JP2014030987A - Method for manufacturing metal mold for producing optical member - Google Patents

Method for manufacturing metal mold for producing optical member Download PDF

Info

Publication number
JP2014030987A
JP2014030987A JP2012174057A JP2012174057A JP2014030987A JP 2014030987 A JP2014030987 A JP 2014030987A JP 2012174057 A JP2012174057 A JP 2012174057A JP 2012174057 A JP2012174057 A JP 2012174057A JP 2014030987 A JP2014030987 A JP 2014030987A
Authority
JP
Japan
Prior art keywords
mold
cutting
convex
manufacturing
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012174057A
Other languages
Japanese (ja)
Other versions
JP5908367B2 (en
Inventor
Iichiro Fukuda
威一郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2012174057A priority Critical patent/JP5908367B2/en
Publication of JP2014030987A publication Critical patent/JP2014030987A/en
Application granted granted Critical
Publication of JP5908367B2 publication Critical patent/JP5908367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal mold for producing an optical member, in which method machining is done precisely while suppressing influences of a temperature fluctuation or periodical fine vibrations of a bit.SOLUTION: The method for manufacturing the metal mold for producing the optical member comprises: a flat part formation step of forming a flat part 1a by incising a diamond bit 2, which has a flat tip and slopes on both sides of the tip, into the surface of the cylindrical metal mold 1 two or more times; and a convex part formation step of forming a convex part 1b, which has predetermined height from the flat part 1a and an almost triangular shape, by using the slopes of the incised diamond bit 2 so that the convex part is positioned adjacently to the previously-formed flat part when the next flat part is formed at the succeeding flat part formation step. A plurality of the convex parts 1b are formed on the flat part 1a at a constant pitch or/and at variable pitches.

Description

本発明は、例えば液晶表示装置などに用いられる、底面側に光利用効率をより高めるためのV溝を有する導光板等の光学部材の製造に用いる光学部材製造用金型の製造方法に関する。   The present invention relates to a method of manufacturing a mold for manufacturing an optical member used for manufacturing an optical member such as a light guide plate having a V-groove for increasing light utilization efficiency on the bottom side, which is used in, for example, a liquid crystal display device.

近年、薄型の液晶テレビのバックライトや薄型の照明装置などの用途では、エッジライト方式の面光源装置を用いられており、消費電力削減の観点からも、効率の高い面光源装置が求められている。   In recent years, edge light type surface light source devices have been used in applications such as backlights for thin liquid crystal televisions and thin illumination devices. From the viewpoint of reducing power consumption, highly efficient surface light source devices are required. Yes.

このようなエッジライト方式の面光源装置の構成部材として、線状の光源を面光源に変換する機能を持つ導光板が用いられている。エッジライト方式の面光源装置では、導光板による光利用効率をより高めるために、例えば、特許文献1には、出射面又は底面(出射面と反対側の面)に交互に配列された台形形状の凹条及び凸条を有している導光板を備えている。   As a constituent member of such an edge light type surface light source device, a light guide plate having a function of converting a linear light source into a surface light source is used. In the edge light type surface light source device, in order to further increase the light use efficiency by the light guide plate, for example, Patent Document 1 discloses a trapezoidal shape arranged alternately on the exit surface or the bottom surface (surface opposite to the exit surface). A light guide plate having a plurality of recesses and protrusions is provided.

前記特許文献1の発明では、導光板の入射端面より入射した光を底面に形成されたV溝(凹条パターン)により、出射面の方向に効率よく反射させることができ、光利用効率をより高めることができると記載されている。また、導光板の入射端面より入射した光は、出射面に形成された台形状の凸条を介して出射面より出射することで、入射端面で垂直な方向で入射された光が正面方向に近い角度で出射できる。   In the invention of Patent Document 1, light incident from the incident end face of the light guide plate can be efficiently reflected in the direction of the exit surface by the V-groove (concave pattern) formed on the bottom surface, and the light utilization efficiency is further improved. It is described that it can be increased. Moreover, the light incident from the incident end face of the light guide plate is emitted from the exit face through the trapezoidal ridge formed on the exit face, so that the light incident in the direction perpendicular to the entrance end face is directed in the front direction. The light can be emitted at a close angle.

上記導光板は、押し出し成形、射出成型またはプレス成形等の方法を用いて、光学透明樹脂に形状を転写することで作製可能であるが、押し出し成形では、MD方向とTD方向で賦形性に差が出やすい特徴があり、出射面と反射面で直行するパターンを賦形する場合は、射出成型若しくはプレス成形の方がより好ましい。   The light guide plate can be produced by transferring the shape to an optical transparent resin using a method such as extrusion molding, injection molding, or press molding. However, in the extrusion molding, the shape is improved in the MD direction and the TD direction. There is a characteristic that a difference is likely to occur, and in the case of shaping a pattern that is orthogonal to the exit surface and the reflection surface, injection molding or press molding is more preferable.

また、成形に用いる平板金型は、成形に用いる材料に対して直接加工を行う方法の他、例えば、特許文献2のように、金型マスタを作製した後、この金型マスタをもとに紫外線硬化樹脂や電鋳等による形状の反転操作を所望の回数繰り返すことで、目的の形状を持つ金型を得ることができる。   In addition to the method of directly processing the material used for molding, the flat plate mold used for molding is prepared on the basis of this mold master after a mold master is manufactured as in Patent Document 2, for example. A mold having a desired shape can be obtained by repeating a shape reversal operation by ultraviolet curing resin, electroforming or the like a desired number of times.

なお、特許文献2の発明では、バイトによって表面にV溝を切削した金型マスタが作製されている。   In the invention of Patent Document 2, a mold master having a V-groove cut on the surface with a cutting tool is produced.

国際公開WO2006/013969号公報International Publication WO2006 / 013969 特開2001−315001号公報JP 2001-31001 A

ところで、バイトで金型マスタ表面に作製するV溝の深さは、バイトの先端と、被削材の表面までの距離と機械位置決め精度に応じた切込み深さによって決定されるが、切削加工中の環境温度の微妙な変化により、バイトの先端と金型マスタ表面の位置関係は常に変化している。特に、切削加工中の金型マスタは、環境温度、切削による発熱、切削油による除熱、切粉吸引機から受ける除熱など、複数の要因が複雑に重なっており、厳密に温度制御することが難しい。   By the way, the depth of the V groove formed on the die master surface with the cutting tool is determined by the cutting edge according to the tip of the cutting tool, the distance to the surface of the work material, and the machine positioning accuracy. Due to subtle changes in the ambient temperature, the positional relationship between the tip of the tool and the mold master surface is constantly changing. In particular, the mold master during the cutting process has multiple factors such as environmental temperature, heat generated by cutting, heat removal by cutting oil, heat removal from the chip suction machine, and the temperature must be strictly controlled. Is difficult.

例えば、直径416mmのロール状の金型マスタを考えた場合、金型マスタの材質が鉄(線膨張係数:1.17×10^-6)と仮定すると、切削加工中に金型マスタの温度が0.1度上昇しただけで、V溝は設計値よりも0.24μm程度深くなることになる。更に、最初に金型マスタの表面の平面だしのための表面切削加工を行い、その後所定間隔でV溝をロール状の金型マスタの全域に切削加工するには通常数時間以上要する。   For example, when a roll-shaped mold master having a diameter of 416 mm is considered, assuming that the material of the mold master is iron (linear expansion coefficient: 1.17 × 10 ^ -6), the temperature of the mold master is 0 during cutting. Only by raising 1 degree, the V-groove becomes about 0.24 μm deeper than the design value. Furthermore, it usually takes several hours or more to perform surface cutting for flattening the surface of the mold master, and then to cut the V-grooves at predetermined intervals over the entire area of the roll-shaped mold master.

このため、長時間の切削加工によって環境温度の変動がより大きくなるため、それにともなってV溝の高さ(深さ)変動が生じる。   For this reason, since the fluctuation of the environmental temperature becomes larger due to the long-time cutting, the height (depth) of the V-groove varies accordingly.

また、V溝を切削する旋盤において、Z軸方向にリニアガイドを用いた構造であっても、リニアガイドの案内構造にボールベアリング構造を採用している場合、サブミクロンの精度ではガイドレールのZ軸方向の移動にともなってボールベアリングがベアリング溝内で周期的な微小振動する。このため、バイトもこのボールベアリングの周期的な微小振動に応じて周期的な微小振動する。   In addition, even if the lathe that cuts the V-groove uses a linear guide in the Z-axis direction, if the ball bearing structure is adopted for the guide structure of the linear guide, the guide rail Z can be used with submicron accuracy. Along with the movement in the axial direction, the ball bearing periodically vibrates in the bearing groove. For this reason, the tool also vibrates periodically in accordance with the periodic minute vibration of the ball bearing.

よって、Rバイトで金型マスタ表面を平面だしのために切削した後、バイトを交換してV溝を切削加工する場合では、平面だし加工時の、ボールベアリングのベアリング溝内で周期的な微小振動にともなうX軸方向の切り込み深さの軌跡と、V溝切削加工時の、ボールベアリングのベアリング溝内で周期的な微小振動にともなうX軸方向の切り込み深さの軌跡は一致しない。これによって、切削加工される複数のV溝の高さに周期的な変動が生じる。   Therefore, after cutting the surface of the mold master with an R tool for flattening, when cutting the V groove by exchanging the tool, periodic microscopic changes are made in the bearing groove of the ball bearing during flattening. The trajectory of the cut depth in the X-axis direction due to vibration does not coincide with the trajectory of the cut depth in the X-axis direction due to periodic minute vibrations in the bearing groove of the ball bearing at the time of V-groove cutting. This causes periodic fluctuations in the height of the plurality of V grooves to be machined.

このように、温度変動やバイト(ボールベアリング)の周期的な微小振動に起因して、金型マスタ表面に切削加工で形成したV溝の高さ(深さ)に周期的な変動が生じていると、設計値どおりのV溝の高さを得ることが難しくなる。このため、この金型マスタを用いて作製された製品としての導光板のV溝の高さが設計値とずれるため、高品質な導光板を得ることができない。   As described above, due to temperature fluctuations and periodic minute vibrations of the tool (ball bearing), periodic fluctuations occur in the height (depth) of the V-groove formed by cutting on the die master surface. If it is, it becomes difficult to obtain the height of the V groove as designed. For this reason, since the height of the V-groove of the light guide plate as a product manufactured using this mold master deviates from the design value, a high quality light guide plate cannot be obtained.

そこで、本発明は、温度変動やバイトの周期的な微小振動による影響を抑制して、精度よく切削加工を行うことができる光学部材製造用金型の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a mold for manufacturing an optical member capable of performing cutting with high accuracy by suppressing the influence of temperature fluctuations and periodic minute vibrations of a cutting tool.

前記目的を達成するために本発明に係る光学部材製造用金型の製造方法は、先端部が平面で、該先端部の両側が傾斜面に形成された切削バイトを、金型表面に複数回切り込ませて、前記切削バイトの先端部よりも幅広の平坦部を加工する平坦部加工工程と、前記平坦部加工工程で次の平坦部を加工する際に、切り込ませた前記切削バイトの傾斜面を利用して、前に加工した前記平坦部との間に位置するようにして、前記平坦部から所定高さの断面が略三角形状の凸部を加工する凸部加工工程と、を有し、前記平坦部に前記凸部が一定ピッチ又は/及び可変ピッチで複数形成されることを特徴としている。   In order to achieve the above object, a method for producing a mold for producing an optical member according to the present invention includes a cutting tool having a flat tip portion and inclined surfaces on both sides of the tip portion. A flat portion machining step for cutting and machining a flat portion wider than the tip portion of the cutting bit; and when cutting the next flat portion in the flat portion machining step, the cutting bit of the cut bit A convex portion machining step of machining a convex portion having a substantially triangular cross section from the flat portion so as to be positioned between the flat portion processed previously using an inclined surface, And a plurality of the convex portions are formed on the flat portion at a constant pitch and / or a variable pitch.

本発明に係る光学部材製造用金型の製造方法によれば、先端部の両側が傾斜面に形成された切削バイトを、金型表面に複数回切り込ませて、切削バイトの先端部よりも幅広の平坦部を加工する平坦部加工工程と、この平坦部加工工程で次の平坦部を加工する際に、切り込ませた切削バイトの傾斜面を利用して、前に加工した平坦部との間に位置するようにして、平坦部から所定高さの断面が略三角形状の凸部を加工する凸部加工工程とによって、断面が略三角形状の凸部を作製することで、温度変動やバイトの周期的な微小振動による影響を抑制して、精度よく切削加工を行うことが可能となる。   According to the method for manufacturing a mold for manufacturing an optical member according to the present invention, a cutting tool in which both sides of a tip part are formed on inclined surfaces is cut into the mold surface a plurality of times, so that the cutting tool is more than the tip part of the cutting tool. A flat part machining step for machining a wide flat part, and a flat part that has been machined before by using the inclined surface of the cut cutting tool when the next flat part is machined in this flat part machining step, By producing a convex portion having a substantially triangular cross section by processing a convex portion having a substantially triangular cross section at a predetermined height from the flat portion so as to be positioned between It is possible to perform cutting with high accuracy while suppressing the influence of periodic minute vibrations of the tool and tool.

本発明の実施形態における円筒状金型を示す斜視図。The perspective view which shows the cylindrical metal mold | die in embodiment of this invention. (a)は、本発明の実施形態におけるダイヤモンドバイト先端のダイヤモンドチップを示す外観を示す斜視図、(b)は、ダイヤモンドチップの先端部を拡大した図。(A) is a perspective view which shows the external appearance which shows the diamond tip of the diamond bite tip in embodiment of this invention, (b) is the figure which expanded the front-end | tip part of the diamond tip. (a)〜(f)は、本発明の実施形態に係る光学部材製造用金型の製造方法を説明するための図。(A)-(f) is a figure for demonstrating the manufacturing method of the metal mold | die for optical member manufacture which concerns on embodiment of this invention. (a),(b)は、発明の実施形態の変形例における切削加工された凸部を示す図。(A), (b) is a figure which shows the convex part by which the cutting process in the modification of embodiment of invention was carried out. (a)は、本発明の実施例の製造方法で作製された金型マスタの全長における凸部の高さの測定結果を示す図、(b)は、比較例の製造方法で作製された金型マスタの全長におけるV溝の高さの測定結果を示す図。(A) is a figure which shows the measurement result of the height of the convex part in the full length of the metal mold | die produced with the manufacturing method of the Example of this invention, (b) is the metal produced with the manufacturing method of the comparative example. The figure which shows the measurement result of the height of the V groove in the full length of a type | mold master. (a)は、本発明の実施例の製造方法で作製された金型マスタの一部領域における凸部の高さの測定結果を示す図、(b)は、比較例の製造方法で作製された金型マスタの一部領域におけるV溝の高さの測定結果を示す図。(A) is a figure which shows the measurement result of the height of the convex part in the partial area | region of the metal mold master produced with the manufacturing method of the Example of this invention, (b) is produced with the manufacturing method of the comparative example. The figure which shows the measurement result of the height of the V-groove in the partial area | region of the mold master. 比較例の製造方法で得られた円筒状金型表面のV溝を示す図。The figure which shows V groove | channel of the cylindrical metal mold | die surface obtained with the manufacturing method of the comparative example.

以下、本発明を図示の図1〜図3に示した実施形態に基づいて説明する。本実施形態では、導光板製造用の金型マスタの製造方法について説明する。   Hereinafter, the present invention will be described based on the embodiments shown in FIGS. In this embodiment, a method for manufacturing a mold master for manufacturing a light guide plate will be described.

なお、この金型マスタを用いて作製される製品としての導光板は、例えば、大型液晶テレビ等のバックライトとしてのエッジライト方式の面光源装置に用いられる。この導光板は入射端面から入射される光を均一な面状光として出射させるために、少なくとも底面にV溝が所定間隔で複数形成されている。本実施形態の製造方法では、金型マスタとしての円筒状金型(ロール金型)の表面の周方向に、このV溝に対応した断面が略三角形状の微細凸部(以下、単に「凸部」という)を形成し、かつこの凸部をZ軸方向に沿って所定間隔で複数作製するものである。   In addition, the light guide plate as a product manufactured using this mold master is used for an edge light type surface light source device as a backlight of, for example, a large liquid crystal television. This light guide plate has a plurality of V-grooves formed at predetermined intervals on at least the bottom surface in order to emit light incident from the incident end face as uniform planar light. In the manufacturing method of the present embodiment, in the circumferential direction of the surface of a cylindrical mold (roll mold) as a mold master, the cross-section corresponding to the V-groove has a substantially triangular shape (hereinafter simply referred to as “convex”). A plurality of convex portions are formed at predetermined intervals along the Z-axis direction.

図1に示すように、金属製の円筒状金型1は、旋盤(不図示)のZ軸方向に沿って回転自在に保持されており、所定の回転数で回転される。   As shown in FIG. 1, a metal cylindrical mold 1 is held rotatably along the Z-axis direction of a lathe (not shown) and is rotated at a predetermined rotational speed.

そして、円筒状金型1を表面(被加工層)に断面三角形状の凸部を加工するダイヤモンドバイト2は、リニアガイド(不図示)によって円筒状金型1の中心軸と同一平面上でZ軸方向及びX軸方向に移動自在に保持されている。   The diamond tool 2 for processing the convex portion having a triangular cross section on the surface (working layer) of the cylindrical mold 1 is formed on the same plane as the central axis of the cylindrical mold 1 by a linear guide (not shown). It is held movably in the axial direction and the X-axis direction.

円筒状金型1の表面に凸部等を形成するために使用する切削工具は、凸部形状、加工対象物の種類等によって、適宜選択される。切削工具の材質は、超硬バイト、CBNバイト、特に、ダイヤモンドバイトなどから選択される。ダイヤモンドバイトは、加工精度を他のバイトより高くできるので精密加工に適している。ダイヤモンドバイトは、天然又は合成の単結晶ダイヤモンドチップを金属製シャンクの先端に取付けたものである。   A cutting tool used for forming a convex portion or the like on the surface of the cylindrical mold 1 is appropriately selected depending on the shape of the convex portion, the type of the workpiece, and the like. The material of the cutting tool is selected from cemented carbide tools, CBN tools, particularly diamond tools. Diamond tools are suitable for precision machining because the processing accuracy can be higher than other tools. A diamond bite has a natural or synthetic single crystal diamond tip attached to the tip of a metal shank.

ダイヤモンドチップは、すくい面が最も摩耗しにくい面となる結晶方位にセットされる。ダイヤモンドチップは、シャンクに直接ロウ付けされるか、又は金属小片にロウ付けしてシャンクにねじ留めされるのが好ましい。   The diamond tip is set in a crystal orientation in which the rake face is the face that is most difficult to wear. The diamond tip is preferably brazed directly to the shank or brazed to a metal piece and screwed to the shank.

図2(a)は、本実施形態におけるダイヤモンドチップ3の外観を示したものであり、(b)は、ダイヤモンドチップ3の先端部を拡大した図である。   FIG. 2A shows the appearance of the diamond tip 3 in the present embodiment, and FIG. 2B is an enlarged view of the tip portion of the diamond tip 3.

図2(b)に示すように、ダイヤモンドチップ3の傾斜角θは、切削する凸部の底角(傾斜角)に合わせて設定し、先端フラット部3aの幅wは、切削する凸部の間隔等によって設定されるが、切削回数及び切削時の抵抗等の観点から、10〜100μm程度であり、より好ましくは30〜50μm程度である。ダイヤモンドチップ3の両側は、傾斜面3b,3dとなっている。   As shown in FIG. 2 (b), the inclination angle θ of the diamond tip 3 is set in accordance with the base angle (inclination angle) of the convex part to be cut, and the width w of the tip flat part 3a is the width of the convex part to be cut. Although set according to the interval and the like, it is about 10 to 100 μm, more preferably about 30 to 50 μm, from the viewpoint of the number of times of cutting and resistance at the time of cutting. Both sides of the diamond tip 3 are inclined surfaces 3b and 3d.

円筒状金型1の本体となるロール材としては、軽量化のために中空円筒体のロール材が主に使用される。材料としては、機械構造用炭素鋼管等の鉄系材料、又はアルミ合金、銅合金などの非鉄材料が選択される。また、機械加工時の熱により残留応力が解放され歪まないように、予め熱処理を行なった材料を使用することが望ましい。   As the roll material that becomes the main body of the cylindrical mold 1, a hollow cylindrical roll material is mainly used for weight reduction. As the material, ferrous materials such as carbon steel pipes for machine structures, or non-ferrous materials such as aluminum alloys and copper alloys are selected. It is also desirable to use a material that has been heat-treated in advance so that the residual stress is released and not distorted by heat during machining.

このロール材として鉄系材料を使用するときは、ダイヤモンドバイトによる精密加工が困難であるので、ダイヤモンドバイトで凸部形状を加工可能な被加工層を、予めロール表面にめっき処理等によって形成しておく。この被加工層としては、銅めっき層、ニッケルめっき層が挙げられる。特に、ビッカース硬度230〜250Hvの硬質銅めっき層が、ダイヤモンドバイトによる被削性に優れ、本実施形態のような導光板製造用金型の被加工層として適切である。   When an iron-based material is used as the roll material, it is difficult to perform precision processing with a diamond tool. Therefore, a processing layer capable of processing the convex shape with the diamond tool is previously formed on the roll surface by plating or the like. deep. Examples of the layer to be processed include a copper plating layer and a nickel plating layer. In particular, a hard copper plating layer having a Vickers hardness of 230 to 250 Hv is excellent in machinability with a diamond tool, and is suitable as a processing layer of a mold for manufacturing a light guide plate as in this embodiment.

そして、円筒状金型1の表面に対して、突っ切り切削方法によって凸部の切削加工が開始されると、図3(a)に示すように、最初にダイヤモンドバイト(ダイヤモンドチップ3)2をX軸方向に所定量だけ移動させて、回転する円筒状金型1の表面(被加工層)に切り込んで、ダイヤモンドチップ3の先端フラット部3aを用いて平坦部1a(図3(d)参照)の一部を切削加工する。   Then, when the cutting of the convex portion is started on the surface of the cylindrical mold 1 by the cut-off cutting method, the diamond bit (diamond tip 3) 2 is first set to X as shown in FIG. It is moved by a predetermined amount in the axial direction, cut into the surface (working layer) of the rotating cylindrical mold 1, and a flat portion 1a using the tip flat portion 3a of the diamond tip 3 (see FIG. 3D). A part of is cut.

そして、図3(b),(c)に示すように、ダイヤモンドバイト2をX軸方向に一旦退避移動させた後に、Z軸方向に先端フラット部3aの幅よりも小さい範囲(例えば、5μm程度)でオーバーラップするように移動させ、再度ダイヤモンドバイト(ダイヤモンドチップ3)2をX軸方向に所定量だけ移動させて、円筒状金型1の表面(被加工層)に切り込む工程を繰り返すことで、所定の深さで所定の幅の平坦部1aが作製される。この際、図3(c)に示すように、凸部1b(図3(d)参照)の一方側の傾斜面が形成される。   Then, as shown in FIGS. 3B and 3C, after the diamond bit 2 is once retracted in the X-axis direction, a range smaller than the width of the tip flat portion 3a in the Z-axis direction (for example, about 5 μm). ), The diamond tool (diamond tip 3) 2 is moved again by a predetermined amount in the X-axis direction, and the process of cutting into the surface (working layer) of the cylindrical mold 1 is repeated. A flat portion 1a having a predetermined width and a predetermined width is produced. At this time, as shown in FIG. 3C, an inclined surface on one side of the convex portion 1b (see FIG. 3D) is formed.

そして、図3(d)に示すように、ダイヤモンドバイト2を凸部1bの高さhに対応する間隔分だけZ軸方向に移動させた後、X軸方向に所定量だけ移動させて、上記した円筒状金型1の表面(被加工層)に切り込む工程を繰り返して次の平坦部を作製していく。   Then, as shown in FIG. 3D, after moving the diamond tool 2 in the Z-axis direction by an interval corresponding to the height h of the convex portion 1b, the diamond tool 2 is moved by a predetermined amount in the X-axis direction, The next flat part is produced by repeating the process of cutting into the surface (worked layer) of the cylindrical mold 1 thus prepared.

そして、上記した工程を繰り返すことで、図3(e),(f)に示すように、複数の断面が略三角形状の凸部1bが一定間隔で作製される。なお、この円筒状金型1の端面側の切削開始領域は凸部が得られないので、この端面側部分は最後にX軸方向に沿って切断する。   Then, by repeating the above-described steps, as shown in FIGS. 3E and 3F, convex portions 1b having a plurality of cross-sections that are substantially triangular are produced at regular intervals. In addition, since the convex part is not obtained in the cutting start region on the end face side of the cylindrical mold 1, this end face side portion is finally cut along the X-axis direction.

図3(f)に示すように、このような切削加工によって作製された凸部1bの頂部は、切削加工前の表面aから数μm程度低い位置にある。   As shown in FIG. 3 (f), the top of the convex portion 1b produced by such a cutting process is at a position lower by several μm from the surface a before the cutting process.

なお、上記の平坦部1aを作製する際のZ軸方向の送り(移動)は、ダイヤモンドチップ3の先端フラット部3aの全幅を用いると、境目に微小バリが発生し易いので、好ましくは1〜10μm、より好ましくは2〜5μmオーバーラップさせて切削するのが望ましい。   Note that the feed (movement) in the Z-axis direction when producing the flat portion 1a is preferably 1 to 1 because microburrs are easily generated at the boundary when the full width of the tip flat portion 3a of the diamond tip 3 is used. It is desirable to cut with an overlap of 10 μm, more preferably 2 to 5 μm.

また、凸部1bをピッチを可変して作製する場合、可変ピッチに対応させるため、Z軸方向の送りのピッチは、隣接する凸部1b間に応じて可変して切削するのが望ましい。具体的には、先端フラット部3aをダイヤモンドチップ3の最大有効幅(先端フラット部3aの幅−オーバーラップ分)の整数倍より1小さいピッチで切削することが望ましい。なお、製品としての導光板が大型の場合は、底面に形成されるV溝(凸部1bに相当)のピッチは0.1〜1mm程度である。   Moreover, when producing the convex part 1b by changing a pitch, in order to make it respond | correspond to a variable pitch, it is desirable to cut the feed pitch of a Z-axis direction by changing according to between the adjacent convex parts 1b. Specifically, it is desirable to cut the tip flat portion 3a at a pitch smaller than an integer multiple of the maximum effective width of the diamond tip 3 (the width of the tip flat portion 3a minus the overlap). In addition, when the light guide plate as a product is large, the pitch of the V-grooves (corresponding to the convex portions 1b) formed on the bottom surface is about 0.1 to 1 mm.

このように、本実施形態の金型マスタの製造方法では、一本のダイヤモンドバイト(ダイヤモンドチップ3)2だけで平坦部1aと凸部1bを、円筒状金型1の表面(被加工層)から掘り下げるように形成することができるので、上記した従来のようにRバイトで金型マスタ表面を平面だしのために切削する工程が不要となる。   As described above, in the mold master manufacturing method of the present embodiment, the flat portion 1a and the convex portion 1b are formed by using only one diamond tool (diamond tip 3) 2, and the surface of the cylindrical mold 1 (processed layer). Therefore, the process of cutting the die master surface for flattening with an R bite as in the conventional case is not required.

このため、使用する旋盤は、Z軸,X軸ともリニアガイド、及び位置決め精度の高い案内機構を備え、±0.1℃未満で温度制御された環境の中で使用するのが好ましいが、本切削方法を用いれば、位置決め精度の高い駆動方式(リニアガイド等)を用いることで、Z軸の案内は一般的な転がり案内を採用する旋盤で切削加工しても、各凸部1bの高さ精度を十分に確保することができる。   For this reason, the lathe to be used is preferably used in an environment in which the Z axis and the X axis both have a linear guide and a guide mechanism with high positioning accuracy and are temperature controlled at less than ± 0.1 ° C. If the cutting method is used, the driving method (linear guide etc.) with high positioning accuracy is used. Even if the Z-axis guide is cut by a lathe employing a general rolling guide, the height of each convex portion 1b. Sufficient accuracy can be secured.

また、凸部1bの片側の斜面を切削加工してから他方の斜面を切削加工開始するまでの時間が十数秒と短いので、この間の円筒状金型1の表面(被加工層)の温度変化はほぼ無視できる。よって、基準面からダイヤモンドチップ3の先端フラット部3aまでの距離が、凸部1bの高さh以上保たれている限りは高さ精度が保たれるため、通常(±数度)の温度制御下でも、凸部1bの高さ精度を十分に確保することができる。   Moreover, since the time from cutting the slope on one side of the convex portion 1b to the start of cutting on the other slope is as short as ten and several seconds, the temperature change of the surface (working layer) of the cylindrical mold 1 during this period Is almost negligible. Therefore, as long as the distance from the reference surface to the tip flat portion 3a of the diamond tip 3 is maintained at least the height h of the convex portion 1b, the height accuracy is maintained, so normal (± several degrees) temperature control. Even underneath, the height accuracy of the convex portion 1b can be sufficiently secured.

なお、円筒状金型1の表面の耐久性向上のために、表面に均一な厚さの表面処理薄膜を形成してもよい。この表面処理薄膜としては、めっき厚さの形状依存性が小さい無電解めっきによる、銅めっき層、ニッケルめっき層が好ましい。この他に、イオンプレーティング、真空蒸着、スパッタリング等のドライプロセスによって形成された表面処理薄膜でもよい。   In order to improve the durability of the surface of the cylindrical mold 1, a surface-treated thin film having a uniform thickness may be formed on the surface. As this surface-treated thin film, a copper plating layer and a nickel plating layer by electroless plating having a small shape dependence of the plating thickness are preferable. In addition, a surface-treated thin film formed by a dry process such as ion plating, vacuum deposition, or sputtering may be used.

また、前記実施形態の切削加工では、全ての凸部1bが同じピッチで、かつ同じ高さで形成された構造であったが、これ以外にも、図4(a)に示すように、凸部1bのピッチを変化させて、凸部1bのピッチが大きい領域Aと、凸部1bのピッチが小さい領域Bを有するように切削加工することもできる。   Moreover, in the cutting process of the said embodiment, although all the convex parts 1b were the structures formed by the same pitch and the same height, as shown to Fig.4 (a), as shown in FIG. The pitch of the part 1b can be changed, and it can also cut so that it may have the area | region A where the pitch of the convex part 1b is large, and the area | region B where the pitch of the convex part 1b is small.

また、図4(b)に示すように、ダイヤモンドバイト(ダイヤモンドチップ3)2の切込み位置をずらすことで、領域Cにある凸部1bの高さを少し低くすることができる。   Further, as shown in FIG. 4B, the height of the convex portion 1b in the region C can be slightly lowered by shifting the cutting position of the diamond cutting tool (diamond tip 3) 2.

前記実施形態では、金型マスタとして円筒状金型(ロール金型)を用いた構成であったが、金型マスタとして平面状金型を用いた場合でも同様に本発明を適用することができる。この場合、金型となる金属板を円筒体表面に巻き付けて固定することで、前記実施形態と同様に切削加工できる。更に、この金型となる金属板を、平板加工機を用いて切削加工してもよい。   In the above embodiment, the cylindrical mold (roll mold) is used as the mold master. However, the present invention can be similarly applied even when a planar mold is used as the mold master. . In this case, it can cut like the said embodiment by winding the metal plate used as a metal mold around the cylindrical body surface, and fixing. Furthermore, you may cut the metal plate used as this metal mold | die using a flat plate processing machine.

次に、前記した本発明の製造方法で作製された金型を評価するために、以下に示す本発明の実施例と比較用の比較例の製造方法で作製した金型の評価を行った。   Next, in order to evaluate the mold produced by the production method of the present invention described above, the mold produced by the production method of the following examples of the present invention and comparative examples for comparison was evaluated.

(実施例)
この実施例で使用した旋盤(UPL1500:理研製鋼社製)は、円筒状金型(ロール金型)の駆動部には空気静圧軸受けを採用し、X軸,Z軸方向の駆動はリニアモータ、X軸,Z軸方向ともリニアガイドには転がり案内を採用した精密旋盤である。また、切削油は石油系炭化水素を使用し、切削部位に滴下し、切粉および切削油の排出のため吸引機を作動させながら切削加工を行った。
(Example)
The lathe used in this example (UPL1500: manufactured by Riken Steel Co., Ltd.) employs aerostatic bearings for the drive part of the cylindrical mold (roll mold), and drives in the X-axis and Z-axis directions are linear motors. The X-axis and Z-axis directions are precision lathes that employ rolling guides for linear guides. Moreover, the cutting oil used the petroleum-type hydrocarbon, it was dripped at the cutting site | part, and it cut while operating a suction device for discharge | emission of a chip and cutting oil.

使用した円筒状金型は、直径416mm、面長820mmの鋼製ロールに表面研磨仕上げを行い、下地層として硬質銅めっき(厚さ400μm)を施し、更にその表面に剥離層を設け、更にその表面に硬質銅めっきを施したものである。   The cylindrical mold used has a surface polishing finish on a steel roll having a diameter of 416 mm and a surface length of 820 mm, a hard copper plating (thickness 400 μm) is applied as an underlayer, and a release layer is further provided on the surface. The surface is subjected to hard copper plating.

そして、前記精密旋盤に前記円筒状金型を取り付け、前加工として、R20mmの単結晶天然ダイヤモンドバイトで切込み20μm、送り50μm/revで鏡面加工を実施し、スクラッチ、切粉を引きずった傷などが無いことを確認した。   Then, the cylindrical mold is attached to the precision lathe, and as a pre-processing, a 20 mm cut with a single crystal natural diamond tool of R20 mm, a mirror finish with a feed of 50 μm / rev, and scratches, scratches, etc. that are dragged by chips. I confirmed that there was no.

この実施例での切削データは、切削加工幅583mm(加工ピッチ:121〜557μm、凸部(断面が略三角形状)の数:2313本)、凸部の高さ:6μmである。   Cutting data in this example is a cutting width of 583 mm (processing pitch: 121 to 557 μm, number of convex portions (substantially triangular shape): 2313), and the height of convex portions: 6 μm.

また、凸部の切削加工に当たっては、先端部に35μm幅のフラット部を持つ底角40度の天然単結晶ダイヤモンドバイト(東京ダイヤモンド工具製作所社製)で一回転あたりの切り込み量1μm/revの突っ切り切削で加工を行った。なお、切り込み量の上限値を30μmと設定した上で、凸部間の平坦部の切り込み回数Aを以下のように指定した。   In the cutting of the convex part, a natural single crystal diamond tool with a base angle of 40 degrees (manufactured by Tokyo Diamond Tool Mfg. Co., Ltd.) having a flat part with a width of 35 μm at the tip part is cut off with a cutting amount of 1 μm / rev per rotation. Processing was performed by cutting. In addition, after setting the upper limit of the cut amount to 30 μm, the number of cuts A of the flat portion between the convex portions was designated as follows.

A=(凸部間の平坦部の長さ/30μm)の整数部+1回   A = (integer part of convex part / length of 30 μm) +1 time

そして、凸部間の平坦部を切削加工する際の送りを、設計ピッチ/Aで設定して平坦部を仕上げた後、平坦部の深さに対応する、49.3μm(35μm+2×6μm/tan40)だけZ軸方向に移動したのち、再び凸部間の平坦部を加工するという動作を繰り返すことで、図3(f)に示したような凸部と平坦部を作製した。   Then, after finishing the flat part by setting the feed when cutting the flat part between the convex parts at the design pitch / A, 49.3 μm (35 μm + 2 × 6 μm / tan 40 corresponding to the depth of the flat part) 3), the projection and the flat portion as shown in FIG. 3F were produced by repeating the operation of processing the flat portion between the convex portions again.

なお、X軸方向の切り込み量は、加工中の円筒状金型の温度の変動等による切り込み量の深さの変動を5.3μm未満と想定して、作製したい凸部の高さ6μmに付加し、11.3μmとして加工した。加工後の切削油が付着した円筒状金型は洗浄液(ハロゲン化炭化水素)にて脱脂し、その後、バラード層に切り込みをいれ、剥離層から剥離し目的の金型マスタを得た。   Note that the depth of cut in the X-axis direction is added to the height of 6 μm of the convex part to be manufactured, assuming that the variation of the depth of cut due to the temperature variation of the cylindrical mold being processed is less than 5.3 μm. And processed to 11.3 μm. The cylindrical mold with the processed cutting oil adhered was degreased with a cleaning liquid (halogenated hydrocarbon), then cut into the ballad layer and peeled from the release layer to obtain the desired mold master.

そして、得られた金型マスタを接触式形状測定装置(PGI420:テーラーホブソン社製)を用い、取り込みピッチ0.125μmで取り込み、凸部の高さを測定した。図5(a)、図6(a)はこの測定結果である。   The obtained mold master was taken in at a take-in pitch of 0.125 μm using a contact-type shape measuring device (PGI420: manufactured by Taylor Hobson), and the height of the convex portion was measured. FIG. 5A and FIG. 6A show the measurement results.

図5(a)は、金型マスタ(円筒状金型)の切削開始の一端面(0mm)から他端面(約583mm)までの凸部の高さの測定結果、図6(a)は、金型マスタの切削開始の一端面(0mm)から約80mmまでの凸部の高さの詳細な測定結果である。図5(a)に示した測定結果において、測定点の数は2048点であり、凸部の高さの平均は5.80μm、標準偏差は0.02μmであった。なお、測定に用いた上記接触式形状測定装置の原理上、各点での凸部の高さの測定値は0.2μm低めに出力される。   FIG. 5A shows the measurement result of the height of the convex portion from one end face (0 mm) to the other end face (about 583 mm) of the cutting start of the mold master (cylindrical mold), and FIG. It is a detailed measurement result of the height of the convex part from one end surface (0 mm) of the start of cutting of the mold master to about 80 mm. In the measurement result shown in FIG. 5A, the number of measurement points was 2048, the average height of the convex portions was 5.80 μm, and the standard deviation was 0.02 μm. In addition, the measured value of the height of the convex part at each point is output 0.2 μm lower on the principle of the contact-type shape measuring apparatus used for the measurement.

この測定結果から明らかなように、この実施例で作製された凸部の高さは切削開始の一端面から他端面までの全長にわたって設計値(6μm)に近い値となり(図5(a)参照)、かつ凸部の高さの周期変動も小さく(図6(a)参照)、良好な金型マスタが得られた。   As is apparent from this measurement result, the height of the convex portion produced in this example is close to the design value (6 μm) over the entire length from one end surface to the other end surface at the start of cutting (see FIG. 5A). ), And the fluctuation of the height of the convex portion was small (see FIG. 6A), and a good mold master was obtained.

(比較例)
この比較例では、図7に示すように、円筒状金型(金型マスタ)10の表面に所定ピッチでV溝10aを切削加工する。
(Comparative example)
In this comparative example, as shown in FIG. 7, V grooves 10 a are cut at a predetermined pitch on the surface of a cylindrical mold (mold master) 10.

この比較例での切削データは、切削加工幅582mm(加工ピッチ:106〜714μm、V溝の数:1735本)、V溝の高さ:5μmである。   The cutting data in this comparative example has a cutting width of 582 mm (processing pitch: 106 to 714 μm, number of V grooves: 1735), and height of V grooves: 5 μm.

また、V溝の切削加工に当たっては、頂角135度のシャープエッジの天然単結晶ダイヤモンドバイト(東京ダイヤモンド工具製作所社製)で一回転あたりの切り込み量1μm/revの突っ切り切削で加工を行った。そして、V溝間の間隔をZ軸方向入力値として加工を実施した。それ以外の条件は前記実施例と同様である。   In the V-groove cutting, a natural single crystal diamond tool with a sharp edge with an apex angle of 135 degrees (manufactured by Tokyo Diamond Tool Mfg. Co., Ltd.) was used to perform cutting-off cutting with a cutting amount of 1 μm / rev per rotation. Then, processing was performed with the interval between the V grooves as the input value in the Z-axis direction. The other conditions are the same as in the previous embodiment.

そして、得られた金型マスタを接触式形状測定装置(PGI420:テーラーホブソン社製)を用い、取り込みピッチ0.125μmで取り込み、V溝の高さを測定した。図5(b)、図6(b)はこの測定結果である。   The obtained mold master was taken in at a take-in pitch of 0.125 μm using a contact-type shape measuring device (PGI420: manufactured by Taylor Hobson), and the height of the V-groove was measured. FIG. 5B and FIG. 6B show the measurement results.

図5(b)は、金型マスタの切削開始の一端面(0mm)から他端面(約582mm)までのV溝の高さの測定結果、図6(b)は、金型マスタの切削開始の一端面(0mm)から約80mmまでのV溝の高さの詳細な測定結果である。V溝は金型マスタ表面から内側へ切削されて形成されるので、金型マスタ表面におけるV溝の高さをゼロ(0)とすると、図5(b)、図6(b)におけるV溝の高さの測定値は金型マスタ表面からの値であり、測定値に−(マイナス)を付けている。即ち、例えばV溝の高さの測定値が−4.0μmの場合、金型マスタ表面から内側に4.0μmの距離であることを意味している。   FIG. 5B shows the measurement result of the height of the V groove from one end face (0 mm) to the other end face (about 582 mm) of the cutting start of the mold master, and FIG. 6B shows the cutting start of the mold master. This is a detailed measurement result of the height of the V groove from one end face (0 mm) to about 80 mm. Since the V-groove is formed by cutting inward from the mold master surface, assuming that the height of the V-groove on the mold master surface is zero (0), the V-groove in FIGS. 5 (b) and 6 (b) The measured value of the height is a value from the mold master surface, and-(minus) is added to the measured value. That is, for example, when the measured value of the height of the V-groove is −4.0 μm, it means that the distance is 4.0 μm inward from the mold master surface.

図5(b)に示した測定結果において、測定点の数は1550点であり、V溝の高さの平均は−3.97μm、標準偏差は0.21μmであった。なお、測定に用いた上記接触式形状測定装置の原理上、各点でのV溝の高さの測定値は0.2μm高めに出力される。   In the measurement result shown in FIG. 5B, the number of measurement points was 1550, the average height of the V-groove was −3.97 μm, and the standard deviation was 0.21 μm. In addition, the measured value of the height of the V-groove at each point is output higher by 0.2 μm due to the principle of the contact-type shape measuring apparatus used for the measurement.

この測定結果から明らかなように、この比較例で作製されたV溝の高さは設計値(5μm)からずれた値となり(図6(b)参照)、かつV溝の高さの周期変動も大きかった(図6(b)参照)。   As is apparent from the measurement results, the height of the V-groove produced in this comparative example is a value deviated from the design value (5 μm) (see FIG. 6B), and the fluctuation in the height of the V-groove is periodic. (See FIG. 6B).

1 円筒状金型
1a 平坦部
1b 凸部
2 ダイヤモンドバイト
3 ダイヤモンドチップ
3a 先端フラット部
DESCRIPTION OF SYMBOLS 1 Cylindrical metal mold | die 1a Flat part 1b Convex part 2 Diamond bit 3 Diamond tip 3a Tip flat part

Claims (3)

先端部が平面で、該先端部の両側が傾斜面に形成された切削バイトを、金型表面に複数回切り込ませて、前記切削バイトの先端部よりも幅広の平坦部を加工する平坦部加工工程と、
前記平坦部加工工程で次の平坦部を加工する際に、切り込ませた前記切削バイトの傾斜面を利用して、前に加工した前記平坦部との間に位置するようにして、前記平坦部から所定高さの断面が略三角形状の凸部を加工する凸部加工工程と、を有し、
前記平坦部に前記凸部が一定ピッチ又は/及び可変ピッチで複数形成されることを特徴とする光学部材製造用金型の製造方法。
A flat portion that has a flat tip portion and has a cutting bit formed on the inclined surface on both sides of the tip portion a plurality of times to cut a flat portion wider than the tip portion of the cutting bit. Processing steps,
When processing the next flat portion in the flat portion processing step, the flat portion is positioned between the flat portion processed previously by using the inclined surface of the cut cutting tool. A convex portion machining step of machining a convex portion having a substantially triangular cross section at a predetermined height from the portion,
A method of manufacturing a mold for producing an optical member, wherein a plurality of the convex portions are formed at a constant pitch and / or a variable pitch on the flat portion.
前記金型は、円筒状金型であり、該円筒状金型の円周方向に沿って前記平坦部加工工程と前記凸部加工工程を行うことを特徴とする請求項1に記載の光学部材製造用金型の製造方法。   The optical member according to claim 1, wherein the mold is a cylindrical mold, and the flat portion processing step and the convex portion processing step are performed along a circumferential direction of the cylindrical mold. Manufacturing method of manufacturing mold. 前記凸部の頂部は、加工前の前記金型表面から所定量だけ切削されて低い位置にあることを特徴とする請求項1又は2に記載の光学部材製造用金型の製造方法。   3. The method for manufacturing a mold for manufacturing an optical member according to claim 1, wherein the top of the convex portion is cut by a predetermined amount from the surface of the mold before processing and is in a low position.
JP2012174057A 2012-08-06 2012-08-06 Manufacturing method of mold for optical member manufacturing Expired - Fee Related JP5908367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174057A JP5908367B2 (en) 2012-08-06 2012-08-06 Manufacturing method of mold for optical member manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174057A JP5908367B2 (en) 2012-08-06 2012-08-06 Manufacturing method of mold for optical member manufacturing

Publications (2)

Publication Number Publication Date
JP2014030987A true JP2014030987A (en) 2014-02-20
JP5908367B2 JP5908367B2 (en) 2016-04-26

Family

ID=50281201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174057A Expired - Fee Related JP5908367B2 (en) 2012-08-06 2012-08-06 Manufacturing method of mold for optical member manufacturing

Country Status (1)

Country Link
JP (1) JP5908367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182198A (en) * 2014-03-25 2015-10-22 株式会社クラレ Manufacturing method for die for manufacturing optical member
JP7408443B2 (en) 2020-03-13 2024-01-05 レンゴー株式会社 label

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166426A (en) * 2000-11-29 2002-06-11 Minebea Co Ltd Mold and method for producing the same
JP2004148660A (en) * 2002-10-30 2004-05-27 Olympus Corp Mold and method of processing mold
WO2011040135A1 (en) * 2009-09-30 2011-04-07 コニカミノルタオプト株式会社 Die processing method, die, objective lens, and optical pick-up device
JP2011156820A (en) * 2010-02-03 2011-08-18 Dainippon Printing Co Ltd Method of producing mold and method of manufacturing optical sheet
JP2012006177A (en) * 2010-06-22 2012-01-12 Dainippon Printing Co Ltd Method of manufacturing mold roll, mold roll and method of manufacturing optical sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166426A (en) * 2000-11-29 2002-06-11 Minebea Co Ltd Mold and method for producing the same
JP2004148660A (en) * 2002-10-30 2004-05-27 Olympus Corp Mold and method of processing mold
WO2011040135A1 (en) * 2009-09-30 2011-04-07 コニカミノルタオプト株式会社 Die processing method, die, objective lens, and optical pick-up device
JP2011156820A (en) * 2010-02-03 2011-08-18 Dainippon Printing Co Ltd Method of producing mold and method of manufacturing optical sheet
JP2012006177A (en) * 2010-06-22 2012-01-12 Dainippon Printing Co Ltd Method of manufacturing mold roll, mold roll and method of manufacturing optical sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182198A (en) * 2014-03-25 2015-10-22 株式会社クラレ Manufacturing method for die for manufacturing optical member
JP7408443B2 (en) 2020-03-13 2024-01-05 レンゴー株式会社 label

Also Published As

Publication number Publication date
JP5908367B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
Suzuki et al. Elliptical vibration cutting of tungsten alloy molds for optical glass parts
WO2021208485A1 (en) Micro/nano textured superhard tool bit and laser-assisted grinding composite machining method therefor
JP3249081B2 (en) Diffraction surface shape and optical element manufacturing method
CN109333385B (en) Diamond grinding wheel with microstructure and preparation method thereof
JP2012525990A (en) Manufacturing method of fine replication tool
TW200911447A (en) Cutting tool using one or more machined tool tips with diffractive features in a continuous or interrupted cut fast tool servo
JP5256743B2 (en) Roll mold for optical film production
JP2012189784A (en) Production method of diffraction grating
US20100044910A1 (en) Method for producing ceramic-honeycomb-structure-molding die and method for producing ceramic honeycomb structure
JP5908367B2 (en) Manufacturing method of mold for optical member manufacturing
WO2003051784A1 (en) Holder for tip and method for manufacturing the same, and scribing device and manual cutter that are provided with the holder for tip
JP4878517B2 (en) Diamond tools
JP2007030095A (en) Method for manufacturing diamond tool
CN101432096A (en) Cutting tool using one or more machined tool tips in a continuous or interrupted cut fast tool servo
WO2008041441A1 (en) Metal mold, optical device, metal mold for forming optical device, and process for manufacturing the same
JP2005081476A (en) Processing device for optical waveguide mold and method of cutting arcuate groove on workpiece
JP5183256B2 (en) Cutting tool and cutting method using the same
JP2015182198A (en) Manufacturing method for die for manufacturing optical member
Saito et al. Mirror surface machining of steel by elliptical vibration cutting with diamond-coated tools sharpened by pulse laser grinding
JP6173077B2 (en) Method for manufacturing blazed diffraction grating and method for manufacturing mold therefor
JP5283376B2 (en) Prism sheet forming roll mold manufacturing method
WO2022210429A1 (en) Roll mold manufacturing method, roll mold, and transcript
JP2008142926A (en) Film manufacturing method, film manufacturing apparatus and cutting and processing method
US20240139822A1 (en) Roll mold manufacturing method, roll mold, and transcript
JP2006108034A (en) Manufacturing method of light guide body for surface light source and bite for cutting work used for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160323

R150 Certificate of patent or registration of utility model

Ref document number: 5908367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees