JP5183256B2 - Cutting tool and cutting method using the same - Google Patents

Cutting tool and cutting method using the same Download PDF

Info

Publication number
JP5183256B2
JP5183256B2 JP2008059029A JP2008059029A JP5183256B2 JP 5183256 B2 JP5183256 B2 JP 5183256B2 JP 2008059029 A JP2008059029 A JP 2008059029A JP 2008059029 A JP2008059029 A JP 2008059029A JP 5183256 B2 JP5183256 B2 JP 5183256B2
Authority
JP
Japan
Prior art keywords
cutting
workpiece
sintered
cut
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008059029A
Other languages
Japanese (ja)
Other versions
JP2009214213A5 (en
JP2009214213A (en
Inventor
秀夫 横田
和弘 藤崎
豊 山形
直道 古城
龍太郎 姫野
昭武 牧野内
俊郎 樋口
尚 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
RIKEN Institute of Physical and Chemical Research
Original Assignee
National Institute for Materials Science
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, RIKEN Institute of Physical and Chemical Research filed Critical National Institute for Materials Science
Priority to JP2008059029A priority Critical patent/JP5183256B2/en
Publication of JP2009214213A publication Critical patent/JP2009214213A/en
Publication of JP2009214213A5 publication Critical patent/JP2009214213A5/ja
Application granted granted Critical
Publication of JP5183256B2 publication Critical patent/JP5183256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

本発明は、被切削物を精密切削するための切削工具と、これを用いて被切削物を切削する切削方法に関する。   The present invention relates to a cutting tool for precisely cutting a workpiece and a cutting method for cutting the workpiece using the cutting tool.

近年において、金属材料などの被切削物を精密切削することで、被切削物の表面仕上げが行われている。切削による表面仕上げは、研削や研磨による表面仕上げよりも好ましい場合が多い。例えば、研削や研磨によって表面仕上げを行う場合には、発熱量が多く、研削工具または研磨工具の磨耗が多く、作業時間もかかる。これに対し、切削によって表面仕上げを行う場合には、発熱量を少なくし、切削工具の磨耗を少なくし、さらに作業効率を高めることができる。そのため、切削による表面仕上げ加工技術の向上が望まれている。   In recent years, surface finishing of a workpiece is performed by precisely cutting a workpiece such as a metal material. Surface finishing by cutting is often preferred over surface finishing by grinding or polishing. For example, when surface finishing is performed by grinding or polishing, the amount of heat generation is large, the grinding tool or the polishing tool is worn much, and the work time is also long. On the other hand, when surface finishing is performed by cutting, the amount of heat generated can be reduced, the wear of the cutting tool can be reduced, and the working efficiency can be further increased. Therefore, improvement of surface finishing technology by cutting is desired.

切削による表面仕上げ加工を行うための切削工具の高硬度材料として、単結晶ダイヤモンド、タングステン、立方晶窒化ホウ素(cBN)がある。このうちcBNを切削工具として用いることへの期待が高まっている。   As a high-hardness material of a cutting tool for performing surface finishing by cutting, there are single crystal diamond, tungsten, and cubic boron nitride (cBN). Among these, the expectation for using cBN as a cutting tool is increasing.

単結晶ダイヤモンドバイトを用いることで、非鉄材料の精密切削を精度よく行うことができる。しかし、単結晶ダイヤモンドバイトにより鉄系材料を切削すると、単結晶ダイヤモンドは、切削時の高温下で黒鉛化するとともに炭素が鉄系材料へ固溶することで、大きく磨耗してしまう。
単結晶ダイヤモンドの磨耗を抑制する切削方法として、振動切削方法がある(下記特許文献1を参照)。この方法では、単結晶ダイヤモンドバイトを振動させながら被切削物を切削することで、単結晶ダイヤモンドバイトの温度上昇を抑制している。これにより、単結晶ダイヤモンドの黒鉛化や鉄系材料への固溶を抑制している。しかし、この方法では、1つの面を仕上げるのに時間がかかり、また、高価な振動制御装置が必要である。
By using a single crystal diamond tool, it is possible to precisely cut a non-ferrous material. However, when an iron-based material is cut with a single crystal diamond bite, the single crystal diamond is graphitized at a high temperature at the time of cutting and carbon is solid-dissolved in the iron-based material, so that the single crystal diamond is greatly worn.
As a cutting method for suppressing wear of single crystal diamond, there is a vibration cutting method (see Patent Document 1 below). In this method, the temperature rise of the single crystal diamond tool is suppressed by cutting the workpiece while vibrating the single crystal diamond tool. This suppresses graphitization of single crystal diamond and solid solution in iron-based materials. However, in this method, it takes time to finish one surface, and an expensive vibration control device is required.

タングステンについては、その主要原産国からのタングステン供給量が不足し、その価格が上昇することが懸念されている。   Regarding tungsten, there is a concern that the supply of tungsten from its main country of origin will be insufficient and its price will rise.

cBNは、ダイヤモンドに次ぐ硬度を有する物質であるとともに、単結晶ダイヤモンドバイトと異なり鉄系材料を切削しても大きく磨耗せず、その供給量が不足する懸念も小さい。   cBN is a substance having hardness next to diamond, and unlike a single crystal diamond tool, cBN does not wear greatly even when an iron-based material is cut, and there is little concern that the supply amount is insufficient.

以上のような事情から、単結晶ダイヤモンドまたはタングステンの代わりにcBNを切削工具として用いることへの期待が高まっている。 From the above circumstances, there is an increasing expectation for using cBN as a cutting tool instead of single crystal diamond or tungsten.

なお、本発明の技術分野における先行技術文献として下記特許文献2がある。
特開2002−292501号公報 特開2004−250278号公報
Note that there is the following Patent Document 2 as a prior art document in the technical field of the present invention.
JP 2002-292501 A JP 2004-250278 A

cBNは微細粒子の焼結体であるため、cBNによる仕上げ面あらさR(μm)を鏡面の面あらさ0.1μm以下にするためには、微細粒子の寸法を鏡面の面あらさ0.1μm以下にすることが望まれる。即ち、切削時に切削工具の切刃先端からcBN微細粒子の脱落が生じると、この微細粒子の大きさの欠落が切刃先端に生じる。そのため、微細粒子の寸法以下の仕上げ面あらさR(μm)を得ることは困難である。従って、安定した鏡面仕上げ切削を実現するために、cBN微細粒子の寸法を0.1μm以下にすることが望まれる。   Since cBN is a sintered body of fine particles, in order to make the finished surface roughness R (μm) of cBN less than 0.1 μm of the mirror surface, the size of the fine particles should be less than 0.1 μm of the mirror surface. It is desirable to do. That is, when the cBN fine particles fall off from the cutting edge tip of the cutting tool during cutting, a lack of the size of the fine particles occurs at the cutting edge tip. Therefore, it is difficult to obtain a finished surface roughness R (μm) that is equal to or smaller than the size of the fine particles. Therefore, in order to realize stable mirror finish cutting, it is desired that the size of the cBN fine particles be 0.1 μm or less.

そこで、本発明の目的は、0.1μm以下の寸法を持つ微細粒子のcBN焼結体を用いた切削工具を提供することにある。
なお、本発明の別の目的は、cBNを用いた切削工具において、切削工具毎に切削性能のばらつきが少なくすることにある。また、本発明の別の目的は、上述の切削工具を用いた切削方法において、切削効率を向上させることにある。
Therefore, an object of the present invention is to provide a cutting tool using a fine particle cBN sintered body having a size of 0.1 μm or less.
Another object of the present invention is to reduce variation in cutting performance for each cutting tool in a cutting tool using cBN. Another object of the present invention is to improve cutting efficiency in the cutting method using the above-described cutting tool.

上記目的を達成するため、本発明によると、六方晶窒化ホウ素を加圧しながら加熱することで薄板状の焼結体に転換し、前記焼結体を複数の焼結分割体に分割し、前記焼結分割体を、被切削物を切削する切刃部とし、前記各焼結分割体は、前記焼結体の厚み方向から見た場合に、「く」の字形状である先端部を有し、前記各焼結分割体の前記先端部は、前記焼結体の中心部に位置しており、当該焼結分割体の前記先端部を、被切削物を切削するために被切削物に当てる部分とし、先端部は、前記被切削物に当てる部分である第1部分と、第1部分とは異なる前記被切削物に当てる部分である第2部分と、を有し、前記第1部分と前記第2部分とは切刃部の切削方向に間隔を隔てて設けられ、切刃部は、被切削面に対する向きが異なることにより、前記被切削物に当てる部分が前記第1部分から前記第2部分に切り換わる、ことを特徴とする切削工具が提供される。前記加熱および前記加圧は、前記焼結体を構成する粒子の寸法を0.1μm以下にする温度および圧力で行われる。 In order to achieve the above object, according to the present invention, the hexagonal boron nitride is heated while being pressed to convert it into a thin plate-like sintered body, and the sintered body is divided into a plurality of sintered divided bodies, The sintered divided body is a cutting edge part that cuts the workpiece, and each sintered divided body has a tip portion that has a “<” shape when viewed from the thickness direction of the sintered body. The tip of each sintered divided body is located at the center of the sintered body, and the tip of the sintered divided body is used as a workpiece to cut the workpiece. The tip portion includes a first portion that is a portion that contacts the workpiece, and a second portion that is a portion that contacts the workpiece different from the first portion, and the first portion And the second portion are provided with an interval in the cutting direction of the cutting edge, and the cutting edge is different in direction with respect to the surface to be cut. , The partial shed the object to be cut is switched to the second portion from said first portion, the cutting tool, wherein provided that. The heating and the pressurization are performed at a temperature and a pressure that make the size of the particles constituting the sintered body 0.1 μm or less.

この切削工具では、六方晶窒化ホウ素を原料として、該六方晶窒化ホウ素を加熱しながら加圧することで立方晶窒化ホウ素(cBN)の焼結体に転換する。これにより、前記焼結体の粒子寸法を0.1μm以下にすることが可能になる。このように、粒子寸法が0.1μm以下である超微細粒子cBNの焼結体を、被切削物を切削する切刃部にすることができるので、本発明の切削工具による切削で得られる仕上げ面あらさを、少なくとも鏡面の面あらさと同程度にすることができる。
また、ダイヤモンドバイトで鉄系被切削物を切削すると、ダイヤモンドバイトの磨耗が激しい問題があるのに対し、本発明の切削工具は、cBN焼結体であるので、そのような問題も生じない。
さらに、本発明のcBN焼結体による切削工具は、ダイヤモンドに近い硬度を有するので、ダイヤモンドバイトと同様の加工法に適用できる。例えば、被切削物に対する平面仕上げ加工を、ダイヤモンドバイトを用いた場合と同程度の高速切削で行える。
In this cutting tool, hexagonal boron nitride is used as a raw material, and the hexagonal boron nitride is heated and pressurized to be converted into a cubic boron nitride (cBN) sintered body. Thereby, it becomes possible to make the particle size of the sintered body 0.1 μm or less. Thus, since the sintered body of the ultrafine particles cBN having a particle size of 0.1 μm or less can be used as a cutting edge portion for cutting a workpiece, the finish obtained by cutting with the cutting tool of the present invention. The surface roughness can be at least as high as the mirror surface roughness.
Further, when an iron-based workpiece is cut with a diamond tool, there is a problem that the wear of the diamond tool is severe. On the other hand, the cutting tool of the present invention is a cBN sintered body, so such a problem does not occur.
Furthermore, since the cutting tool by the cBN sintered body of the present invention has a hardness close to that of diamond, it can be applied to a processing method similar to that for diamond tools. For example, planar finishing on the workpiece can be performed with high-speed cutting similar to that when using a diamond tool.

この切削工具では、前記六方晶窒化ホウ素を加熱しながら加圧することで薄板状の前記焼結体に転換した後、該焼結体を複数の焼結分割体に分割し、前記焼結分割体を、被切削物を切削する切刃部としたので、複数の焼結分割体をそれぞれ別個の切削工具の切刃部とすることができる。
この場合に、前記各焼結分割体の前記先端部は、組成のばらつきが少ない前記焼結体の中心部に位置している。このように組成のばらつきが少ない先端部を被切削物に当てる部分としたので、切削工具毎に切削性能のばらつきが少なくなる。なお、この効果を得ることを目的とする場合には、前記焼結体の粒子寸法が必ずしも0.1μm以下でなくてもよい。
In this cutting tool, the hexagonal boron nitride is heated and pressurized to be converted into a thin plate-like sintered body, and then the sintered body is divided into a plurality of sintered divided bodies, Since this is the cutting edge part for cutting the workpiece, the plurality of sintered division bodies can be used as the cutting edge parts of separate cutting tools.
In this case, the tip of each sintered divided body is located at the center of the sintered body with little composition variation. As described above, since the tip portion having a small variation in composition is a portion that contacts the workpiece, variations in cutting performance are reduced for each cutting tool. In addition, when it aims at acquiring this effect, the particle size of the said sintered compact does not necessarily need to be 0.1 micrometer or less.

上記本発明の別の目的を達成するため、本発明によると、上述の切削工具を用いた被切削物の切削方法であって、
請求項1または2に記載の切削工具を用いた被切削物の切削方法であって、
前記第1部分を被切削物に当てた第1状態で、前記被切削物を重切削し、
前記第2部分を被切削物に当てた第2状態で、前記被切削物を精密切削し、
前記重切削で被切削物を切削する深さは、前記精密切削で被切削物を切削する深さよりも大きい、ことを特徴とする被切削物の切削方法が提供される。
In order to achieve another object of the present invention, according to the present invention, there is provided a cutting method of a workpiece using the above-described cutting tool,
A method for cutting a workpiece using the cutting tool according to claim 1 or 2,
In the first state where the first part is applied to the workpiece, the workpiece is heavy-cut,
In the second state where the second portion is applied to the workpiece, the workpiece is precisely cut,
A depth of cutting the workpiece by the heavy cutting is larger than a depth of cutting the workpiece by the precision cutting.

この切削方法では、前記切削工具の前記切刃部の第1部分を被切削物に当てた第1状態で、前記被切削物を重切削し、前記切削工具の前記切刃部の第2部分を被切削物に当てた第2状態で、前記被切削物を精密切削するので、重切削および精密切削を1つの切削工具で行える。これにより、切削効率が向上する。   In this cutting method, in the first state where the first portion of the cutting blade portion of the cutting tool is applied to the workpiece, the workpiece is heavily cut, and the second portion of the cutting blade portion of the cutting tool is obtained. Since the workpiece is precisely cut in the second state where the is applied to the workpiece, heavy cutting and precision cutting can be performed with one cutting tool. Thereby, cutting efficiency improves.

また、このように、前記第1状態と前記第2状態とで被切削面に対する前記切刃部の傾き(向き)を異ならせることで、被切削物に当てる前記切刃部の部分を前記第1部分から前記第2部分に切り換えることができる。
しかも、この場合に、前記切削工具の切刃部として用いる前記焼結体は多結晶体であるので、前記被切削物の切削面に対する前記切削工具の前記切刃部の向きが変化しても、切刃部の破損が少ない。これに関し、ダイヤモンドバイトとして一般に用いられる単結晶ダイヤモンドバイトの場合には、被切削物の切削面に対する切刃部の向きを破損しにくい特定の向きで切削を行う必要がある。これに対し、本発明の切削方法では、上述の切削工具の切刃部は多結晶体のcBN焼結体となっているので、被切削物の切削面に対する切刃部の向きをどの向きにしても、切刃部の破損が少ない。
In addition, in this way, by changing the inclination (direction) of the cutting edge portion with respect to the surface to be cut in the first state and the second state, the portion of the cutting edge portion applied to the workpiece is changed to the first state. It is possible to switch from one part to the second part.
In addition, in this case, since the sintered body used as the cutting edge portion of the cutting tool is a polycrystalline body, even if the orientation of the cutting edge portion of the cutting tool with respect to the cutting surface of the workpiece is changed, There is little damage to the cutting edge. In this regard, in the case of a single crystal diamond tool generally used as a diamond tool, it is necessary to perform cutting in a specific direction in which the direction of the cutting edge portion with respect to the cutting surface of the workpiece is not easily damaged. On the other hand, in the cutting method of the present invention, the cutting edge portion of the cutting tool is a polycrystalline cBN sintered body. However, there is little damage to the cutting edge.

上述した本発明によると、0.1μm以下の寸法を持つ微細粒子のcBN焼結体を用いた切削工具を実現できる。また、本発明によると、cBNを用いた切削工具において、切削工具毎に切削性能のばらつきが少なくなる。さらに、上述の切削工具を用いた切削方法において、切削効率が向上する。   According to the present invention described above, it is possible to realize a cutting tool using a fine particle cBN sintered body having a size of 0.1 μm or less. Further, according to the present invention, in the cutting tool using cBN, variation in cutting performance is reduced for each cutting tool. Furthermore, in the cutting method using the above-described cutting tool, cutting efficiency is improved.

本発明を実施するための最良の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   The best mode for carrying out the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

本発明の実施形態による切削工具は、金属材料などの被切削物を精密切削するものである。本実施形態によると、六方晶窒化ホウ素を原料として、該六方晶窒化ホウ素を加熱しながら加圧することで立方晶窒化ホウ素(cBN)の焼結体に転換する。この焼結体を、被切削物を切削する切刃部とする。前記加熱および前記加圧は、前記焼結体の粒子の寸法を0.1μm以下にする温度および圧力で行われる。具体的には、前記温度は1700℃以上1900℃以下であり、前記圧力は10GPa以上である。これにより、焼結体の微細粒子の寸法(直径)を0.1μm以下にすることができる。   A cutting tool according to an embodiment of the present invention precisely cuts a workpiece such as a metal material. According to the present embodiment, hexagonal boron nitride is used as a raw material, and the hexagonal boron nitride is heated and pressurized to be converted into a cubic boron nitride (cBN) sintered body. This sintered body is used as a cutting edge part for cutting a workpiece. The heating and the pressurization are performed at a temperature and a pressure that reduce the size of the particles of the sintered body to 0.1 μm or less. Specifically, the temperature is 1700 ° C. or higher and 1900 ° C. or lower, and the pressure is 10 GPa or higher. Thereby, the dimension (diameter) of the fine particle of a sintered compact can be 0.1 micrometer or less.

本実施形態によると、前記六方晶窒化ホウ素を加熱しながら加圧することで薄板状の前記焼結体に転換した後、該焼結体を複数の焼結分割体1aに分割する。図1の例では、分割する前の元の焼結体1は、直径が7mmであり厚さが0.8mmである円盤形状をしている。焼結体1の分割は、例えばダイヤモンドレジンブレードにより焼結体1を複数の焼結分割体1aに切断することにより行う。焼結分割体1aは、その厚み方向と垂直な断面形状が扇形となっている。図1の例では、各焼結分割体1aは、薄板状の扇形であり、焼結体1を8等分するように切断することで焼結体1を8つの扇形焼結分割体1aに分割する。
これら焼結分割体1aの各々を、被切削物を切削する切刃部とする。即ち、1つの焼結体1から複数の切刃部(焼結分割体1a)が形成される。各焼結分割体1aは、焼結体1の厚み方向から見た場合に、「く」の字形状である先端部3を有する。各焼結分割体1aの先端部3は、分割する前の元の焼結体1の中心部に位置している。このような先端部3を、被切削物を切削するために被切削物に当てる部分とする。
According to this embodiment, the hexagonal boron nitride is heated and pressurized to be converted into a thin plate-like sintered body, and then the sintered body is divided into a plurality of sintered divided bodies 1a. In the example of FIG. 1, the original sintered body 1 before being divided has a disk shape with a diameter of 7 mm and a thickness of 0.8 mm. The sintered body 1 is divided by, for example, cutting the sintered body 1 into a plurality of sintered divided bodies 1a with a diamond resin blade. The sintered divided body 1a has a fan-shaped cross section perpendicular to the thickness direction. In the example of FIG. 1, each sintered divided body 1 a is a thin plate-shaped fan, and the sintered body 1 is cut into eight equal parts by cutting the sintered body 1 into eight equal parts. To divide.
Let each of these sintered division | segmentation bodies 1a be the cutting-blade part which cuts a to-be-cut object. That is, a plurality of cutting blade portions (sintered divided body 1 a) are formed from one sintered body 1. Each sintered divided body 1 a has a tip 3 having a “<” shape when viewed from the thickness direction of the sintered body 1. The front end portion 3 of each sintered divided body 1a is located at the center of the original sintered body 1 before being divided. Such a tip portion 3 is a portion to be applied to the workpiece in order to cut the workpiece.

図2(A)は、図1において、焼結分割体1aの厚み方向上方から見た先端部の拡大図である。図2(B)は、図2の2B−2B線矢視図である。図2(B)には、被切削物の切削時における切刃部1aと被切削物の切削面(切削された面または切削する面)との位置関係も示されている。図2(B)において、符号aは、被切削物を切削する時のすくい角を示し、符号bは、被切削物を切削する時の逃げ角を示す。すくい角aは、図2(A)において、切削時に切削面と垂直な面(切削方向と直交する面)に対して、すくい面が右側にある場合には正であり、すくい面が左側にある場合には負である。このようなすくい角aは、正の微小角であるか負の角度であるのがよい。逃げ角bは、切削時に切削面と、切削面と対向する切刃部1aの対向面とのなす角であり、一例では7度である。
図3(A)は、図2(A)における先端部3の部分拡大図である。先端部3を研磨することで、例えば図3(A)に示すように先端部3の形状を整える。先端部3の成型は、ダイヤモンドを用いて行うことができる。本実施形態によると、先端部3は0.1μm以下の粒径(直径)を持つ微細粒子で構成されているので、図3(A)に示すように、先端部3を研磨して成型しても、微細粒子を切断することが不要になる。図3(B)は、図3(A)に対応する図であり、従来における切刃部を示す。本実施形態と比較して、図3(B)に示す粒径の大きい粒子で構成された従来の切刃部の先端部では、研磨による成型では粒子自体を切断する必要がある。なお、図3(A)の符号cは、ノーズ半径(先端部3の先端における曲率半径)を示す。一例では、ノーズ半径cは0.5mmである。
FIG. 2A is an enlarged view of the front end portion of FIG. 1 viewed from above in the thickness direction of the sintered divided body 1a. FIG. 2B is a view taken along line 2B-2B in FIG. FIG. 2B also shows the positional relationship between the cutting edge portion 1a and the cutting surface (cut surface or surface to be cut) of the workpiece at the time of cutting the workpiece. In FIG. 2B, the symbol a indicates the rake angle when cutting the workpiece, and the symbol b indicates the clearance angle when cutting the workpiece. In FIG. 2 (A), the rake angle a is positive when the rake face is on the right side with respect to the plane perpendicular to the cutting surface (surface perpendicular to the cutting direction) during cutting, and the rake face is on the left side. In some cases it is negative. Such a rake angle a is preferably a positive minute angle or a negative angle. The clearance angle b is an angle formed by the cutting surface at the time of cutting and the facing surface of the cutting edge portion 1a facing the cutting surface, and is 7 degrees in one example.
FIG. 3A is a partially enlarged view of the distal end portion 3 in FIG. By polishing the tip 3, for example, the shape of the tip 3 is adjusted as shown in FIG. The tip portion 3 can be molded using diamond. According to the present embodiment, the tip 3 is composed of fine particles having a particle size (diameter) of 0.1 μm or less, so the tip 3 is polished and molded as shown in FIG. However, it becomes unnecessary to cut the fine particles. FIG. 3B is a diagram corresponding to FIG. 3A and shows a conventional cutting edge portion. Compared with the present embodiment, at the tip portion of the conventional cutting edge portion composed of particles having a large particle size shown in FIG. 3B, it is necessary to cut the particles themselves by molding by polishing. In addition, the code | symbol c of FIG. 3 (A) shows a nose radius (the curvature radius in the front-end | tip of the front-end | tip part 3). In one example, the nose radius c is 0.5 mm.

上述のcBN切刃部1aを有する切削工具を用いた切削方法の実施例について説明する。   The Example of the cutting method using the cutting tool which has the above-mentioned cBN cutting blade part 1a is described.

(平削り)
この例では、切削工具を、図4に示すように、上述のcBN切刃部1aをバイト台座5にろう付け固定したものとした。このような切削工具(cBN切刃部1a)に対し被切削物を移動させることで、被切削物の平削りを行った。この平削りは、切込みを5μmとし、切削送り速度を2000mm/minとし、工具送りパスを10μmとして行った。切込みは、切刃部1aが被切削物を切削する切削深さであり、被切削物の表面からの、切刃部1aにより切削される深さである。切削送り速度は、切刃部1aが被切削物を横断するように被切削物を固定した移動ステージ7をx方向に直線的に移動させる速度である。工具送りパスは、ステージ7の直線的移動を完了する毎に、被切削物をこの直線的移動方向と垂直な方向yに送る距離(ピッチ)である。また、この平削りは、上述のすくい角aを0度とし、上述の逃げ角bを7度とし、上述のノーズ半径を0.5mmとして行った。この平削りは、潤滑油を用いずに行った。
・無電解Ni−Pメッキ(非鉄材料)の平削り
被切削物を非鉄材料である無電解Ni−Pメッキとして上述の平削りを行った場合、得られた被切削物の切削面の面あらさは、最大高さあらさPVが0.092μmとなり、平均値Raが0.017μmとなった。比較のために、本実施形態のcBN切刃部1aに代えて単結晶ダイヤモンドバイトとしその他の条件を同じにして前記平削りを行った場合、被切削物の切削面の面あらさは、最大高さあらさPVが0.085μmとなり、平均値Raが0.016μmとなった。このように、上述した本実施形態によるcBN切刃部1aで無電解Ni−Pメッキを平削りした場合に、単結晶ダイヤモンドバイトと同程度の面あらさを達成でき、面あらさが0.1μm以下である鏡面の面あらさを達成できた。なお、PVは、測定面内における面高さの最大値と最小値との差であり、図5のRmaxに相当する。Raは、基準線より高い部分の面積と、基準線より低い部分を基準線で折り返した部分の面積とを合わせた合計面積(図5の斜線部分)を測定面の長さLで割ったものである。
・ステンレス鋼(SUS420J2)の平削り
被切削物をステンレス鋼(SUS420J2)として上述の平削りを行った場合、得られた被切削物の切削面の面あらさは、最大高さあらさPVが0.116μmとなり、平均値Raが0.020μmとなった。比較のために、本実施形態のcBN切刃部1aに代えて単結晶ダイヤモンドバイトとしその他の条件を同じにして前記平削りを行った場合、被切削物の切削面の面あらさは、単結晶ダイヤモンドバイトの黒鉛化や鉄系材料への固溶のため最大高さあらさPVが2.006μmとなり、平均値Raが0.228μmとなった。このように、上述した本実施形態によるcBN切刃部1aで無電解Ni−Pメッキを平削りした場合に、面あらさが0.1μm以下である鏡面と同程度の面あらさを達成できた。一方、単結晶ダイヤモンドバイトの場合には、切削時の黒鉛化や鉄系材料への固溶のため、鏡面程度の面あらさを得ることができなかった。
(Planing)
In this example, as shown in FIG. 4, the cutting tool is such that the above-described cBN cutting edge 1 a is brazed and fixed to the bite base 5. Planing of the workpiece was performed by moving the workpiece with respect to such a cutting tool (cBN cutting edge portion 1a). This planing was performed with a cutting depth of 5 μm, a cutting feed rate of 2000 mm / min, and a tool feed path of 10 μm. Cutting is the cutting depth at which the cutting edge 1a cuts the workpiece, and is the depth cut by the cutting blade 1a from the surface of the workpiece. The cutting feed speed is a speed at which the moving stage 7 on which the workpiece is fixed is linearly moved in the x direction so that the cutting edge 1a crosses the workpiece. The tool feed path is a distance (pitch) for feeding the workpiece in a direction y perpendicular to the linear movement direction every time the linear movement of the stage 7 is completed. The planing was performed with the rake angle a set to 0 degrees, the clearance angle b set to 7 degrees, and the nose radius set to 0.5 mm. This planing was performed without using lubricating oil.
-Planing of electroless Ni-P plating (non-ferrous material) When the above-mentioned planing is performed using electroless Ni-P plating as a non-ferrous material, the surface roughness of the cut surface of the obtained workpiece The maximum height roughness PV was 0.092 μm, and the average value Ra was 0.017 μm. For comparison, when the above-mentioned flattening is performed by using a single crystal diamond tool instead of the cBN cutting edge portion 1a of the present embodiment and other conditions being the same, the surface roughness of the cut surface of the workpiece is the maximum height. The roughness PV was 0.085 μm, and the average value Ra was 0.016 μm. Thus, when the electroless Ni-P plating is planed with the cBN cutting edge 1a according to the present embodiment described above, a surface roughness comparable to that of a single crystal diamond tool can be achieved, and the surface roughness is 0.1 μm or less. The surface roughness of the mirror surface was achieved. PV is a difference between the maximum value and the minimum value of the surface height in the measurement surface, and corresponds to Rmax in FIG. Ra is obtained by dividing the total area (hatched portion in FIG. 5) of the area of the portion higher than the reference line and the area of the portion lower than the reference line folded by the reference line by the length L of the measurement surface. It is.
-Planing of stainless steel (SUS420J2) When the above-mentioned flattening is performed using stainless steel (SUS420J2) as the workpiece, the maximum height roughness PV is 0. The average value Ra was 0.020 μm. For comparison, when the above-mentioned flattening is performed with a single crystal diamond cutting tool instead of the cBN cutting edge portion 1a of the present embodiment under the same conditions, the surface roughness of the cut surface of the work piece is The maximum height roughness PV was 2.006 μm and the average value Ra was 0.228 μm due to graphitization of the diamond bite and solid solution in the iron-based material. Thus, when the electroless Ni-P plating was planed with the cBN cutting edge portion 1a according to the present embodiment described above, a surface roughness comparable to a mirror surface having a surface roughness of 0.1 μm or less could be achieved. On the other hand, in the case of a single crystal diamond tool, it was not possible to obtain a surface roughness equivalent to a mirror surface due to graphitization during cutting and solid solution in an iron-based material.

(フライカット)
この例では、切削工具を、図6に示すようにcBN切刃部1aをフライス盤の高速回転するフライカッター9にろう付け固定したものとした。このようなフライカッター9を高速回転させることで、cBN切刃部1aも高速回転させて被切削物のフライカットを行った。このフライカットは、切込みを2μmとし、切削送り速度を15.7m/secとし、工具送りパスを2μm/revとして行った。切込みは、切刃部1aが被切削物を切削する切削深さであり、被切削物の表面からの、切刃部1aにより切削される深さである。切削送り速度は、フライカッター9の回転によりcBN切刃部1aが旋回する速度である。工具送りパスは、cBN切刃部1aが1回転する毎に、cBN切刃部1aまたは被切削物をcBN切刃部1aの旋回方向と垂直な方向に送る距離(ピッチ)である。また、このフライカットは、上述のすくい角aを0度とし、上述の逃げ角bを7度とし、上述のノーズ半径を0.5mmとして行った。このフライカットは、潤滑油を用いずに行った。
・ステンレス鋼(SUS420J2)のフライカット
被切削物をステンレス鋼(SUS420J2)として上述のフライカットを行った場合、得られた被切削物の切削面の面あらさは、最大高さあらさPVが0.048μmとなり、平均値Raが0.008μmとなった。この結果は、新しいcBN切刃部1aを用いた場合であるが、磨耗したcBN切刃部1aを用いた場合にも、上記とほぼ同等の結果(最大高さあらさPVが0.092μmであり、平均値Raが0.016μmであった)が得られた。このように、本実施形態によるcBN切刃部1aでは、高速切削時でも鏡面の面あらさを達成できた。
(Fly cut)
In this example, as shown in FIG. 6, the cutting tool is such that the cBN cutting blade 1 a is brazed and fixed to a fly cutter 9 that rotates at high speed on a milling machine. By rotating such a fly cutter 9 at a high speed, the cBN cutting blade 1a was also rotated at a high speed, and the workpiece was fly cut. This fly cut was performed with a depth of cut of 2 μm, a cutting feed rate of 15.7 m / sec, and a tool feed path of 2 μm / rev. Cutting is the cutting depth at which the cutting edge 1a cuts the workpiece, and is the depth cut by the cutting blade 1a from the surface of the workpiece. The cutting feed speed is a speed at which the cBN cutting blade portion 1 a turns by the rotation of the fly cutter 9. The tool feed path is a distance (pitch) for feeding the cBN cutting edge 1a or the work piece in a direction perpendicular to the turning direction of the cBN cutting edge 1a every time the cBN cutting edge 1a makes one rotation. The fly cut was performed with the rake angle a set to 0 degree, the clearance angle b set to 7 degrees, and the nose radius set to 0.5 mm. This fly cut was performed without using a lubricating oil.
-Fly cutting of stainless steel (SUS420J2) When the above-mentioned fly cutting is performed using stainless steel (SUS420J2) as the work piece, the maximum height roughness PV is 0. The average value Ra was 0.008 μm. Although this result is a case where the new cBN cutting edge part 1a is used, also when using the worn cBN cutting edge part 1a, a result substantially equivalent to the above (maximum height roughness PV is 0.092 micrometer). The average value Ra was 0.016 μm). As described above, the cBN cutting edge 1a according to the present embodiment can achieve the surface roughness of the mirror surface even during high-speed cutting.

上述した本実施形態による切削工具を用いることで、重切削と精密切削とを1つの切削工具(切刃部1a)で行うことができる。即ち、前記切削工具の切刃部1aの先端部3における第1部分を被切削物に当てた第1状態で、被切削物を重切削し、前記切削工具の切刃部1aの先端部3における第2部分を被切削物に当てた第2状態で、被切削物を精密切削する。   By using the cutting tool according to this embodiment described above, heavy cutting and precision cutting can be performed with one cutting tool (cutting edge portion 1a). That is, in the first state in which the first portion of the distal end portion 3 of the cutting tool 1a of the cutting tool is applied to the workpiece, the workpiece is heavily cut, and the distal end 3 of the cutting tool 1a of the cutting tool The workpiece is precisely cut in the second state in which the second portion of is applied to the workpiece.

図7は、重切削と精密切削とを1つの切削工具(切刃部1a)で行う加工方法を示すフローチャートである。
ステップS1において、前記切削工具の切刃部1aの第1部分を被切削物に当てた第1状態で、被切削物を重切削する。第1状態で、上述の平削りまたはフライカットを被切削物の加工面全体に対して行う。
ステップS1の後、ステップS2において、前記切削工具の切刃部1aにおける第1部分と異なる第2部分を被切削物に当てた第2状態で、被切削物を精密切削する。第2状態で、上述の平削りまたはフライカットを被切削物の加工面全体に対して行う。
前記重切削で被切削物を切削する深さ(即ち、前記切込み)は、前記精密切削で被切削物を切削する深さ(即ち、前記切込み)よりも大きい。
FIG. 7 is a flowchart showing a processing method for performing heavy cutting and precision cutting with one cutting tool (cutting edge portion 1a).
In step S1, the workpiece is subjected to heavy cutting in a first state where the first portion of the cutting edge portion 1a of the cutting tool is applied to the workpiece. In the first state, the above-described flat cutting or fly cutting is performed on the entire processed surface of the workpiece.
After step S1, in step S2, the workpiece is precisely cut in a second state in which a second portion different from the first portion of the cutting edge portion 1a of the cutting tool is applied to the workpiece. In the second state, the above-described flat cutting or fly cutting is performed on the entire processed surface of the workpiece.
The depth at which the workpiece is cut by the heavy cutting (that is, the cut) is larger than the depth at which the workpiece is cut by the precision cutting (that is, the cut).

図7のような切削は、例えば図8や図9に示すように行ってよい。
図8の場合には、第1状態では、図8(A)のように切削工具の切刃部1aは被切削物の切削面に対してこの図の左側に傾いており、第2状態では、図8(B)のように被切削工具の切刃部1aは被切削物の切削面に対してこの図の右側に傾いている。これにより、第1状態と第2状態とでは、被切削物に当てる前記切刃部1aの部分が第1部分と前記第2部分とで確実に異なっている。なお、図8において、切削方向は、紙面と垂直な方向である。図8では、所定の距離だけ紙面と垂直な方向に切削したら、送り方向に切削工具を所定のピッチだけ移動させて、再び所定の距離だけ紙面と垂直な方向に切削し、以後、同じ動作を繰り返す。
図9の場合には、図9(A)に示す第1状態でも図9(B)に示す第2状態でも、切削工具の切刃部1aの被切削物の切削面に対する傾きは0度である。この場合でも、第1状態と第2状態とでは、被切削物に当てる切刃部1aの部分が第1部分と第2部分とで異なっている。なお、図9において、切削方向は、紙面と垂直な方向である。図9でも、所定の距離だけ紙面と垂直な方向に切削したら、送り方向に切削工具を所定のピッチだけ移動させて、所定の距離だけ紙面と垂直な方向に切削し、以後、同じ動作を繰り返す。
The cutting as shown in FIG. 7 may be performed as shown in FIGS. 8 and 9, for example.
In the case of FIG. 8, in the first state, as shown in FIG. 8A, the cutting edge 1a of the cutting tool is inclined to the left side of the drawing with respect to the cutting surface of the workpiece, and in the second state, As shown in FIG. 8B, the cutting edge portion 1a of the tool to be cut is inclined to the right side of this figure with respect to the cutting surface of the work. Thereby, in the 1st state and the 2nd state, the part of the cutting-blade part 1a applied to a to-be-cut object is certainly different in the 1st part and the 2nd part. In FIG. 8, the cutting direction is a direction perpendicular to the paper surface. In FIG. 8, after cutting in a direction perpendicular to the paper surface by a predetermined distance, the cutting tool is moved by a predetermined pitch in the feed direction and cut again in a direction perpendicular to the paper surface by a predetermined distance. repeat.
In the case of FIG. 9, in both the first state shown in FIG. 9A and the second state shown in FIG. 9B, the inclination of the cutting edge portion 1a of the cutting tool with respect to the cutting surface of the workpiece is 0 degree. is there. Even in this case, in the first state and the second state, the portion of the cutting edge portion 1a applied to the workpiece is different between the first portion and the second portion. In FIG. 9, the cutting direction is a direction perpendicular to the paper surface. Also in FIG. 9, after cutting in a direction perpendicular to the paper surface by a predetermined distance, the cutting tool is moved by a predetermined pitch in the feed direction to cut in a direction perpendicular to the paper surface by a predetermined distance, and thereafter the same operation is repeated. .

図10は、重切削と精密切削とを1つの切削工具(切刃部1a)で行う別の加工方法を示すフローチャートである。図10の場合には、上述の切刃部1aの先端部3を例えば図11のような形状にする。
ステップS11において、前記切削工具の切刃部1aの先端部3における第1部分を被切削物に当てた第1状態で、切削工具(切刃部1a)が被切削物に対し往方向に移動するように切削工具または被切削物を移動させることで、被切削物を重切削する。例えば、図11の往方向に被切削物を横断するように、切刃部1aを移動させる。
次いで、ステップS12において、前記切削工具の切刃部1aの先端部3における第2部分を被切削物に当てた第1状態で、切削工具(切刃部1a)が被切削物に対し前記往方向と逆の復方向に移動するように切削工具または被切削物を移動させることで、被切削物を精密切削する。例えば、ステップS11で切削した経路を戻るように図11の復方向に切削工具(切刃部1a)を移動させることで、ステップS11で切削した線状切削部分と同じ線状部分を精密切削する。
ステップS13において、被切削物の切削対象面全体を切削した場合には、切削を終了し、そうでない場合には、ステップS14へ進む。
その後、ステップS14では、切削位置をステップS11およびS12での切削方向と垂直な方向に所定の距離(ピッチ)だけ移動させて、再びステップS11へ戻り、切削対象面全体を切削するまで上述のステップS11〜S14を繰り返す。
ステップS11、S12に関して、前記重切削で被切削物を切削する深さ(即ち、前記切込み)は、前記精密切削で被切削物を切削する深さ(即ち、前記切込み)よりも大きい。また、ステップS11、S12、S14では、切刃部1aを被切削物に対して相対移動させればよく、切刃部1aを移動させてもよいし、被切削物を移動させてもよい。ステップS11とステップS12とにおいて被切削物の切削面に対する切削工具の切刃部1aの向きが同じであっても、ステップS11とステップS12とで(重切削時と精密切削時とで)、被切削物の切削面に対する切刃部1aの向きが自然に異なるようになる。
FIG. 10 is a flowchart showing another processing method for performing heavy cutting and precision cutting with one cutting tool (cutting edge portion 1a). In the case of FIG. 10, the tip part 3 of the above-mentioned cutting edge part 1a is made into the shape as shown in FIG. 11, for example.
In step S11, the cutting tool (cutting edge portion 1a) moves in the forward direction with respect to the workpiece in the first state where the first portion of the tip 3 of the cutting tool 1a of the cutting tool is applied to the workpiece. The workpiece is heavy-cut by moving the cutting tool or the workpiece as described above. For example, the cutting blade portion 1a is moved so as to cross the workpiece in the forward direction of FIG.
Next, in step S12, the cutting tool (cutting edge portion 1a) is moved with respect to the workpiece in the first state where the second portion at the tip 3 of the cutting blade portion 1a of the cutting tool is applied to the workpiece. The workpiece is precisely cut by moving the cutting tool or the workpiece so as to move in the reverse direction opposite to the direction. For example, by moving the cutting tool (cutting edge portion 1a) in the backward direction of FIG. 11 so as to return to the path cut in step S11, the same linear portion as the linear cutting portion cut in step S11 is precisely cut. .
In step S13, if the entire cutting target surface of the workpiece is cut, the cutting is terminated, and if not, the process proceeds to step S14.
Thereafter, in step S14, the cutting position is moved by a predetermined distance (pitch) in a direction perpendicular to the cutting direction in steps S11 and S12, and the process returns to step S11 again until the entire cutting target surface is cut. S11 to S14 are repeated.
Regarding steps S11 and S12, the depth at which the workpiece is cut by the heavy cutting (that is, the cut) is larger than the depth at which the workpiece is cut by the precision cutting (that is, the cut). Further, in steps S11, S12, and S14, the cutting blade 1a may be moved relative to the workpiece, the cutting blade 1a may be moved, or the workpiece may be moved. Even if the direction of the cutting edge 1a of the cutting tool with respect to the cutting surface of the workpiece is the same in step S11 and step S12, in step S11 and step S12 (during heavy cutting and precision cutting), The direction of the cutting edge portion 1a with respect to the cutting surface of the cut object naturally varies.

上述した本発明の実施形態による切削工具によると、以下の効果(1)〜(4)が得られる。
(1)六方晶窒化ホウ素を原料として、該六方晶窒化ホウ素を加熱しながら加圧することで立方晶窒化ホウ素(cBN)の焼結体1に転換する。これにより、焼結体1の粒子寸法を0.1μm以下にすることが可能になる。このように、粒子寸法が0.1μm以下である超微細粒子cBNの焼結体1を被切削物を切削する切刃部1aとできるので、本発明の切削工具による切削で得られる仕上げ面あらさを、少なくとも鏡面の面あらさと同程度にすることができる。
(2)また、ダイヤモンドバイトで鉄系被切削物を切削すると、ダイヤモンドバイトの磨耗が激しい問題があるのに対し、本発明の切削工具は、cBN焼結体1であるので、そのような問題も生じない。
(3)さらに、本発明のcBN焼結体1による切削工具は、ダイヤモンドに近い硬度を有するので、ダイヤモンドバイトと同様の加工法に適用できる。例えば、被切削物に対する平面仕上げ加工を、ダイヤモンドバイトを用いた場合と同程度の高速切削で行える。
(4)六方晶窒化ホウ素を加熱しながら加圧することで薄板状の焼結体1に転換した後、該焼結体1を複数の焼結分割体1aに分割し、焼結分割体1a、被切削物を切削する切刃部1aとしたので、複数の焼結分割体1aをそれぞれ別個の切削工具の切刃部1aとすることができる。この場合に、各焼結分割体1aの先端部3は、組成のばらつきが少ない焼結体1の中心部に位置している。このように組成のばらつきが少ない先端部3を被切削物に当てる部分としたので、切削工具毎に切削性能のばらつきが少なくなる。
According to the cutting tool according to the embodiment of the present invention described above, the following effects (1) to (4) are obtained.
(1) Using hexagonal boron nitride as a raw material, the hexagonal boron nitride is heated and pressurized to be converted into a sintered body 1 of cubic boron nitride (cBN). Thereby, it becomes possible to make the particle size of the sintered compact 1 into 0.1 micrometer or less. Thus, since the sintered body 1 of the ultrafine particles cBN having a particle size of 0.1 μm or less can be used as the cutting edge portion 1a for cutting the workpiece, the finished surface roughness obtained by cutting with the cutting tool of the present invention. Can be at least as high as the mirror surface roughness.
(2) Further, when an iron-based workpiece is cut with a diamond cutting tool, there is a problem that the wear of the diamond cutting tool is severe, whereas the cutting tool of the present invention is the cBN sintered body 1, and thus such a problem. Does not occur.
(3) Furthermore, since the cutting tool by the cBN sintered body 1 of the present invention has a hardness close to that of diamond, it can be applied to a processing method similar to that for diamond tools. For example, planar finishing on the workpiece can be performed with high-speed cutting similar to that when using a diamond tool.
(4) After the hexagonal boron nitride is heated and pressurized to convert it into a thin plate-like sintered body 1, the sintered body 1 is divided into a plurality of sintered divided bodies 1a, and the sintered divided bodies 1a, Since it was set as the cutting blade part 1a which cuts a to-be-cut object, the several sintered division body 1a can be used as the cutting blade part 1a of a separate cutting tool, respectively. In this case, the tip 3 of each sintered divided body 1a is located at the center of the sintered body 1 with little variation in composition. As described above, since the tip portion 3 having a small variation in composition is a portion that contacts the workpiece, the variation in cutting performance is reduced for each cutting tool.

上述した本発明の実施形態による切削工具を用いた加工方法によると、以下の効果(5),(6)が得られる。
(5)前記切削工具の切刃部1aの第1部分を被切削物に当てた第1状態で、前記被切削物を重切削し、前記切削工具の切刃部1aの第2部分を被切削物に当てた第2状態で、前記被切削物を精密切削するので、重切削および精密切削を1つの切削工具で行える。これにより、切削効率が向上する。
(6)前記第1状態と前記第2状態とで被切削面に対する切刃部1aの傾き(向き)を異ならせることで、被切削物に当てる切刃部1aの部分を前記第1部分から前記第2部分に切り換えることができる。しかも、この場合に、前記切削工具の切刃部1aとして用いる焼結体1は多結晶体であるので、被切削物の切削面に対する前記切削工具の切刃部1aの向きが変化しても、切刃部1aの破損が少ない。これに関し、ダイヤモンドバイトとして一般に用いられる単結晶ダイヤモンドバイトの場合には、被切削物の切削面に対する切刃部の向きを破損しにくい特定の向きで切削を行う必要がある。これに対し、上述実施形態による切削方法では、切削工具の切刃部1aは多結晶体のcBN焼結体となっているので、被切削物の切削面に対する切刃部1aの向きをどの向きにしても、切刃部の破損が少ない。
According to the processing method using the cutting tool according to the embodiment of the present invention described above, the following effects (5) and (6) are obtained.
(5) In the first state where the first portion of the cutting blade portion 1a of the cutting tool is applied to the workpiece, the workpiece is heavily cut, and the second portion of the cutting blade portion 1a of the cutting tool is covered. Since the workpiece is precisely cut in the second state applied to the workpiece, heavy cutting and precision cutting can be performed with one cutting tool. Thereby, cutting efficiency improves.
(6) By changing the inclination (direction) of the cutting edge part 1a with respect to the surface to be cut in the first state and the second state, the part of the cutting edge part 1a applied to the work piece is changed from the first part. It is possible to switch to the second part. In addition, in this case, since the sintered body 1 used as the cutting edge portion 1a of the cutting tool is a polycrystalline body, even if the orientation of the cutting blade portion 1a of the cutting tool with respect to the cutting surface of the workpiece changes. There is little damage to the cutting edge 1a. In this regard, in the case of a single crystal diamond tool generally used as a diamond tool, it is necessary to perform cutting in a specific direction in which the direction of the cutting edge portion with respect to the cutting surface of the workpiece is not easily damaged. On the other hand, in the cutting method according to the above-described embodiment, the cutting edge portion 1a of the cutting tool is a polycrystalline cBN sintered body, and thus the direction of the cutting edge portion 1a with respect to the cutting surface of the workpiece is determined in any direction. Even so, there is little damage to the cutting edge.

[他の実施形態]
上述の焼結分割体1aを、エンドミルやドリルにも適用可能である。この場合を、図12を参照して説明する。なお、図12(A)〜(C)の各々において、左側は正面図であり右側は側面図である。
まず、上述のように得られた焼結体を、厚み方向と垂直な断面形状が扇型である複数の焼結分割体1aに分割する。この分割方法は、上述と同じである。
一方、図12(A)のように、エンドミルのシャンクとなる材料(スチール、ステンレス、超合金など)に、切れ込みを予め入れておく。
次に、図12(B)のように、焼結分割体1aを切れ込みに取り付けるとともに、ロウ付け等により焼結分割体1aをシャンクに固定する。この時、分割する前の元の焼結体1の中心部にある焼結分割体1aの部分が、被切削物を切削するために被切削物に当たる先端部3(刃先)となるようにする。なお、シャンクの切れ込みが無くても、焼結分割体1aをシャンクに固定できるが、切れ込みに焼結分割体1aを取り付けた方が固定強度が高まる。
その後、図12(C)のように、焼結分割体(切刃部)1aの先端部3を研磨して刃面を整える。先端部3は、左右対称となるように形成しても切削加工が可能である。この場合、すくい角は負の角度となる。図12(C)に示す切削工具は、約−45度のすくい角を持つボールエンドミルである。すくい角をマイナスとすることで、工具のチッピングの確率を減少させることが可能である。なお、0度や正のすくい角を持つように先端部3を形成することも可能である。
また、分割する前の元の焼結体1の中心部にある焼結分割体1aの部分が、被切削物を切削するために被切削物に当たる先端部3(刃先)となりさえすれば、焼結分割体1aの厚み方向と垂直な断面形状は、扇形以外に長方形などであってもよい。このように断面を長方形とした焼結分割体1aでエンドミルの切刃部を構成してもよい。この場合、切刃部の左右端面の向きが異なるようにすることも可能である。
[Other Embodiments]
The above-described sintered divided body 1a can be applied to an end mill or a drill. This case will be described with reference to FIG. In each of FIGS. 12A to 12C, the left side is a front view and the right side is a side view.
First, the sintered body obtained as described above is divided into a plurality of sintered divided bodies 1a having a fan-shaped cross section perpendicular to the thickness direction. This division method is the same as described above.
On the other hand, as shown in FIG. 12A, a notch is made in advance in a material (steel, stainless steel, superalloy, etc.) that becomes a shank of the end mill.
Next, as shown in FIG. 12B, the sintered divided body 1a is attached to the notch, and the sintered divided body 1a is fixed to the shank by brazing or the like. At this time, the portion of the sintered divided body 1a at the center of the original sintered body 1 before being divided is made to be the tip 3 (blade edge) that contacts the workpiece to cut the workpiece. . In addition, even if there is no notch of a shank, although the sintered division | segmentation body 1a can be fixed to a shank, the direction where the sintered division | segmentation body 1a was attached to a notch will increase fixation strength.
Thereafter, as shown in FIG. 12C, the front end portion 3 of the sintered divided body (cutting blade portion) 1a is polished to prepare the blade surface. The tip 3 can be cut even if it is formed to be symmetrical. In this case, the rake angle is a negative angle. The cutting tool shown in FIG. 12C is a ball end mill having a rake angle of about −45 degrees. By making the rake angle negative, the probability of chipping of the tool can be reduced. It is also possible to form the tip 3 so as to have 0 degrees or a positive rake angle.
Moreover, as long as the portion of the sintered divided body 1a at the center of the original sintered body 1 before being divided becomes the tip 3 (blade edge) that hits the workpiece to cut the workpiece, the sintering The cross-sectional shape perpendicular to the thickness direction of the divided body 1a may be a rectangle other than the sector shape. Thus, you may comprise the cutting blade part of an end mill with the sintered division body 1a which made the cross section rectangular. In this case, the directions of the left and right end faces of the cutting edge part can be different.

なお、切削工具をドリルとしてもよい。即ち、上述の焼結分割体1aをドリルの切刃部としてもよく、この場合でも、分割する前の元の焼結体1の中心部にある焼結分割体1aの部分(前記先端部3)が、被切削物を切削するために被切削物に当たる先端部3(刃先)となるようにする。   The cutting tool may be a drill. That is, the above-described sintered divided body 1a may be used as a cutting edge portion of a drill. Even in this case, the portion of the sintered divided body 1a at the center of the original sintered body 1 before dividing (the tip portion 3). ) To be the tip 3 (blade edge) that contacts the workpiece in order to cut the workpiece.

本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

本発明の実施形態による切削工具に用いるcBN焼結体を示す図である。It is a figure which shows the cBN sintered compact used for the cutting tool by embodiment of this invention. 図2(A)は、焼結分割体の先端部の拡大図であり、図2(B)は図2(A)の2B−2B線矢視図である。FIG. 2 (A) is an enlarged view of the tip portion of the sintered divided body, and FIG. 2 (B) is a view taken along line 2B-2B in FIG. 2 (A). 図3(A)は、図2(A)の焼結分割体の先端部の部分拡大図であり、図3(B)は、従来における切刃部の先端部の部分拡大図である。3A is a partially enlarged view of the tip of the sintered divided body of FIG. 2A, and FIG. 3B is a partially enlarged view of the tip of the conventional cutting blade. 平削りを行う場合における切刃部と被切削物を示す。A cutting edge part and a to-be-cut object in the case of performing planing are shown. PVとRaの説明図である。It is explanatory drawing of PV and Ra. フライカットを行う場合における切刃部と被切削物を示す。A cutting edge part and a to-be-cut object in case of performing a fly cut are shown. 重切削と精密切削とを1つの切削工具で行う加工方法を示すフローチャートである。It is a flowchart which shows the processing method which performs heavy cutting and precision cutting with one cutting tool. 図7の場合に重切削と精密切削とを1つの切削工具で行う加工方法の一例を示す図である。It is a figure which shows an example of the processing method which performs heavy cutting and precision cutting with one cutting tool in the case of FIG. 図7の場合に重切削と精密切削とを1つの切削工具で行う加工方法の別の例を示す図である。It is a figure which shows another example of the processing method which performs heavy cutting and precision cutting with one cutting tool in the case of FIG. 重切削と精密切削とを1つの切削工具で行う別の加工方法を示すフローチャートである。It is a flowchart which shows another processing method which performs heavy cutting and precision cutting with one cutting tool. 図10の場合に重切削と精密切削とを1つの切削工具で行う加工方法の一例を示す図である。It is a figure which shows an example of the processing method which performs heavy cutting and precision cutting with one cutting tool in the case of FIG. 焼結分割体をエンドミルに適用する場合を示す図である。It is a figure which shows the case where a sintered division body is applied to an end mill.

符号の説明Explanation of symbols

1・・・焼結体、1a・・・焼結分割体(切刃部)、3・・・先端部、5・・・バイト台座、7・・・ステージ、9・・・フライカッター DESCRIPTION OF SYMBOLS 1 ... Sintered body, 1a ... Sintered division body (cut blade part), 3 ... Tip part, 5 ... Bite base, 7 ... Stage, 9 ... Fly cutter

Claims (3)

六方晶窒化ホウ素を加圧しながら加熱することで薄板状の焼結体に転換し、前記焼結体を複数の焼結分割体に分割し、前記焼結分割体を、被切削物を切削する切刃部とし、
前記各焼結分割体は、前記焼結体の厚み方向から見た場合に、「く」の字形状である先端部を有し、前記各焼結分割体の前記先端部は、前記焼結体の中心部に位置しており、
当該焼結分割体の前記先端部を、被切削物を切削するために被切削物に当てる部分とし
先端部は、前記被切削物に当てる部分である第1部分と、第1部分とは異なる前記被切削物に当てる部分である第2部分と、を有し、
前記第1部分と前記第2部分とは切刃部の切削方向に間隔を隔てて設けられ、
切刃部は、被切削面に対する向きが異なることにより、前記被切削物に当てる部分が前記第1部分から前記第2部分に切り換わる、ことを特徴とする切削工具。
The hexagonal boron nitride is heated under pressure to convert to a thin plate-like sintered body, the sintered body is divided into a plurality of sintered divided bodies, and the sintered divided body is cut into a workpiece. The cutting edge,
Each of the sintered segments has a tip portion that is a “<” shape when viewed from the thickness direction of the sintered body, and the tip portion of each of the sintered segments is the sintered body. Located in the center of the body,
The tip portion of the sintered divided body is a portion that touches the workpiece to cut the workpiece ,
The tip has a first portion that is a portion that contacts the workpiece, and a second portion that is a portion that contacts the workpiece different from the first portion,
The first part and the second part are provided at an interval in the cutting direction of the cutting edge part,
The cutting tool is characterized in that when the cutting edge portion has a different orientation with respect to the surface to be cut, a portion applied to the workpiece is switched from the first portion to the second portion .
前記加熱および前記加圧は、前記焼結体を構成する粒子の寸法を0.1μm以下にする温度および圧力で行われる、ことを特徴とする請求項1に記載の切削工具。   2. The cutting tool according to claim 1, wherein the heating and the pressurization are performed at a temperature and a pressure at which a particle constituting the sintered body has a size of 0.1 μm or less. 請求項1または2に記載の切削工具を用いた被切削物の切削方法であって、
前記第1部分を被切削物に当てた第1状態で、前記被切削物を重切削し、
前記第2部分を被切削物に当てた第2状態で、前記被切削物を精密切削し、
前記重切削で被切削物を切削する深さは、前記精密切削で被切削物を切削する深さよりも大きい、ことを特徴とする被切削物の切削方法。
A method for cutting a workpiece using the cutting tool according to claim 1 or 2,
In the first state where the first part is applied to the workpiece, the workpiece is heavy-cut,
In the second state where the second portion is applied to the workpiece, the workpiece is precisely cut,
The depth of cutting the workpiece by the heavy cutting is greater than the depth of cutting the workpiece by the precision cutting.
JP2008059029A 2008-03-10 2008-03-10 Cutting tool and cutting method using the same Expired - Fee Related JP5183256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059029A JP5183256B2 (en) 2008-03-10 2008-03-10 Cutting tool and cutting method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059029A JP5183256B2 (en) 2008-03-10 2008-03-10 Cutting tool and cutting method using the same

Publications (3)

Publication Number Publication Date
JP2009214213A JP2009214213A (en) 2009-09-24
JP2009214213A5 JP2009214213A5 (en) 2010-10-28
JP5183256B2 true JP5183256B2 (en) 2013-04-17

Family

ID=41186641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059029A Expired - Fee Related JP5183256B2 (en) 2008-03-10 2008-03-10 Cutting tool and cutting method using the same

Country Status (1)

Country Link
JP (1) JP5183256B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403215B2 (en) 2011-04-11 2016-08-02 Sumitomo Electric Industries, Ltd. Cutting tool and method for producing same
EP3153257B1 (en) * 2015-10-09 2019-07-17 Sandvik Intellectual Property AB Method to machine a metal work piece by turning
CN110335356B (en) * 2019-07-08 2022-10-28 衡阳师范学院 Cutting method of star-shaped material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102502A (en) * 1982-12-01 1984-06-13 Hitachi Zosen Corp High feed cutting tool
JPS60135104A (en) * 1983-12-22 1985-07-18 Toshiba Tungaloy Co Ltd Throwaway tip
JPS62108716A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS61179847A (en) * 1986-02-17 1986-08-12 Toshiba Tungaloy Co Ltd High hardness sintered body for cutting
JPS6345175A (en) * 1986-04-09 1988-02-26 住友電気工業株式会社 Manufacture of cubic boron nitride sintered body
JPS63156082A (en) * 1986-12-19 1988-06-29 日本油脂株式会社 High hardness sintered body
JPH0713279B2 (en) * 1990-01-12 1995-02-15 日本油脂株式会社 High-pressure phase boron nitride sintered body for cutting tool and manufacturing method thereof
JP3223275B2 (en) * 1992-02-04 2001-10-29 東芝タンガロイ株式会社 Method for producing cubic boron nitride sintered body
JPH063502U (en) * 1992-03-24 1994-01-18 三菱マテリアル株式会社 Cutting tools
JP3544601B2 (en) * 1996-07-30 2004-07-21 住友電気工業株式会社 Ultra-precision cutting method for crystalline materials
AT4435U1 (en) * 2000-09-25 2001-07-25 Plansee Tizit Ag TURNING INSERT TO TURN
CA2567077C (en) * 2005-10-06 2013-04-09 Sumitomo Electric Hardmetal Corp. Cutting tool for high-quality high-efficiency machining and cutting method using the same
JP2008019164A (en) * 2007-08-08 2008-01-31 National Institute For Materials Science Superfine particulate cubic boron nitride sintered compact

Also Published As

Publication number Publication date
JP2009214213A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP4931964B2 (en) High-hardness material processing apparatus and processing method
CN102574243B (en) The three-dimensional surface carrying out rotary cutting tool cutting edge with laser is shaped
CN1310069A (en) Ball end milling cutter
KR20150023239A (en) Cutting tool
CN107139343B (en) A kind of milling method of wave ceramic antenna window
CN110587836B (en) Micro-milling processing method for sapphire surface
JP5183256B2 (en) Cutting tool and cutting method using the same
JP2006198743A (en) Small-diameter rotary tool, and method of cutting workpiece formed of high-hardness material
JPH11216609A (en) Radius cutter end mill
CN109249071B (en) Micro-milling cutter with array micro-grooves
CN103769960B (en) A kind of manufacture method with the ball cutter of micro-cutting sword array structure
JP4878517B2 (en) Diamond tools
JP3759098B2 (en) Ball end mill
JP2008062369A (en) Method of producing tip to be mounted on boring tool, method of producing boring tool, and boring tool
CN103111820B (en) Machining technology of tooth profile of milling cutter with wave-shaped cutter edge
CN210099791U (en) Hard alloy cutting tool special for processing ceramic materials
CN111421173A (en) Blank and cutting tool having spiral superhard material rake face
JP2007313590A (en) Thread cutting tip, and its manufacturing method
JP2021530372A (en) Diamond cutting tool for machining hard and brittle difficult-to-cut materials
KR102470286B1 (en) Mirror finishing method and mirror finishing tool
JP2013013962A (en) Cbn end mill
JP2003165016A (en) Formed cutter for machining turbine blade mounting part
JP5610124B2 (en) Forming tool processing method
JP2004216483A (en) Ultraprecision machining tool
CN109940521A (en) It is exclusively used in the cemented carbide cutting tool of ceramic-like materials processing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees