JP2014034478A - Hydrogen generator and hydrogen generating method - Google Patents

Hydrogen generator and hydrogen generating method Download PDF

Info

Publication number
JP2014034478A
JP2014034478A JP2012174877A JP2012174877A JP2014034478A JP 2014034478 A JP2014034478 A JP 2014034478A JP 2012174877 A JP2012174877 A JP 2012174877A JP 2012174877 A JP2012174877 A JP 2012174877A JP 2014034478 A JP2014034478 A JP 2014034478A
Authority
JP
Japan
Prior art keywords
reaction cell
hydrogen
water
reaction
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012174877A
Other languages
Japanese (ja)
Other versions
JP6110088B2 (en
Inventor
Yasuo Ishikawa
泰男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TI KK
Original Assignee
TI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TI KK filed Critical TI KK
Priority to JP2012174877A priority Critical patent/JP6110088B2/en
Publication of JP2014034478A publication Critical patent/JP2014034478A/en
Application granted granted Critical
Publication of JP6110088B2 publication Critical patent/JP6110088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve hydrogen generation in which a reactant has a long service life.SOLUTION: Hydrogen is generated by: inserting a reactant receiver 20 with NaOH or KOH contained therein into a cylindrical reaction cell 1 made of SUS304; supporting a heater pipe 21 and an electric rod-like heater 24 inserted in the heater pipe with the reactant receiver 20; maintaining the inside of a reaction space of the reaction cell 1 always in a pressure reduced state by a vacuum pump 11 and a cold trap 12; and therefor adjusting a flow-regulating valve 4 which detects temperature of generated hydrogen and pressure of the reaction space and feeds water or steam into the reaction space; and decomposing water while forming an iron oxide film having a special function.

Description

本発明は、アルカリ金属水酸化物を反応剤として水から水素を採集するための水素発生装置及び水素発生方法に関する。   The present invention relates to a hydrogen generation apparatus and a hydrogen generation method for collecting hydrogen from water using an alkali metal hydroxide as a reactant.

ステンレスの反応セル内にNaOH、KOH等のアルカリ金属水酸化物を収納し、この反応セルを500〜600℃に加熱し、その中に水又は水蒸気を注入し、水を分解して水素を採集する水素発生装置を本件発明者は開示している。   Alkali metal hydroxides such as NaOH and KOH are housed in a stainless steel reaction cell, this reaction cell is heated to 500-600 ° C, water or steam is injected into it, hydrogen is decomposed and hydrogen is collected. The present inventor has disclosed a hydrogen generating apparatus that performs the above-described process.

国際公開2010/84790International Publication 2010/84790

前記特許文献1における水素発生装置においては、化学反応における論理値を超える水素が発生するが、反応セル内の反応が継続する時間が短く実用化に若干の問題があった。   In the hydrogen generator in Patent Document 1, hydrogen exceeding the logical value in the chemical reaction is generated, but there are some problems in practical use because the reaction time in the reaction cell is short.

そこで、第1発明の水素発生装置は、密封された反応セルと、この中に収納されるアルカリ水酸化物からなる反応剤と、前記反応セル及び反応剤を加熱する加熱装置と、前記反応セルに水又は水蒸気を供給する水供給装置と、前記反応セル内を減圧状態に維持するための減圧装置と、前記反応セル内の反応性の程度に応じて前記水供給装置の水の供給量を調整するための水供給量調整装置とを有し、前記加熱装置は、反応セル内に設置され、電気式棒ヒータを保持するヒータパイプと、このヒータパイプ内に挿入される電気式棒ヒータを備えるようにした。   Therefore, the hydrogen generator of the first invention includes a sealed reaction cell, a reactant made of alkali hydroxide accommodated therein, a heating device for heating the reaction cell and the reactant, and the reaction cell. A water supply device for supplying water or steam to the reaction cell, a decompression device for maintaining the inside of the reaction cell in a reduced pressure state, and a water supply amount of the water supply device according to the degree of reactivity in the reaction cell. A water supply amount adjusting device for adjusting, and the heating device includes a heater pipe that is installed in the reaction cell and holds an electric bar heater, and an electric bar heater inserted into the heater pipe. I prepared.

また、前記反応セルは、筒状のステンレス材からなり、前記反応剤は、水酸化ナトリウム又は水酸化カリウムであることが好ましい。   Moreover, it is preferable that the said reaction cell consists of a cylindrical stainless steel material, and the said reaction agent is sodium hydroxide or potassium hydroxide.

更にまた、前記水供給量調整装置は、水タンクから反応セルへ送られる通路に取り付けられる流量調整弁と、反応セル内の圧力を検出する圧力計と、反応セルから流出するガスの量と反応セル内の圧力を調整する圧力流量調整弁と、反応セルから流出するガスの温度を測定する温度計と、前記圧力計と温度計からの信号を受け、前記2つの流量調整弁をコントロールするコントローラからなることが好ましい。   Furthermore, the water supply amount adjusting device includes a flow rate adjusting valve attached to a passage sent from the water tank to the reaction cell, a pressure gauge for detecting the pressure in the reaction cell, and the amount of gas flowing out of the reaction cell and the reaction. A pressure flow control valve for adjusting the pressure in the cell, a thermometer for measuring the temperature of the gas flowing out from the reaction cell, and a controller for receiving the signals from the pressure gauge and the thermometer and controlling the two flow control valves Preferably it consists of.

更にまた、前記ヒータパイプは、先端が閉塞されているステンレス製のくり抜きパイプであり、これらパイプは2本一定間隔で長手方向に伸びる反応剤受けに一体に支持されていることが好ましい。   Furthermore, the heater pipe is a hollow hollow stainless steel pipe whose tip is closed, and it is preferable that two pipes are integrally supported by a reactant receiver extending in the longitudinal direction at regular intervals.

また、本発明の第2発明の水素発生方法は、ステンレス製の反応セル内にアルカリ水酸化物からなる反応剤を収納し、反応セル内の圧力を一気圧以下に保持しつつ反応セル内に配置された加熱装置によって反応剤及び反応セルを400℃以上に一定期間加熱して水素を発生させつつ、反応セル内に親水性の低次鉄酸化物を生成し、次いで、水又は水蒸気を反応セル内に供給せしめて水蒸気と鉄酸化物とを反応せしめて、高次鉄酸化物を生成しつつ水から水素を採集するようにした。   In the hydrogen generation method of the second invention of the present invention, the reaction agent made of alkali hydroxide is housed in a stainless steel reaction cell, and the pressure in the reaction cell is kept at 1 atm or less in the reaction cell. The reactor and the reaction cell are heated to 400 ° C or higher for a certain period by the arranged heating device to generate hydrogen, while generating hydrophilic low-order iron oxide in the reaction cell, and then reacting with water or steam Hydrogen was collected from water while producing high-order iron oxide by reacting water vapor with iron oxide by supplying it into the cell.

また、前記アルカリ水酸化物は水酸化ナトリウム(NaOH)であり、前記加熱装置は電気式の棒ヒータであり、前記高次の鉄酸化物はNaFeであり、x、y、zは整数であることが好ましい。 The alkali hydroxide is sodium hydroxide (NaOH), the heating device is an electric bar heater, the higher-order iron oxide is Na x Fe y O z , x, y, z is preferably an integer.

第1発明の水素発生装置においては、反応セル内を常時減圧状態となるように常時真空ポンプ等で真空引きしているので、反応残渣物が反応セル内に残留しにくく、反応セル外に排出されるし、しかも水供給量調整装置によって、適切な水供給量となり、反応空間内の圧力が減圧下の一定圧に維持され、反応剤に不要な負荷をかけることがなくなり反応剤の寿命が長くなり、装置の耐用期間が延びる。   In the hydrogen generator of the first aspect of the invention, the reaction cell is constantly evacuated with a vacuum pump or the like so that the pressure in the reaction cell is always reduced, so that the reaction residue hardly remains in the reaction cell and is discharged outside the reaction cell. In addition, the water supply amount adjusting device provides an appropriate water supply amount, and the pressure in the reaction space is maintained at a constant pressure under reduced pressure, so that no unnecessary load is applied to the reactant and the life of the reactant is reduced. Longer and longer service life of the device.

第2発明の水素発生方法においては、第1段階としては、減圧下の下に水又は水蒸気を供給することなく、単にNaOH又はKOHを反応セル内で400℃以上に加熱するのみで、水素を放出しつつ親水性を生ぜしめ低次の鉄酸化物(例えば、NaFeO、KFeO)を生ぜしめ、次いで、第2段階でこの酸化物に水又は水蒸気を供給すると、水素ガスを放出するとともに親水性の高次の酸化物(例えばNaFe、KFe:NaFe、KFe)を生ぜしめ、この酸化物の特殊機能によりその成長過程において水の中の酸素を吸収しつつ水素を放出する。このように第1段階は低次の鉄酸化物を作り、次いで第2段階で高次の鉄酸化物とすれば、確実な触媒機能を有する酸化膜を作ることができ、鉄酸化物の寿命が延びる。 In the hydrogen generation method of the second invention, as the first stage, without supplying water or water vapor under reduced pressure, simply heating NaOH or KOH to 400 ° C. or higher in the reaction cell, When releasing low-order iron oxides (for example, Na 2 FeO 2 , K 2 FeO 2 ) and then supplying water or water vapor to the oxide in the second stage, hydrogen gas is generated. And a hydrophilic higher-order oxide (for example, Na 3 Fe 5 O 9 , K 3 Fe 5 O 9 : Na 8 Fe 2 O 7 , K 8 Fe 2 O 7 ) It releases hydrogen while absorbing oxygen in the water during its growth process due to its special function. In this way, if the first stage is made of low-order iron oxide and then the second stage is made of high-order iron oxide, an oxide film having a reliable catalytic function can be made, and the life of iron oxide can be increased. Is extended.

本発明の第1発明を示す水素発生装置の斜視図である。It is a perspective view of the hydrogen generator which shows the 1st invention of the present invention. 水素発生装置の反応セルの縦断面図である。It is a longitudinal cross-sectional view of the reaction cell of a hydrogen generator. 水素発生装置内に収納される反応剤受けユニットの破断斜視図である。It is a fracture | rupture perspective view of the reactant receiving unit accommodated in a hydrogen generator. 高次の鉄酸化物の形成状態説明図である。It is a formation state explanatory drawing of a higher order iron oxide. ヒータパイプの周りに形成される鉄酸化物の形成状態説明図である。It is a formation explanatory view of iron oxide formed around a heater pipe.

以下、図面を参照して本発明の実施形態について説明する、
図1において、本発明の第1発明の水素発生装置Mは、円筒状のステンレス製の反応セル1を有し、この反応セル1は例えば、Cr18%−Ni8%-Fe残のSUS304で構成され、その一端側上面には、水又は水蒸気が供給される水管2が設けられ、この水管2は水タンク73に流量調整弁4を介して接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, the hydrogen generator M of the first invention of the present invention has a cylindrical stainless steel reaction cell 1, which is composed of, for example, SUS304 with Cr 18% -Ni 8% -Fe remaining. The water pipe 2 to which water or water vapor is supplied is provided on the upper surface of the one end side, and the water pipe 2 is connected to the water tank 73 via the flow rate adjusting valve 4.

一方、反応セル4の他端側上面には、反応セル1内で発生した水素を排出するための水素排出管5が設けられ、この排出管5の上端には、水平に水素送り管6が連結され、この送り管6の張り出し部6aには正圧力計7と負圧力計8が設けられるとともに、前記排出管5の上端から、排出される水素の温度を検出する温度計9がその中に挿入されている。前記送り管6の張り出し部6aの反対側には、排出される水量の流量に加えて反応セル内の圧力を調整するための圧力流量調整弁10が設けられ、この調整弁10には反応セル1内を減圧して1気圧以下に維持するための減圧装置Dが接続され、この減圧装置Dは、真空ポンプ11と、排出される水素ガス中に含まれる水蒸気を冷却して除去するためのコールドトラップ12からなる。前記真空ポンプ11から排出される水素は流量計13を介して水素ボンベ14に貯溜される。   On the other hand, a hydrogen discharge pipe 5 for discharging hydrogen generated in the reaction cell 1 is provided on the upper surface of the other end side of the reaction cell 4, and a hydrogen feed pipe 6 is horizontally provided at the upper end of the discharge pipe 5. The overhanging portion 6a of the feed pipe 6 is connected to a positive pressure gauge 7 and a negative pressure gauge 8, and a thermometer 9 for detecting the temperature of hydrogen discharged from the upper end of the discharge pipe 5 is included therein. Has been inserted. A pressure flow rate adjusting valve 10 for adjusting the pressure in the reaction cell in addition to the flow rate of the discharged water is provided on the opposite side of the overhanging portion 6a of the feed pipe 6, and this adjusting valve 10 has a reaction cell. A decompression device D for reducing the pressure inside 1 and maintaining it at 1 atm or less is connected. This decompression device D is used to cool and remove water vapor contained in the vacuum pump 11 and discharged hydrogen gas. It consists of a cold trap 12. Hydrogen discharged from the vacuum pump 11 is stored in a hydrogen cylinder 14 via a flow meter 13.

前記反応セル1は、図2に示すように、その内部に反応剤を保持する反応剤受けユニットUが収納され、このユニットUは樋形のステンレス製(SUS304)反応剤受け20(図3)を備え、この受け20は、その上面が開放され、その長手方向に所定間隔で小孔h、h…hが設けられたSUS304のフィン22、22…22が配設され、このフィン22は反応剤にステンレス成分を供給する機能を有する。前記受け20は、その前後が端壁20a、20bによって閉塞され、この前端壁20a及びフィン22が、2本のSUS304製のヒータパイプ21、21を支持している。前記ヒータパイプ21の前端は受け20の前端壁20aと反応セル1の前端壁1aを貫通して前方に突出し、前記ヒータパイプ21の突出部の上方で且つ2つの前端壁1a、20a間に前記水管2に対応して水又は水蒸気を受ける水受け23が設けられ、前記ヒータパイプ21の前端開放口からその中に電気式棒ヒータ24、24が挿入される。   As shown in FIG. 2, the reaction cell 1 houses therein a reactant receiving unit U for holding the reactant, and this unit U is a bowl-shaped stainless steel (SUS304) reactant receiver 20 (FIG. 3). This receiving 20 is provided with SUS304 fins 22, 22... 22 which are open at the upper surface and provided with small holes h, h... H at a predetermined interval in the longitudinal direction. It has a function of supplying a stainless steel component to the agent. The front and rear of the receiver 20 are closed by end walls 20a and 20b. The front end wall 20a and the fins 22 support two SUS304 heater pipes 21 and 21. The front end of the heater pipe 21 penetrates the front end wall 20a of the receiver 20 and the front end wall 1a of the reaction cell 1 and protrudes forward, and above the protrusion of the heater pipe 21 and between the two front end walls 1a and 20a. A water receiver 23 for receiving water or water vapor is provided corresponding to the water pipe 2, and electric bar heaters 24, 24 are inserted into the heater pipe 21 from the front end opening.

前記反応セル1の前端壁1aには、筒状の閉塞筒25が設けられ、この閉塞筒25によってヒータパイプ21の開放端及びヒータ24の突出部が外気から遮断され、これにより、閉塞筒25の引き口25aから真空引きして、ヒータ24の外周(ヒータパイプ21の内部に存在する部分を含む)から空気を排出してヒータ24の酸化を有効に防止しそれを長寿命とする。なお、ヒータ24の前端には、フランジ26が設けられ、このフランジ26を閉塞筒25の端壁の外面に溶接してヒータ24を密閉する。   A cylindrical closed cylinder 25 is provided on the front end wall 1a of the reaction cell 1, and the closed cylinder 25 blocks the open end of the heater pipe 21 and the protruding portion of the heater 24 from the outside air. The suction port 25a is evacuated, and air is discharged from the outer periphery of the heater 24 (including the portion existing inside the heater pipe 21) to effectively prevent the oxidation of the heater 24 and extend its life. A flange 26 is provided at the front end of the heater 24, and the flange 24 is welded to the outer surface of the end wall of the closing cylinder 25 to seal the heater 24.

前記反応セル1の上面中央には、熱電対のような温度計30が設けられ、この温度計30は、反応セル1内の反応剤受けユニットUの上方に位置する反応空間Sの温度を計測し、この反応空間Sには、反応剤が溶融して溶融塩を形成したときに、その液面から放散した多数の微細粒子が充満し、この微細粒子と水蒸気とが反応してステンレス成分雰囲気(Fe、Cr、Ni)で水を分解する。なお、反応剤としては、アルカリ金属水酸化物、例えば、水酸化ナトリウム(NaOH)又は水酸化カリウム(KOH)が最適であり、これら反応剤は、その融点(NaOH:316℃、KOH:360℃)以上に加熱されると、溶融塩となり、その液面からは、多数の微粒子が飛散する。   A thermometer 30 such as a thermocouple is provided in the center of the upper surface of the reaction cell 1, and this thermometer 30 measures the temperature of the reaction space S located above the reactant receiving unit U in the reaction cell 1. The reaction space S is filled with a large number of fine particles released from the liquid surface when the reactant is melted to form a molten salt, and the fine particles react with the water vapor to cause a stainless steel component atmosphere. Water is decomposed with (Fe, Cr, Ni). As the reactant, alkali metal hydroxide, for example, sodium hydroxide (NaOH) or potassium hydroxide (KOH) is most suitable, and these reactants have melting points (NaOH: 316 ° C, KOH: 360 ° C). ) When heated above, it becomes a molten salt, and a large number of fine particles are scattered from the liquid surface.

前記反応セル1の反応は、反応空間Sの圧力を常時1気圧以下、特に−0.4〜−0.7気圧に維持することが好ましく、この圧力は、反応空間S内に送りこまれる水蒸気室、排出する水素流量及び真空ポンプ11の駆動力の調整とによって行われ、そのために、コントローラCが設けられ(図2)、このコントローラCは、前記反応空間内の圧力を検出する正負圧力計7、8、排出する水素の温度を検出する温度計9及び反応空間S内の温度を検出する温度計30からの信号を受けて、前記水又は水蒸気の流量を調整する流量調整弁4及び反応空間の圧力と水素流量を調整する圧力流量調整弁10とをコントロールする。   In the reaction of the reaction cell 1, the pressure in the reaction space S is preferably maintained at 1 atm or less, particularly −0.4 to −0.7 atm, and this pressure is a water vapor chamber sent into the reaction space S. For this purpose, a controller C is provided (FIG. 2). The controller C detects the pressure in the reaction space by using a positive / negative pressure gauge 7. , 8, a flow rate adjusting valve 4 for adjusting the flow rate of the water or water vapor and the reaction space in response to signals from the thermometer 9 for detecting the temperature of the discharged hydrogen and the thermometer 30 for detecting the temperature in the reaction space S. And the pressure flow control valve 10 for adjusting the hydrogen flow rate are controlled.

すなわち、排出する水素温度が高くなるということは、水又は水蒸気の量が多すぎるか、反応が不活発で水蒸気が多く存在することを意味するので流量調整弁4を絞る。反応空間の圧力が所定値より上昇したときには、反応空間内で生じた反応残渣物が反応セル内に滞留する時間が長くなるので圧力流量調整弁10の開度を大きくして水素を素早く排出する。本発明の水素発生装置Mにおいては、反応空間を減圧状態としており、しかも水供給量調整装置によって減圧状態が維持されるので反応残渣物が反応空間から直ちに排出され、コールドトラップ12等にトラップされるので反応の劣化を防ぐことができ寿命が増大する。   That is, when the temperature of discharged hydrogen becomes high, it means that the amount of water or water vapor is too large, or the reaction is inactive and a large amount of water vapor is present, so the flow rate adjusting valve 4 is throttled. When the pressure in the reaction space rises above a predetermined value, the time for the reaction residue generated in the reaction space to stay in the reaction cell becomes longer, so the opening of the pressure flow control valve 10 is increased and hydrogen is quickly discharged. . In the hydrogen generator M of the present invention, the reaction space is in a depressurized state, and the depressurized state is maintained by the water supply amount adjusting device, so that the reaction residue is immediately discharged from the reaction space and trapped in the cold trap 12 or the like. Therefore, deterioration of the reaction can be prevented and the lifetime is increased.

次に、本発明の第2発明の水素発生方法について説明する。   Next, the hydrogen generation method of the second invention of the present invention will be described.

先ず、第1段階として反応セル1を400℃以上、好ましくは500〜600℃に加熱して反応剤(NaOH、KOH)を溶融して溶融塩とする。このとき、溶融塩の液面からは反応剤成分を有する微細粒子が反応空間S内に飛散する。この微細粒子は反応剤受け20の内壁、反応セル1の反応剤受け20で被われることなく露出している内壁及びフィン21に接触してSUS304の成分であるFe、Cr、Ni雰囲気内で反応する。反応剤がNaOHの場合、このNaOHはNiを触媒としてFeと主として反応し(時としてCrの酸化物が僅かに検出されるが、ここでは無視する)鉄酸ナトリウムが生成する。   First, as a first step, the reaction cell 1 is heated to 400 ° C. or higher, preferably 500 to 600 ° C. to melt the reactants (NaOH, KOH) to form a molten salt. At this time, fine particles having a reactant component are scattered in the reaction space S from the liquid surface of the molten salt. The fine particles contact the inner wall of the reactant receiver 20, the inner wall exposed without being covered with the reactant receiver 20 of the reaction cell 1, and the fin 21, and react in an atmosphere of Fe, Cr, and Ni that are components of SUS304. To do. When the reactant is NaOH, this NaOH mainly reacts with Fe using Ni as a catalyst (sometimes, a slight amount of Cr oxide is detected but is ignored here) to form sodium ferrate.

Fe+2NaOH→NaFeO+H
これは、水又は水蒸気なしの反応であり、NaFeOは強い親水性を示す低次鉄酸化物である。この反応はNaOHが完全になくなるまで継続し、NaOHを25モル使用した場合(1Kg)4日間程この反応が継続した。
Fe + 2NaOH → Na 2 FeO 2 + H 2
This is a reaction without water or water vapor, and Na 2 FeO 2 is a low-order iron oxide that exhibits strong hydrophilicity. This reaction was continued until NaOH was completely eliminated. When 25 mol of NaOH was used (1 Kg), this reaction was continued for about 4 days.

次に、前述の反応終了後に第2段階として、水又は水蒸気を供給すると、当初125cc程度の水を吸収するのみで水素は発生してこない。所定量の水を吸収した後は、触媒機能を果たして、水素を発生し始める。このとき、低次の鉄酸化物は水と反応して高次の鉄酸化物(NaFe:Na8Fe)となる。この高次の鉄酸化物は導電性で磁性を有し、硬度が著しく高く、親水性が著しく強い。 Next, when water or water vapor is supplied as the second stage after the above reaction is completed, hydrogen is not generated but only about 125 cc of water is absorbed at the beginning. After absorbing a predetermined amount of water, it performs a catalytic function and begins to generate hydrogen. At this time, the low-order iron oxide reacts with water to become a high-order iron oxide (Na 3 Fe 5 O 9 : Na 8 Fe 2 O 7 ). This higher order iron oxide is electrically conductive and magnetic, has a very high hardness, and is extremely hydrophilic.

第1段階における低次の鉄酸化物は、例えば反応剤受け20の内壁に沿って最初は膜lが生成され、膜lが所定厚になると剥離し、次いで、膜lが生成される。その後、第2段階において、これらの低次の鉄酸化物は、水素を発生しつつ高次の鉄酸化物に変化していく。また、この高次の鉄酸化物からも微粒子が飛散し、膜lが剥離した後に、この微粒子が水分子を捕捉しつつ新たなステンレス面に接触して高次の鉄酸化物を形成していく。 The low-order iron oxide in the first stage first forms a film l 1 along the inner wall of the reactant receiver 20, for example, peels off when the film l 1 reaches a predetermined thickness, and then forms a film l 2. The Thereafter, in the second stage, these lower-order iron oxides are changed to higher-order iron oxides while generating hydrogen. Further, after the fine particles are scattered from the higher order iron oxide and the film l 2 is peeled off, the fine particles capture water molecules and come into contact with a new stainless steel surface to form higher order iron oxides. To go.

また、図5に示すようにヒータパイプ21においては、電流が棒ヒータ24の軸方向に流れることにより、電気式棒ヒータ24の周りに磁力線mlが生じるのでその磁力線に応じて低次の鉄酸化物50が内側に、その外側に高次の鉄酸化物51が生じていく。   In addition, as shown in FIG. 5, in the heater pipe 21, a current line flows in the axial direction of the bar heater 24 to generate a magnetic line of force around the electric bar heater 24. Therefore, low-order iron oxidation is performed according to the magnetic line of force. The high-order iron oxide 51 is generated on the inside of the object 50 and on the outside thereof.

このように、第1段階には水素を発生しつつ、水又は水蒸気なしで、低次の鉄酸化物を形成し、次いで、第2段階で水又は水蒸気を供給してそれを高次の鉄酸化物に変化させれば、酸素を吸収しつつ水素を発生するという特殊触媒機能を有する反応剤にすることが出来、長時間の水の分解作用を確保できる。   Thus, in the first stage, hydrogen is generated, and low-order iron oxide is formed without water or steam, and then in the second stage, water or steam is supplied to the high-order iron. If it is changed to an oxide, it can be made a reactive agent having a special catalytic function of generating hydrogen while absorbing oxygen, and a long-time decomposition action of water can be secured.

1…反応セル
2…水管
3…水タンク
4…流量調整弁
5…水素排出管
10…圧力流量調整弁
11…真空ポンプ
12…コールドトラップ
20…反応剤受け
21…ヒータパイプ
22…フィン
24…棒ヒータ
DESCRIPTION OF SYMBOLS 1 ... Reaction cell 2 ... Water pipe 3 ... Water tank 4 ... Flow control valve 5 ... Hydrogen discharge pipe 10 ... Pressure flow control valve 11 ... Vacuum pump 12 ... Cold trap 20 ... Reactant receiver 21 ... Heater pipe 22 ... Fin 24 ... Rod heater

Claims (6)

密封された反応セルと、この中に収納されるアルカリ水酸化物からなる反応剤と、前記反応セル及び反応剤を加熱する加熱装置と、前記反応セルに水又は水蒸気を供給する水供給装置と、前記反応セル内を減圧状態に維持するための減圧装置と、前記反応セル内の反応性の程度に応じて前記水供給装置の水の供給量を調整するための水供給量調整装置とを有し、前記加熱装置は、反応セル内に設置され、電気式棒ヒータを保持するヒータパイプと、このヒータパイプ内に挿入される電気式棒ヒータを備えてなる水素発生装置。   A sealed reaction cell, a reactant made of an alkali hydroxide accommodated therein, a heating device for heating the reaction cell and the reactant, and a water supply device for supplying water or water vapor to the reaction cell; A pressure reducing device for maintaining the inside of the reaction cell in a reduced pressure state, and a water supply amount adjusting device for adjusting a water supply amount of the water supply device according to a degree of reactivity in the reaction cell. The hydrogen generator is provided with a heater pipe that is installed in a reaction cell and holds an electric bar heater, and an electric bar heater that is inserted into the heater pipe. 前記反応セルは、筒状のステンレス材からなり、前記反応剤は、水酸化ナトリウム又は水酸化カリウムである請求項1記載の水素発生装置。   The hydrogen generator according to claim 1, wherein the reaction cell is made of a cylindrical stainless material, and the reactant is sodium hydroxide or potassium hydroxide. 前記水供給量調整装置は、水タンクから反応セルへ送られる通路に取り付けられる流量調整弁と、反応セル内の圧力を検出する圧力計と、反応セルから流出するガスの量と反応セル内の圧力を調整する流量調整弁と、反応セルから流出するガスの温度を測定する温度計と、前記圧力計と温度計からの信号を受け、前記2つの流量調整弁をコントロールするコントローラからなる請求項1又は2記載の水素発生装置。   The water supply amount adjusting device includes a flow rate adjusting valve attached to a passage sent from the water tank to the reaction cell, a pressure gauge for detecting the pressure in the reaction cell, the amount of gas flowing out from the reaction cell, and the amount in the reaction cell. A flow rate adjusting valve for adjusting pressure, a thermometer for measuring the temperature of gas flowing out from a reaction cell, and a controller for receiving signals from the pressure gauge and the thermometer and controlling the two flow rate adjusting valves. The hydrogen generator according to 1 or 2. 前記ヒータパイプは、先端が閉塞されているステンレス製のくり抜きパイプであり、これらパイプは2本一定間隔で長手方向に伸びる反応剤受けに一体に支持されている請求項1乃至3のいずれかに記載の水素発生装置。   The heater pipe is a stainless steel hollow pipe with a closed end, and these pipes are integrally supported by a reagent receiver that extends in the longitudinal direction at regular intervals. The hydrogen generator described. ステンレス製の反応セル内にアルカリ水酸化物からなる反応剤を収納し、反応セル内の圧力を一気圧以下に保持しつつ反応セル内に配置された加熱装置によって反応剤及び反応セルを400℃以上に一定期間加熱して水素を発生させつつ、反応セル内に親水性の低次の鉄酸化物を生成し、次いで、水又は水蒸気を反応セル内に供給せしめて水蒸気と低次の鉄酸化物とを反応せしめて高次鉄酸化物に変化させつつ水から水素を採集する水素発生装置。   The reaction agent made of alkali hydroxide is accommodated in a stainless steel reaction cell, and the reaction agent and the reaction cell are kept at 400 ° C. by a heating device arranged in the reaction cell while maintaining the pressure in the reaction cell at 1 atm or less. While generating hydrogen by heating for a certain period of time as described above, hydrophilic low-order iron oxide is produced in the reaction cell, and then water or water vapor is supplied into the reaction cell to oxidize water vapor and low-order iron. A hydrogen generator that collects hydrogen from water while reacting with a substance to change it into high-order iron oxide. 前記アルカリ水酸化物は水酸化ナトリウム(NaOH)であり、前記加熱装置は電気式の棒ヒータであり、前記高次の鉄酸化物はNaFeであり、x、y、zは整数である請求項5記載の水素発生装置。 The alkali hydroxide is sodium hydroxide (NaOH), the heating device is an electric bar heater, the higher order iron oxide is Na x Fe y O z , and x, y, and z are The hydrogen generator according to claim 5, which is an integer.
JP2012174877A 2012-08-07 2012-08-07 Hydrogen generator and hydrogen generation method Expired - Fee Related JP6110088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174877A JP6110088B2 (en) 2012-08-07 2012-08-07 Hydrogen generator and hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174877A JP6110088B2 (en) 2012-08-07 2012-08-07 Hydrogen generator and hydrogen generation method

Publications (2)

Publication Number Publication Date
JP2014034478A true JP2014034478A (en) 2014-02-24
JP6110088B2 JP6110088B2 (en) 2017-04-05

Family

ID=50283688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174877A Expired - Fee Related JP6110088B2 (en) 2012-08-07 2012-08-07 Hydrogen generator and hydrogen generation method

Country Status (1)

Country Link
JP (1) JP6110088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006153A1 (en) * 2000-07-13 2002-01-24 Hydrogen Energy America Llc Method and apparatus for controlled generation of hydrogen by dissociation of water
JP2005131509A (en) * 2003-10-29 2005-05-26 Unisem Co Ltd Waste gas treatment and waste gas treatment method
JP2009155195A (en) * 2007-12-05 2009-07-16 Takamasa Asakawa Hydrogen generating method, hydrogen generating apparatus, and catalyst
WO2010084790A1 (en) * 2009-01-20 2010-07-29 Ishikawa Yasuo Catalyst for hydrogen generation, method for generating hydrogen, and hydrogen generator
JP2010235391A (en) * 2009-03-31 2010-10-21 Hitachi Maxell Ltd Method of producing hydrogen and apparatus of producing hydrogen
WO2012011499A1 (en) * 2010-07-20 2012-01-26 Ishikawa Yasuo Nuclear transformation method and nuclear transformation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006153A1 (en) * 2000-07-13 2002-01-24 Hydrogen Energy America Llc Method and apparatus for controlled generation of hydrogen by dissociation of water
JP2004504243A (en) * 2000-07-13 2004-02-12 ハイドロジェン エナジー アメリカ エルエルスィー Method and apparatus for controlling hydrogen generation by water splitting
JP2005131509A (en) * 2003-10-29 2005-05-26 Unisem Co Ltd Waste gas treatment and waste gas treatment method
JP2009155195A (en) * 2007-12-05 2009-07-16 Takamasa Asakawa Hydrogen generating method, hydrogen generating apparatus, and catalyst
WO2010084790A1 (en) * 2009-01-20 2010-07-29 Ishikawa Yasuo Catalyst for hydrogen generation, method for generating hydrogen, and hydrogen generator
JP2010235391A (en) * 2009-03-31 2010-10-21 Hitachi Maxell Ltd Method of producing hydrogen and apparatus of producing hydrogen
WO2012011499A1 (en) * 2010-07-20 2012-01-26 Ishikawa Yasuo Nuclear transformation method and nuclear transformation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide

Also Published As

Publication number Publication date
JP6110088B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
KR102222184B1 (en) Reactant, heating device, and heating method
JP6005331B2 (en) Hydrogen generation method for generating hydrogen from water
CA2927142C (en) System and method for dehydrogenating a gaseous medium
WO2015045566A1 (en) Formic acid decomposition apparatus and formic acid decomposition method
JP2014037996A (en) Nuclear fusion reaction method
JP5649140B2 (en) Recombiner for fluid electrolyte batteries
JP6110088B2 (en) Hydrogen generator and hydrogen generation method
CN114713175B (en) Natural gas carbonless hydrogen production device
JP5911980B2 (en) Hydrogen generating method and hydrogen generating apparatus for generating hydrogen from water
JP2010163286A (en) Method for generating hydrogen gas using metallic sodium and apparatus for the same
JP6130655B2 (en) Periodic table Group 1 and 2 hydride production method, production apparatus and method of use thereof
JP6084404B2 (en) Manufacturing method of electrode plate of fuel cell
KR101367830B1 (en) Sodium-nanofluid experimental reactor
JP6059898B2 (en) Hydrogen generator
CN211453239U (en) Foamed aluminum foaming agent gas production precision detection device
CN113464839A (en) Self-heating type quick hydrogen supply device
RU2466212C2 (en) Cleaning method of turbine blade surfaces in turbine blade processing unit
JP6059905B2 (en) Method for activating reactant in hydrogen generator
JP2011140420A (en) Hydrogen generating apparatus and fuel cell system
JP5887148B2 (en) Hydrogen generating method and hydrogen generating apparatus
JP2013237599A (en) Hydrogen generation method to collect hydrogen from water
JP6259849B2 (en) Hydrogen generating method and hydrogen generating apparatus
CN207760436U (en) A kind of device preparing high pure metal sodium
JP5854424B2 (en) Apparatus and method for treating hydrogen-containing gas with alkali particles
JP6203523B2 (en) Carbon dioxide treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170309

R150 Certificate of patent or registration of utility model

Ref document number: 6110088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees