JP2014029391A - Antireflection article, image display device, and mold for manufacturing antireflection article - Google Patents

Antireflection article, image display device, and mold for manufacturing antireflection article Download PDF

Info

Publication number
JP2014029391A
JP2014029391A JP2012169748A JP2012169748A JP2014029391A JP 2014029391 A JP2014029391 A JP 2014029391A JP 2012169748 A JP2012169748 A JP 2012169748A JP 2012169748 A JP2012169748 A JP 2012169748A JP 2014029391 A JP2014029391 A JP 2014029391A
Authority
JP
Japan
Prior art keywords
antireflection
microprojections
microprotrusions
article
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012169748A
Other languages
Japanese (ja)
Inventor
Yoshihiro Fukui
義弘 福井
Hironori Kamiyama
弘徳 上山
Yuichi Miyazaki
祐一 宮崎
Takashi Shibata
貴史 柴田
Masashi Tanaka
将史 田中
Kazuo Matsufuji
和夫 松藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012169748A priority Critical patent/JP2014029391A/en
Publication of JP2014029391A publication Critical patent/JP2014029391A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve antireflection performance and scratch resistance of an antireflection article having a moth-eye structure.SOLUTION: An antireflection article 1 has micro-protrusions 50, 51, and 51A arranged close to one another, and a distance between the adjacent micro-protrusions is equal or less than the shortest wavelength of a wavelength band of an electromagnetic wave in which reflection is to be prevented. At least parts of the micro-protrusions are multi-peaked micro-protrusions 51 and 51A having a plurality of apices; and in at least a part of the multi-peaked protrusions, an envelope surface including the plurality of apices has a tapered bell shape.

Description

本発明は、反射防止を図る電磁波の波長帯域の最短波長以下の間隔で多数の微小突起を密接配置して反射防止を図る反射防止物品に関するものである。   The present invention relates to an antireflection article for preventing reflection by closely arranging a large number of minute protrusions at intervals equal to or shorter than the shortest wavelength of an electromagnetic wave wavelength band for preventing reflection.

近年、フィルム形状の反射防止物品である反射防止物品に関して、透明基材(透明フィルム)の表面に多数の微小突起を密接して配置することにより、反射防止を図る方法が提案されている(特許文献1〜3参照)。この方法は、いわゆるモスアイ(moth eye(蛾の目))構造の原理を利用したものであり、入射光に対する屈折率を基板の厚み方向に連続的に変化させ、これにより屈折率の不連続界面を消失させて反射防止を図るものである。   In recent years, regarding antireflection articles that are film-shaped antireflection articles, a method has been proposed in which a large number of microprotrusions are placed in close contact with the surface of a transparent substrate (transparent film) (patent). References 1-3). This method utilizes the principle of a so-called moth-eye structure, and the refractive index for incident light is continuously changed in the thickness direction of the substrate, whereby a discontinuous interface of refractive index is obtained. Is eliminated to prevent reflection.

このモスアイ構造に係る反射防止物品では、隣接する微小突起の間隔dが、反射防止を図る電磁波の波長帯域の最短波長Λmin以下(d≦Λmin)となるよう、微小突起が密接して配置される。又、各微小突起は、透明基材に植立するように、更に透明基材より先端側に向かうに従って徐々に断面積が小さくなるように(先細りとなるように)作製される。   In the antireflection article according to this moth-eye structure, the microprojections are closely arranged so that the interval d between adjacent microprojections is equal to or less than the shortest wavelength Λmin (d ≦ Λmin) of the wavelength band of the electromagnetic wave to prevent reflection. . Moreover, each microprotrusion is produced so that a cross-sectional area may become small gradually toward the front end side from a transparent base material so that it may be planted on a transparent base material.

ところで、この種のモスアイ構造に係る反射防止物品では、耐擦傷性に実用上未だ不十分な問題がある。即ち、反射防止物品は、例えば他の物体が接触等した場合に、反射防止機能が局所的に劣化し、又、接触個所に白濁、傷等が発生して外観不良が発生する。   By the way, the antireflection article according to this type of moth-eye structure has a problem that the scratch resistance is still insufficient in practice. That is, for example, when an anti-reflective article is brought into contact with another object, the anti-reflective function is locally deteriorated, and a white turbidity, a flaw or the like is generated at the contact portion, resulting in poor appearance.

特開昭50−70040号公報Japanese Patent Laid-Open No. 50-70040 特表2003−531962号公報Special Table 2003-531962 特許第4632589号公報Japanese Patent No. 4632589

本発明はこのような状況に鑑みてなされたものであり、モスアイ構造に係る反射防止物品に関して、従来に比して耐擦傷性を向上することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to improve the scratch resistance of an antireflection article having a moth-eye structure as compared with the conventional art.

本発明者は、上記課題を解決するために鋭意研究を重ね、頂点を複数有する多峰性微小突起を設け、その複数の頂点を含んでなる包絡面を先細りの釣鐘形状とするとの着想に至り、本発明を完成するに至った。尚、以下において、多峰性微小突起との対比により、頂点が1つのみの微小突起を単峰性微小突起と呼ぶ。また多峰性微小突起、単峰性微小突起に係る各頂点を形成する各凸部を、適宜、峰と呼ぶ。   The present inventor has intensively studied to solve the above problems, and has arrived at the idea that a multi-peaked microprojection having a plurality of vertices is provided and the envelope surface including the plurality of vertices has a tapered bell shape. The present invention has been completed. In the following, a microprojection having only one apex is referred to as a single-peak microprojection in comparison with a multimodal microprojection. Moreover, each convex part which forms each vertex which concerns on a multimodal microprotrusion and a monomodal microprotrusion is called a peak suitably.

具体的には、本発明では、以下のようなものを提供する   Specifically, the present invention provides the following.

(1) 微小突起が密接して配置され、隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下である反射防止物品において、
前記微小突起の少なくとも一部が、複数の頂点を有する多峰性微小突起であり、
前記多峰性微小突起の少なくとも一部において、
前記複数の頂点を含む包絡面が、先細りの釣鐘形状となっている。
(1) In an antireflection article in which microprotrusions are closely arranged, and an interval between the adjacent microprotrusions is equal to or less than the shortest wavelength of the wavelength band of electromagnetic waves for antireflection,
At least a part of the microprojections is a multimodal microprojection having a plurality of vertices,
In at least part of the multimodal microprojections,
The envelope surface including the plurality of apexes has a tapered bell shape.

(1)によれば、微小突起の少なくとも一部が、多峰性微小突起であり、当該多峰性微小突起の少なくとも一部において、その複数の頂点を含む包絡面が、先細りの釣鐘形状となっていることにより、当該包絡面が形成する断面形状と略同型の断面形状を有する単峰性微小突起が発揮する効果と同等以上の反射防止作用を発揮しうる。又、各種の部材との接触等により、当該微小突起に衝撃力が加わった場合には、複数の頂部が衝撃を分散吸収することによって、衝撃による破損を防ぐことができる。以上より、十分な反射防止効果を保持しつつ、且つ、耐擦傷性を向上することができる。   According to (1), at least a part of the microprotrusions is a multimodal microprotrusion, and at least a part of the multimodal microprotrusions has an envelope surface including a plurality of apexes with a tapered bell shape. Thus, an antireflection effect equivalent to or better than the effect exhibited by the single-peaked microprojections having a cross-sectional shape substantially the same as the cross-sectional shape formed by the envelope surface can be exhibited. Further, when an impact force is applied to the minute projections due to contact with various members or the like, the plurality of top portions disperse and absorb the impact, thereby preventing damage due to the impact. As described above, it is possible to improve the scratch resistance while maintaining a sufficient antireflection effect.

(2) 画像表示パネルの出光面上に、(1)のに記載の反射防止物品を配置した画像表示装置。   (2) An image display device in which the antireflection article as described in (1) is disposed on the light exit surface of the image display panel.

(2)によれば、十分な反射防止効果を保持しつつ耐擦傷性を向上した反射防止物品による画像表示装置を提供することができる。   According to (2), it is possible to provide an image display device using an antireflection article having improved anti-scratch properties while maintaining a sufficient antireflection effect.

(3) 反射防止物品の製造に供する反射防止物品の製造用金型であって、
前記反射防止物品は、
微小突起が密接して配置され、
隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下であり、
前記微小突起の少なくとも一部が、複数の頂点を有する多峰性微小突起であり、
前記多峰性微小突起の少なくとも一部において、
前記複数の頂点を含む包絡面が、先細りの釣鐘形状となっており、
前記反射防止物品の製造用金型は、
前記微小突起に対応する微細孔が密接して作製された。
(3) A mold for manufacturing an antireflection article for use in manufacturing an antireflection article,
The antireflective article is
The microprotrusions are closely placed,
The interval between the adjacent minute protrusions is equal to or less than the shortest wavelength of the wavelength band of the electromagnetic wave for preventing reflection,
At least a part of the microprojections is a multimodal microprojection having a plurality of vertices,
In at least part of the multimodal microprojections,
The envelope surface including the plurality of vertices has a tapered bell shape,
The mold for manufacturing the antireflection article is:
Micropores corresponding to the microprotrusions were produced in close contact.

(3)によれば、該金型で製造された反射防止物品において、微小突起の少なくとも一部が、多峰性微小突起であり、当該多峰性微小突起の少なくとも一部において、その複数の頂点を含む包絡面が、先細りの釣鐘形状となっていることにより、当該包絡面が形成する断面形状と略同型の断面形状を有する単峰性微小突起が発揮する効果と同等以上の反射防止作用を発揮しうる。又、各種の部材との接触等により、当該微小突起に衝撃力が加わった場合には、複数の頂部が衝撃を分散吸収することによって、衝撃による破損を防ぐことができる。以上より、十分な反射防止効果を保持しつつ、且つ、耐擦傷性を向上することができる。   According to (3), in the antireflection article manufactured with the mold, at least a part of the microprojections is a multimodal microprojection, and at least a part of the multimodal microprojection includes the plurality of microprojections. The envelope surface including the apex has a tapered bell shape, so that the anti-reflection effect is equal to or better than the effect exhibited by the single-peak microprojections having a cross-sectional shape substantially the same as the cross-sectional shape formed by the envelope surface. Can be demonstrated. Further, when an impact force is applied to the minute projections due to contact with various members or the like, the plurality of top portions disperse and absorb the impact, thereby preventing damage due to the impact. As described above, it is possible to improve the scratch resistance while maintaining a sufficient antireflection effect.

モスアイ構造に係る反射防止物品に関して、十分な反射防止性能を保持しつつ、且つ、耐擦傷性を向上させることができる。   With respect to the antireflection article according to the moth-eye structure, it is possible to improve the scratch resistance while maintaining sufficient antireflection performance.

本発明の第1実施形態に係る反射防止物品を示す概念斜視図である。1 is a conceptual perspective view showing an antireflection article according to a first embodiment of the present invention. 隣接突起の説明に供する図である。It is a figure where it uses for description of an adjacent protrusion. 極大点の説明に供する図である。It is a figure where it uses for description of the maximum point. ドロネー図を示す図である。It is a figure which shows a Delaunay figure. 隣接突起間距離の計測に供する度数分布図である。It is a frequency distribution diagram used for measurement of the distance between adjacent protrusions. 微小高さの説明に供する度数分布図である。It is a frequency distribution figure with which it uses for description of minute height. 図1の反射防止物品の製造工程を示す図である。It is a figure which shows the manufacturing process of the antireflection article | item of FIG. 図1の反射防止物品に係るロール版を示す図である。It is a figure which shows the roll plate which concerns on the reflection preventing article of FIG. 図9のロール版の作製工程を示す図である。It is a figure which shows the preparation process of the roll plate of FIG. 微小突起の説明に供する図である。It is a figure where it uses for description of a microprotrusion. 先細りの釣鐘形状の包絡面を有する多峰性微小突起の説明に供する図である。It is a figure where it uses for description of the multimodal microprotrusion which has a tapered bell-shaped envelope surface. 微小突起の谷底の包絡面が凹凸面(うねり)を呈する形態を示す概念断面図である。It is a conceptual sectional view showing the form in which the envelope surface of the valley bottom of the microprojection exhibits an uneven surface (waviness).

〔第1実施形態〕
図1は、本発明の第1実施形態に係る反射防止物品を示す図(概念斜視図)である。この反射防止物品1は、全体形状がフィルム形状により形成された反射防止物品である。この実施形態に係る画像表示装置では、この反射防止物品1が画像表示パネルの表側面に貼り付けられて保持され、この反射防止物品1により日光、電燈光等の外来光の画面における反射を低減して視認性を向上する。尚、反射防止物品は、その形状を平坦なフィルム形状とする場合に限らず、平坦なシート形状、平板形状(相対的に厚みの薄い順に、フィルム、シート、板と呼称する)とすることもでき、又、平坦な形状に代えて、湾曲形状、立体形状を呈したフィルム形状、シート形状、板形状とすることもでき、更には各種レンズ、各種プリズム等の立体形状のものを用途に応じて適宜採用することができる。
[First Embodiment]
FIG. 1 is a diagram (conceptual perspective view) showing an antireflection article according to a first embodiment of the present invention. This antireflection article 1 is an antireflection article whose overall shape is formed in a film shape. In the image display apparatus according to this embodiment, the antireflection article 1 is held by being attached to the front side surface of the image display panel, and the reflection of external light such as sunlight and electric light on the screen is reduced by the antireflection article 1. And improve visibility. The anti-reflective article is not limited to a flat film shape, but may be a flat sheet shape or a flat plate shape (referred to as a film, a sheet, or a plate in the order of relatively thin thickness). Also, instead of a flat shape, a curved shape, a three-dimensional film shape, a sheet shape, or a plate shape can be used, and various types of lenses, prisms, and other three-dimensional shapes can be used depending on the application. Can be adopted as appropriate.

ここで反射防止物品1は、透明フィルムによる基材2の表面に多数の微小突起を密接配置して作製される。尚、本明細書においては、密接配置された複数の微小突起を総称して微小突起群とも言うものとする。ここで基材2は、例えばTAC(Triacetylcellulose)、等のセルロース(纖維素)系樹脂、PMMA(ポリメチルメタクリレート)等のアクリル系樹脂、PET(Polyethylene terephthalate)等のポリエステル系樹脂、PP(ポリプロピレン)等のポリオレフィン系樹脂、PVC(ポリ塩化ビニル)等のビニル系樹脂、PC(Polycarbonate)等の各種透明樹脂フィルムを適用することができる。尚、上述したように反射防止物品の形状はフィルム形状に限らず、種々の形状を採用可能であることにより、基材2は、反射防止物品の形状に応じて、これらの材料の他に、例えばソーダ硝子、カリ硝子、鉛ガラス等の硝子、PLZT等のセラミックス、石英、螢石等の各種透明無機材料等を適用することができる。   Here, the antireflection article 1 is produced by closely arranging a large number of minute protrusions on the surface of the substrate 2 made of a transparent film. In the present specification, a plurality of closely arranged microprotrusions are collectively referred to as a microprotrusion group. Here, the base material 2 is, for example, cellulose resin such as TAC (Triacetyl cellulose), acrylic resin such as PMMA (polymethyl methacrylate), polyester resin such as PET (Polyethylene terephthalate), PP (polypropylene), and the like. Polyolefin resins such as PVC, vinyl resins such as PVC (polyvinyl chloride), and various transparent resin films such as PC (Polycarbonate) can be applied. As described above, the shape of the antireflection article is not limited to the film shape, and various shapes can be adopted, so that the base material 2 can be used in addition to these materials according to the shape of the antireflection article. For example, glass such as soda glass, potash glass, lead glass, ceramics such as PLZT, various transparent inorganic materials such as quartz, meteorite, and the like can be applied.

反射防止物品1は、基材2上に、微小突起群からなる微細な凹凸形状の受容層となる未硬化状態の紫外線硬化性樹脂からなる層(この層を、以下、紫外線硬化樹脂層4、或いは受容層4と言う)を形成し、受容層4の表面に賦形用金型の賦形面を接触させた状態で該受容層4を硬化させることにより、基材2の表面に微小突起が密接して配置される。反射防止物品1は、この微小突起による凹凸形状により厚み方向に徐々に屈折率が変化するように作製され、モスアイ構造の原理により広い波長範囲で入射光の反射を低減する。   The antireflective article 1 is a layer made of an uncured ultraviolet curable resin (hereinafter referred to as an ultraviolet curable resin layer 4, Alternatively, the receiving layer 4 is formed, and the receiving layer 4 is cured in a state in which the shaping surface of the shaping mold is in contact with the surface of the receiving layer 4, thereby forming microprojections on the surface of the substrate 2. Are closely arranged. The antireflection article 1 is manufactured so that the refractive index gradually changes in the thickness direction due to the uneven shape by the microprotrusions, and reduces the reflection of incident light in a wide wavelength range by the principle of the moth-eye structure.

尚、これにより反射防止物品1に作製される微小突起は、隣接する微小突起の間隔dが、反射防止を図る電磁波の波長帯域の最短波長Λmin以下(d≦Λmin)となるよう密接して配置される。この実施形態では、画像表示パネルに配置して視認性を向上させることを主目的とするため、この最短波長は、個人差、視聴条件を加味した可視光領域の最短波長(380nm)に設定され、間隔dは、ばらつきを考慮して100〜300nmとされる。又、この間隔dに係る隣接する微小突起は、いわゆる隣り合う微小突起であり、基材2側の付け根部分である微小突起の裾の部分が接している突起である。反射防止物品1では微小突起が密接して配置されることにより、微小突起間の谷の部位を順次辿るようにして線分を作成すると、平面視において、各微小突起を囲む多角形状領域を多数連結してなる網目状模様が作製されることになる。尚、本明細書においては、このような網目状の模様を構成する線分を「網目状分割線」と言う。間隔dに係る隣接する微小突起は、この網目状分割線を構成する一部の線分を共有する突起である。   Note that the microprotrusions produced on the antireflection article 1 are closely arranged so that the distance d between adjacent microprotrusions is equal to or less than the shortest wavelength Λmin (d ≦ Λmin) of the wavelength band of the electromagnetic wave to prevent reflection. Is done. In this embodiment, since the main purpose is to improve visibility by arranging the image display panel, the shortest wavelength is set to the shortest wavelength (380 nm) in the visible light region in consideration of individual differences and viewing conditions. The distance d is set to 100 to 300 nm in consideration of variation. Further, the adjacent minute protrusions related to the distance d are so-called adjacent minute protrusions, which are in contact with the bottom part of the minute protrusion, which is the base part on the substrate 2 side. In the antireflection article 1, the minute protrusions are closely arranged so that when a line segment is created so as to sequentially follow the valley portions between the minute protrusions, a large number of polygonal regions surrounding each minute protrusion are obtained in plan view. A net-like pattern formed by linking is produced. In the present specification, a line segment constituting such a mesh pattern is referred to as a “mesh dividing line”. The adjacent minute protrusions related to the distance d are protrusions that share a part of the line segment constituting the mesh-like dividing line.

尚、微小突起に関しては、より詳細には以下のように定義される。モスアイ構造による反射防止では、透明基材表面とこれに隣接する媒質との界面における有効屈折率を、厚み方向に連続的に変化させて反射防止を図るものであることから、微小突起に関しては一定の条件を満足することが必要である。この条件のうちの1つである突起の間隔に関して、例えば特開昭50−70040号公報、特許第4632589号公報等に開示のように、微小突起が一定周期で規則正しく配置されている場合、隣接する微小突起の間隔dは、突起配列の周期P(d=P)となる。これにより可視光線帯域の最長波長をλmax、最短波長をλminとした場合に、最低限、可視光線帯域の最長波長において反射防止効果を奏し得る必要最小限の条件は、Λmin=λmaxであるため、P≦λmaxとなり、可視光線帯域の全波長に対して反射防止効果を奏し得る必要十分の条件は、Λmin=λminであるため、P≦λminとなる。   The minute protrusions are defined in more detail as follows. In the antireflection by the moth-eye structure, the effective refractive index at the interface between the transparent substrate surface and the adjacent medium is continuously changed in the thickness direction to prevent reflection. It is necessary to satisfy the following conditions. With respect to the protrusion interval, which is one of these conditions, when the minute protrusions are regularly arranged at a constant period as disclosed in, for example, Japanese Patent Application Laid-Open No. 50-70040 and Japanese Patent No. 4632589, the adjacent spaces are adjacent to each other. The interval d between the minute projections to be performed is the projection arrangement period P (d = P). Thus, when the longest wavelength in the visible light band is λmax and the shortest wavelength is λmin, the minimum necessary condition that can exhibit the antireflection effect at the longest wavelength in the visible light band is Λmin = λmax. P ≦ λmax, and the necessary and sufficient condition that can exhibit the antireflection effect for all wavelengths in the visible light band is Λmin = λmin, and therefore P ≦ λmin.

尚、波長λmax、λminは、観察条件、光の強度(輝度)、個人差等にも依存して多少幅を持ち得るが、標準的には、λmax=780nm及びλmin=380nmとされる。これらにより可視光線帯域の全波長に対する反射防止効果をより確実に奏し得る好ましい条件は、d≦300nmであり、より好ましい条件は、d≦200nmとなる。尚、反射防止効果の発現及び反射率の等方性(低角度依存性)の確保等の理由から、周期dの下限値は、通常、d≧50nm、好ましくは、d≧100nmとされる。これに対して突起の高さHは、十分な反射防止効果を発現させる観点より、H≧0.2×λmax=156nm(λmax=780nmとして)とされる。   The wavelengths λmax and λmin may have some width depending on observation conditions, light intensity (luminance), individual differences, and the like, but are typically λmax = 780 nm and λmin = 380 nm. A preferable condition that can more reliably exhibit an antireflection effect for all wavelengths in the visible light band is d ≦ 300 nm, and a more preferable condition is d ≦ 200 nm. Note that the lower limit value of the period d is usually d ≧ 50 nm, preferably d ≧ 100 nm, for reasons such as the expression of the antireflection effect and ensuring the isotropic (low angle dependency) of the reflectance. On the other hand, the height H of the protrusion is set to H ≧ 0.2 × λmax = 156 nm (assuming λmax = 780 nm) from the viewpoint of exhibiting a sufficient antireflection effect.

しかしながら、本発明の反射防止物品のように、微小突起が不規則に配置されている場合には、隣接する微小突起間の間隔dはばらつきを有することになる。より具体的には、図2に示すように、基材の表面又は裏面の法線方向から見て平面視した場合に、微小突起が一定周期で規則正しく配列されていない場合、突起の繰り返し周期Pによっては隣接突起間の間隔dは規定し得ず、又、隣接突起の概念すら疑念が生じることになる。そこでこのような場合、以下のように算定される。   However, when the minute protrusions are irregularly arranged as in the antireflection article of the present invention, the distance d between adjacent minute protrusions varies. More specifically, as shown in FIG. 2, when viewed from the normal direction of the front or back surface of the substrate, when the microprojections are not regularly arranged at a constant period, the repetition period P of the protrusions In some cases, the distance d between adjacent protrusions cannot be defined, and even the concept of adjacent protrusions is suspicious. Therefore, in such a case, it is calculated as follows.

(1) 即ち、先ず、原子間力顕微鏡(Atomic Force Microscope;AFM)又は走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて突起の面内配列(突起配列の平面視形状)を検出する。尚、図2は、実際に原子間力顕微鏡により求められた拡大写真である。   (1) That is, first, an in-plane arrangement of projections (a planar view shape of the projection array) is detected using an atomic force microscope (AFM) or a scanning electron microscope (SEM). FIG. 2 is an enlarged photograph actually obtained by an atomic force microscope.

(2) 続いてこの求められた面内配列から各突起の高さの極大点(以下、単に「極大点」とも言う)を検出する。尚、極大点を求める方法としては、平面視形状と対応する斷面形状の拡大写真とを逐次対比して極大点を求める方法、平面視拡大写真の画像処理によって極大点を求める方法等、種々の手法を適用することができる。図3は、図2に示した拡大写真に係る画像データの処理による極大点の検出結果を示す図であり、この図において黒点により示す個所がそれぞれ各微小突起の極大点である。尚、この処理では4.5×4.5画素のガウシアン特性によるローパスフィルタにより事前に画像データを処理し、これによりノイズによる極大点の誤検出を防止した。又、8画素×8画素による最大値検出用のフィルタを順次スキャンすることにより1nm(=1画素)単位で極大点を求めた。   (2) Subsequently, a maximum point of the height of each protrusion (hereinafter, also simply referred to as “maximum point”) is detected from the obtained in-plane arrangement. In addition, as a method for obtaining the maximum point, there are various methods such as a method for obtaining a local maximum point by sequentially comparing a planar view shape and a corresponding magnified photograph of a ridge surface, a method for obtaining a local maximum point by image processing of a planar view enlarged photograph, and the like. Can be applied. FIG. 3 is a diagram showing the detection result of the maximum point by the processing of the image data related to the enlarged photograph shown in FIG. 2, and the portions indicated by black dots in this figure are the maximum points of the respective minute protrusions. In this process, image data is processed in advance by a low-pass filter based on a Gaussian characteristic of 4.5 × 4.5 pixels, thereby preventing erroneous detection of the maximum point due to noise. Further, the maximum point was obtained in units of 1 nm (= 1 pixel) by sequentially scanning a filter for detecting the maximum value of 8 pixels × 8 pixels.

(3) 次に検出した極大点を母点とするドロネー図(Delaunary Diagram)を作成する。ここでドロネー図とは、各極大点を母点としてボロノイ分割を行った場合に、ボロノイ領域が隣接する母点同士を隣接母点と定義し、各隣接母点同士を線分で結んで得られる3角形の集合体からなる網状図形である。各3角形は、ドロネー3角形と呼ばれ、各3角形の辺(隣接母点同士を結ぶ線分)は、ドロネー線と呼ばれる。図4は、図3から求められるドロネー図(白色の線分により表される図である)を図3による原画像と重ね合わせた図である。ドロネー図は、ボロノイ図(Voronoi diagram)と双対の関係に有る。又、ボロノイ分割とは、各微小突起の極大点である各隣接母点間を結ぶ線分(ドロネー線)の垂直2等分線であるボロノイ分割線同士によって画成される閉多角形の集合体からなる網状図形で平面を分割することを言う。ボロノイ分割により得られる網状図形がボロノイ図であり、各閉領域がボロノイ領域である。   (3) Next, a Delaunay diagram with the detected maximum point as a generating point is created. Here, Delaunay diagram is obtained by dividing the Voronoi region adjacent to the Voronoi region when the Voronoi division is performed with each local maximum as the generating point, and connecting the adjacent generating points with line segments. This is a net-like figure made up of triangular aggregates. Each triangle is called a Delaunay triangle, and a side of each triangle (a line segment connecting adjacent generating points) is called a Delaunay line. FIG. 4 is a diagram in which the Delaunay diagram (represented by white line segments) obtained from FIG. 3 is superimposed on the original image of FIG. The Delaunay diagram has a dual relationship with the Voronoi diagram. Voronoi division is a set of closed polygons defined by Voronoi division lines that are perpendicular bisectors of line segments (Delaney lines) that connect between adjacent generating points that are the maximum points of each microprojection. It means to divide a plane by a net-like figure consisting of bodies. A network figure obtained by Voronoi division is a Voronoi diagram, and each closed region is a Voronoi region.

(4) 次に、各ドロネー線の線分長の度数分布、即ち、隣接する極大点間の距離(以下、「隣接突起間距離」とも言う)の度数分布を求める。図5は、図4のドロネー図から作成した度数分布のヒストグラムである。尚、図2、図10、図11に示すように、突起の頂部に溝状等の凹部が存在したり、或いは、頂部が複数の峰に***している場合は、求めた度数分布から、このような突起の頂部に凹部が存在する微細構造、頂部が複数の峰に***している微細構造に起因するデータを除去し、突起本体自体のデータのみを選別して度数分布を作成する。   (4) Next, the frequency distribution of the line segment length of each Delaunay line, that is, the frequency distribution of the distance between adjacent maximum points (hereinafter also referred to as “distance between adjacent protrusions”) is obtained. FIG. 5 is a histogram of the frequency distribution created from the Delaunay diagram of FIG. In addition, as shown in FIG.2, FIG.10, FIG.11, when the recessed part of groove shape etc. exists in the top part of protrusion, or when the top part is divided into a plurality of peaks, from the obtained frequency distribution, The frequency distribution is created by removing the data resulting from the fine structure in which the concave portion is present on the top of the protrusion and the fine structure in which the top is split into a plurality of peaks, and selecting only the data of the protrusion itself.

具体的には、突起の頂部に凹部が存在する微細構造、頂部が複数の峰に***している多峰性の微小突起に係る微細構造においては、このような微細構造を備えてい無い単峰性の微小突起の場合の数値範囲から、隣接極大点間距離が明らかに大きく異なることになる。これによりこの特徴を利用して対応するデータを除去することにより突起本体自体のデータのみを選別して度数分布を検出する。より具体的には、例えば図2に示すような微小突起(群)の平面視の拡大写真から、5〜20個程度の互いに隣接する単峰性の微小突起を選んで、その隣接極大点間距離の値を標本抽出し、この標本抽出して求められる数値範囲から明らかに外れる値(通常、標本抽出して求められる隣接極大点間距離平均値に対して、値が1/2以下のデータ)を除外して度数分布を検出する。図5の例では、隣接極大点間距離が56nm以下のデータ(矢印Aにより示す左端の小山)を除外する。尚、図5は、このような除外する処理を行う前の度数分布を示すものである。因みに上述の極大点検用のフィルタの設定により、このような除外する処理を実行してもよい。   Specifically, in a fine structure in which a concave portion exists at the top of the protrusion, or a fine structure related to a multi-modal micro protrusion in which the top is divided into a plurality of peaks, a single peak that does not have such a fine structure. The distance between adjacent local maximum points is clearly different from the numerical value range in the case of a sexual microprojection. Thus, by removing the corresponding data using this feature, only the data of the projection body itself is selected and the frequency distribution is detected. More specifically, for example, about 5 to 20 unimodal microprotrusions adjacent to each other are selected from an enlarged photograph of the microprotrusion (group) in plan view as shown in FIG. A sample of the distance value, and a value that clearly deviates from the numerical range obtained by sampling (usually data that is 1/2 or less of the average distance between adjacent maximum points obtained by sampling) ) To detect the frequency distribution. In the example of FIG. 5, data having a distance between adjacent maximal points of 56 nm or less (the leftmost small mountain indicated by the arrow A) is excluded. FIG. 5 shows a frequency distribution before such exclusion processing is performed. Incidentally, such exclusion processing may be executed by setting the above-described maximum inspection filter.

(5) このようにして求めた隣接突起間距離dの度数分布から平均値dAVG及び標準偏差σを求める。ここでこのようにして得られる度数分布を正規分布とみなして平均値dAVG及び標準偏差σを求めると、図5の例では、平均値dAVG=158nm、標準偏差σ=38nmとなった。これにより隣接突起間距離dの最大値を、dmax=dAVG+2σとし、この例ではdmax=234nmとなる。 (5) The average value d AVG and the standard deviation σ are obtained from the frequency distribution of the distance d between adjacent protrusions thus obtained. Here, when the frequency distribution obtained in this way is regarded as a normal distribution and the average value d AVG and the standard deviation σ are obtained, the average value d AVG = 158 nm and the standard deviation σ = 38 nm are obtained in the example of FIG. As a result, the maximum value of the distance d between adjacent protrusions is set to dmax = d AVG + 2σ, and in this example, dmax = 234 nm.

尚、同様の手法を適用して突起の高さを定義する。この場合、上述の(2)により求められる極大点から、特定の基準位置からの各極大点位置の相対的な高度差を取得してヒストグラム化する。図6は、このようにして求められる突起付け根位置を基準(高さ0)とした突起高さHの度数分布のヒストグラムを示す図である。このヒストグラムによる度数分布から突起高さの平均値HAVG、標準偏差σを求める。ここでこの図6の例では、平均値HAVG=178nm、標準偏差σ=30nmである。これによりこの例では、突起の高さは、平均値HAVG=178nmとなる。尚、図6に示す突起高さHのヒストグラムにおいて、多峰性微小突起の場合は、頂点を複数有していることにより、1つの突起に対してこれら複数のデータが混在することになる。そこでこの場合は麓部が同一の微小突起に属するそれぞれ複数の頂点の中から高さの最も高い頂点を、当該微小突起の突起高さとして採用して度数分布を求める。 The height of the protrusion is defined by applying a similar method. In this case, the relative height difference of each local maximum point position from a specific reference position is acquired from the local maximum point obtained by the above (2), and is histogrammed. FIG. 6 is a diagram showing a histogram of the frequency distribution of the protrusion height H with the protrusion root position obtained in this way as a reference (height 0). The average value HAVG of the protrusion height and the standard deviation σ are obtained from the frequency distribution based on the histogram. Here in the example of FIG. 6, the mean value H AVG = 178 nm, the standard deviation sigma = 30 nm. Thus in this example, the height of the projections is an average value H AVG = 178 nm. In the histogram of the protrusion height H shown in FIG. 6, in the case of a multi-peak microprotrusion, the plurality of data are mixed for one protrusion due to having a plurality of vertices. Therefore, in this case, the frequency distribution is obtained by adopting the vertex having the highest height from among the plurality of vertices belonging to the same microprotrusion as the protuberance.

尚、上述した突起の高さを測る際の基準位置は、隣接する微小突起の間の谷底(高さの極小点)を高さ0の基準とする。但し、係る谷底の高さ自体が場所によって異なる場合(例えば、図12について後述するように、谷底の高さが微小突起の隣接突起間距離に比べて大きな周期でウネリを有する場合等)は、(1)先ず、基材2の表面又は裏面から測った各谷底の高さの平均値を、該平均値が収束するに足る面積の中で算出する。(2)次いで、該平均値の高さを持ち、基材2の表面又は裏面と平行な面を基準面として考える。(3)その後、該基準面を改めて高さ0として、該基準面からの各微小突起の高さを算出する。   In addition, the reference position when measuring the height of the projection described above is based on a valley bottom (minimum height) between adjacent minute projections as a reference for height 0. However, when the height of the valley bottom itself varies depending on the location (for example, as described later with reference to FIG. 12, the height of the valley bottom has undulation with a period larger than the distance between adjacent projections of the microprojections). (1) First, the average value of the height of each valley bottom measured from the front surface or the back surface of the substrate 2 is calculated within an area sufficient for the average value to converge. (2) Next, a surface having the height of the average value and parallel to the front surface or the back surface of the substrate 2 is considered as a reference surface. (3) Then, the height of each microprotrusion from the reference surface is calculated by setting the reference surface to a height of 0 again.

突起が不規則に配置されている場合には、このようにして求められる隣接突起間距離の最大値dmax=dAVG+2σ、突起の高さの平均値HAVGが、規則正しく配置されている場合の上述の条件を満足することが必要であることが判った。具体的には、反射防止効果を発現する微小突起間距離の条件は、dmax≦Λminとなる。最低限、可視光線帯域の最長波長において反射防止効果を奏し得る必要最短限の条件は、Λmin=λmaxであるため、dmax≦λmaxとなり、可視光線帯域の全波長に対して反射防止効果を奏し得る必要十分の条件は、Λmin=λminであるため、dmax≦λminとなる。そして、可視光線帯域の全波長に対する反射防止効果をより確実に奏し得る好ましい条件は、dmax≦300nmであり、更に好ましい条件は、dmax≦200nmである。又、反射防止効果の発現及び反射率の等方性(低角度依存性)の確保等の理由から、通常、dmax≧50nmであり、好ましくは、dmax≧100nmとされる。又、突起高度については、十分な反射防止効果を発現する為には、HAVG≧0.2×λmax=156nm(λmax=780nmとして)とされる。 If the protrusions are irregularly arranged, when this way the maximum value of the adjacent protrusions distance obtained by dmax = d AVG + 2σ, average H AVG height of projections are arranged regularly It has been found necessary to satisfy the above conditions. Specifically, the condition of the distance between the microprotrusions that exhibits the antireflection effect is dmax ≦ Λmin. The minimum necessary condition that can exhibit the antireflection effect at the longest wavelength in the visible light band is Λmin = λmax, and therefore dmax ≦ λmax, and the antireflection effect can be achieved for all wavelengths in the visible light band. The necessary and sufficient condition is Λmin = λmin, and therefore dmax ≦ λmin. A preferable condition that can more reliably exhibit the antireflection effect for all wavelengths in the visible light band is dmax ≦ 300 nm, and a more preferable condition is dmax ≦ 200 nm. Also, dmax ≧ 50 nm is usually satisfied and dmax ≧ 100 nm is preferable because of the antireflection effect and ensuring the isotropic (low angle dependency) of the reflectance. Further, the height of the protrusion is set to HAVG ≧ 0.2 × λmax = 156 nm (λmax = 780 nm) in order to exhibit a sufficient antireflection effect.

ちなみに、図2〜図6の例により説明するとdmax=234nm<λmax=780nmとなり、dmax≦λmaxの条件を満足して十分に反射防止効果を奏し得ることが判る。又、可視光線帯域の最短波長λminが380nmであることから、可視光線の全波長帯域において反射防止効果を発現する十分条件dmax≦λminも満たすことが判る。又、平均突起高さHAVG=178nmであることにより、平均突起高さHAVG≧0.2×λmax=156nmとなり(可視光波長帯域の最長波長λmax=780nmとして)、十分な反射防止効果を実現するための突起の高さに関する条件も満足していることが判る。尚、標準偏差σ=30nmであることから、HAVG−σ=148nm<0.2×λmax=156nmとの関係式が成立することから、統計学上、全突起の50%以上、84%以下が、突起の高さに係る条件(178nm以上)の条件を満足していることが判る。尚、AFM及びSEMによる観察結果、並びに微小突起の高さ分布の解析結果から、多峰性微小突起は相対的に高さの低い微小突起よりも高さの高い微小突起でより多く生じる傾向にあることが判明した。 2 to 6, dmax = 234 nm <λmax = 780 nm, and it can be seen that the antireflection effect can be sufficiently achieved by satisfying the condition of dmax ≦ λmax. In addition, since the shortest wavelength λmin in the visible light band is 380 nm, it can be seen that the sufficient condition dmax ≦ λmin for expressing the antireflection effect in all the visible light wavelength bands is also satisfied. Further, since the average protrusion height H AVG = 178 nm, the average protrusion height H AVG ≧ 0.2 × λmax = 156 nm (assuming that the longest wavelength λmax of the visible light wavelength band is 780 nm), and a sufficient antireflection effect is obtained. It can be seen that the conditions regarding the height of the protrusions to be realized are also satisfied. Incidentally, since the standard deviation sigma = 30 nm, since the relationship between the H AVG -σ = 148nm <0.2 × λmax = 156nm is satisfied, statistically, more than 50% of the total protrusions, 84% or less However, it turns out that the conditions (178 nm or more) concerning the height of protrusion are satisfied. In addition, from the observation result by AFM and SEM and the analysis result of the height distribution of the microprojections, the multi-peak microprojections tend to occur more frequently with the microprojections with the higher height than the microprojections with the relatively low height. It turned out to be.

図7は、この反射防止物品1の製造工程を示す図である。この製造工程10は、樹脂供給工程において、ダイ12により帯状フィルム形態の基材2に微小突起形状の受容層4を構成する未硬化で液状の紫外線硬化性樹脂を塗布する。尚、紫外線硬化性樹脂の塗布については、ダイ12による場合に限らず、各種の手法を適用することができる。続いてこの製造工程10は、押圧ローラ14により、反射防止物品の賦型用金型であるロール版13の周側面に基材2を加圧押圧し、これにより基材2に未硬化で液状のアクリレート系紫外線硬化性樹脂を密着させると共に、ロール版13の周側面に作製された微小な凹凸形状の凹部に紫外線硬化性樹脂を充分に充填する。この製造工程は、この状態で、紫外線の照射により紫外線硬化性樹脂を硬化させ、これにより基材2の表面に微小突起群を作製する。この製造工程は、続いて剥離ローラ15を介してロール版13から、硬化した紫外線硬化性樹脂と一体に基材2を剥離する。製造工程10は、必要に応じてこの基材2に粘着層等を作製した後、所望の大きさに切断して反射防止物品1を作製する。これにより反射防止物品1は、ロール材による長尺の基材2に、賦型用金型であるロール版13の周側面に作製された微小形状を順次賦型して、効率良く大量生産される。   FIG. 7 is a diagram illustrating a manufacturing process of the antireflection article 1. In the manufacturing process 10, in the resin supplying process, an uncured and liquid ultraviolet curable resin that forms the microprojection-shaped receiving layer 4 is applied to the base material 2 in the form of a strip by the die 12. In addition, about application | coating of an ultraviolet curable resin, not only the case by the die | dye 12 but various methods are applicable. Subsequently, in this manufacturing process 10, the substrate 2 is pressed and pressed against the peripheral side surface of the roll plate 13 which is a mold for shaping the antireflection article by the pressing roller 14, whereby the substrate 2 is uncured and liquid. The acrylate-based ultraviolet curable resin is closely attached, and the ultraviolet curable resin is sufficiently filled in the concave portions having a minute uneven shape formed on the peripheral side surface of the roll plate 13. In this state, in this manufacturing process, the ultraviolet curable resin is cured by irradiation with ultraviolet rays, and thereby a microprojection group is produced on the surface of the substrate 2. In this manufacturing process, the substrate 2 is peeled off from the roll plate 13 through the peeling roller 15 together with the cured ultraviolet curable resin. In the production process 10, an anti-reflection article 1 is produced by producing an adhesive layer or the like on the substrate 2 as necessary, and then cutting it into a desired size. As a result, the antireflection article 1 is mass-produced efficiently by sequentially molding the minute shape produced on the peripheral side surface of the roll plate 13 which is a mold for molding on the long base material 2 made of a roll material. The

図8は、ロール版13の構成を示す斜視図である。ロール版13は、円筒形状の金属材料である母材の周側面に、陽極酸化処理、エッチング処理の繰り返しにより、微細な凹凸形状が作製され、この微細な凹凸形状が上述したように基材2に賦型される。このため母材は、少なくとも周側面に純度の高いアルミニウム層が設けられた円柱形状又は円筒形状の部材が適用される。より具体的に、この実施形態では、母材に中空のステンレスパイプが適用され、直接に又は各種の中間層を介して、純度の高いアルミニウム層が設けられる。尚、ステンレスパイプに代えて、銅やアルミニウム等のパイプ材等を適用してもよい。ロール版13は、陽極酸化処理とエッチング処理との繰り返しにより、母材の周側面に微***が密に作製され、この微***を掘り進めると共に、開口部に近付くに従ってより大きな径となるようにこの微***の穴径を徐々に拡大して凹凸形状が作製される。これによりロール版13は、深さ方向に徐々に穴径が小さくなる多数の微***が密に作製され、反射防止物品1には、この微***に対応して、頂部に近付くに従って徐々に径が小さくなる微小突起により微細な凹凸形状が作製される。その際に、アルミニウム層の純度(不純物量)や結晶粒径、陽極酸化処理及び/又はエッチング処理の諸条件を適宜調整することによって、本発明特有の微小突起形状とする。   FIG. 8 is a perspective view showing the configuration of the roll plate 13. The roll plate 13 has a fine concavo-convex shape formed on the peripheral side surface of the base material, which is a cylindrical metal material, by repeating anodizing treatment and etching treatment, and the fine concavo-convex shape is formed on the substrate 2 as described above. It is shaped. For this reason, a columnar or cylindrical member in which a high-purity aluminum layer is provided at least on the peripheral side surface is used as the base material. More specifically, in this embodiment, a hollow stainless steel pipe is applied to the base material, and a high-purity aluminum layer is provided directly or via various intermediate layers. In addition, it may replace with a stainless steel pipe and may apply pipe materials, such as copper and aluminum. The roll plate 13 is formed such that minute holes are densely formed on the peripheral side surface of the base material by repeating the anodizing process and the etching process, and the diameter of the roll plate 13 is increased as it approaches the opening. The concavo-convex shape is produced by gradually expanding the diameter of the minute holes. As a result, the roll plate 13 is formed with a large number of minute holes whose hole diameter gradually decreases in the depth direction, and the antireflection article 1 has a diameter gradually corresponding to the minute hole as it approaches the top. A fine concavo-convex shape is produced by the small protrusions with a small diameter. At that time, by appropriately adjusting the purity (amount of impurities), crystal grain size, anodizing treatment and / or etching treatment conditions of the aluminum layer, the shape of the fine protrusion unique to the present invention is obtained.

〔陽極酸化処理、エッチング処理〕
図9は、ロール版13の製造工程を示す図である。この製造工程は、電解溶出作用と、砥粒による擦過作用の複合による電解複合研磨法によって母材の周側面を超鏡面化する(電解研磨)。続いてこの工程は、母材の周側面にアルミニウムをスパッタリングし、純度の高いアルミニウム層を作製する。続いてこの工程は、陽極酸化工程A1、…、AN、エッチング工程E1、…、ENを交互に繰り返して母材を処理し、ロール版13を作製する。
[Anodic oxidation treatment, etching treatment]
FIG. 9 is a diagram illustrating a manufacturing process of the roll plate 13. In this manufacturing process, the peripheral side surface of the base material is made into a super mirror surface by an electrolytic composite polishing method that combines electrolytic elution action and abrasion action by abrasive grains (electrolytic polishing). Subsequently, in this step, aluminum is sputtered on the peripheral side surface of the base material to produce a high-purity aluminum layer. Subsequently, in this process, the base material is processed by alternately repeating the anodic oxidation processes A1,..., AN, and the etching processes E1,.

この製造工程において、陽極酸化工程A1、…、ANでは、陽極酸化法により母材の周側面に微細な穴を作製し、更にこの作製した微細な穴を掘り進める。ここで陽極酸化工程では、例えば負極に炭素棒、ステンレス板材等を使用する場合のように、アルミニウムの陽極酸化に適用される各種の手法を広く適用することができる。又、溶解液についても、中性、酸性の各種溶解液を使用することができ、より具体的には、例えば硫酸水溶液、シュウ酸水溶液、リン酸水溶液等を使用することができる。この製造工程A1、…、ANは、液温、印加する電圧、陽極酸化に供する時間等の管理により、微細な穴をそれぞれ目的とする深さ及び微小突起形状に対応する形状に作製する。   In this manufacturing process, in the anodic oxidation steps A1,..., AN, a fine hole is produced on the peripheral side surface of the base material by an anodic oxidation method, and the produced fine hole is further dug. Here, in the anodic oxidation step, various methods applied to the anodic oxidation of aluminum can be widely applied, for example, when a carbon rod, a stainless steel plate, or the like is used for the negative electrode. Moreover, various neutral and acidic solution can also be used also about a solution, More specifically, sulfuric acid aqueous solution, oxalic acid aqueous solution, phosphoric acid aqueous solution etc. can be used, for example. In the manufacturing steps A1,..., AN, the fine holes are formed in shapes corresponding to the target depth and the shape of the fine protrusions, respectively, by managing the liquid temperature, the applied voltage, the time for anodization, and the like.

続くエッチング工程E1、…、ENは、金型をエッチング液に浸漬し、陽極酸化工程A1、…、ANにより作製、掘り進めた微細な穴の穴径をエッチングにより拡大し、深さ方向に向かって滑らか、且つ、徐々に穴径が小さくなるように、これら微細な穴を整形する。尚、エッチング液については、この種の処理に適用される各種エッチング液を広く適用することができ、より具体的には、例えば硫酸水溶液、シュウ酸水溶液、リン酸水溶液等を使用することができる。これらによりこの製造工程では、陽極酸化処理とエッチング処理とを交互にそれぞれ複数回実行することにより、賦型に供する微***を母材の周側面に作製する。   In the subsequent etching process E1,..., EN, the mold is immersed in an etching solution, the hole diameter of the fine hole produced and dug in the anodizing process A1,. These fine holes are shaped so that the hole diameter becomes smaller and smoother. As the etching solution, various etching solutions applied to this type of treatment can be widely applied. More specifically, for example, an aqueous sulfuric acid solution, an aqueous oxalic acid solution, an aqueous phosphoric acid solution, or the like can be used. . Accordingly, in this manufacturing process, the anodizing process and the etching process are alternately performed a plurality of times, thereby forming micro holes for shaping on the peripheral side surface of the base material.

〔耐擦傷性の向上〕
ところで、この陽極酸化処理及びエッチング処理の交互の繰り返しにより微***を作製して反射防止物品を作製したところ、上述したように耐擦傷性に改善の余地が見られた。そこで反射防止物品を詳細に観察したところ、従来のこの種の反射防止物品のように、多角錘形状や回転放物面形状のような1つの頂点のみを持つ単峰性微小突起のみからなり、各頂点の高さも一様に作製されている場合には、例えば他の物体が接触した場合に、広い範囲で微小突起の形状が一様に損なわれ、これにより反射防止機能が局所的に劣化し、又、接触個所に白濁、傷等が発生して外観不良が発生することが判った。しかしながらロール版の製造条件を変更すると、このような耐擦傷性が改善されることが判った。
[Improved scratch resistance]
By the way, when an antireflection article was produced by producing minute holes by alternately repeating this anodizing treatment and etching treatment, there was room for improvement in scratch resistance as described above. Therefore, when the antireflection article was observed in detail, it consists only of single-peaked microprojections having only one apex, such as a polygonal pyramid shape and a rotating paraboloid shape, as in this type of conventional antireflection article, If the height of each vertex is also made uniform, for example, when another object comes into contact, the shape of the microprojections is uniformly damaged over a wide range, thereby locally deteriorating the antireflection function. In addition, it has been found that the appearance of poor contact occurs due to white turbidity, scratches, etc. at the contact points. However, it has been found that such scratch resistance is improved by changing the production conditions of the roll plate.

このような耐擦傷性が改善されたパターン位相差フィルムの表面形状をAFM(Atomic Force Microscope:原子間力顕微鏡)及びSEM(Scanning Electron Microscope:走査型電子顕微鏡)により観察したところ、微小突起の一部が、複数の頂点を有する多峰性微小突起であり、且つ、当該多峰性微小突起の一部において、その複数の頂点を含む包絡面が、先細りの釣鐘形状となっていることが分った。尚、ここで微小形状の観察のために、種々の方式の顕微鏡が提供されているものの、微小構造を損なわないようにして反射防止物品の表面形状を観察する場合には、AFM及びSEMが適している。   When the surface shape of such a patterned retardation film with improved scratch resistance was observed with an AFM (Atomic Force Microscope) and SEM (Scanning Electron Microscope: scanning electron microscope), one of the microprojections was observed. The portion is a multi-peak microprojection having a plurality of vertices, and the envelope surface including the plurality of vertices in a part of the multi-peak micro-projection has a tapered bell shape. It was. Although various types of microscopes are provided here for observing the minute shape, AFM and SEM are suitable for observing the surface shape of the antireflection article without damaging the microstructure. ing.

尚、ここで、各微小突起の高さとは、麓(付け根)部を共有するある特定の微小突起について、その頂部に存在する最高高さを有する峰(最高峰)の高さを言う。図10は、微小突起の断面を模式的に示した図であるが、単峰性微小突起50においては、頂部に於ける唯一の峰(極大点)の高さが当該微小突起の突起高さとなる。又、図10の多峰性微小突起51、51Aにおいては、頂部に在る麓(付け根)部を共有する複数の峰のうちの最高峰の高さをもって該微小突起の高さとする。尚、この図10は、理解を容易にするために模式的に示す図であり、z方向は微小突起の高さ方向である。   Here, the height of each microprotrusion refers to the height of the peak (highest peak) having the highest height at the top of a specific microprotrusion that shares the ridge (root) portion. FIG. 10 is a diagram schematically showing a cross section of the microprojection. In the single-peak microprojection 50, the height of the only peak (maximum point) at the top is the projection height of the microprojection. Become. In addition, in the multimodal microprotrusions 51 and 51A in FIG. 10, the height of the microprotrusions is defined as the height of the highest peak among a plurality of peaks sharing the ridge (base) portion at the top. In addition, this FIG. 10 is a figure typically shown in order to make an understanding easy, and the z direction is the height direction of a microprotrusion.

図10に示す通り、反射防止物品1において、微小突起(50、51、51A)の一部は、多峰性微小突起51、51Aであり、更に、多峰性微小突起の一部においては、51Aに示す通り、複数の頂点(P1、P2、P3)を含む包絡面Rが、先細りの釣鐘形状となっている(図11参照)。   As shown in FIG. 10, in the antireflection article 1, a part of the microprotrusions (50, 51, 51A) is the multimodal microprotrusions 51, 51A, and a part of the multimodal microprotrusions is As shown in 51A, the envelope surface R including a plurality of vertices (P1, P2, P3) has a tapered bell shape (see FIG. 11).

一般に、頂点を複数有する多峰性微小突起51、51Aは、単峰性微小突起50に比して、頂点近傍の寸法に対する裾の部分の太さが相対的に太くなる。これにより、多峰性微小突起51、51Aは、単峰性微小突起に比して機械的強度が優れていると言える。これにより反射防止物品では、単峰性微小突起50のみが存在する場合に比して、多峰性微小突起51、51Aが存在する場合の方が、耐擦傷性が向上するものと考えられる。   In general, the multimodal microprotrusions 51, 51 </ b> A having a plurality of vertices are relatively thicker at the hem portion relative to the dimensions near the vertices than the single-peak microprojections 50. Thereby, it can be said that the multimodal microprotrusions 51 and 51A are superior in mechanical strength to the single-peak microprotrusions. As a result, in the antireflection article, it is considered that the scratch resistance is improved when the multimodal microprotrusions 51 and 51A are present, compared to the case where only the single-peak microprotrusions 50 are present.

更に、具体的に反射防止物品1に外力が加わった場合、多峰性微小突起51、51Aは、外力をより多くの頂点で分散して受ける為、各頂点に加わる外力を低減し、微小突起が損傷し難いようにすることができる。これにより、単峰性微小突起のみの場合よりも、反射防止機能の局所的な劣化を低減し、更に外観不良の発生を低減することができる。又、仮に微小突起が損傷した場合でも、その損傷個所の面積を低減することができる。更に、多峰性微小突起51、51Aの多くは、最高峰高さ(麓が同じ微小突起に属する最も高い峰の高さ)が突起高さの平均値HAVG以上の微小突起に生じる為、外力を先ず各峰部分が受止めて犠牲的に損傷することによって、当該微小突起の峰より低い本体部分、及び当該多峰性微小突起よりも高さの低い微小突起の損耗を防ぐ。これによっても反射防止機能の局所的な劣化を低減し、更に外観不良の発生を低減することができる。 Furthermore, when an external force is applied to the antireflection article 1 specifically, the multimodal microprotrusions 51 and 51A receive the external force in a distributed manner at more vertices. Can be hard to damage. As a result, the local deterioration of the antireflection function can be reduced and the occurrence of poor appearance can be reduced as compared with the case of only the single-peak microprojections. Moreover, even if a microprotrusion is damaged, the area of the damaged portion can be reduced. Furthermore, many of the multimodal microprojections 51, 51A, the highest peak height (foot height of the highest peaks belonging to the same microprojections) is to produce the average value H AVG or more microprojections of projection height, First, each ridge portion receives external force to be sacrificially damaged, thereby preventing wear of the main body portion lower than the ridge of the microprojection and the microprojection having a height lower than the multimodal microprojection. This can also reduce local deterioration of the antireflection function and further reduce the occurrence of poor appearance.

尚、上述した図2〜図6に係る測定結果は、本発明の実施形態に係る反射防止物品の測定結果であり、図5に示す度数分布においては、隣接突起間距離d(横軸の値)について、20nm及び40nmの短距離の極大値と120nm及び164nmの長距離の極大値との2種類の極大値が存在する。これらの極大値のうちの長距離の極大値は、微小突起本体(頂部よりも下の中腹から麓にかけての部分)の配列に対応し、一方、短距離の極大値は頂部近傍に存在する複数の頂点(峰)に対応する。これにより極大点間距離の度数分布によっても、多峰性微小突起51、51Aの存在を見て取ることができる。   2 to 6 described above are measurement results of the antireflection article according to the embodiment of the present invention. In the frequency distribution shown in FIG. 5, the distance d between adjacent protrusions (value on the horizontal axis). ), There are two types of maximum values, short-range maximum values of 20 nm and 40 nm and long-range maximum values of 120 nm and 164 nm. Among these maximum values, the maximum value of the long distance corresponds to the arrangement of the microprojection bodies (the part from the middle to the heel below the top part), while the maximum value of the short distance exists in the vicinity of the top part. Corresponds to the apex (peak) of. As a result, the presence of the multi-modal microprotrusions 51 and 51A can be seen also from the frequency distribution of the distance between the maximal points.

〔反射防止性能の向上〕
反射防止物品における微小突起中に多峰性微小突起が混在する場合には、単峰性微小突起のみが存在する場合に比して反射防止性能を向上することもできる。即ち、図2、図10、及び図11等に示すような多峰性微小突起51、51Aは、隣接突起間距離が同じ場合であっても、又、突起高さが同じ場合であっても、単峰性微小突起と比べて、より光の反射率が低減することになる。その理由は、多峰性微小突起51、51A等は、頂部より下(中腹及び麓)の形状が同じ単峰性微小突起よりも、頂部近傍における有効屈折率の高さ方向の変化率が小さくなる為である。
(Improved antireflection performance)
In the case where multi-peak microprojections are mixed in the microprojections in the antireflection article, the antireflection performance can be improved as compared with the case where only the single-peak microprojections exist. That is, the multimodal microprojections 51 and 51A as shown in FIG. 2, FIG. 10, FIG. 11, etc., even when the distance between adjacent projections is the same or when the projection height is the same. Compared with a single-peak microprotrusion, the light reflectance is further reduced. The reason is that the multimodal microprotrusions 51, 51A, etc. have a smaller change rate in the height direction of the effective refractive index in the vicinity of the apex than the single-peak microprotrusions having the same shape (middle and heel) below the apex. It is to become.

即ち、図10において、高さHがzにおいて、Z=z(z=0を高さH=0とおく)に対して、高さ方向(Z軸方向)に直交する仮想的切断面Z=zで微小突起(50、51、51A)を切断したと仮定した場合の面Z=zにおける微小突起と周辺の媒質(通常は空気)との屈折率の平均値として得られる有効屈折率nefは、切断面Z=zにおける周辺媒質(ここでは空気とする)の屈折率をn=1、微小突起(50、51、51A)の構成材料の屈折率をn>1とし、又、周辺媒質(空気)の断面積の合計値をS(z)、微小突起5、5A、・・の断面積の合計値をS(z)としたとき、
ef(z)=1×S(z)/(S(z)+S(z))+n×S(z)/(S(z)+S(z))(式1)
で表される。これは、周辺媒質の屈折率n及び微小突起構成材料の屈折率nを、各々周辺媒質の合計断面積S(z)及び微小突起の合計断面積の合計値S(z)で比例配分した値となる。
That is, in FIG. 10, when the height H is z, a virtual cutting plane Z = perpendicular to the height direction (Z-axis direction) with respect to Z = z (where z = 0 is set to height H = 0). Effective refractive index n ef obtained as an average value of the refractive indexes of the microprotrusions and the surrounding medium (usually air) on the surface Z = z when it is assumed that the microprotrusions (50, 51, 51A) are cut by z. , The refractive index of the surrounding medium (here, air) at the cutting plane Z = z is n A = 1, the refractive index of the constituent material of the microprojections (50, 51, 51A) is n M > 1, and the sum of the cross-sectional area of the peripheral medium (air) S a (z), when the minute projections 5, 5A, the total value of the cross-sectional area of ... was S M (z),
n ef (z) = 1 × S A (z) / (S A (z) + S M (z)) + n A × S M (z) / (S A (z) + S M (z)) (Formula 1 )
It is represented by This is because the refractive index n A of the peripheral medium and the refractive index n M of the constituent material of the microprojections are respectively expressed as a total sectional area S A (z) of the peripheral medium and a total value S M (z) of the total sectional area of the microprojections. Proportionally distributed value.

ここで、単峰性微小突起50を基準にして考えたときに、多峰性微小突起51、51Aは、頂部近傍が複数の峰に***している。そのため、頂部近傍を切断する仮想的切断面Z=zにおいて、多峰性微小突起51、51Aは、単峰性微小突起50に比べて相対的に低屈折率である周辺媒質の合計断面積S(z)の比率が、相対的に高屈折率である微小突起の合計断面積S(z)の比率に比べて、より増大することになる。 Here, when considered on the basis of the single-peak microprotrusion 50, the multimodal microprotrusions 51 and 51A are divided into a plurality of peaks near the top. Therefore, in the virtual cutting plane Z = z that cuts the vicinity of the top, the multimodal microprotrusions 51 and 51A have a total cross-sectional area S of the peripheral medium that has a relatively low refractive index compared to the single-peak microprotrusions 50. The ratio of A (z) is further increased as compared with the ratio of the total cross-sectional area S M (z) of the microprojections having a relatively high refractive index.

その結果、仮想的切断面Z=zにおける有効屈折率nef(z)は、多峰性微小突起51、51Aの方が単峰性微小突起50に比べて、より周辺媒質の屈折率nに近くなる。面Z=zにおける多峰性微小突起の有効屈折率と周辺媒質の屈折率との差を、|nef(z)−n(z)|multi、単峰性の微小突起の有効屈折率と周辺媒質の屈折率との差を、|nef(z)−n(z)|monoとすると、
|nef(z)−n(z)|multi<|nef(z)−n(z)|mono(式2)
となる。ここでn(z)=1とすると、
|nef(z)−1|multi<|nef(z)−1|mono(式2A)
となる。
As a result, the effective refractive index n ef (z) at the virtual cut surface Z = z is higher in the refractive index n A of the peripheral medium in the multimodal microprojections 51 and 51A than in the monomodal microprojections 50. Close to. The difference between the refractive index of the effective refractive index and the surrounding medium multimodal microprotrusions in the plane Z = z, | n ef ( z) -n A (z) | multi, the effective refractive index of the unimodal microprojection and the difference between the refractive index of the surrounding medium, | n ef (z) -n a (z) | When mono,
| N ef (z) −n A (z) | multi <| n ef (z) −n A (z) | mono (Expression 2)
It becomes. Here, if n A (z) = 1,
| N ef (z) -1 | multi <| n ef (z) -1 | mono (Formula 2A)
It becomes.

これにより頂部近傍において、多峰性微小突起を含む微小突起群(各微小突起間に周辺媒質を含む)については、単峰性微小突起のみからなる突起群に比べて、その有効屈折率と周辺媒質(空気)の屈折率との差より詳しくは、微小突起の高さ方向の単位距離当たりの屈折率の変化率をより低減化すること、換言すれば、屈折率の高さ方向変化の連続性をより高めること、が可能になることが分る。   As a result, in the vicinity of the top portion, the effective refractive index and the peripheral area of the microprojection group including the multimodal microprojections (including the peripheral medium between the microprojections) is smaller than that of the projection group including only the single-peak microprojections. More specifically, the difference between the refractive index of the medium (air) and the change in the refractive index per unit distance in the height direction of the microprotrusions is reduced, in other words, the continuous change in the refractive index in the height direction. It turns out that it is possible to improve the sex.

一般に、隣接する屈折率n0の媒質と屈折率n1の媒質との界面に光が入射する場合に、該界面における光の反射率Rは、入射角=0として、
R=(n−n/(n+n(式3)
となる。この式より界面両側の媒質の屈折率差n−nが小さいほど界面での光の反射率Rは減少し、(n−n)が値0に近づけばRも値0に近づくことになる。
In general, when light is incident on an interface between an adjacent medium having a refractive index n0 and a medium having a refractive index n1, the reflectance R of the light at the interface is set as an incident angle = 0.
R = (n 1 −n 0 ) 2 / (n 1 + n 0 ) 2 (Formula 3)
It becomes. From this equation, the smaller the refractive index difference n 1 -n 0 between the media on both sides of the interface, the lower the light reflectivity R at the interface, and as (n 1 -n 0 ) approaches 0, R also approaches 0. It will be.

(式2)、(式2A)及び(式3)より、多峰性微小突起51、51Aを含む微小突起群(各微小突起間に周辺媒質を含む)については、単峰性微小突起50のみからなる突起群に比べて光の反射率が低減する。   From (Expression 2), (Expression 2A), and (Expression 3), only the single-peaked microprotrusion 50 is used for the microprotrusion group including the multimodal microprotrusions 51 and 51A (including the peripheral medium between the microprotrusions). The light reflectance is reduced as compared with the projection group consisting of

尚、単峰性微小突起50のみからなる微小突起群を用いても、隣接突起間距離の最大値dmaxを反射防止を図る電磁波の波長帯域の最短波長Λmin以下の十分小さな値にすることによって、十分な反射防止効果を発現することは可能である。但し、その場合、隣接峰間の距離と隣接微小突起間距離とが同一となる為、隣接微小突起間が接触、一体複合化する現象(いわゆるスティッキング)が発生し易くなる。スティッキングを生じると、実質上の隣接突起間距離dは一体複合化した微小突起数の分だけ増加する。   Even if a microprojection group consisting of only the single-peak microprojections 50 is used, by setting the maximum value dmax of the distance between adjacent projections to a sufficiently small value not more than the shortest wavelength Λmin of the wavelength band of electromagnetic waves for preventing reflection, It is possible to exhibit a sufficient antireflection effect. However, in this case, since the distance between adjacent peaks and the distance between adjacent minute protrusions are the same, a phenomenon (so-called sticking) in which adjacent minute protrusions are brought into contact with each other and integrated together is likely to occur. When sticking occurs, the substantial distance d between adjacent protrusions increases by the number of minute protrusions integrated together.

例えば、d=200nmの微小突起が4個スティッキングすると、実質上、スティッキングして一体化した突起の大きさは、d=4×200nm=800nm>可視光線帯域の最長波長(780nm)となり、これにより局所的に反射防止効果を損なうことになる。   For example, when four microprojections with d = 200 nm are stuck, the size of the stuck and integrated projection is substantially d = 4 × 200 nm = 800 nm> the longest wavelength in the visible light band (780 nm). The antireflection effect is locally impaired.

一方、多峰性微小突起51、51Aからなる微小突起群の場合、頂部近傍の各峰間の隣接突起間距離dPEAKは、麓から中腹にかけての微小突起本体部の隣接突起間距離dBASEよりも小さくなり(dPEAK<dBASE)、通常、dPEAK=dBASE/4〜dBASE/2程度である。その為、各峰間の隣接突起間距離dPEAK≪λminとすることで十分な反射防止性能を得ることができる。但し、多峰性微小突起の各峰部は、麓部の幅に対する峰部の高さの比が小さく、単峰性微小突起の麓部の幅に対する頂点の高さの比の1/2〜1/10程度である。従って、同じ外力に対して、多峰性微小突起の峰部は単峰性微小突起に比べての変形し難い。且つ、多峰性微小突起の本体部自体は峰部よりも隣接突起間距離は大であり、且つ、強度も大である。その為、結局、多峰性微小突起からなる微小突起群は、単峰性微小突起からなる突起群に比べて、スティッキングの生じ難さと低反射率とを容易に両立させることができる。 On the other hand, in the case of the microprotrusion group composed of the multi-peak microprotrusions 51 and 51A, the distance d PEAK between adjacent protrusions between each peak near the top portion is based on the distance d BASE between adjacent protrusions of the microprotrusion main body portion from the heel to the middle. (D PEAK <d BASE ) and is usually about d PEAK = d BASE / 4 to d BASE / 2. Therefore, sufficient antireflection performance can be obtained by setting the distance d PEAK << λmin between adjacent protrusions between the peaks. However, each peak of the multimodal microprotrusions has a small ratio of the height of the ridges to the width of the buttock, and the ratio of the height of the apex to the width of the ridges of the unimodal microprojections is from 1/2 to It is about 1/10. Therefore, for the same external force, the peak of the multimodal microprotrusions is less likely to deform than the single-peak microprotrusions. Moreover, the main body itself of the multimodal microprotrusions has a larger distance between adjacent protrusions and a higher strength than the ridges. Therefore, after all, the microprojection group composed of multimodal microprotrusions can easily achieve both stickiness and low reflectivity compared to the projection group composed of monomodal microprojections.

又、前記の通り可視光の反射防止用途の他に、若しくは、可視光環境下であっても当該反射防止材料が設置、使用される環境条件に応じて、想定する反射防止波長に応じたモスアイ構造を形成し、高さ分布を持たせる事により、前記の通り、従来のものより耐擦性があり、且つ、プロセス要件等で低硬度の材料を使用した場合においても互いのスティッキングを防止し、光学的必要性能を合わせ持つ反射防止材料を作製する事が可能となる。例えば、380nm前後の紫外領域について反射防止性能を得たい場合は微小突起の高さが約50nmでも可能であり、同様に700nm前後の赤外領域については約150nm〜実用上を考慮し400nmであれば可能である。尚、前記の通り微小突起の配置ピッチについては高さについて飽和するような製作条件を見出し、反射防止物品の反射率を効果的に操作する事が可能である。更に、微小突起の頂部構造についても、従来の単峰から改良を加える事で高さと反射率を両立し、且つ、物理的にスティッキングを起こしにくく、効果的に反射率を低減する事が可能となっている。   In addition to visible light antireflection applications as described above, or in the visible light environment, depending on the environmental conditions in which the antireflective material is installed and used, the moth eye according to the assumed antireflection wavelength is used. By forming the structure and having a height distribution, as mentioned above, even when using materials with lower hardness due to process requirements, etc., it prevents sticking to each other. It is possible to produce an antireflection material having both optical performance requirements. For example, when it is desired to obtain antireflection performance in the ultraviolet region around 380 nm, the height of the minute protrusion can be about 50 nm. Similarly, in the infrared region around 700 nm, about 150 nm to 400 nm in consideration of practical use. Is possible. In addition, as described above, it is possible to find the production conditions that saturate the height of the arrangement pitch of the fine protrusions and to effectively operate the reflectance of the antireflection article. Furthermore, the top structure of the microprotrusions can be improved from the conventional single peak to achieve both height and reflectivity, and it is difficult to cause sticking physically, and the reflectivity can be effectively reduced. It has become.

図11は、多峰性微小突起51、51A中において、複数の頂点を含む包絡面が先細りの釣鐘形状の包絡面を構成している多峰性微小突起51A((以下このような特徴を備える微小突起のことを「釣鐘状多峰性微小突起」とも言う。)の断面を模式的に示す図である。ここで、釣鐘状多峰性微小突起51Aの包絡面Rとは、釣鐘状多峰性微小突起51Aの各頂点(P1、P2、P3)を含んでなるベジェ曲線、又は、Bスプライン曲線等によって作成される自由曲面であり、曲線の一の下端部P2から釣鐘状多峰性微小突起51Aの頂点P1を経て、他の下端部P3に至る部分に形成される曲面のことを言う。釣鐘状多峰性微小突起51Aにおいては、微小突起の各頂点(P1、P2、P3)を含んでなる包絡面Rが、先細りの釣鐘形状となっている。即ち、複数の峰を含み高さ方向(図11ではZ方向)を含む仮想的切断面で切断した場合の縦断面形状が、頂点を複数個含み各頂点近傍が上に凸の曲線になる代数曲線Z=a+a+・・+a2n2n+・・で近似されるような形状である。尚、特殊な場合としては、各頂点に外接する球面、回転楕円体面、回転放物面、回転双曲面等の2次曲面で有り得る。 FIG. 11 shows a multimodal microprotrusion 51A (which has such a feature hereinafter) in which the envelope surface including a plurality of apexes forms a tapered bell-shaped envelope surface in the multimodal microprojections 51 and 51A. The microprotrusions are also referred to as “bell-shaped multi-peak microprotrusions”.) Here, the envelope surface R of the bell-shaped multi-peak microprotrusions 51A is the bell-shaped multi-protrusions. It is a free-form surface created by a Bezier curve or a B-spline curve including each vertex (P1, P2, P3) of the ridge-like microprojection 51A, and has a bell-like multi-peak shape from the lower end P2 of the curve. This refers to a curved surface formed at the portion extending from the apex P1 of the microprojection 51A to the other lower end P3 In the bell-shaped multimodal microprojection 51A, each apex (P1, P2, P3) of the microprojection An envelope surface R comprising a tapered bell shape and That is, the vertical cross-sectional shape when cutting along a virtual cut surface including a plurality of peaks and including the height direction (Z direction in FIG. 11) includes a plurality of vertices and the vicinity of each vertex is convex upward. It is a shape approximated by an algebraic curve Z = a 2 X 2 + a 4 X 4 + .. + a 2n X 2n + .. In a special case, a spherical surface circumscribing each vertex, It can be a quadratic surface such as a spheroid surface, a paraboloid of revolution, and a hyperboloid of revolution.

釣鐘状多峰性微小突起51Aは、この包絡面Rにおいて、いわゆるモスアイ構造の原理によって、入射光に対する屈折率を基板の厚み方向に連続的に変化させることができる。よって、釣鐘状多峰性微小突起51Aを備える反射防止物品1は、単峰性微小突起のみが存在する反射防止物品と同等以上の反射防止効果を発揮しうる。より詳細には、包絡面Rが、上記の通りの先細りの釣鐘形状となっていることにより、微小突起群を構成する材料と周縁媒質との界面に於ける屈折率の段差、より詳細に言えば、微小突起の高さ方向の単位距離当たりの屈折率の変化率を、多峰性微小突起の各頂点が平面に接している場合に比べて、より低減化(屈折率の高さ方向変化の連続性をより高めること)が可能になるとなるためである。   The bell-shaped multimodal microprotrusions 51A can continuously change the refractive index with respect to incident light in the thickness direction of the substrate on the envelope surface R by the principle of a so-called moth-eye structure. Therefore, the antireflective article 1 provided with the bell-shaped multimodal microprotrusions 51A can exhibit an antireflection effect equivalent to or better than that of the antireflective article having only the single-peak microprotrusions. More specifically, since the envelope surface R has a tapered bell shape as described above, the refractive index step at the interface between the material constituting the microprojection group and the peripheral medium can be described in more detail. For example, the rate of change of the refractive index per unit distance in the height direction of the microprotrusions is further reduced compared to the case where each vertex of the multimodal microprotrusions is in contact with the plane (change in the refractive index height direction). This makes it possible to further improve the continuity of the data.

一般的に、多峰性微小突起51、51Aは、単峰性微小突起50に比して、反射防止性能が高いことは上述した通りであるが、以上の通り、その包絡面Rを、先細りの釣鐘形状とした釣鐘状多峰性微小突起51Aを配置することにより、より顕著に反射防止性能を向上させることができる。   In general, the multimodal microprotrusions 51 and 51A have higher antireflection performance than the single-peak microprotrusions 50 as described above. However, as described above, the envelope surface R is tapered. By arranging the bell-shaped multi-peaked microprojections 51A in the shape of a bell, the antireflection performance can be improved more remarkably.

尚、釣鐘状多峰性微小突起51Aは、その存在により、反射防止効果を顕著に向上させることができるものの、その微小突起中、及び、多峰性微小突起中の割合が充分に多くない場合には、反射防止効果を十分に発揮できないことは言うまでもない。係る観点より、本発明においては、反射防止物品1の表面に存在する微小突起中、多峰性微小突起(51、51A)の個数の比率は7%以上とし、更に、当該多峰性微小突起(51、51A)中における釣鐘状多峰性微小突起51Aの個数の比率は4%以上とする。特に耐擦傷性を向上する効果を十分に奏する為には、多峰性微小突起の比率は10%以上、好ましくは5%以上とする。そして、その場合における、多峰性微小突起(51、51A)中における釣鐘状多峰性微小突起51Aの個数の比率は、20%以上とする。   In addition, although the bell-shaped multimodal microprojections 51A can remarkably improve the antireflection effect due to their presence, the proportion of the microprojections and the multimodal microprojections is not sufficiently high. Needless to say, the antireflection effect cannot be sufficiently exhibited. From such a viewpoint, in the present invention, the ratio of the number of the multimodal microprotrusions (51, 51A) in the microprotrusions existing on the surface of the antireflection article 1 is 7% or more. The ratio of the number of bell-shaped multimodal microprojections 51A in (51, 51A) is 4% or more. In particular, in order to sufficiently exhibit the effect of improving the scratch resistance, the ratio of multimodal microprojections is set to 10% or more, preferably 5% or more. In this case, the ratio of the number of bell-shaped multi-peak microprojections 51A in the multi-peak micro-projections (51, 51A) is 20% or more.

更に、このような多峰性微小突起51、51Aを含む微小突起群(50、51、51A)を有する反射防止物品を詳細に検討したところ、各微小突起の高さが種々に異なることが判った(図6、図10参照)。尚、ここで各微小突起の高さとは、上述したように、麓(付け根)部を共有するある特定の微小突起について、その頂部に存在する最高高さを有する峰(最高峰)の高さを言う。図10の微小突起50のような単峰性微小突起の場合は、頂部における唯一の峰(極大点)の高さが該微小突起の突起高さとなる。又、図10の微小突起51、51Aのような多峰性微小突起の場合は、頂部に在る麓部を共有する複数の峰のうちの最高峰の高さをもって該微小突起の高さとする。このように微小突起の高さが種々に異なる場合には、例えば物体の接触により高さの高い微小突起の形状が損なわれた場合でも、高さの低い微小突起においては、形状が維持されることになる。これによっても反射防止物品では、反射防止機能の局所的な劣化を低減し、更には外観不良の発生を低減することができ、その結果、耐擦傷性を向上することができる。   Further, when the antireflection article having the microprojection group (50, 51, 51A) including such multi-peak microprojections 51 and 51A is examined in detail, it is found that the heights of the microprojections are variously different. (See FIGS. 6 and 10). Here, as described above, the height of each microprotrusion is the height of the peak (highest peak) having the highest height at the top of a specific microprotrusion that shares the ridge (root). Say. In the case of a single-peak microprojection such as the microprojection 50 in FIG. 10, the height of the only peak (maximum point) at the top is the projection height of the microprojection. Further, in the case of multi-peak microprojections such as the microprojections 51 and 51A in FIG. 10, the height of the microprojections is set to the height of the highest peak among a plurality of peaks sharing the ridge at the top. . In this way, when the heights of the microprojections are variously different, for example, even when the shape of the microprojections having a high height is damaged by contact with an object, the shape is maintained in the microprojections having a low height. It will be. Also in this case, in the antireflection article, local deterioration of the antireflection function can be reduced, and furthermore, occurrence of poor appearance can be reduced, and as a result, scratch resistance can be improved.

又、反射防止物品表面の微小突起群と物体との間に塵埃が付着すると、当該物品が反射防止物品に対して相対的に摺動した際に、該塵埃が研磨剤として機能して微小突起(群)の磨耗、損傷が促進されることになる。この場合に、微小突起群を構成する各微小突起間に高低差が有ると、塵埃は高さの高い微小突起に強く接触し、これを損傷させる。一方で低高度の微小突起との接触は弱まり、高さの低い微小突起については損傷が軽減され、無傷若しく軽微な傷で残存した低高度微小突起によって反射防止性能が維持される。   In addition, when dust adheres between the minute projection group on the surface of the antireflection article and the object, the dust functions as an abrasive when the article slides relative to the antireflection article. (Group) wear and damage will be promoted. In this case, if there is a difference in height between the microprojections constituting the microprojection group, the dust strongly contacts the microprojections having a high height and is damaged. On the other hand, the contact with the low-level microprojections is weakened, and the microprojections with a low height are reduced in damage, and the anti-reflective performance is maintained by the low-level microprojections remaining as an intact or light scratch.

又、これに加えて、各微小突起の高さに分布(高低差)の有る微小突起群は、反射防止性能が広帯域化され、白色光のような多波長の混在する光、或いは、広帯域スペクトルを持つ光に対して、全スペクトル帯域で低反射率を実現するのに有利である。これは、かかる微小突起群によって良好な反射防止性能を発現し得る波長帯域が、隣接突起間距離dの他に、突起高さにも依存する為である。   In addition to this, a group of microprotrusions with a distribution (height difference) in the height of each microprotrusion has a broad antireflection performance, and light with multiple wavelengths such as white light or a broadband spectrum. It is advantageous to realize low reflectivity in the entire spectrum band for light having This is because the wavelength band in which good antireflection performance can be exhibited by such a microprojection group depends not only on the distance d between adjacent projections but also on the projection height.

又、この場合には、多数の微小突起のうちの高さの高い微小突起のみが、例えば反射防止物品1と対向するように配置された各種の部材表面と接触することになる。これにより高さが同一の微小突起のみによる場合に比して格段的に滑りを良くすることができ、製造工程等における反射防止物品の取り扱いを容易とすることができる。尚、このように滑りを良くする観点から、ばらつきは、標準偏差により規定した場合に、10nm以上必要であるものの、50nmより大きくなると、このばらつきによる表面のざらつき感が感じられるようになる。従ってこの高さのばらつきは、10nm以上、50nm以下であることが好ましい。   In this case, only the high microprojections out of the many microprojections come into contact with the surfaces of various members arranged to face the antireflection article 1, for example. Thereby, it is possible to remarkably improve the slip as compared with the case where only the minute protrusions having the same height are used, and it is possible to easily handle the antireflection article in the manufacturing process or the like. From the viewpoint of improving the slipping as described above, the variation needs to be 10 nm or more when defined by the standard deviation. However, when the variation is larger than 50 nm, a feeling of surface roughness due to the variation can be felt. Therefore, the height variation is preferably 10 nm or more and 50 nm or less.

この実施形態では、陽極酸化処理における条件を下記の通りに設定し、これをもって多峰性微小突起と単峰性微小突起とを混在させ、又、微***の高さをばらつかせて、更に、多峰性微小突起の一部が、上記の釣鐘状多峰性微小突起となるようにする。これらは、陽極酸化により作製される微***の間隔をばらつかせることにより実現することができる。又、ロール版に作製される微***の深さのばらつきによるものであり、このような微***の深さのばらつきについても、陽極酸化処理におけるばらつきに起因するものと言える。   In this embodiment, the conditions in the anodic oxidation treatment are set as follows, and with this, multimodal microprojections and monomodal microprojections are mixed, the height of the microholes is varied, and A part of the multimodal microprotrusions is the above-mentioned bell-shaped multimodal microprotrusions. These can be realized by varying the interval between the micro holes formed by anodization. Further, this is due to variations in the depth of the microholes formed in the roll plate, and it can be said that such variations in the depth of the microholes are also caused by variations in the anodizing treatment.

ここで陽極酸化処理における印加電圧(化成電圧)と微***の間隔とは比例関係にあり、更に一定範囲より印加電圧が逸脱するとばらつきが大きくなる。これにより、濃度0.01M〜0.03Mの硫酸、シュウ酸、リン酸の水溶液を使用して、電圧15V(第1工程)〜35V(第2工程:第1工程に対して約2.3倍)の印加電圧により、頂点が複数の微小突起と単峰性微小突起とが混在し、且つ、微小突起の高さがばらついた反射防止物品を生産用のロール版を作製することができる。尚、印加電圧が変動すると、微***の間隔のばらつきが大きくなることにより、例えば直流電源によりバイアスした交流電源を使用して印加用電圧を生成する場合等、印加電圧を意図的に変動させてもよい。又、電圧変動率の大きな電源を使用して陽極酸化処理を実行してもよい。   Here, the applied voltage (formation voltage) in the anodic oxidation treatment and the interval between the minute holes are in a proportional relationship, and the variation increases when the applied voltage deviates from a certain range. Thus, using an aqueous solution of sulfuric acid, oxalic acid and phosphoric acid having a concentration of 0.01M to 0.03M, a voltage of 15V (first step) to 35V (second step: about 2.3 with respect to the first step). Double) applied voltage, it is possible to produce a roll plate for production of an antireflective article in which a plurality of microprojections having a vertex and a single-peak microprojection coexist and the heights of the microprojections vary. When the applied voltage fluctuates, the variation in the gap between the micro holes increases, so that the applied voltage is intentionally varied, for example, when the applied voltage is generated using an alternating current power source biased by a direct current power source. Also good. Further, the anodizing treatment may be performed using a power source having a large voltage fluctuation rate.

そして、ロール版の製造条件を特定の条件範囲に変更した場合、少なくとも、反射防止物品の一部において、微小突起の一部が、上記において説明した釣鐘状多峰性微小突起となることが判明した。   Then, when the production conditions of the roll plate are changed to a specific condition range, at least in a part of the antireflection article, it turns out that a part of the microprotrusions becomes the bell-shaped multimodal microprotrusions described above. did.

以上の構成によれば、反射防止物品において、微小突起の一部を、釣鐘状多峰性微小突起とすることにより、従来に比して、反射防止性能及び、耐擦傷性を向上することができる。   According to the above configuration, in the antireflection article, by making a part of the microprotrusions into a bell-shaped multimodal microprotrusion, the antireflection performance and the scratch resistance can be improved as compared with the conventional art. it can.

〔他の実施形態〕
以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態の構成を種々に変更し、更には従来構成と組み合わせることができる。
[Other Embodiments]
The specific configuration suitable for the implementation of the present invention has been described in detail above. However, the present invention is not limited to the configuration of the above-described embodiment, and further the conventional configuration without departing from the spirit of the present invention. Can be combined.

即ち、上述の実施形態では、陽極酸化処理とエッチング処理との繰り返し回数をそれぞれ3(〜5)回に設定する場合について述べたが、本発明はこれに限らず、繰り返し回数をこれ以外の回数に設定してもよく、又、このように複数回処理を繰り返して、最後の処理を陽極酸化処理とする場合にも広く適用することができる。   That is, in the above-described embodiment, the case has been described in which the number of repetitions of the anodizing treatment and the etching treatment is set to 3 (to 5) times, but the present invention is not limited to this, and the number of repetitions is other than this. In addition, the present invention can be widely applied to the case where the treatment is repeated a plurality of times and the final treatment is anodizing treatment.

又、上述の実施形態では、反射防止物品を液晶表示パネル、電場発光表示パネル、プラズマ表示パネル等の各種画像表示パネルの表側面に配置して視認性を向上する場合について述べたが、本発明はこれに限らず、例えば液晶表示パネルの裏面側に配置してバックライトから液晶表示パネルへの入射光の反射損失を低減させる場合(入射光効率を増大させる場合)にも広く適用することができる。尚、ここで画像表示パネルの表面側とは、該画像表示パネルの画像光の出光面であり、画像観察者側の面でもある。又、画像表示パネルの裏面側とは、該画像表示パネルの表面の反対側面であり、バックライト(背面光源)を用いる透過型画像表示裝置の場合は、該バックライトからの照明光の入光面でもある。   In the above-described embodiment, the case where the antireflection article is arranged on the front side surface of various image display panels such as a liquid crystal display panel, an electroluminescent display panel, a plasma display panel, etc. has been described. However, the present invention is not limited to this. For example, it can be widely applied to the case where the reflection loss of incident light from the backlight to the liquid crystal display panel is reduced by reducing the reflection loss of incident light from the backlight (increasing incident light efficiency). it can. Here, the surface side of the image display panel is a light output surface of the image display panel and also a surface on the image observer side. The back side of the image display panel is the opposite side of the surface of the image display panel. In the case of a transmissive image display apparatus using a backlight (back light source), the incident light from the backlight is incident. It is also a surface.

又、上述の実施形態では、賦型用樹脂にアクリレート系の紫外線硬化性樹脂を適用する場合について述べたが、本発明はこれに限らず、エポキシ系、ポリエステル系等の各種紫外線硬化性樹脂、或いはアクリレート系、エポキシ系、ポリエステル系等の電子線硬化性樹脂、ウレタン系、エポキシ系、ポリシロキサン系等の熱硬化性樹脂等の各種材料及び各種硬化形態の賦型用樹脂を使用する場合にも広く適用することができ、更には例えば加熱した熱可塑性の樹脂を押圧して賦型する場合等にも広く適用することができる。   In the above-described embodiment, the case where an acrylate-based ultraviolet curable resin is applied to the shaping resin has been described. However, the present invention is not limited to this, and various ultraviolet curable resins such as epoxy-based and polyester-based resins, Or when using various materials such as acrylate-based, epoxy-based, polyester-based and other electron-beam curable resins, urethane-based, epoxy-based, polysiloxane-based thermosetting resins, and various curing forms of molding resins. Can also be widely applied, and further, for example, can be widely applied to the case of shaping by pressing a heated thermoplastic resin.

又、上述の実施形態では、図1に示す通り、基材2の一方の面上に受容層4(紫外線硬化性樹脂層)を積層してなる積層体の該受容層4上に微小突起群を賦形し、該受容層4を硬化せしめて反射防止物品1を形成している。層構成としては2層の積層体となる。但し、本発明は、かかる形態のみに限定される訳では無い。本発明の反射防止物品1は、図示は略すが、基材2の一方の面上に、他の層を介さずに直接、微小突起群を賦形した単層構成であってもよい。或いは、基材2の一方の面に1層以上の中間層(層間の密着性、塗工適性、表面平滑性等の基材表面性能を向上させる層。プライマー層、アンカー層等とも呼稱される。)を介して受容層4を形成し、該受容層表面に微小突起群を賦形した3層以上の積層体であってもよい。   In the above-described embodiment, as shown in FIG. 1, the microprojection group is formed on the receiving layer 4 of the laminate formed by stacking the receiving layer 4 (ultraviolet curable resin layer) on one surface of the substrate 2. And the receiving layer 4 is cured to form the antireflection article 1. The layer structure is a two-layer laminate. However, the present invention is not limited to such a form. Although the illustration is omitted, the antireflection article 1 of the present invention may have a single-layer configuration in which microprojections are formed directly on one surface of the substrate 2 without interposing another layer. Alternatively, one or more intermediate layers on one surface of the substrate 2 (layers that improve substrate surface performance such as interlayer adhesion, coating suitability, surface smoothness, etc. Also called primer layer, anchor layer, etc. 3), the receiving layer 4 may be formed, and a microprojection group may be formed on the surface of the receiving layer.

更に、上述の実施形態では、図1に示す通り、基材2の一方の面上にのみ(直接或いは他の層を介して)微小突起群を形成しているが、本発明はかかる実施形態には限定され無い。基材2の両面上に(直接或いは他の層を介して)各々微小突起群を形成した構成であってもよい。又、図示は略すが、図1等に図示した通り、本発明の反射防止物品1において、基材2の微小突起群形成面とは反対側の面(図1においては基材2の下側面)に各種接着剤層を形成し、更に該接着剤層表面に離型フィルム(離型紙)を剥離可能に積層してなる接着加工品の形態とすることも出来る。かかる形態においては、離型フィルムを剥離除去して接着剤層を露出せしめ、該接着剤層により所望の物品の所望の表面上に本発明の反射防止物品1を貼り合わせ、積層することが出来、簡便に所望の物品に反射防止性能を付与することができる。接着剤としては、粘着剤(感圧接着剤)、2液硬化型接着剤、紫外線硬化型接着剤、熱硬化型接着剤、熱熔融型接着剤等の公知の接着形態のものが各種使用出来る。   Furthermore, in the above-described embodiment, as shown in FIG. 1, the microprojection group is formed only on one surface of the base material 2 (directly or through another layer), but the present invention is such an embodiment. It is not limited to. The structure which formed the microprotrusion group each on both surfaces of the base material 2 (directly or through another layer) may be sufficient. Although not shown, as shown in FIG. 1 and the like, in the antireflection article 1 of the present invention, the surface opposite to the surface on which the microprojections are formed of the substrate 2 (the lower surface of the substrate 2 in FIG. 1). ), Various adhesive layers are formed, and a release film (release paper) is laminated on the surface of the adhesive layer so as to be peelable. In such a form, the release film is peeled and removed to expose the adhesive layer, and the antireflection article 1 of the present invention can be laminated and laminated on the desired surface of the desired article by the adhesive layer. The antireflection performance can be easily imparted to a desired article. As the adhesive, various types of known adhesive forms such as a pressure-sensitive adhesive (pressure-sensitive adhesive), a two-component curable adhesive, an ultraviolet curable adhesive, a thermosetting adhesive, and a hot melt adhesive can be used. .

又、図示は略すが、図1等に示す通り本発明の反射防止物品1において、微小突起群形成面上に剥離可能な保護フィルムを仮接着した状態で保管、搬送、売買、後加工若しくは施工を行い、而かる後に適時、該保護フィルムを剥離除去する形態とすることもできる。かかる形態においては、保管、搬送等の間に微小突起群が損傷若しくは汚染して反射防止性能が低下を防止することができる。   Although not shown, in the anti-reflective article 1 of the present invention as shown in FIG. 1 and the like, storage, transportation, sales, post-processing or construction is performed with a protective film that can be peeled off on the surface where the microprojections are formed. After that, the protective film can be peeled and removed at an appropriate time. In such a configuration, it is possible to prevent the antireflection performance from being deteriorated due to damage or contamination of the microprojection group during storage, transportation, or the like.

又、上述の実施形態では、図1、図10に示すように、各隣接微小突起間の谷底(高さの極小点)を連ねた面は高さが一定な平面であったが、本発明はこれに限らず、図12に示すように、各微小突起間の谷底を連ねた包絡面が、可視光線帯域の最長波長λmax以上の周期D(即ち、D>λmaxである)でうねった構成としてもよい。又、該周期的なうねりは、基材2の表裏面に平行なXY平面(図10、図12参照)における1方向(例えばX方向)のみでこれと直交する方向(例えばY方向)には一定高さであってもよいし、或いはXY平面における2方向(X方向及びY方向)共にうねりを有していてもよい。D>λmaxを満たす周期Dでうねった凹凸面6が多数の微小突起からなる微小突起群に重畳することによって、微小突起群で完全に反射防止し切れずに残った反射光を散乱し、殘留反射光、とくに鏡面反射光を更に視認し難くし、以って、反射防止効果を一段と向上させることができる。   In the above-described embodiment, as shown in FIGS. 1 and 10, the surface connecting the valley bottoms (minimum points of height) between adjacent minute protrusions is a flat surface having a constant height. However, the configuration is not limited to this, and as shown in FIG. 12, the envelope surface connecting valleys between the microprotrusions wavy with a period D (that is, D> λmax) that is longer than the longest wavelength λmax of the visible light band. It is good. Further, the periodic undulation is only in one direction (for example, the X direction) in the XY plane (see FIGS. 10 and 12) parallel to the front and back surfaces of the base material 2 and in a direction (for example, the Y direction) perpendicular thereto. The height may be constant, or the two directions (X direction and Y direction) in the XY plane may have undulations. The uneven surface 6 that undulates with a period D satisfying D> λmax is superimposed on a microprojection group composed of a large number of microprojections, so that the reflected light remaining without being completely prevented from being reflected by the microprojection group is scattered, so that Reflected light, particularly specularly reflected light, can be made more difficult to visually recognize, and the antireflection effect can be further improved.

尚、係る凹凸面6の周期Dが前面に渡って一定では無く分布を有する場合は、該凹凸面について凸部間距離の度数分布を求め、その平均値をDAVG、標準偏差をΣとしたときの、
MIN=DAVG―2Σ
として定義する最小隣接突起間距離を以って周期Dの代わりとして設計する。即ち、微小突起群の殘留反射光の散乱効果を十分奏し得る条件は、
MIN>λmax
である。通常、D又はDMINは1〜200μm、好ましくは10〜100μmとされる。
各微小突起の谷底を連ねた包絡面形が、D(又はDMIN)>λmax、なる凹凸面6を呈する樣な微小突起群を形成する具体的な製造方法の一例を挙げると以下の通りである。即ち、ロール版13の製造工程において、円筒(又は円柱)形状の母材の表面にサンドブラスト又はマット(つや消し)メッキによって凹凸面6の凹凸形状に対応する凹凸形状を賦形する。次いで、該凹凸形状の面上に、直接或いは必要に応じて適宜の中間層を形成した後、アルミニウ層を積層する。その後、該凹凸形状表面に対応した表面形状を賦形されたアルミニウム層に上述の実施形態と同様にして陽極酸化処理及びエッチング処理を施して微小突起を含む微小突起群を形成する。
In addition, when the period D of the uneven surface 6 has a distribution that is not constant over the front surface, the frequency distribution of the distance between the protrusions is obtained for the uneven surface, and the average value is D AVG and the standard deviation is Σ. When
D MIN = D AVG -2Σ
Designed as an alternative to period D with a minimum inter-protrusion distance defined as That is, conditions that can sufficiently exhibit the scattering effect of the reflected light of the microprojections are as follows:
D MIN > λmax
It is. Usually, D or D MIN is 1 to 200 μm, preferably 10 to 100 μm.
An example of a specific manufacturing method for forming a concavo-convex microprojection group having an uneven surface 6 in which the envelope surface connecting the valley bottoms of each microprojection is D (or D MIN )> λmax is as follows. is there. That is, in the manufacturing process of the roll plate 13, a concavo-convex shape corresponding to the concavo-convex shape of the concavo-convex surface 6 is formed on the surface of a cylindrical (or columnar) base material by sandblasting or mat (matte) plating. Next, an appropriate intermediate layer is formed on the uneven surface directly or as necessary, and then an aluminum layer is laminated. Thereafter, the aluminum layer having a surface shape corresponding to the uneven surface is subjected to anodizing treatment and etching treatment in the same manner as in the above-described embodiment to form a microprojection group including microprojections.

又、上述の実施形態では、ロール版を使用した賦型処理によりフィルム形状による反射防止物品を生産する場合について述べたが、本発明はこれに限らず、反射防止物品の形状に係る透明基材の形状に応じて、例えば平板、特定の曲面形状による賦型用金型を使用した枚葉の処理により反射防止物品を作成する場合等、賦型処理に係る工程、金型は、反射防止物品の形状に係る透明基材の形状に応じて適宜変更することができる。   In the above-described embodiment, the case where an antireflection article having a film shape is produced by a forming process using a roll plate is described. However, the present invention is not limited to this, and the transparent substrate according to the shape of the antireflection article is used. Depending on the shape of the mold, for example, when creating an antireflection article by processing a flat plate or a single wafer using a mold for molding with a specific curved surface shape, the process related to the molding process, the mold is an antireflection article It can change suitably according to the shape of the transparent base material which concerns on the shape of this.

又、上述の実施形態では、画像表示パネルの表側面、或いは、照明光の入射面にフィルム形状による反射防止物品を配置する場合について述べたが、本発明はこれに限らず、種々の用途に適用することができる。具体的には、画像表示パネルの画面上に間隙を介して設置されるタッチパネル、各種の窓材、各種光学フィルタ等による表面側部材の裏面(画像表示パネル側)に配置する用途に適用することができる。尚、この場合には、画像表示パネルと表面側部材との間の光の干渉によるニュートンリング等の干渉縞の発生の防止、画像表示パネルの出光面と表面側部材の入光面側との間の多重反射によるゴースト像の防止、更には画面から出光されてこれら表面側部材に入光する画像光について、反射損失の低減等の効果を奏することができる。   In the above-described embodiment, the case where the antireflection article having the film shape is arranged on the front side surface of the image display panel or the incident surface of the illumination light has been described. However, the present invention is not limited to this and is used for various applications. Can be applied. Specifically, it should be applied to applications that are placed on the back surface (image display panel side) of the surface side member such as a touch panel, various window materials, various optical filters, etc. installed on the screen of the image display panel through a gap. Can do. In this case, the occurrence of interference fringes such as Newton rings due to light interference between the image display panel and the surface side member is prevented, and the light emission surface of the image display panel and the light incident surface side of the surface side member are It is possible to prevent ghost images due to multiple reflections between them, and to achieve effects such as reduction of reflection loss with respect to image light emitted from the screen and entering these surface side members.

又、店舗のショウウインドウや商品展示箱、美術館の展示物の展示窓や展示箱等に使用する硝子板表面(外界側)、或いは表面及び裏面(商品又は展示物側面)の両面に配置するようにしてもよい。尚、この場合、該硝子板表面の光反射防止による商品、美術品等の顧客や観客に対する視認性を向上することができる。   In addition, it is arranged on the glass plate surface (external side) used for the show window and product display box of the store, the display window and display box of the exhibition of the museum, or both the front and back surfaces (the product or the display side). It may be. In this case, it is possible to improve the visibility of customers and spectators of products, artworks, etc. by preventing light reflection on the surface of the glass plate.

又、眼鏡、望遠鏡、写真機、ビデオカメラ、銃砲の照準鏡(狙撃用スコープ)、双眼鏡、潜望鏡等の各種光学機器に用いるレンズ又はプリズムの表面に配置する場合にも広く適用することができる。この場合、レンズ又はプリズム表面の光反射防止による視認性を向上することができる。又、更に書籍の印刷部(文字、写真、図等)表面に配置する場合にも適用して、文字等の表面の光反射を防止し、文字等の視認性向上することができる。又、看板、ポスター、其の他各種店頭、街頭、外壁等における各種表示(道案内、地図、或いは禁煙、入口、非常口、立入禁止等)の表面に配置して、これらの視認性を向上することができる。又、更に白熱電球、発光ダイオード、螢光燈、水銀燈、EL(電場発光)等を用いた照明器具の窓材(場合によっては、拡散板、集光レンズ、光学フィルタ等も兼ねる)の入光面側に配置するようにして、窓材入光面の光反射を防止し、光源光の反射損失を低減し、光利用効率を向上することができる。又、更に時計、其の他各種計測機器の表示窓表面(表示観察者側)に配置して、これら表示窓表面の光反射を防止し、視認性を向上することができる。   Further, the present invention can be widely applied to the case where the lens or the prism is used on various optical devices such as glasses, a telescope, a camera, a video camera, a gun sighting mirror (sniper scope), binoculars, a periscope, and the like. In this case, the visibility by preventing light reflection on the lens or prism surface can be improved. Further, it can also be applied to the case where the book is placed on the surface of a printed part (characters, photos, drawings, etc.), thereby preventing light reflection on the surface of characters and the like and improving the visibility of characters and the like. In addition, it can be placed on the surface of signs (posters, posters, other various stores, streets, exterior walls, etc.) (road guidance, maps, smoking cessation, entrances, emergency exits, no entry, etc.) to improve visibility. be able to. In addition, light incident on window materials for lighting fixtures using incandescent bulbs, light-emitting diodes, fluorescent lamps, mercury lamps, EL (electroluminescence), etc. (sometimes also serving as diffusers, condensing lenses, optical filters, etc.) By arranging it on the surface side, it is possible to prevent light reflection on the light incident surface of the window material, reduce the reflection loss of the light source light, and improve the light utilization efficiency. Further, it can be arranged on the display window surface (display observer side) of a timepiece and other various measuring devices to prevent light reflection on the display window surface and improve visibility.

又、更に、住宅、店舗、事務所、学校、病院等の建築物の窓、扉、間仕切、壁面等を構成する透明基板(窓硝子等)の表面(室内側、室外側、あいはその両側)の表面に配置して、外界の視認性、或は、採光効率を向上することができる。又、更に、温室、農業用ビニールハウスの透明シート、若しくは透明板(窓材)の表面に配置して、太陽光の採光効率を向上することができる。更に、又、太陽電池表面に配置して、太陽光の利用効率(発電効率)を向上することができる。   In addition, the surface (indoor side, outdoor side, or both sides) of transparent substrates (window glass, etc.) constituting windows, doors, partitions, wall surfaces, etc. of buildings such as houses, stores, offices, schools, hospitals, etc. ) To improve the visibility of the outside world or the daylighting efficiency. Furthermore, it can arrange | position on the surface of a transparent sheet of a greenhouse, an agricultural greenhouse, or a transparent board (window material), and can improve the sunlight lighting efficiency. Furthermore, it can arrange | position on the solar cell surface and can improve the utilization efficiency (power generation efficiency) of sunlight.

又、更に、上述の実施形態においては、反射防止を図る電磁波の波長帯域を、専ら、可視光線帯域(の全域又は一部帯域)としたが、本発明はこれに限らず、反射防止を図る電磁波の波長帯域を赤外線、紫外線等の可視光線以外の波長帯域に設定してもよい。その場合は前記の各条件式中において、電磁波の波長帯域の最短波長Λminを、それぞれ、赤外線、紫外線等の波長帯域に於ける反射防止効果を希望する最短波長に設定すればよい。例えば、最短波長Λminが850nmの赤外線帯域の反射防止を希望する場合は、隣接突起間距離d(若しくは其の最大値dmax)を850nm以下、例えば、d(dmax)=800nmと設計すればよい。尚、この場合は、可視光線帯域(380〜780nm)においては反射防止効果は期待し得ず、専ら波長850nm以上の赤外線に対しての反射防止効果を奏する反射防止物品が得られる。   Furthermore, in the above-described embodiment, the wavelength band of the electromagnetic wave for preventing reflection is exclusively the visible light band (entire area or partial band thereof). However, the present invention is not limited to this, and antireflection is achieved. The wavelength band of electromagnetic waves may be set to a wavelength band other than visible light such as infrared rays and ultraviolet rays. In that case, the shortest wavelength Λmin in the wavelength band of the electromagnetic wave in each of the conditional expressions described above may be set to the shortest wavelength desired for the antireflection effect in the wavelength band of infrared rays, ultraviolet rays, or the like. For example, when it is desired to prevent reflection in the infrared band where the shortest wavelength Λmin is 850 nm, the distance d between adjacent protrusions (or its maximum value dmax) may be designed to be 850 nm or less, for example, d (dmax) = 800 nm. In this case, an antireflection effect cannot be expected in the visible light band (380 to 780 nm), and an antireflection article that exhibits an antireflection effect exclusively for infrared rays having a wavelength of 850 nm or more can be obtained.

以上例示の各種実施形態において、硝子板等の透明基板の表面、裏面、或いは表裏両面に本発明のフィルム状の反射防止物品を配置する場合、該透明基板の全面にわたって配置、被覆する以外に、一部分の領域にのみ配置することも出来る。かかる例としては、例えば、1枚の窓硝子について、其の中央部分の正方形領域において、室内側表面にのみフィルム状の反射防止物品を粘着剤で貼着し、その他領域には反射防止物品を貼着し無い場合を挙げることが出来る。透明基板の一部分の領域にのみ反射防止物品を配置する形態の場合は、特別な表示や衝突防止柵等の設置無しでも、該透明基板の存在を視認し易くして、人が該透明基板に衝突、負傷する危険性を低減する効果、及び室内(屋内)の覗き見防止と該透明基板の(該反射防止物品の配置領域における)透視性とが両立出来ると言う効果を奏し得る。   In various exemplary embodiments described above, when the film-like antireflection article of the present invention is disposed on the front surface, back surface, or both front and back surfaces of a transparent substrate such as a glass plate, in addition to disposing and covering the entire surface of the transparent substrate, It can also be arranged only in a partial area. As an example of this, for example, for a single window glass, a film-shaped antireflection article is attached to the indoor side surface only with an adhesive in a square area at the center, and an antireflection article is provided in the other areas. The case where it does not stick can be mentioned. In the case where the antireflection article is arranged only in a partial area of the transparent substrate, it is easy to visually recognize the presence of the transparent substrate without special display or a collision prevention fence, etc. The effect of reducing the risk of collision and injury, and the effect that both the prevention of peeping indoors (indoors) and the transparency of the transparent substrate (in the region where the antireflection article is disposed) can be achieved.

1 反射防止物品
2 基材
4 紫外線硬化性樹脂層、受容層
50 単峰性微小突起
51 多峰性微小突起
51A 釣鐘状多峰性微小突起
6 凹凸面
10 製造工程
12 ダイ
13 ロール版
14、15 ローラ
g 溝
R 包絡面
DESCRIPTION OF SYMBOLS 1 Antireflection article 2 Base material 4 Ultraviolet curable resin layer, receiving layer 50 Unimodal microprotrusion 51 Multimodal microprotrusion 51A Bell-shaped multimodal microprotrusion 6 Concavity and convexity 10 Manufacturing process 12 Die 13 Roll plate 14, 15 Roller g Groove R Envelope

Claims (3)

微小突起が密接して配置され、隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下である反射防止物品において、
前記微小突起の少なくとも一部が、複数の頂点を有する多峰性微小突起であり、
前記多峰性微小突起の少なくとも一部において、
前記複数の頂点を含む包絡面が、先細りの釣鐘形状となっている反射防止物品。
In the antireflection article in which the microprotrusions are closely arranged and the interval between the adjacent microprotrusions is equal to or less than the shortest wavelength of the wavelength band of the electromagnetic wave to prevent reflection,
At least a part of the microprojections is a multimodal microprojection having a plurality of vertices,
In at least part of the multimodal microprojections,
An antireflection article in which an envelope surface including the plurality of apexes has a tapered bell shape.
画像表示パネルの出光面上に、請求項1に記載の反射防止物品を配置した画像表示装置。   The image display apparatus which has arrange | positioned the antireflection article | item of Claim 1 on the light emission surface of an image display panel. 反射防止物品の製造に供する反射防止物品の製造用金型であって、
前記反射防止物品は、
微小突起が密接して配置され、
隣接する前記微小突起の間隔が、反射防止を図る電磁波の波長帯域の最短波長以下であり、
前記微小突起の少なくとも一部が、複数の頂点を有する多峰性微小突起であり、
前記多峰性微小突起の少なくとも一部において、
前記複数の頂点を含む包絡面が、先細りの釣鐘形状となっており、
前記反射防止物品の製造用金型は、
前記微小突起に対応する微細孔が密接して作製された
反射防止物品の製造用金型。
A mold for manufacturing an antireflective article for use in manufacturing an antireflective article,
The antireflective article is
The microprotrusions are closely placed,
The interval between the adjacent minute protrusions is equal to or less than the shortest wavelength of the wavelength band of the electromagnetic wave for preventing reflection,
At least a part of the microprojections is a multimodal microprojection having a plurality of vertices,
In at least part of the multimodal microprojections,
The envelope surface including the plurality of vertices has a tapered bell shape,
The mold for manufacturing the antireflection article is:
A mold for manufacturing an antireflective article in which micropores corresponding to the microprotrusions are produced in close contact.
JP2012169748A 2012-07-31 2012-07-31 Antireflection article, image display device, and mold for manufacturing antireflection article Pending JP2014029391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169748A JP2014029391A (en) 2012-07-31 2012-07-31 Antireflection article, image display device, and mold for manufacturing antireflection article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169748A JP2014029391A (en) 2012-07-31 2012-07-31 Antireflection article, image display device, and mold for manufacturing antireflection article

Publications (1)

Publication Number Publication Date
JP2014029391A true JP2014029391A (en) 2014-02-13

Family

ID=50202011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169748A Pending JP2014029391A (en) 2012-07-31 2012-07-31 Antireflection article, image display device, and mold for manufacturing antireflection article

Country Status (1)

Country Link
JP (1) JP2014029391A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5788128B1 (en) * 2014-04-22 2015-09-30 シャープ株式会社 Synthetic polymer film having surface with bactericidal action, laminate having synthetic polymer film, sterilization method using surface of synthetic polymer film and method for reactivating surface of synthetic polymer film
US10071175B2 (en) 2014-04-28 2018-09-11 Sharp Kabushiki Kaisha Filter and container having microbicidal activity
US10251393B2 (en) 2014-11-20 2019-04-09 Sharp Kabushiki Kaisha Synthetic polymer film having surface provided with bactericidal activity
US10375953B2 (en) 2015-07-17 2019-08-13 Sharp Kabushiki Kaisha Synthetic polymer film having surface that is provided with bactericidal action, and film comprising same
CN110879491A (en) * 2019-04-15 2020-03-13 友达光电股份有限公司 Display device
US10907019B2 (en) 2015-06-23 2021-02-02 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing activity
US10934405B2 (en) 2018-03-15 2021-03-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, plastic product which includes synthetic polymer film, sterilization method with use of surface of synthetic polymer film, photocurable resin composition, and manufacturing method of synthetic polymer film
US10968292B2 (en) 2017-09-26 2021-04-06 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
US10980255B2 (en) 2014-12-25 2021-04-20 Sharp Kabushiki Kaisha Food preservation method, food film, food container, and food handling method
US11364673B2 (en) 2018-02-21 2022-06-21 Sharp Kabushiki Kaisha Synthetic polymer film and production method of synthetic polymer film
US11883999B2 (en) 2015-09-17 2024-01-30 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007022A (en) * 2014-04-22 2019-01-17 シャープ株式会社 Surface treatment method of synthetic polymer membrane
US11638423B2 (en) 2014-04-22 2023-05-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
KR20160051678A (en) * 2014-04-22 2016-05-11 샤프 가부시키가이샤 Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
JP2016120478A (en) * 2014-04-22 2016-07-07 シャープ株式会社 Synthetic polymer membrane having surface with bactericidal action, laminate having synthetic polymer membrane, sterilization method by using surface of synthetic polymer membrane, method for reactivating surface of synthetic polymer membrane, mold for producing synthetic polymer membrane, and method for producing mold
KR101688364B1 (en) 2014-04-22 2016-12-20 샤프 가부시키가이샤 Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, and method for reactivating surface of synthetic polymer film
US9781926B2 (en) 2014-04-22 2017-10-10 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US9781924B2 (en) 2014-04-22 2017-10-10 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US9781925B2 (en) 2014-04-22 2017-10-10 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
JP6359787B1 (en) * 2014-04-22 2018-07-18 シャープ株式会社 Film having synthetic polymer film, laminate having synthetic polymer film, sterilization method using film surface and method for reactivating film surface
US10136638B2 (en) 2014-04-22 2018-11-27 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
JP6420931B1 (en) * 2014-04-22 2018-11-07 シャープ株式会社 Surface treatment method of synthetic polymer membrane
JP2018183996A (en) * 2014-04-22 2018-11-22 シャープ株式会社 Film having synthetic polymer membrane, laminate having synthetic polymer membrane, sterilization method using film surface and film surface reactivation method
US11641854B2 (en) 2014-04-22 2023-05-09 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
WO2015163018A1 (en) * 2014-04-22 2015-10-29 シャープ株式会社 Synthetic polymer membrane having surface with sterilizing activity, laminate equipped with synthetic polymer membrane, sterilization method utilizing surface of synthetic polymer membrane, method for reactivating surface of synthetic polymer membrane, mold for use in production of synthetic polymer membrane, and method for producing mold
JP6453517B1 (en) * 2014-04-22 2019-01-16 シャープ株式会社 Synthetic polymer film, laminate having synthetic polymer film, sterilization method using surface of synthetic polymer film, and method for reactivating surface of synthetic polymer film
JP2019035081A (en) * 2014-04-22 2019-03-07 シャープ株式会社 Synthetic polymer membrane, laminate having synthetic polymer membrane, sterilization method using surface of synthetic polymer membrane, and reactivation method of surface of synthetic polymer membrane
JP5788128B1 (en) * 2014-04-22 2015-09-30 シャープ株式会社 Synthetic polymer film having surface with bactericidal action, laminate having synthetic polymer film, sterilization method using surface of synthetic polymer film and method for reactivating surface of synthetic polymer film
US10278387B2 (en) 2014-04-22 2019-05-07 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, multilayer structure having synthetic polymer film, sterilization method with the use of surface of synthetic polymer film, method for reactivating surface of synthetic polymer film, mold for production of synthetic polymer film, and mold manufacturing method
US10071175B2 (en) 2014-04-28 2018-09-11 Sharp Kabushiki Kaisha Filter and container having microbicidal activity
US10251393B2 (en) 2014-11-20 2019-04-09 Sharp Kabushiki Kaisha Synthetic polymer film having surface provided with bactericidal activity
US10980255B2 (en) 2014-12-25 2021-04-20 Sharp Kabushiki Kaisha Food preservation method, food film, food container, and food handling method
US10907019B2 (en) 2015-06-23 2021-02-02 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing activity
US10375953B2 (en) 2015-07-17 2019-08-13 Sharp Kabushiki Kaisha Synthetic polymer film having surface that is provided with bactericidal action, and film comprising same
US11883999B2 (en) 2015-09-17 2024-01-30 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film
US10968292B2 (en) 2017-09-26 2021-04-06 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
US11364673B2 (en) 2018-02-21 2022-06-21 Sharp Kabushiki Kaisha Synthetic polymer film and production method of synthetic polymer film
US10934405B2 (en) 2018-03-15 2021-03-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, plastic product which includes synthetic polymer film, sterilization method with use of surface of synthetic polymer film, photocurable resin composition, and manufacturing method of synthetic polymer film
CN110879491A (en) * 2019-04-15 2020-03-13 友达光电股份有限公司 Display device

Similar Documents

Publication Publication Date Title
WO2014021376A1 (en) Antireflective article, image display device, production mold for antireflective article, and production method for antireflective article production mold
JP2014029391A (en) Antireflection article, image display device, and mold for manufacturing antireflection article
WO2014021377A1 (en) Antireflective article, image display device, and production mold for antireflective article
JP5261596B1 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP2014153524A (en) Antireflection article and image display unit
JP5655967B2 (en) Antireflection article and image display device
JP5261597B1 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP5747928B2 (en) Method for manufacturing antireflection article
JP6349830B2 (en) Method for manufacturing antireflection article and method for manufacturing mold for manufacturing antireflection article
JP5644974B2 (en) Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method
JP5261598B1 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP2015187637A (en) Antireflective article, image display device, method for manufacturing antireflective article, molding die for antireflective article, and method for manufacturing molding die
JP5641162B2 (en) Anti-reflective article, image display device, mold for manufacturing anti-reflective article
JP5641161B2 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP5633617B1 (en) Antireflection article, image display device, antireflection article manufacturing mold, antireflection article manufacturing method, and antireflection article manufacturing mold manufacturing method
JP5655966B2 (en) Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method
JP5652564B2 (en) Antireflection article, image display device, antireflection article manufacturing mold, and antireflection article manufacturing mold manufacturing method
JP2014139667A (en) Transparent body and fitting
JP5700309B2 (en) Antireflection article, image display device, and mold for manufacturing antireflection article
JP2015184427A (en) Antireflection article, image display device, manufacturing method of antireflection article, mold for shaping antireflection article, and manufacturing method of mold for shaping
JP6764635B2 (en) Anti-reflective articles and image display devices
JP2015064493A (en) Anti-reflection article, image display device, and mold for manufacturing anti-reflection article
JP2015084096A (en) Antireflective article, image display device, and mold for manufacturing antireflective article
JP6447001B2 (en) Method for producing antireflection article, method for producing mold for shaping antireflection article
JP2016024287A (en) Antireflection article and image display device