JP2014037996A - Nuclear fusion reaction method - Google Patents

Nuclear fusion reaction method Download PDF

Info

Publication number
JP2014037996A
JP2014037996A JP2012179387A JP2012179387A JP2014037996A JP 2014037996 A JP2014037996 A JP 2014037996A JP 2012179387 A JP2012179387 A JP 2012179387A JP 2012179387 A JP2012179387 A JP 2012179387A JP 2014037996 A JP2014037996 A JP 2014037996A
Authority
JP
Japan
Prior art keywords
hydrogen
nanoparticles
deuterium
electrodes
fusion reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012179387A
Other languages
Japanese (ja)
Inventor
Tadahiko Mizuno
忠彦 水野
Yasuo Ishikawa
泰男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012179387A priority Critical patent/JP2014037996A/en
Publication of JP2014037996A publication Critical patent/JP2014037996A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To cause nuclear fusion reaction at a low temperature and obtain thermal energy and neutrons.SOLUTION: A nuclear fusion reaction method comprises: generating nanoparticles P of metal component of hydrogen-absorbing electrodes 3 and 4 arranged in an electrolytic tank 1, on the electrodes, or arranging positive electrodes 31 and 41 and negative electrodes 32 and 42 in vacuum chambers 30 and 40, and attaching the nanoparticles on the surface of any of the electrodes while imparting a hydrogen-absorbing property to the electrodes; using electrons in the nanoparticles as heavy electrons, embedding the heavy electrons into absorbed hydrogens, deuterium and shrinking them; and reducing an internuclear distance between the hydrogen, the deuterium and other absorbed hydrogen and deuterium, thereby causing nuclear fusion reaction with high probability.

Description

本発明は、金属微粒子を使用して化学反応に誘起された核融合反応方法に関する。   The present invention relates to a fusion reaction method induced by a chemical reaction using metal fine particles.

1989年、アメリカの電気化学者のフライシュマンとポンズ博士が「電解によって誘起される重水素の低温核融合」についての発表を行ない、以来、低温核融合についての実験が種々試みられたが、その再現性が乏しく広い普及に至っていない。これについての説明が特許文献1に開示されている。   In 1989, American electrochemists Fleishmann and Dr. Ponds made a presentation on “cold fusion of deuterium induced by electrolysis”, and since then, various experiments on cold fusion have been attempted. It is not reproducible and has not spread widely. The description about this is disclosed in Japanese Patent Application Laid-Open No. H10-228707.

特開2001−108775号JP 2001-108775 A

ところが、特許文献1においては、種々反応原理について分析はなされているが、核反応のトリガーが何であるかの分析が不十分であり、金属元素を含むナノ粒子に注目されていない。   However, in Patent Literature 1, although various reaction principles have been analyzed, analysis of what is the trigger of the nuclear reaction is insufficient, and attention is not paid to nanoparticles containing metal elements.

本件発明者は、核反応のトリガーがナノ粒子と重い電子の作用によるものと判断し、種々の実験の結果、核反応による高熱の発生と中性子の発生を確認している。   The present inventor has determined that the trigger of the nuclear reaction is due to the action of nanoparticles and heavy electrons, and as a result of various experiments, has confirmed the generation of high heat and the generation of neutrons due to the nuclear reaction.

そこで、本発明の第1の発明は、少なくとも軽水又は重水を含む電解液中に2枚の金属材からなる電極を対向配置せしめ、これら両電極に電圧及び電流を印加せしめて電極表面にナノ粒子を形成せしめ、このナノ粒子中に水素同位体を導入してナノ粒子中の電子の質量を増大させ、導入した水素、重水素原子の大きさを縮小して核間距離を短くして水素原子間の核融合反応確率を上昇せしめるようにした。   Therefore, in the first invention of the present invention, two electrodes made of a metal material are placed opposite to each other in an electrolytic solution containing at least light water or heavy water, and voltage and current are applied to both electrodes to form nanoparticles on the electrode surface. Hydrogen isotopes are introduced into the nanoparticles to increase the mass of electrons in the nanoparticles, the size of the introduced hydrogen and deuterium atoms is reduced, the internuclear distance is shortened, and hydrogen atoms are reduced. Increased the fusion reaction probability between.

また、本発明の第2の発明は、真空チャンバー内に、導電体及びこの導電体に螺旋状に捲回された水素吸収合金線を含む第一の電極と、前記第一の電極の周囲に配置された円筒状で且つ網状の第二の電極とを配置し、前記真空チャンバー内に重水素ガスを供給し、これら両電極間に電圧を印加せしめて放電させ、第一の電極の水素吸収合金線の表面にナノ粒子を形成せしめ、このナノ粒子中に重水素を導入してナノ粒子中の電子の質量を増大させ、導入した重水素及び吸収されている水素原子の大きさを縮小して核間距離を短くして水素、重水素原子間の核融合反応確率を高めるようにした。   According to a second aspect of the present invention, there is provided a first electrode including a conductor and a hydrogen-absorbing alloy wire spirally wound around the conductor in a vacuum chamber, and a periphery of the first electrode. A cylindrical and net-like second electrode is arranged, deuterium gas is supplied into the vacuum chamber, a voltage is applied between the two electrodes to cause discharge, and hydrogen absorption by the first electrode Nanoparticles are formed on the surface of the alloy wire, deuterium is introduced into the nanoparticles to increase the mass of electrons in the nanoparticles, and the size of the introduced deuterium and absorbed hydrogen atoms is reduced. The internuclear distance was shortened to increase the fusion reaction probability between hydrogen and deuterium atoms.

更に、また、本発明の第3の発明は、真空チャンバー内に、導電性金属材からなる陽極と、この陽極の周囲に導電性陰極とを配置し、前記陰極表面にナノ粒子を付着せしめ、前記真空チャンバー内に重水素ガスを供給し、前記両電極間に電圧を印加せしめて放電させ、ナノ粒子中に重水素を導入してナノ粒子中の電子の質量を増大させ、導入した重水素原子の大きさを縮小して核間距離を短くして重水素原子間の核融合反応確率を高めるようにした。   Furthermore, in the third invention of the present invention, an anode made of a conductive metal material and a conductive cathode around the anode are arranged in a vacuum chamber, and nanoparticles are attached to the cathode surface. Deuterium gas is supplied into the vacuum chamber, a voltage is applied between the electrodes to cause discharge, and deuterium is introduced into the nanoparticles to increase the mass of electrons in the nanoparticles. The size of the atom was reduced to shorten the internuclear distance to increase the fusion reaction probability between deuterium atoms.

更に、また、本発明の第4の発明は、ステンレス製の筒状の反応セル内にアルカリ金属水酸化物を収納し、このアルカリ金属水酸化物をその融点以上に加熱してその液面上からナノ粒子を飛散せしめ、減圧状態で前記反応セル内に水蒸気を供給することにより、ステンレス表面に高次のアルカリ金属とステンレス成分の少なくとも一つの成分を含む高次の酸化膜を形成し、この高次の酸化膜上に前記ナノ粒子の一部を付着せしめ、このナノ粒子中に反応セル内で発生した水素、重水素を導入して、ナノ粒子中の電子の質量を増大させ、導入した水素、重水素原子の大きさを縮小して核間距離を短くして他の水素、重水素原子間の核融合反応確率を高めるようにした。   Furthermore, the fourth invention of the present invention is that an alkali metal hydroxide is accommodated in a stainless steel cylindrical reaction cell, and the alkali metal hydroxide is heated to a temperature higher than its melting point to be on the liquid surface. The high-order oxide film containing at least one of the higher-order alkali metal and the stainless steel component is formed on the stainless steel surface by dispersing the nanoparticles from the water and supplying water vapor into the reaction cell in a reduced pressure state. A part of the nanoparticles was deposited on the higher-order oxide film, and hydrogen and deuterium generated in the reaction cell were introduced into the nanoparticles to increase the mass of electrons in the nanoparticles and introduced them. The size of hydrogen and deuterium atoms was reduced to shorten the internuclear distance to increase the fusion reaction probability between other hydrogen and deuterium atoms.

更に、また、本発明の第5の発明は、ステンレス製の筒状の反応セルを第一の電極とし、前記反応セルの空間部分に導電性金属材からなる長尺の第二の電極を配設し、前記反応セルの底部にアルカリ金属水酸化物を収納し、このアルカリ金属水酸化物をその融点以上に加熱してナノ粒子を反応セル内に飛散せしめ、前記反応セル内に水蒸気を供給しつつ、ステンレス表面に高次のアルカリ金属とステンレス成分の少なくとも一つの成分を含む高次の酸化膜を形成するとともに酸化膜上にナノ粒子を付着せしめ、次いで、水蒸気の供給を停止し真空引きして水素、重水素ガスを供給し両電極間に電圧を印加して放電せしめ、これによりナノ粒子中の質量を増大させ、吸収された水素、重水素原子の大きさ縮小して核間距離を短くして他の水素、重水素原子間の核融合反応確率を高めるようにした。   Furthermore, the fifth invention of the present invention uses a stainless steel cylindrical reaction cell as a first electrode, and a long second electrode made of a conductive metal material is arranged in the space of the reaction cell. The alkali metal hydroxide is stored at the bottom of the reaction cell, and the alkali metal hydroxide is heated to the melting point or higher to disperse the nanoparticles in the reaction cell, thereby supplying water vapor into the reaction cell. At the same time, a high-order oxide film containing a higher-order alkali metal and at least one of the stainless steel components is formed on the stainless steel surface, and nanoparticles are deposited on the oxide film. Then, hydrogen and deuterium gas are supplied and a voltage is applied between both electrodes to discharge, thereby increasing the mass in the nanoparticles, reducing the size of absorbed hydrogen and deuterium atoms, and internuclear distance Shorten other hydrogen, It was to enhance the fusion reaction probability between hydrogen atoms.

本発明の第1発明である電解時の核融合装置の概略構成図である。It is a schematic block diagram of the fusion apparatus at the time of the electrolysis which is 1st invention of this invention. 図1に示す核融合装置の電極板の表面状態説明図である。It is surface state explanatory drawing of the electrode plate of the nuclear fusion apparatus shown in FIG. 本発明の第2発明である核融合装置の概略構成図である。It is a schematic block diagram of the nuclear fusion apparatus which is the 2nd invention of this invention. 本発明の第3発明である核融合装置の概略構成図である。It is a schematic block diagram of the nuclear fusion apparatus which is 3rd invention of this invention. 本発明の第4発明である核融合装置の縦断面図である。It is a longitudinal cross-sectional view of the nuclear fusion apparatus which is the 4th invention of the present invention. 本発明の第4発明である核融合装置の横断面図である。It is a cross-sectional view of the fusion device which is the fourth invention of the present invention. 本発明の第5発明である核融合装置の縦断面図である。It is a longitudinal cross-sectional view of the nuclear fusion apparatus which is 5th invention of this invention. 本発明の第5発明である核融合装置の横断面図である。It is a cross-sectional view of the fusion device which is the fifth invention of the present invention. 本発明の第2発明である核融合装置の中性子発生時の電極間の電流変化を示すグラフである。It is a graph which shows the electric current change between electrodes at the time of the neutron generation of the fusion apparatus which is 2nd invention of this invention. 本発明の第2発明である核融合装置の中性子発生強度を示すグラフである。It is a graph which shows the neutron generation intensity of the fusion apparatus which is 2nd invention of this invention.

以下、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1において、本発明の第1発明を実施するための電解式の核融合装置Mは、電解槽1を有し、この電解槽1内には、電解液2が収納されるとともに2枚の電極3、4が電解液内に所定間隔を配して対向配置されている。そして電極3、4間には、直流電源5が設けられている。電極3、4の材料としては、パラジウム(Pd)、白金(t)又はタングステン(w)、金(Au)が使用され、電解液2は、例えば炭酸カリウムの水溶液であり、又、LiOD−DO水溶液でもよく、水としては軽水が使用され、重水を含んでいてもよい。両電極間に印加される電流密度は1〜1000A/cmであり、好ましくは20mA/cmである。実際に電極3(陰極)としてパラジウム(Pd)を使用したところ、陰極3には、水素が発生するとともに、その一部はPd板(陰極)に吸収されるとともに、図2に示すように電極3表面には、多数のパラジウムの微細粒子P(100ナノ(nm)以下、中には10ナノ以下のものも存在する。以下、ナノ粒子と称す。)が生成される。電解期間としては、数日、時として数週間行った。)また、電解による水素発生中のナノ粒子中には平均して金属原子と同じ数だけの水素原子が吸収され、一般にナノ粒子中でも1〜10ナノの金属粒子が核反応を起こしやすい。ナノ粒子中の金属原子数としては数100程度の集団である。10ナノ以下の大きさのナノ粒子集団中の自由電子は、その動きが周囲の金属原子や他の電子によって強く力を受け、このとき、ナノ粒子中に水素が吸収され、水素温度が上がると、ナノ粒子中の電子の性質が変化し、その質量が極めて大きな値(通常の電子の10〜1000倍)となることが、計算と実験によって判明した。この重い電子は、吸収した水素原子に作用し、この水素原子の大きさが減少する。これにより、吸収した水素原子の、他の水素原子との核間距離が縮み、トンネル効果によって水素原子間の核融合反応確率が増える。 In FIG. 1, an electrolytic fusion apparatus M 1 for carrying out the first invention of the present invention has an electrolytic cell 1, and an electrolytic solution 2 is accommodated in the electrolytic cell 1 and two sheets are contained. The electrodes 3 and 4 are arranged to face each other at a predetermined interval in the electrolytic solution. A DC power source 5 is provided between the electrodes 3 and 4. As materials for the electrodes 3 and 4, palladium (Pd), platinum (t), tungsten (w), and gold (Au) are used. The electrolyte 2 is, for example, an aqueous solution of potassium carbonate, and LiOD-D. 2 O aqueous solution may be sufficient, light water is used as water, and heavy water may be included. Current density applied across the electrodes is 1~1000A / cm 2, preferably 20 mA / cm 2. When palladium (Pd) was actually used as the electrode 3 (cathode), hydrogen was generated at the cathode 3 and a part of the hydrogen was absorbed by the Pd plate (cathode). As shown in FIG. 3 On the surface, a large number of fine palladium particles P (100 nano (nm) or smaller, some of which are 10 nano nanometers or less, hereinafter referred to as nanoparticles) are generated. The electrolysis period was several days and sometimes several weeks. In addition, on average, the same number of hydrogen atoms as metal atoms are absorbed into the nanoparticles during hydrogen generation by electrolysis, and generally 1 to 10 nanometer metal particles are likely to cause a nuclear reaction among the nanoparticles. The number of metal atoms in the nanoparticles is a group of about several hundreds. The movement of free electrons in a population of nanoparticles with a size of 10 nanometers or less is strongly influenced by surrounding metal atoms and other electrons. At this time, when hydrogen is absorbed in the nanoparticles and the hydrogen temperature rises, It has been found by calculation and experiment that the properties of the electrons in the nanoparticles change and the mass becomes extremely large (10 to 1000 times that of normal electrons). This heavy electron acts on the absorbed hydrogen atom, and the size of the hydrogen atom decreases. As a result, the internuclear distance between the absorbed hydrogen atoms and other hydrogen atoms is shortened, and the fusion reaction probability between the hydrogen atoms is increased by the tunnel effect.

ここで、陽子同士が太陽の中心温度で正面衝突した場合に、核融合が生じる確率は、トンネル効果を考慮した場合に以下の通りとなる。   Here, when protons collide head-on at the center temperature of the sun, the probability of fusion occurring is as follows when the tunnel effect is considered.

U:陽子間静電ポテンシャルエネルギー
=1.15×10−13
E:陽子同士の正面衝突時の運動エネルギー
中心温度 1500万K=4×(3/2kT=1.24×10−15J)
k:プランク定数
m:陽子の質量=1.7×10−27kg
δ:陽子の必要浸透距離=1.86×10−13
β=(2π/h)・{2m(U−E}1/2=1.87×1014
従って、核融合の発生確率は、
γ=e−2βδ=6.14×10−31
U: Electrostatic potential energy between protons = 1.15 × 10 −13 J
E: Kinetic energy at the time of frontal collision between protons Central temperature 15 million K = 4 × (3/2 kT = 1.24 × 10 −15 J)
k: Planck's constant m: Mass of proton = 1.7 × 10 −27 kg
δ: Necessary penetration distance of proton = 1.86 × 10 −13 m
β = (2π / h) · {2m (U−E) 1/2 = 1.87 × 10 14
Therefore, the probability of occurrence of fusion is
γ = e −2βδ = 6.14 × 10 −31

このように、一般に核融合確率は非常に低く、およそ1031回以上の衝突で一度の核融合反応が起こる。太陽の中では、十分大きな衝突回数があるので、観測が可能である。 Thus, in general, the fusion probability is very low, and one fusion reaction occurs in about 10 31 or more collisions. In the sun, observation is possible because there are enough collisions.

これに反して、重い電子が係る反応は、上述のように、電子質量が2倍程度大きくなれば、10桁増加する。上述の電解では毎秒供給される水素原子は6.24×1018/sとなる。電解による水素発生時のナノ粒子には平均して金属原子と同じ数だけの水素原子が存在し、電極表面層が全てナノ粒子として計算できる。ナノ層の厚さは10原子程度であり、この中に存在する水素原子数は1017/cmである。水素は電解によって一定量ずつ供給され、この状態で反応が生ずる確率は1018×10−20=10−2/s/cm2となり、一般の核融合確率に比較して著しくその確率は大きくなる。また、電解時の発熱量は数100wであった。
更に、核反応時には、中性子の発生、ヘリウム3の発生が見られた。
On the other hand, the reaction involving heavy electrons increases by 10 orders of magnitude if the electron mass increases by a factor of about 2 as described above. In the above-described electrolysis, the number of hydrogen atoms supplied every second is 6.24 × 10 18 / s. The average number of hydrogen atoms present in the nanoparticles during hydrogen generation by electrolysis is the same as the number of metal atoms, and the entire electrode surface layer can be calculated as nanoparticles. The thickness of the nanolayer is about 10 atoms, and the number of hydrogen atoms present therein is 10 17 / cm 2 . Hydrogen is supplied by a certain amount by electrolysis, and the probability of reaction occurring in this state is 10 18 × 10 −20 = 10 −2 / s / cm 2 , which is significantly higher than the general fusion probability. . Moreover, the calorific value at the time of electrolysis was several hundred w.
Furthermore, during the nuclear reaction, generation of neutrons and generation of helium 3 were observed.

次に、重い電子の作用について説明する。   Next, the action of heavy electrons will be described.

ナノ粒子中の自由電子は重い電子となり、吸収された水素原子の大きさを減少させる。すなわち、重い電子がプロトン原子の原子核に極めて近い軌道に入り、その距離はナノ粒子中の電子の有効質量によって定まり、重い電子によって次の反応が引き起こされる。   Free electrons in the nanoparticles become heavy electrons, reducing the size of the absorbed hydrogen atoms. That is, heavy electrons enter an orbit very close to the nucleus of the proton atom, the distance is determined by the effective mass of the electrons in the nanoparticle, and the next reaction is caused by the heavy electrons.

(Peh)+H→(ppeh)+e
D+β+eh+νe+0.164MeV …(1)式
この反応によって重水素、陽電子、中間子が生成され、反応に関わった重い電子が再びナノ粒子中に出てくる。ここで陽電子は電子が存在すればガンマー線を発生する。但し、このガンマー線の発生確率は低い。
(Pe h) + H → (ppe h) + e
→ 2 D + β + + e - h + νe + 0.164MeV ... (1) Equation Deuterium This reaction positrons, mesons are generated, a heavy electrons involved in the reaction comes out again in the nanoparticles. Here, positrons generate gamma rays if they are present. However, the probability of occurrence of this gamma ray is low.

β+e→2γ+1.022MeV
生成した重水素と新たに出来た重たい電子による陽子とが反応を起こし、ヘリウム3(He)が生成される。
β + + e → 2γ + 1.022 MeV
The generated deuterium reacts with protons produced by newly generated heavy electrons to generate helium 3 ( 3 He).

D(Peh)→He+γ+eh+5.493MeV …(2)式
このとき、ガンマー線が発生し、重い電子は再びナノ粒子中に戻る。
2 D (Pe h) → 3 He + γ + e h + 5.493 MeV (2) Formula At this time, gamma rays are generated, and heavy electrons return to the nanoparticles again.

生成したHeと重電子陽子は、Heと2つのプロトン(P)と重電子に別れる反応を起こす可能性がある。 The generated 3 He and heavy electron protons may cause a reaction to separate into 4 He, two protons (P), and heavy electrons.

(Peh)→He→He+2P+eh+12.86MeV
これらの全ての反応が進行すると発生エネルギーは26.21MeVとなる。
(Pe h) → 3 He → 4 He + 2P + e h + 12.86 MeV
When all these reactions proceed, the generated energy becomes 26.21 MeV.

(Peh)+3HHe+eh+26.21MeV …(3)式
重水素の場合、水素と同じく、重電子重陽子ができる。
(Pe h) + 3H 24 He + e h + 26.21 MeV (3) Formula In the case of deuterium, heavy electrons and deuterons are generated as in the case of hydrogen.

(deh+D)→〔(ddeh)+dee〕 …(4)式
続けて核融合反応が起こり、トリチウム、陽子、Heと中性子ができる。これらの反応は発熱反応で3.27〜4.03MeVの熱が発生する。
(De h + D 2 ) → [(dde h) + dee] (4) Subsequently, the fusion reaction occurs, and tritium, protons, 3 He and neutrons are generated. These reactions are exothermic and generate 3.27 to 4.03 MeV heat.

〔(ddeh)+dee〕→T+P+eh+4.03MeV
He+n+eh+3.27MeV …(5)式
これらの環境にリチウム(Li)を入れると、ナノ粒子近辺で次の過程でトリチウム、ヘリウムが生ずる。
[(Dde h) + dee] → T + P + e h + 4.03 MeV
3 He + n + e h + 3.27 MeV (5)
When lithium (Li) is added to these environments, tritium and helium are generated in the following process in the vicinity of the nanoparticles.

Li+n→He+
Li+n→He+T+
リチウム(Li)はその92.5%がLiであるので中性子が連続的にHeとTを作る。これは水素同位体核融合反応で実験的に確認されている。
6 Li + 1 n → 4 He + 3 T
7 Li + 1 n → 4 He + 3 T + 1 n
Since 92.5% of lithium (Li) is 7 Li, neutrons continuously produce 4 He and 3 T. This has been confirmed experimentally by hydrogen isotope fusion reactions.

このように、電解という化学反応で水素を発生しつつ電極3上にナノ粒子を生成せしめれば、ナノ粒子の自由電子が重い電子に変化し、これが吸収されたプロトン電子に入り込んで水素原子を収縮せしめ、他の水素原子との核間距離を縮めて核融合反応を生ぜしめる。   In this way, if nanoparticles are generated on the electrode 3 while generating hydrogen by a chemical reaction called electrolysis, the free electrons of the nanoparticles change into heavy electrons, which enter the absorbed proton electrons and convert the hydrogen atoms. Shrink and shorten the internuclear distance with other hydrogen atoms to cause a fusion reaction.

以下、他の方法により核融合を発生させる方法について説明する。   Hereinafter, a method of generating nuclear fusion by another method will be described.

図3は、本発明の第2発明を実施する核融合装置Mであり、この装置Mは、真空チャンバー30を有し、この真空チャンバー30内には、その中心に陽極31と、この周囲を間隔を配して被うように白金の網からなる陰極32が設けられ、これらの間に電圧を印加せしめる直流電源33が設けられている。また、新旧チャンバー30は、その周囲に熱交換器用の水パイプ34が巻回されている。前記陽極31は、銅棒35の周面を水素を吸収するパラジウム線36で密に巻回し、銅線35密着させたもので、この銅棒35の周面には、パラジウムのナノ粒子が塗布されている。前記真空チャンバー30の一方の端板30aには重水素ガスをその中に供給する入口37とそれを排出する出口38が設けられている。前記真空チャンバー30は、ステンレス製(SUS304)であり、実験装置においては、前記銅棒35の直径は3mm、長さは50mmである。パラジウム線36の太さは、1.0〜1.5mm、電極間距離は50mm、放電時の重水素ガス圧力は、10−4〜10−2気圧に設定される。この距離と圧力とは、使用する直流電源33の放電印加電圧によって変化するが、圧力が10−2気圧の場合には、前述の大きさでよいが、10−4気圧になると、距離は50〜60mmと大きくなり、重水素ガスの供給圧力は10−2気圧を超えることはない。 FIG. 3 shows a fusion apparatus M 2 for carrying out the second invention of the present invention. This apparatus M 2 has a vacuum chamber 30, and in this vacuum chamber 30, an anode 31 at the center thereof, A cathode 32 made of a platinum net is provided so as to cover the periphery with a gap, and a DC power source 33 for applying a voltage is provided between them. Moreover, the water pipe 34 for heat exchangers is wound around the old and new chamber 30. The anode 31 is formed by tightly winding the peripheral surface of a copper rod 35 with a palladium wire 36 that absorbs hydrogen and bringing the copper wire 35 into close contact. The peripheral surface of the copper rod 35 is coated with palladium nanoparticles. Has been. One end plate 30a of the vacuum chamber 30 is provided with an inlet 37 for supplying deuterium gas therein and an outlet 38 for discharging it. The vacuum chamber 30 is made of stainless steel (SUS304). In the experimental apparatus, the copper rod 35 has a diameter of 3 mm and a length of 50 mm. The thickness of the palladium wire 36 is set to 1.0 to 1.5 mm, the distance between the electrodes is 50 mm, and the deuterium gas pressure during discharge is set to 10 −4 to 10 −2 atm. The distance and the pressure vary depending on the discharge applied voltage of the DC power supply 33 to be used. When the pressure is 10 −2 atm, the above-described magnitude may be used, but when the pressure is 10 −4 atm, the distance is 50 The supply pressure of deuterium gas does not exceed 10 −2 atm.

更に、真空チャンバー30の直径は圧力に対応して以下のように変化させることが好まし。   Furthermore, it is preferable to change the diameter of the vacuum chamber 30 in accordance with the pressure as follows.

圧力10−2気圧:100mm
圧力10−2〜10−3:120mm
圧力10−3〜10−4:150mm
なお、パラジウム線の太さは、全ての圧力において1.0〜1.5mmでよく、例えば1.0mmでよい。
Pressure 10-2 atmospheric pressure: 100mm
Pressure 10 −2 to 10 −3 : 120 mm
Pressure 10 −3 to 10 −4 : 150 mm
The thickness of the palladium wire may be 1.0 to 1.5 mm at all pressures, for example, 1.0 mm.

また、放電電圧は、例えば1〜5KVが好ましく一般には3KV程度でよく、周波数は50〜2000Hzであればよい。   Further, the discharge voltage is preferably 1 to 5 KV, for example, generally about 3 KV, and the frequency may be 50 to 2000 Hz.

次に、第2発明の作用について説明する。   Next, the operation of the second invention will be described.

初めに、真空チャンバー30を排気して10−6気圧程度の真空にする。両電極31、32間に3KV程度の電圧を印加する。これにより放電が発生し、陽極31の温度は500〜600℃迄上昇する。放電を継続しつつ重水素ガスを入口37から真空チャンバー30内に供給して、ガス圧を10−2気圧とする。1〜2分後に銅棒35に付着しているパラジウムのナノ粒子中の自由電子が重い電子となる。前記ナノ粒子は供給された重水素を吸収しているので、重い電子はこの重水素原子中に入り込んで重水素原子の大きさを縮小せしめ、他の重水素原子と反応して(4)式および(5)式に従って、ヘリウム3(He)と中性子を放出する。その後一旦放電を中止し、重水素ガスを補給する。更に、所定時間経過後重水素ガスの供給を止め、水パイプ34に冷却水を通して十分両電極31、32を冷却した後、放電を開始する。こうすれば、再び核反応が起き、ヘリウム3と中性子nが発生し、核反応を数時間継続できる。ヘリウム3と中性子の発生数は、放電電圧によってコントロールされ、電圧の指数関数で発生ヘリウム3と中性子数は増加する。この時の電極間31、32の電流の変化を図9で示し、中性子の発生数を図10(縦軸は対数表示)で示している。重水素ガス圧は、10−2気圧でパラジウム線の長さは100mmとして銅棒35上に巻回した。電圧は3KVで、中性子発生時の電流は10〜12mAで電力としては30W〜36Wとなり、中性子の数は10個となり、計算では反応部分の単位面積当り、10個となる。なお、銅棒35とパラジウム線36からなる電極31は陽極としているが、水素吸収という観点からは陰極とし、白金電極32を陽極としてもよい。 First, the vacuum chamber 30 is evacuated to a vacuum of about 10 −6 atm. A voltage of about 3 KV is applied between the electrodes 31 and 32. As a result, discharge occurs, and the temperature of the anode 31 rises to 500 to 600 ° C. While continuing the discharge, deuterium gas is supplied into the vacuum chamber 30 from the inlet 37, and the gas pressure is set to 10-2 atm. After 1 to 2 minutes, the free electrons in the palladium nanoparticles attached to the copper rod 35 become heavy electrons. Since the nanoparticles absorb the supplied deuterium, heavy electrons enter the deuterium atom to reduce the size of the deuterium atom and react with other deuterium atoms to obtain the formula (4) And according to the equation (5), helium 3 ( 3 He) and neutrons are emitted. Thereafter, the discharge is temporarily stopped and deuterium gas is supplied. Further, after a predetermined time has elapsed, the supply of deuterium gas is stopped, and both electrodes 31 and 32 are sufficiently cooled by passing cooling water through the water pipe 34, and then discharge is started. By doing so, the nuclear reaction occurs again, generating helium 3 and neutron n, and the nuclear reaction can be continued for several hours. The number of helium 3 and neutrons generated is controlled by the discharge voltage, and the generated helium 3 and the number of neutrons increase with an exponential function of the voltage. The change in current between the electrodes 31 and 32 at this time is shown in FIG. 9, and the number of neutrons generated is shown in FIG. 10 (the vertical axis is logarithmic). The deuterium gas pressure was 10 −2 atm, and the length of the palladium wire was 100 mm. Voltage is 3 KV, next 30W~36W as power in the current during neutron generator 10~12MA, the number of neutrons becomes 10 6, comprising per unit area of the reaction part, 10 5 and in the calculation. Although the electrode 31 composed of the copper rod 35 and the palladium wire 36 is an anode, from the viewpoint of hydrogen absorption, it may be a cathode and the platinum electrode 32 may be an anode.

次に本発明の第3発明の核融合方法について説明する。   Next, the fusion method of the third invention of the present invention will be described.

図4において、第3発明の核融合方法を実施するための核融合装置Mは、ステンレス製の真空チャンバー40を有し、この真空チャンバー40内に陽極41とこの陽極41の周囲に円筒形の陰極42とが配設されている。前記真空チャンバー40外周面には、冷却パイプ43が巻回され、これにより真空チャンバー40内を冷却して反応のコントロールがなされる。前記両電極41、42間には直流電源44が設けられ、前記陰極42の内面にはナノ粒子45が付着されている。 In FIG. 4, a fusion apparatus M 3 for carrying out the fusion method of the third invention has a vacuum chamber 40 made of stainless steel, an anode 41 in the vacuum chamber 40 and a cylindrical shape around the anode 41. The cathode 42 is disposed. A cooling pipe 43 is wound around the outer peripheral surface of the vacuum chamber 40, whereby the inside of the vacuum chamber 40 is cooled to control the reaction. A DC power supply 44 is provided between the electrodes 41 and 42, and nanoparticles 45 are attached to the inner surface of the cathode 42.

前記陽極41は、例えば銅棒で形成され、前記陰極42は、導電性の水素を吸収する性質を有する、例えばLaNi,TiFe合金で形成される。これらの陰極の内壁には、Na−Fe金属酸化物(例えば、NaFeO、NaFeO、NaFe、NaFe)のナノ粒子45がその全面に亘って付着され、この金属酸化物自体も水素を吸収する。また、真空チャンバー40の一方(図上左側)の端板40aには重水素ガスの入口46および出口47が設けられ、所定圧の重水素ガスが真空チャンバー40内に送られる。なお、印加電圧、ガス圧は図3に示す第2発明とほぼ同一で、装置の操作も同一である。真空引き後の放電時に真空チャンバー40内は500〜600℃の温度に上昇し、このとき、重水素ガスを真空チャンバー40内に供給すると、重水素は、陰極42とその上に付着しているナノ粒子45に吸引される。これにより、第2発明と同じような作用により、(4)式および(5)式に従って核融合反応が生じる。なお、陽極41を銅棒とこの周りに巻回した白金線で構成し、ナノ粒子45をニッケル、パラジウム、白金で構成することも可能である。 The anode 41 is formed of, for example, a copper rod, and the cathode 42 is formed of, for example, a LaNi 5 , TiFe alloy having a property of absorbing conductive hydrogen. On the inner walls of these cathodes, nanoparticles 45 of Na—Fe metal oxide (for example, Na 3 FeO 3 , Na 4 FeO 3 , Na 8 Fe 2 O 7 , Na 3 Fe 5 O 9 ) extend over the entire surface. The metal oxide itself absorbs hydrogen. In addition, a deuterium gas inlet 46 and an outlet 47 are provided on one end plate 40 a (left side in the drawing) of the vacuum chamber 40, and deuterium gas having a predetermined pressure is sent into the vacuum chamber 40. The applied voltage and gas pressure are substantially the same as in the second invention shown in FIG. 3, and the operation of the apparatus is also the same. During discharge after evacuation, the inside of the vacuum chamber 40 rises to a temperature of 500 to 600 ° C. At this time, when deuterium gas is supplied into the vacuum chamber 40, deuterium adheres to the cathode 42 and the cathode 42. The nanoparticles 45 are attracted. Thus, a fusion reaction occurs according to the equations (4) and (5) by the same action as in the second invention. The anode 41 may be composed of a copper rod and a platinum wire wound around the anode 41, and the nanoparticles 45 may be composed of nickel, palladium, or platinum.

次に、本発明の第4発明について説明する。   Next, the fourth invention of the present invention will be described.

図4、5において、第4発明を実施するための核融合装置Mは、ステンレス製(SUS304)の円筒状反応セル50を有し、この反応セル50の周囲は面状ヒータ51により500〜600℃に加熱されるようになっており、前記反応セル50内には、水酸化ナトリウム(NaOH)又は水酸化カリウム(KOH)のようなアルカリ金属水酸化物の反応剤R・Aが収納されている。前記反応セル50の図上左側端板には、水又は水蒸気の入口52が設けられ、反対側の端板50bには、反応により生じた水素を排出するための水素排出口53が設けられている。前記反応剤R・Aをその融点(NaOH 318℃; KOH 360℃)以上に加熱すると溶融塩となり、その液面からは無数の微細粒子(ナノ粒子P)が反応セル内の空間に飛散し、ここに水蒸気を供給すると、SUS304の主たるFe成分と反応剤R・Aが反応剤と反応して低次の鉄酸化膜を作る。今、反応剤として水酸化ナトリウム(NaOH)を使用した場合に、Feが水蒸気と反応して、
Fe + HO → FeO + H↑ …(6)式
の反応により、FeOが生じ、このFeOが更にNaOHと反応して
FeO + NaOH → NaFeO + 1/2H↑ …(7)式
鉄酸ナトリウム(NaFeO)を作り、この鉄酸ナトリウムが鉄(Fe)と水蒸気(HO)と反応して、
NaFeO + HO + 2/3Fe
→ 1/3NaFe + H …(8)式
In FIGS 500, nuclear fusion device M 4 for carrying out the fourth invention has a cylindrical reaction cell 50 of stainless steel (SUS304), the periphery of the reaction cell 50 by the planar heater 51 The reaction cell 50 is heated to 600 ° C. and contains an alkali metal hydroxide reactant R / A such as sodium hydroxide (NaOH) or potassium hydroxide (KOH). ing. The left end plate of the reaction cell 50 is provided with an inlet 52 for water or water vapor, and the opposite end plate 50b is provided with a hydrogen discharge port 53 for discharging hydrogen generated by the reaction. Yes. When the reactant R / A is heated to the melting point (NaOH 318 ° C .; KOH 360 ° C.) or higher, it becomes a molten salt, and countless fine particles (nanoparticles P) are scattered from the liquid surface into the space in the reaction cell. When steam is supplied here, the main Fe component of SUS304 and the reactant R · A react with the reactant to form a low-order iron oxide film. Now, when sodium hydroxide (NaOH) is used as a reactant, Fe reacts with water vapor,
Fe + H 2 O → FeO + H 2 ↑ (6) By the reaction of the formula (6), FeO is generated, and this FeO further reacts with NaOH to form FeO + NaOH → NaFeO 2 + 1 / 2H 2 ↑ (7) Sodium ferrate (NaFeO 2 ) is made, and this sodium ferrate reacts with iron (Fe) and water vapor (H 2 O),
NaFeO 2 + H 2 O + 2 / 3Fe
→ 1 / 3Na 3 Fe 5 O 9 + H 2 (8)

高次の鉄酸ナトリウム(NaFe)を作る。なお、SUS304の成分でCrはFeのように、多量の酸化物を作らずNiは触媒の作用をし、自身では酸化物を作らない。したがって、Feのみを考慮した。この膜は、先ず反応セル50の内壁に生成し、所定厚になると剥離してその内側に更に新しい膜が発達してくる。図は2枚の膜l、lが生成されている状態を示し、第1膜lが最初の膜であり、この第1膜lが剥離した後に第2膜lが生成される。これら膜l、lは導電性で、磁性を有し、硬度が高く、水素ガスをよく吸収し、吸水性で800℃以上でも溶融しない。これらの膜上には、NaOHのナノ粒子が多数付着し、前述の(6)式および(7)式の反応により多量の水素が発生するのでその一部が前記膜l、lに吸収される。またNaOH自身も水素を吸収する。したがって、膜l、l上のナノ粒子の電子は重電子に変化し、この重電子の作用により、吸収された水素は収縮し、他の水素原子と前述の(1)式、(2)式の反応により核融合を起こす。なお、高次の鉄酸化物としては、NaFeも検出されている。 Make higher order sodium ferrate (Na 3 Fe 5 O 9 ). In addition, Cr is a component of SUS304, and Fe does not produce a large amount of oxide like Fe, and Ni acts as a catalyst and does not produce an oxide by itself. Therefore, only Fe was considered. This film is first formed on the inner wall of the reaction cell 50. When the film reaches a predetermined thickness, the film is peeled off and a new film is developed inside the film. The figure shows a state in which two films l 1 and l 2 are generated. The first film l 1 is the first film, and the second film l 2 is formed after the first film l 1 is peeled off. The These films l 1 and l 2 are conductive, magnetic, high in hardness, absorb hydrogen gas well, absorb water and do not melt even at 800 ° C. or higher. A large number of NaOH nanoparticles adhere to these films, and a large amount of hydrogen is generated by the reaction of the above-mentioned formulas (6) and (7), so some of them are absorbed by the films l 1 and l 2 . Is done. NaOH itself also absorbs hydrogen. Therefore, the electrons of the nanoparticles on the films l 1 and l 2 are changed to heavy electrons, and the absorbed hydrogen contracts by the action of the heavy electrons, and other hydrogen atoms and the above-described formula (1), (2 ) Fusion occurs by the reaction of the formula. Na 8 Fe 2 O 7 has also been detected as a higher-order iron oxide.

この第4発明は、(6)式乃至(8)式の化学反応が誘起する核融合であり、この場合、付加的に大量の水素ガスが製造され、反応セル50内に水素排出口53を介して真空ポンプ(図示なし)を接続し、セル内に水蒸気を供給しながらも0.5気圧程度に常時維持すると反応性が向上する。   The fourth aspect of the invention is nuclear fusion induced by chemical reactions of formulas (6) to (8). In this case, a large amount of hydrogen gas is additionally produced, and a hydrogen discharge port 53 is provided in the reaction cell 50. If a vacuum pump (not shown) is connected to the cell and water vapor is supplied into the cell while being constantly maintained at about 0.5 atm, the reactivity is improved.

次に、本発明の第5発明について説明する。   Next, the fifth invention of the present invention will be explained.

第5発明を実施するための核融合装置Mは、SUS304からなる円筒形の反応セル60を有し、この反応セル60の両端には絶縁性の端板60a、60bで閉塞され、前記端板60aの中心部には、例えば銅棒からなる陽極61が支持され、前記反応セル60の本体が陰極62を形成し、両電極61、62間に直流電源63が設けられ、前記反応セル本体の周には、面状ヒータ64が形成されるとともに、反応セル60を冷却するための水管70が巻回されている。前記陽極61の端板60aの内側には、絶縁体65が設けられ、陰極62に形成される導電性の膜が、陽極61に接触しないようにしている。前記端板60aには、鉄酸化膜形成のために水蒸気を導入する水蒸気入口66が、前記反対側端板60bには、酸化膜形成時に発生する水素を排出する水素排出口67および核反応時に必要な水素ガス又は重水素ガスを導入するためのガス導入口68が設けられている。なお、水素排出口67には、真空ポンプ72が接続され、これにより反応セル内の圧力が調整される。 The fusion device M 5 for carrying out the fifth invention has a cylindrical reaction cell 60 made of SUS304, to both ends of the reaction cell 60 insulating end plate 60a, is closed by 60b, the end At the center of the plate 60a, an anode 61 made of, for example, a copper rod is supported, the body of the reaction cell 60 forms a cathode 62, a DC power source 63 is provided between the electrodes 61, 62, and the reaction cell body A sheet heater 64 is formed on the periphery of the tube, and a water pipe 70 for cooling the reaction cell 60 is wound around the periphery. An insulator 65 is provided inside the end plate 60 a of the anode 61 so that a conductive film formed on the cathode 62 does not contact the anode 61. The end plate 60a has a water vapor inlet 66 for introducing water vapor to form an iron oxide film, and the opposite end plate 60b has a hydrogen discharge port 67 for discharging hydrogen generated during the formation of the oxide film and a nuclear reaction. A gas introduction port 68 for introducing necessary hydrogen gas or deuterium gas is provided. A vacuum pump 72 is connected to the hydrogen discharge port 67, thereby adjusting the pressure in the reaction cell.

前記反応セル本体内の底部には、細長い樋形の反応剤受け69が載置され、この反応剤受け69内にアルカリ金属水酸化物、例えばNaOH、KOHの反応剤R・Aが収納されている。前記反応セル本体(陰極)62は面状ヒータ64により反応剤の融点以上、特に500〜600℃に加熱され、このとき、反応剤受け69内の反応剤は溶融して溶融塩となり、この液面からは、無数のナノオーダーの微細粒子P(ナノ粒子)が飛散して、水蒸気と反応セル内壁の鉄成分と反応して導電性で、水素吸収性を有する高次の鉄酸化膜71が形成され、この上に反応剤成分のナノ粒子が付着する。   A slender bowl-shaped reactant receiver 69 is placed on the bottom of the reaction cell body, and an alkali metal hydroxide such as NaOH or KOH is contained in the reactant receiver 69. Yes. The reaction cell body (cathode) 62 is heated by the planar heater 64 to a temperature equal to or higher than the melting point of the reactant, particularly 500 to 600 ° C. At this time, the reactant in the reactant receiver 69 is melted to form a molten salt. From the surface, countless nano-order fine particles P (nanoparticles) scatter and react with water vapor and the iron component on the inner wall of the reaction cell to form a high-order iron oxide film 71 having conductivity and hydrogen absorption. The reactant component nanoparticles are deposited thereon.

次に第5発明の作用について説明する。   Next, the operation of the fifth invention will be described.

先ず、面状ヒータ64を作動させるとともに、水蒸気を導入し、水素を発生しながら、陰極62上に高次の鉄酸化膜(NaFe,NaFe等)を反応剤をNaOHとした場合に、前述の(6)式乃至(8)式に基づいて生成し、この鉄酸化膜上の全面を反応剤のナノ粒子(NaOH)が被うようにする。このとき、発生した水素ガスの一部は酸化膜及びナノ粒子に吸収される。この状態で、水蒸気の供給と面状ヒータ64を停止し、水管70を動作させて反応セル内を20℃前後まで冷却し、真空ポンプ72を動作させて反応セル内を真空とする。次いで、ガス導入口68から水素ガスあるいは重水素ガスを導入して反応セル内の圧力を10kpa程度とする。このガスの一部は高次酸化物及びナノ粒子に吸収される。その後、直流電源63から3KVの電圧を両電極61、62間に印加して放電せしめる。この放電により反応剤R・Aは溶融してナノ粒子が飛散し、陰極62の鉄酸化膜71上のナノ粒子を補給でき、こうしてナノ粒子、重い電子および鉄酸化膜71内に吸収されている水素、重水素の作用により核融合反応が起きる。 First, the planar heater 64 is operated and water vapor is introduced to generate hydrogen, and a high-order iron oxide film (Na 3 Fe 5 O 9 , Na 8 Fe 2 O 7, etc.) reacts on the cathode 62. When the agent is NaOH, it is generated based on the above formulas (6) to (8), and the entire surface of the iron oxide film is covered with the nanoparticles of the reactant (NaOH). At this time, part of the generated hydrogen gas is absorbed by the oxide film and the nanoparticles. In this state, the supply of water vapor and the planar heater 64 are stopped, the water pipe 70 is operated to cool the inside of the reaction cell to around 20 ° C., and the vacuum pump 72 is operated to evacuate the inside of the reaction cell. Next, hydrogen gas or deuterium gas is introduced from the gas introduction port 68 so that the pressure in the reaction cell is about 10 kpa. Part of this gas is absorbed by higher order oxides and nanoparticles. After that, a voltage of 3 KV is applied between the electrodes 61 and 62 from the DC power source 63 and discharged. By this discharge, the reactant R · A is melted and the nanoparticles are scattered, so that the nanoparticles on the iron oxide film 71 of the cathode 62 can be replenished. Thus, the nanoparticles, heavy electrons, and iron oxide film 71 are absorbed. Fusion reaction occurs by the action of hydrogen and deuterium.

なお、第4、第5発明においては、熱発生が確認されている。   In the fourth and fifth inventions, heat generation has been confirmed.

このような低温核融合は熱と中性子を発生するので代替エネルギー分野及び中性子発生装置としての核物質の検出器として利用できる。   Such cold fusion generates heat and neutrons and can be used as an alternative energy field and a nuclear material detector as a neutron generator.

1…電解槽
3…電極
4…電極
30…真空チャンバー
31…陽極
32…陰極
35…銅棒
36…パラジウム線
40…真空チャンバー
41…陽極
42…陰極
45…ナノ粒子
50…反応セル
51…面状ヒータ
60…反応セル
61…陽極
62…陰極

DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell 3 ... Electrode 4 ... Electrode 30 ... Vacuum chamber 31 ... Anode 32 ... Cathode 35 ... Copper rod 36 ... Palladium wire 40 ... Vacuum chamber 41 ... Anode 42 ... Cathode 45 ... Nanoparticle 50 ... Reaction cell 51 ... Planar shape Heater 60 ... Reaction cell 61 ... Anode 62 ... Cathode

Claims (5)

少なくとも軽水又は重水を含む電解液中に2枚の金属材からなる電極を対向配置せしめ、これら両電極に電圧及び電流を印加せしめて電極表面にナノ粒子を形成せしめ、このナノ粒子中に水素同位体を導入してナノ粒子中の電子の質量を増大させ、導入した水素、重水素原子の大きさを縮小して核間距離を短くして水素原子間の核融合反応確率を上昇せしめるようにした核融合反応方法。   Two electrodes made of a metal material are placed opposite to each other in an electrolytic solution containing at least light water or heavy water, and voltage and current are applied to both electrodes to form nanoparticles on the electrode surface. Hydrogen isotopes are contained in the nanoparticles. To increase the mass of electrons in the nanoparticles by reducing the size of the introduced hydrogen and deuterium atoms and shortening the internuclear distance to increase the fusion reaction probability between hydrogen atoms Fusion reaction method. 真空チャンバー内に、導電体及びこの導電体に螺旋状に捲回された水素吸収合金線を含む第一の電極と、前記第一の電極の周囲に配置された円筒状で且つ網状の第二の電極とを配置し、前記真空チャンバー内に重水素ガスを供給し、これら両電極間に電圧を印加せしめて放電させ、第一の電極の水素吸収合金線の表面にナノ粒子を形成せしめ、このナノ粒子中に重水素を導入してナノ粒子中の電子の質量を増大させ、導入した重水素及び吸収されている水素原子の大きさを縮小して核間距離を短くして水素、重水素原子間の核融合反応確率を高めるようにした核融合反応方法。   A first electrode including a conductor and a hydrogen-absorbing alloy wire spirally wound around the conductor in a vacuum chamber, and a cylindrical and net-like second electrode disposed around the first electrode And supplying a deuterium gas into the vacuum chamber, applying a voltage between the two electrodes to cause discharge, and forming nanoparticles on the surface of the hydrogen absorbing alloy wire of the first electrode, Deuterium is introduced into the nanoparticle to increase the mass of electrons in the nanoparticle, and the size of the introduced deuterium and absorbed hydrogen atoms is reduced to shorten the internuclear distance to reduce hydrogen, deuterium. A fusion reaction method that increases the probability of fusion reaction between hydrogen atoms. 真空チャンバー内に、導電性金属材からなる陽極と、この陽極の周囲に導電性陰極とを配置し、前記陰極表面にナノ粒子を付着せしめ、前記真空チャンバー内に重水素ガスを供給し、前記両電極間に電圧を印加せしめて放電させ、ナノ粒子中に重水素を導入してナノ粒子中の電子の質量を増大させ、導入した重水素原子の大きさを縮小して核間距離を短くして重水素原子間の核融合反応確率を高めるようにした核融合反応方法。   In the vacuum chamber, an anode made of a conductive metal material, a conductive cathode around the anode, nanoparticles are attached to the cathode surface, deuterium gas is supplied into the vacuum chamber, A voltage is applied between the electrodes to cause discharge, deuterium is introduced into the nanoparticles to increase the mass of electrons in the nanoparticles, and the size of the introduced deuterium atoms is reduced to shorten the internuclear distance. A fusion reaction method that increases the probability of fusion reaction between deuterium atoms. ステンレス製の筒状の反応セル内にアルカリ金属水酸化物を収納し、このアルカリ金属水酸化物をその融点以上に加熱してその液面上からナノ粒子を飛散せしめ、減圧状態で前記反応セル内に水蒸気を供給することにより、ステンレス表面に高次のアルカリ金属とステンレス成分の少なくとも一つの成分を含む高次の酸化膜を形成し、この高次の酸化膜上に前記ナノ粒子の一部を付着せしめ、このナノ粒子中に反応セル内で発生した水素、重水素を導入して、ナノ粒子中の電子の質量を増大させ、導入した水素、重水素原子の大きさを縮小して核間距離を短くして他の水素、重水素原子間の核融合反応確率を高めるようにした核融合反応方法。   An alkali metal hydroxide is housed in a cylindrical reaction cell made of stainless steel, and the alkali metal hydroxide is heated above its melting point to scatter nanoparticles from the liquid surface. By supplying water vapor, a high-order oxide film containing at least one of a higher-order alkali metal and a stainless steel component is formed on the stainless steel surface, and a part of the nanoparticles is formed on this higher-order oxide film. The hydrogen and deuterium generated in the reaction cell are introduced into the nanoparticle, the mass of electrons in the nanoparticle is increased, the size of the introduced hydrogen and deuterium atoms is reduced, and the nucleus is reduced. A fusion reaction method that shortens the distance to increase the probability of fusion reaction between other hydrogen and deuterium atoms. ステンレス製の筒状の反応セルを第一の電極とし、前記反応セルの空間部分に導電性金属材からなる長尺の第二の電極を配設し、前記反応セルの底部にアルカリ金属水酸化物を収納し、このアルカリ金属水酸化物をその融点以上に加熱してナノ粒子を反応セル内に飛散せしめ、前記反応セル内に水蒸気を供給しつつ、ステンレス表面に高次のアルカリ金属とステンレス成分の少なくとも一つの成分を含む高次の酸化膜を形成するとともに酸化膜上にナノ粒子を付着せしめ、次いで、水蒸気の供給を停止し真空引きして水素、重水素ガスを供給し両電極間に電圧を印加して放電せしめ、これによりナノ粒子中の質量を増大させ、吸収された水素、重水素原子の大きさ縮小して核間距離を短くして他の水素、重水素原子間の核融合反応確率を高めるようにした核融合反応方法。
A stainless steel cylindrical reaction cell is used as the first electrode, a long second electrode made of a conductive metal material is provided in the space of the reaction cell, and an alkali metal hydroxide is provided at the bottom of the reaction cell. The alkali metal hydroxide is heated above its melting point to scatter the nanoparticles into the reaction cell, and water is supplied into the reaction cell while supplying higher-order alkali metals and stainless steel to the stainless steel surface. A high-order oxide film containing at least one of the components is formed and nanoparticles are deposited on the oxide film. Then, the supply of water vapor is stopped by stopping the supply of water vapor and supplying hydrogen and deuterium gas between the electrodes. A voltage is applied to the electrode to discharge it, thereby increasing the mass in the nanoparticle, reducing the size of absorbed hydrogen and deuterium atoms, shortening the internuclear distance, and between other hydrogen and deuterium atoms Increase fusion reaction probability Nuclear fusion reaction method so.
JP2012179387A 2012-08-13 2012-08-13 Nuclear fusion reaction method Pending JP2014037996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012179387A JP2014037996A (en) 2012-08-13 2012-08-13 Nuclear fusion reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179387A JP2014037996A (en) 2012-08-13 2012-08-13 Nuclear fusion reaction method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016214476A Division JP2017062243A (en) 2016-11-01 2016-11-01 Nuclear fusion reaction method

Publications (1)

Publication Number Publication Date
JP2014037996A true JP2014037996A (en) 2014-02-27

Family

ID=50286251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179387A Pending JP2014037996A (en) 2012-08-13 2012-08-13 Nuclear fusion reaction method

Country Status (1)

Country Link
JP (1) JP2014037996A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide
WO2015008859A3 (en) * 2013-07-18 2015-03-26 水素技術応用開発株式会社 Reactant, heating device, and heating method
WO2018194307A1 (en) * 2017-04-20 2018-10-25 한국과학기술원 Power generation system using boron atom
WO2019016606A1 (en) * 2017-07-20 2019-01-24 Ih Ip Holdings Limited Apparatus for excess heat generation
CN110831895A (en) * 2017-03-29 2020-02-21 艾合知识产权控股有限公司 Triggering exothermic reactions under high hydrogen loading rate conditions
WO2020196535A1 (en) * 2019-03-26 2020-10-01 泰男 石川 Plasma reaction method and plasma reaction apparatus
JP2020163377A (en) * 2019-03-26 2020-10-08 泰男 石川 Plasma reaction method and plasma reactor
JP2021529326A (en) * 2018-06-04 2021-10-28 ブラウン デイヴィッドBROWN, David Methods and equipment for initiating and sustaining a nuclear reaction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271484A (en) * 1998-03-20 1999-10-08 Tadahiko Mizuno Reactant for generating energy and neutron due to electrolytic reaction in light and heavy water solution and method for generating energy and neutron using reactant
JP2001108775A (en) * 1999-10-04 2001-04-20 Tadahiko Mizuno Thermal energy takeout device, hot water supply device, and electric power generating device
WO2006102224A2 (en) * 2005-03-18 2006-09-28 Cone Partners, Ltd. Low temperature fusion
JP2010197256A (en) * 2009-02-26 2010-09-09 Tadahiko Mizuno Electrode pair for generating neutron, neutron generator and method for generating neutron and package inspection device using electrode pair and neutron generator
WO2012011499A1 (en) * 2010-07-20 2012-01-26 Ishikawa Yasuo Nuclear transformation method and nuclear transformation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271484A (en) * 1998-03-20 1999-10-08 Tadahiko Mizuno Reactant for generating energy and neutron due to electrolytic reaction in light and heavy water solution and method for generating energy and neutron using reactant
JP2001108775A (en) * 1999-10-04 2001-04-20 Tadahiko Mizuno Thermal energy takeout device, hot water supply device, and electric power generating device
WO2006102224A2 (en) * 2005-03-18 2006-09-28 Cone Partners, Ltd. Low temperature fusion
JP2010197256A (en) * 2009-02-26 2010-09-09 Tadahiko Mizuno Electrode pair for generating neutron, neutron generator and method for generating neutron and package inspection device using electrode pair and neutron generator
WO2012011499A1 (en) * 2010-07-20 2012-01-26 Ishikawa Yasuo Nuclear transformation method and nuclear transformation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide
WO2015008859A3 (en) * 2013-07-18 2015-03-26 水素技術応用開発株式会社 Reactant, heating device, and heating method
JPWO2015008859A1 (en) * 2013-07-18 2017-03-02 水素技術応用開発株式会社 Heat generating device and heat generating method
CN110831895A (en) * 2017-03-29 2020-02-21 艾合知识产权控股有限公司 Triggering exothermic reactions under high hydrogen loading rate conditions
WO2018194307A1 (en) * 2017-04-20 2018-10-25 한국과학기술원 Power generation system using boron atom
WO2019016606A1 (en) * 2017-07-20 2019-01-24 Ih Ip Holdings Limited Apparatus for excess heat generation
JP2021529326A (en) * 2018-06-04 2021-10-28 ブラウン デイヴィッドBROWN, David Methods and equipment for initiating and sustaining a nuclear reaction
WO2020196535A1 (en) * 2019-03-26 2020-10-01 泰男 石川 Plasma reaction method and plasma reaction apparatus
JP2020163377A (en) * 2019-03-26 2020-10-08 泰男 石川 Plasma reaction method and plasma reactor

Similar Documents

Publication Publication Date Title
JP2014037996A (en) Nuclear fusion reaction method
KR102222184B1 (en) Reactant, heating device, and heating method
US20080123793A1 (en) Thermal power production device utilizing nanoscale confinement
US20130188763A1 (en) Method of and apparatus for nuclear transformation
US20050236376A1 (en) Energy generation
EP0473681B1 (en) Production of fusion energy
EP1124233A2 (en) Energy/matter conversion methods and structures
EP2264715A2 (en) Electrolytic cell thermal power generator and method
CN112309591A (en) Method and device for realizing low-temperature controllable nuclear fusion by neutron number multiplication
JP2017062243A (en) Nuclear fusion reaction method
JP2018036275A (en) Nuclear fusion reaction method and nuclear fusion reaction device
JP2014025743A (en) Nuclear transformation method
US20080205572A1 (en) Apparatus and process for generating nuclear heat
Kálmán et al. On low-energy nuclear reactions
WO2000025320A1 (en) Energy generation
JP2009150709A (en) Method for generating lithium cluster chemical nuclear fusion and lithium cluster chemical nuclear fusion device
JP2018155708A (en) Heat-generation electrode, heat generation device and heat generation method
US10453575B1 (en) Submicron fusion devices, methods and systems
WO2020196535A1 (en) Plasma reaction method and plasma reaction apparatus
JP2019086291A (en) Reactant for condensate nuclear reactor and exothermic method using the same
JP2014049270A (en) Fuel battery
US20210398694A1 (en) Metal oxygen fusion reactor
JPWO2007061019A1 (en) Thermal energy generation method and thermal energy generator
JP2020163377A (en) Plasma reaction method and plasma reactor
JP2001349971A (en) Method of causing nuclear fusion reaction and nuclear fusion energy supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802