式により算出した。
M(%)=(M2−M1)/M1×100
各樹脂層の膨潤度は以下の表1に記載の通りである。
(Swelling degree test of resin layer)
A resin sheet (1 mm thick) of the same quality as the resin used for each resin layer used in the negative electrode plates of Examples 1 to 3 and Comparative Example 1 was prepared, and a sufficient amount of the non-aqueous electrolyte solution was prepared. For 7 days at room temperature, the non-aqueous electrolyte attached to the surface was immediately wiped off, and the mass (M2) of each sheet was measured. And the swelling degree (mass change rate) M (%) of the mass (M2) after immersion with respect to the mass (M1) of each sheet before immersion was calculated by the following formula.
M (%) = (M2-M1) / M1 × 100
The degree of swelling of each resin layer is as shown in Table 1 below.

(三極式コインセルの作製)
エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/エチルメチルカーボネート(EMC)混合溶媒(重量比=30wt%:30wt%:30wt%)に、溶質として六フッ化リン酸リチウム(LiPF6)を加えて、当該溶質であるLiPF6の濃度が、1mol/Lとなるように濃度調整した後、電解液に対して10wt%のFECを添加し、非水電解液を調製した。各実施例および比較例の負極板を作用極として用い、対極板及び参照極板として金属リチウム板、電解液として上記にて作製した非水電解液を用い、三極式コインセルを組み立て、下記充放電試験およびサイクル試験に供した。
(Production of tripolar coin cell)
Lithium hexafluorophosphate (LiPF 6 ) was added as a solute to an ethylene carbonate (EC) / diethyl carbonate (DEC) / ethyl methyl carbonate (EMC) mixed solvent (weight ratio = 30 wt%: 30 wt%: 30 wt%). After adjusting the concentration of LiPF 6 as the solute to be 1 mol / L, 10 wt% FEC was added to the electrolytic solution to prepare a non-aqueous electrolytic solution. Using the negative electrode plate of each example and comparative example as a working electrode, using a metal lithium plate as a counter electrode plate and a reference electrode plate, and using the non-aqueous electrolyte prepared above as an electrolyte, a tripolar coin cell was assembled, and It used for the discharge test and the cycle test.

(初期充電試験)
試験セルを、25℃の環境下で、電圧が0.001Vに達するまで定電流(0.85mA)で定電流充電し、当該電圧が0.001Vに達した後は、電圧が0.001Vを下回らないように、当該電流(充電レート:0.1C)が5%以下となるまで減らしていき、定電圧で充電を行ない、満充電させた後、10分間休止させた。なお、ここで、上記「0.1C」とは、上記三極式コインセルを用いて定電流充電して、10時間で充電終了となる電流値(充電終止電圧に達する電流値)のことを意味する。また上記定電流は、試験セルにおける作用極において、活物質であるSi金属の理論放電量4200mAh/gが10時間で充電されるよう設定した。
(Initial charging test)
The test cell was charged at a constant current (0.85 mA) at 25 ° C. until the voltage reached 0.001 V. After the voltage reached 0.001 V, the voltage was reduced to 0.001 V. In order not to fall below, the current (charge rate: 0.1 C) was decreased until it became 5% or less, charged at a constant voltage, fully charged, and then rested for 10 minutes. Here, the “0.1C” means a current value (current value that reaches a charge end voltage) that is constant-current charged using the tripolar coin cell and ends charging in 10 hours. To do. The constant current was set so that a theoretical discharge amount of 4200 mAh / g of Si metal as an active material was charged in 10 hours at the working electrode in the test cell.

(初期放電試験)
その後、満充電された試験セルを、25℃の環境下で、電圧が0.001V(満充電電圧)から1.5V(放電終止電圧)になるまで、定電流(0.85mA)(放電レート:0.1C)で定電流放電し、縦軸にセル電圧(V)、横軸に放電時間(h)をとり、放電曲線を作成し、負極板の初期放電容量(mAh)を求めた。初期放電容量を表1に併せて示す。
(Initial discharge test)
Thereafter, the fully charged test cell was measured at a constant current (0.85 mA) (discharge rate) until the voltage changed from 0.001 V (full charge voltage) to 1.5 V (discharge end voltage) in an environment of 25 ° C. : 0.1C), the cell voltage (V) is plotted on the vertical axis, the discharge time (h) is plotted on the horizontal axis, a discharge curve was prepared, and the initial discharge capacity (mAh) of the negative electrode plate was determined. The initial discharge capacity is also shown in Table 1.

(サイクル試験)
上記初期充放電試験後の試験セルを上記初期充放電試験と同様に、さらに2回行い、この時の放電容量の平均値をサイクル試験時の初期値とし、上記初期充放電試験と同様の充放電試験を繰り返し、放電容量が初期値に対して90%以下になったときのサイクル数を求めた。サイクル数を表1に併せて示す。
(Cycle test)
Similarly to the initial charge / discharge test, the test cell after the initial charge / discharge test is performed twice, and the average value of the discharge capacity at this time is used as the initial value during the cycle test, and the same charge / discharge test as in the initial charge / discharge test is performed. The discharge test was repeated, and the number of cycles when the discharge capacity was 90% or less with respect to the initial value was determined. The number of cycles is also shown in Table 1.

Figure 2014041767
Figure 2014041767

表1からも明らかなように、実施例1〜3の負極板を用いた非水電解液二次電池にあっては、非水電解液を吸収し、かつ放出することが可能な樹脂層が存在しているため、負極活物質層が膨張収縮を繰り返したとしても、非水電解液が液涸れすることがなく、良好なサイクル特性を維持することが可能であった。一方で、樹脂層が存在しない比較例1の非水電解液二次電池にあっては、非水電解液が涸れてしまいサイクル特性が低下してしまった。また、樹脂層の膨潤度が20%未満である参考例1の非水電解液二次電池にあっては、前記比較例1の非水電解液二次電池と比べるとサイクル特性は良好であるものの、若干非水電解液の貯蔵量が少ないがため、実施例1〜3の非水電解液二次電池と比べてサイクル特性が劣ってしまった。   As is clear from Table 1, in the non-aqueous electrolyte secondary battery using the negative electrode plates of Examples 1 to 3, the resin layer that can absorb and release the non-aqueous electrolyte is provided. Therefore, even if the negative electrode active material layer repeatedly expands and contracts, the non-aqueous electrolyte does not spill and it is possible to maintain good cycle characteristics. On the other hand, in the nonaqueous electrolyte secondary battery of Comparative Example 1 in which no resin layer was present, the nonaqueous electrolyte was drowned and cycle characteristics were deteriorated. Further, in the non-aqueous electrolyte secondary battery of Reference Example 1 in which the degree of swelling of the resin layer is less than 20%, the cycle characteristics are better than those of the non-aqueous electrolyte secondary battery of Comparative Example 1. However, since the storage amount of the non-aqueous electrolyte was slightly small, the cycle characteristics were inferior compared with the non-aqueous electrolyte secondary batteries of Examples 1 to 3.

1・・・負極集電体
2・・・負極活物質層
3・・・樹脂層
10・・・負極板
50・・・正極板
54・・・正極活物質層
55・・・正極集電体
32・・・正極端子
33・・・負極端子
34・・・保護回路基板
35・・・外部接続コネクタ
36a、36b・・・樹脂容器
37・・・端部ケース
38a、38b・・・外部接続用窓
70・・・セパレータ
81、82・・・外装
90・・・非水電解液
100・・・二次電池
200・・・電池パック
DESCRIPTION OF SYMBOLS 1 ... Negative electrode collector 2 ... Negative electrode active material layer 3 ... Resin layer 10 ... Negative electrode plate 50 ... Positive electrode plate 54 ... Positive electrode active material layer 55 ... Positive electrode collector 32 ... Positive electrode terminal 33 ... Negative electrode terminal 34 ... Protection circuit board 35 ... External connector 36a, 36b ... Resin container 37 ... End case 38a, 38b ... For external connection Window 70 ... Separator 81, 82 ... Exterior 90 ... Non-aqueous electrolyte 100 ... Secondary battery 200 ... Battery pack

Claims (4)

負極集電体と、前記負極集電体上に設けられる1または2以上の負極活物質層とを含む非水電解液二次電池用負極板であって、
前記負極集電体と前記負極活物質層との間、または前記負極活物質層同士の間には、非水電解液を吸収し、かつ放出することが可能な樹脂層が設けられていることを特徴とする非水電解液二次電池用負極板。
A negative electrode plate for a non-aqueous electrolyte secondary battery comprising a negative electrode current collector and one or more negative electrode active material layers provided on the negative electrode current collector,
A resin layer capable of absorbing and releasing a nonaqueous electrolytic solution is provided between the negative electrode current collector and the negative electrode active material layer or between the negative electrode active material layers. A negative electrode plate for a non-aqueous electrolyte secondary battery.
前記樹脂層の非水電解液に対する膨潤度が20%以上であることを特徴とする請求項1に記載の非水電解液二次電池用負極板。   2. The negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the degree of swelling of the resin layer with respect to the non-aqueous electrolyte is 20% or more. 正極板と、負極板と、セパレータと、非水電解液とを含む非水電解液二次電池であって、
前記負極板は、負極集電体と、前記負極集電体上に設けられる1または2以上の負極活物質層とを含み、前記負極集電体と前記負極活物質層との間、または前記負極活物質層同士の間には、非水電解液を吸収し、かつ放出することが可能な樹脂層が設けられていることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode plate, a negative electrode plate, a separator, and a non-aqueous electrolyte solution,
The negative electrode plate includes a negative electrode current collector and one or more negative electrode active material layers provided on the negative electrode current collector, and between the negative electrode current collector and the negative electrode active material layer, or A non-aqueous electrolyte secondary battery, wherein a resin layer capable of absorbing and releasing a non-aqueous electrolyte is provided between the negative electrode active material layers.
収納ケースと、正極端子および負極端子を備える非水電解液二次電池と、過充電および過放電保護機能を有する保護回路とを少なくとも備え、前記収納ケースに非水電解液二次電池および前記保護回路が収納されて構成される電池パックであって、
前記非水電解液二次電池は、正極板と、負極板と、セパレータと、非水電解液とを含み、
前記負極板は、負極集電体と、前記負極集電体上に設けられる1または2以上の負極活物質層とを含み、前記負極集電体と前記負極活物質層との間、または前記負極活物質層同士の間には、非水電解液を吸収し、かつ放出することが可能な樹脂層が設けられていることを特徴とする電池パック。
A storage case, a non-aqueous electrolyte secondary battery including a positive electrode terminal and a negative electrode terminal, and a protection circuit having an overcharge and over-discharge protection function are provided, and the storage case includes the non-aqueous electrolyte secondary battery and the protection A battery pack configured to contain a circuit,
The non-aqueous electrolyte secondary battery includes a positive electrode plate, a negative electrode plate, a separator, and a non-aqueous electrolyte solution,
The negative electrode plate includes a negative electrode current collector and one or more negative electrode active material layers provided on the negative electrode current collector, and between the negative electrode current collector and the negative electrode active material layer, or A battery pack, wherein a resin layer capable of absorbing and releasing a non-aqueous electrolyte is provided between the negative electrode active material layers.
JP2012183614A 2012-08-22 2012-08-22 Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack Pending JP2014041767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183614A JP2014041767A (en) 2012-08-22 2012-08-22 Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183614A JP2014041767A (en) 2012-08-22 2012-08-22 Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack

Publications (1)

Publication Number Publication Date
JP2014041767A true JP2014041767A (en) 2014-03-06

Family

ID=50393863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183614A Pending JP2014041767A (en) 2012-08-22 2012-08-22 Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack

Country Status (1)

Country Link
JP (1) JP2014041767A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165005A (en) * 2013-02-25 2014-09-08 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JP6052529B1 (en) * 2015-10-13 2016-12-27 Jsr株式会社 Lithium ion secondary battery negative electrode binder composition, lithium ion secondary battery negative electrode slurry, lithium ion secondary battery negative electrode and lithium ion secondary battery
CN107534125A (en) * 2015-04-29 2018-01-02 株式会社Lg化学 Method for the electrode and manufacture electrode of electrochemical appliance
JP2019021384A (en) * 2017-07-11 2019-02-07 日産自動車株式会社 battery
CN117080362A (en) * 2023-10-17 2023-11-17 宁德时代新能源科技股份有限公司 Negative electrode sheet, secondary battery and electricity utilization device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2000011997A (en) * 1998-06-19 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery and manufacture thereof
JP2002015726A (en) * 2000-06-29 2002-01-18 Sony Corp Gel electrolyte secondary battery
JP2007258086A (en) * 2006-03-24 2007-10-04 Dainippon Printing Co Ltd Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method
JP2008243729A (en) * 2007-03-28 2008-10-09 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2000011997A (en) * 1998-06-19 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery and manufacture thereof
JP2002015726A (en) * 2000-06-29 2002-01-18 Sony Corp Gel electrolyte secondary battery
JP2007258086A (en) * 2006-03-24 2007-10-04 Dainippon Printing Co Ltd Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method
JP2008243729A (en) * 2007-03-28 2008-10-09 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165005A (en) * 2013-02-25 2014-09-08 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
CN107534125A (en) * 2015-04-29 2018-01-02 株式会社Lg化学 Method for the electrode and manufacture electrode of electrochemical appliance
JP2018507528A (en) * 2015-04-29 2018-03-15 エルジー・ケム・リミテッド Electrode for electrochemical device and method for producing the same
US20180097255A1 (en) * 2015-04-29 2018-04-05 Lg Chem, Ltd. Electrode for electrochemical device and method for manufacturing electrode
US10644346B2 (en) 2015-04-29 2020-05-05 Lg Chem, Ltd. Electrode for electrochemical device and method for manufacturing electrode
JP6052529B1 (en) * 2015-10-13 2016-12-27 Jsr株式会社 Lithium ion secondary battery negative electrode binder composition, lithium ion secondary battery negative electrode slurry, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2019021384A (en) * 2017-07-11 2019-02-07 日産自動車株式会社 battery
JP7129150B2 (en) 2017-07-11 2022-09-01 日産自動車株式会社 battery
CN117080362A (en) * 2023-10-17 2023-11-17 宁德时代新能源科技股份有限公司 Negative electrode sheet, secondary battery and electricity utilization device

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
JP6015222B2 (en) Negative electrode plate for secondary battery, secondary battery, and battery pack
JP6523609B2 (en) Electrode for non-aqueous electrolyte battery, non-aqueous electrolyte secondary battery and battery pack
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
US9705130B2 (en) Antimony-based anode on aluminum current collector
RU2540321C1 (en) Active material for negative electrode of electric device
US20190363396A1 (en) Lithium secondary battery
TWI635640B (en) Lithium secondary cell and electrolyte for lithium secondary cell
JP6794658B2 (en) Non-aqueous electrolyte for power storage element, non-aqueous electrolyte power storage element and its manufacturing method
JP2014041767A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP6047990B2 (en) Negative electrode plate for secondary battery, secondary battery, and battery pack
JP5168380B2 (en) Negative electrode plate for lithium ion secondary battery, lithium ion secondary battery, battery pack, and method for producing lithium ion secondary battery
JPWO2018030150A1 (en) Solid electrolyte, all solid battery
JP2014207238A (en) Nonaqueous electrolyte battery and battery pack
US20210273219A1 (en) Energy storage device
JP2018174096A (en) Power storage element
JP2014241233A (en) Electrode plate for secondary battery, method for manufacturing the same, secondary battery, and battery pack
JP2014041732A (en) Positive electrode active material, and secondary battery
CN111164797A (en) Electrode, electricity storage element, and method for manufacturing electrode
JP5908551B2 (en) Nonaqueous electrolyte battery separator
JP6950342B2 (en) Negative and non-aqueous electrolyte power storage elements
JP2018032477A (en) Nonaqueous electrolyte power storage device and method for manufacturing the same
CN110476288B (en) Nonaqueous electrolyte storage element and method for manufacturing same
JP2013077511A (en) Method for manufacturing negative electrode plate for lithium ion secondary battery
JP6733443B2 (en) Composite electrode material, negative electrode, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025