JP2014011769A - 無線周波数モジュール用基板およびその製造方法 - Google Patents

無線周波数モジュール用基板およびその製造方法 Download PDF

Info

Publication number
JP2014011769A
JP2014011769A JP2012149333A JP2012149333A JP2014011769A JP 2014011769 A JP2014011769 A JP 2014011769A JP 2012149333 A JP2012149333 A JP 2012149333A JP 2012149333 A JP2012149333 A JP 2012149333A JP 2014011769 A JP2014011769 A JP 2014011769A
Authority
JP
Japan
Prior art keywords
layer
dielectric layer
insulating layer
pattern
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012149333A
Other languages
English (en)
Other versions
JP6002477B2 (ja
Inventor
Tadao Okawa
忠男 大川
Akihito Matsutomi
亮人 松富
Tomoyuki Kasagi
智之 笠置
Hiroko Ikenaga
紘子 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2012149333A priority Critical patent/JP6002477B2/ja
Publication of JP2014011769A publication Critical patent/JP2014011769A/ja
Application granted granted Critical
Publication of JP6002477B2 publication Critical patent/JP6002477B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Waveguide Aerials (AREA)

Abstract

【課題】簡単な構成でアンテナ特性を向上させることが可能でありかつ製造が容易な無線周波数モジュール用基板およびその製造方法を提供する。
【解決手段】アンテナ基板部100は、誘電体層10および第1の絶縁層20を含む。誘電体層10は多孔質材料からなる。誘電体層10の上面上の所定領域に、正方形状を有するアンテナパターン11が形成されている。誘電体層10の下面上には、グランドパターン21を挟んで第1の絶縁層20が設けられている。グランドパターン21は、開口部としてのスロット21sを有する。スロット21sは、誘電体層10を挟んでアンテナパターン11の中心部分に対向するように配置されている。第1の絶縁層20の下面上には、高周波電力を供給可能なマイクロストリップ線路22aが形成されている。1GHzの周波数における誘電体層10の比誘電率が2.00以下に設定される。
【選択図】図1

Description

本発明は、アンテナ素子を含む無線周波数モジュール用基板およびその製造方法に関する。
ミリ波を送信または受信可能なアンテナ一体型のRF(無線周波数)モジュールの開発が進められている。このようなRFモジュールには、例えば平面アンテナが用いられる。平面アンテナは、誘電体基板上にアンテナ素子が設けられた構成を有する。
平面アンテナのアンテナ素子のサイズは、送信または受信される電波の波長に比例するとともに、誘電体基板の比誘電率の平方根に反比例する。マイクロ波は約1cmから約1m程度の波長を有する。マイクロ波用のアンテナ素子のサイズを小さくするために、誘電体基板の比誘電率を高くすることが知られている。
これに対して、ミリ波は約1mmから約10mm以下の波長を有する。このように、ミリ波用のアンテナ素子のサイズはマイクロ波用のアンテナ素子等のサイズに比べて十分に小さい。そのため、ミリ波用の平面アンテナの誘電体基板の比誘電率は高くする必要がない。したがって、ミリ波用のアンテナ素子においては、アンテナ素子の周波数帯域を拡大するとともに高い利得を得るために、誘電体基板の比誘電率を低くすることが好ましい。
特許文献1には、ダイポールアンテナ、誘電体基板およびグランド層からなるダイポール型アンテナ基板が記載されている。誘電体基板の表面に帯状の導体層からなるダイポールアンテナが形成され、誘電体基板の裏面にグランド層が形成されている。このダイポール型アンテナ基板においては、ダイポールアンテナの中心軸に関してダイポールアンテナの両側方に位置する誘電体基板の部分に切り欠きが形成されている。それにより、誘電体基板の実効誘電率が小さくなる。
特許文献2には、パッチ導体と接地導体との間に空隙が形成されたアンテナ装置が記載されている。
特開平10−335927号公報 国際公開第2004/095639号
しかしながら、特許文献1に記載されたダイポール型アンテナ基板では、誘電体基板に高い精度で切り欠きを形成する必要がある。したがって、製造工程の数が増加し、製造プロセスが複雑化する。
また、特許文献2に記載されたアンテナ装置では、パッチ導体と接地導体との間の空隙はスペーサにより形成される。そのため、アンテナ装置内の部品点数が増加し、構成が複雑化する。また、高い精度でスペーサを作製する必要があるため、製造プロセスが複雑化する。
本発明の目的は、簡単な構成でアンテナ特性を向上させることが可能でありかつ製造が容易な無線周波数モジュール用基板およびその製造方法を提供することである。
(1)第1の発明に係る無線周波数モジュール用基板は、互いに対向する第1および第2の面を有する第1の絶縁層と、第1の絶縁層の第1の面上に形成され、開口部を有する接地導体層と、接地導体層上に多孔質材料により形成される誘電体層と、接地導体層の開口部に重なるように誘電体層上に形成されるアンテナ素子と、接地導体層の開口部に重なるように第1の絶縁層の第2の面上に形成される導体パターンとを備え、アンテナ素子、接地導体層の開口部および導体パターンは、導体パターンへの高周波電力の供給時またはアンテナ素子による電波の受信時にアンテナ素子が開口部を通して導体パターンと電磁的に結合されるように配置され、1GHzの周波数における誘電体層の比誘電率は、2.00以下であるものである。
その無線周波数モジュール用基板においては、導体パターンへの高周波電力の供給時にアンテナ素子が接地導体層の開口部を通して導体パターンと電磁的に結合する。それにより、アンテナ素子から電波が放射される。また、アンテナ素子による電波の受信時にアンテナ素子が接地導体層の開口部を通して導体パターンと電磁的に結合する。それにより、導体パターンに高周波電力が発生する。
この場合、多孔質材料を用いることにより1GHzの周波数における誘電体層の比誘電率が2.00以下に設定されるので、アンテナ素子による電波の放射効率が向上する。また、アンテナ素子による放射可能および受信可能な電波の周波数帯域が拡大される。
さらに、多孔質材料により形成される誘電体層を用いることにより、アンテナ素子と接地導体層との間の領域の比誘電率を複雑な構成を用いることなく容易に低減することができる。
これらの結果、簡単な構成でアンテナ特性を向上させることが可能になるとともに、無線周波数モジュール用基板の製造の容易化が実現される。
(2)誘電体層に含まれる複数の空孔の平均孔径は、5μm以下であり、誘電体層の単位体積当りにおける複数の空孔の体積の割合は、40%以上であってもよい。
この場合、複数の空孔の平均孔径が5μm以下であることにより、誘電体層の機械的強度を低下させることなく誘電体層の比誘電率を低くすることができる。また、誘電体層の単位体積当りにおける複数の空孔の体積の割合が40%以上であることにより、誘電体層内で複数の空孔が均一に分散される。それにより、誘電体層における比誘電率のばらつきの発生が抑制される。
(3)多孔質材料は、多孔質性の樹脂からなってもよい。
樹脂の比誘電率は、ガラスおよびセラミック等の他の材料の比誘電率に比べて低い。それにより、誘電体層の比誘電率を十分に低減することができる。
(4)樹脂は、ポリイミドまたはポリエーテルイミドであってもよい。
ポリイミドおよびポリエーテルイミドは、温度変化時の寸法変化量が小さい特性を有する。したがって、信頼性の高い無線周波数モジュール用基板を作製することができる。
(5)1GHzの周波数における誘電体層の誘電正接は、0.005以下であってもよい。
この場合、誘電体層による誘電損失が低減される。それにより、アンテナ素子に高周波電力が供給される場合の電波の放射効率が向上する。また、アンテナ素子による電波の受信効率が向上する。
(6)無線周波数モジュール用基板は、導体パターンを覆うように第1の絶縁層の第2の面上に形成される第2の絶縁層をさらに備え、第2の絶縁層は、高周波電力が出力または入力される電力端子と接地端子とを有する電子部品が実装可能な実装領域を有し、第2の絶縁層の実装領域には、導体パターンに電気的に接続されかつ電子部品の電力端子に接続可能な第1の端子と、接地導体層に電気的に接続されかつ電子部品の接地端子に接続可能な第2の端子とが形成されてもよい。
この場合、電子部品を無線周波数モジュール用基板の実装領域に実装することにより、小型の無線周波数モジュールを容易に作製することができる。
(7)電子部品は、外部信号の入力もしくは出力または電源電圧の供給のための外部端子をさらに有し、第2の絶縁層の実装領域には、電子部品の外部端子に接続可能な第3の端子がさらに形成され、第2の絶縁層上に、第3の端子から実装領域外に延びる配線パターンが形成されてもよい。
この場合、無線周波数モジュール用基板に実装された電子部品に対して配線パターンを通して外部信号を入力もしくは出力し、または電源電圧を容易に供給することができる。
(8)第2の発明に係る無線周波数モジュール用基板の製造方法は、導体パターン、絶縁層、開口部を有する接地導体層、多孔質材料からなる誘電体層およびアンテナ素子をこの順に含む積層構造を形成する工程を備え、アンテナ素子、接地導体層の開口部および導体パターンは、導体パターンへの高周波電力の供給時またはアンテナ素子による電波の受信時にアンテナ素子が開口部を通して導体パターンと電磁的に結合されるように配置され、1GHzの周波数における誘電体層の比誘電率は、2.00以下であるものである。
その無線周波数モジュール用基板の製造方法によれば、導体パターン、絶縁層、開口部を有する接地導体層、多孔質材料からなる誘電体層およびアンテナ素子をこの順に含む積層構造が形成される。この積層構造においては、導体パターンへの高周波電力の供給時にアンテナ素子が接地導体層の開口部を通して導体パターンと電磁的に結合する。それにより、アンテナ素子から電波が放射される。また、アンテナ素子による電波の受信時にアンテナ素子が接地導体層の開口部を通して導体パターンと電磁的に結合する。それにより、導体パターンに高周波電力が発生する。
この場合、多孔質材料を用いることにより1GHzの周波数における誘電体層の比誘電率が2.00以下に設定されるので、アンテナ素子による電波の放射効率が向上する。また、アンテナ素子による放射可能および受信可能な電波の周波数帯域が拡大される。
さらに、多孔質材料により形成される誘電体層を用いることにより、アンテナ素子と接地導体層との間の領域の比誘電率を複雑な構成を用いることなく容易に低減することができる。
これらの結果、簡単な構成でアンテナ特性を向上させることが可能になるとともに、無線周波数モジュール用基板の製造の容易化が実現される。
(9)積層構造を形成する工程は、互いに対向する第1および第2の面を有する絶縁層を用意する工程と、絶縁層の第1の面上に接地導体層を形成する工程と、絶縁層の第2の面上に導体パターンを形成する工程と、接地導体層上に誘電体層を形成する工程と、誘電体層上にアンテナ素子を形成する工程とを含み、誘電体層を形成する工程は、流動性の樹脂および硬化した樹脂に対して相分離する相分離化剤を含む組成物を接地導体層上に塗布する工程と、樹脂を硬化させることにより接地導体層上でミクロ相分離構造を有する樹脂膜を形成する工程と、樹脂膜から相分離化剤を除去する工程とを含んでもよい。
この場合、互いに対向する第1および第2の面を有する絶縁層が用意され、絶縁層の第1の面上に接地導体層が形成される。絶縁層の第2の面上に導体パターンが形成され、接地導体層上に誘電体層が形成される。誘電体層上にアンテナ素子が形成される。
誘電体層の形成時においては、流動性の樹脂および硬化した樹脂に対して相分離する相分離化剤を含む組成物が接地導体層上に塗布された後、樹脂が硬化され、接地導体層上でミクロ相分離構造を有する樹脂膜が形成される。その後、樹脂膜から相分離化剤が除去される。
このようにして、接着剤等の接合材料を用いることなく接地導体層上に誘電体層が形成される。また、接着剤等の接合材料を用いることなくアンテナ素子が誘電体層上に形成される。その結果、アンテナ素子と接地導体層との間の領域の比誘電率の増加を防止しつつ無線周波数モジュール用基板を容易に作製することができる。
(10)樹脂膜から相分離化剤を除去する工程は、樹脂膜に溶剤を含浸させることにより樹脂膜から相分離化剤を抽出する工程を含んでもよい。
この場合、樹脂膜内で樹脂と相分離している相分離化剤が溶剤により溶解する。溶解した相分離化剤が抽出されることにより、樹脂膜内に複数の空孔が形成される。
(11)樹脂は、ポリアミド酸であり、誘電体層を形成する工程は、樹脂膜から相分離化剤を除去する工程の後、ポリアミド酸をポリイミドへ変換する工程をさらに含んでもよい。
これにより、接地導体層上に、多孔質性のポリイミドからなる誘電体層を形成することができる。ポリイミドは、温度変化時の寸法変化量が小さい特性を有する。したがって、信頼性の高い無線周波数モジュール用基板を作製することができる。
(12)積層構造を形成する工程は、互いに対向する第1および第2の面を有する絶縁層を用意する工程と、開口部を有する第1の導体層を絶縁層の第1の面上に形成する工程と、絶縁層の第2の面上に導体パターンを形成する工程と、互いに対向する第3および第4の面を有する誘電体層を用意する工程と、開口部を有する第2の導体層を誘電体層の第3の面上に形成する工程と、誘電体層の第4の面上にアンテナ素子を形成する工程と、第1の導体層と第2の導体層とを接合することにより接地導体層を形成する工程とを含んでもよい。
この場合、互いに対向する第1および第2の面を有する絶縁層が用意され、開口部を有する第1の導体層が絶縁層の第1の面上に形成され、導体パターンが絶縁層の第2の面上に形成される。互いに対向する第3および第4の面を有する誘電体層が用意され、開口部を有する第2の導体層が誘電体層の第3の面上に形成され、アンテナ素子が誘電体層の第4の面上に形成される。アンテナ素子が誘電体層の第4の面上に形成される。第1の導体層と第2の導体層とが接合されることにより接地導体層が形成される。
このようにして、接着剤等の接合材料を用いることなく開口部を有する第2の導体層が誘電体層の第3の面上に形成される。また、接着剤等の接合材料を用いることなくアンテナ素子が誘電体層の第4の面上に形成される。その結果、アンテナ素子と接地導体層との間の領域の比誘電率の増加を防止しつつ無線周波数モジュール用基板を容易に作製することができる。
本発明によれば、簡単な構成でアンテナ特性を向上させることが可能でありかつ無線周波数モジュール用基板の製造の容易化が実現される。
(a)は本発明の一実施の形態に係るRFモジュールの平面図であり、(b)は(a)のA−A線における縦断面図である。 図1(b)のアンテナ基板部の製造方法を示す模式図である。 図2(e)のアンテナ基板部を用いたRFモジュールの製造方法を示す模式図である。 図1(b)のアンテナ基板部の他の製造方法を示す模式図である。 図2(a)の三層基材の製造方法を示す模式的断面図である。 比較例3のサンプルの構成を説明するための模式図である。 比較例5のサンプルの構成を説明するための模式図である。 実施例1および比較例1,2のサンプルについてのシミュレーション結果を示す図である。 実施例1および比較例3,4のサンプルについてのシミュレーション結果を示す図である。 実施例1および比較例5,6のサンプルについてのシミュレーション結果を示す図である。
以下、無線周波数モジュール用基板およびその製造方法について図面を参照しながら説明する。以下の説明では、無線周波数モジュールをRFモジュールと略記する。
(1)RFモジュールの構成
図1(a)は本発明の一実施の形態に係るRFモジュールの平面図であり、図1(b)は図1(a)のA−A線における縦断面図である。図1に示すように、本実施の形態に係るRFモジュール1は、RFモジュール用基板1AおよびRFIC(無線周波数集積回路)1Bを含み、例えばミリ波(30GHz以上300GHz以下の周波数帯域の電波)を放射または受信する。
RFモジュール用基板1Aはアンテナ基板部100を備える。アンテナ基板部100は、誘電体層10および第1の絶縁層20を含む。
誘電体層10は多孔質材料からなり、上面および下面を有する。本実施の形態においては、誘電体層10の多孔質材料として多孔質性の樹脂が用いられる。誘電体層10の上面上の所定領域に、正方形状を有するアンテナパターン11が形成されている。
誘電体層10の下面上には、グランドパターン21を挟んで第1の絶縁層20が設けられている。第1の絶縁層20は上面および下面を有する。グランドパターン21は、開口部として長方形状のスロット21sを有する。スロット21sは、誘電体層10を挟んでアンテナパターン11の中心部分に対向するように配置されている。
第1の絶縁層20の下面上には、マイクロストリップ線路22aおよびグランドパターン22bが形成されている。マイクロストリップ線路22aは、マイクロストリップ線路22aの一部が誘電体層10、グランドパターン21におけるスロット21sの形成部分および第1の絶縁層20を挟んでアンテナパターン11の中心部分に対向するように配置されている。第1の絶縁層20におけるグランドパターン22bの形成領域にスルーホール20hが形成されている。スルーホール20h内に導電性材料として銅VCが充填される。これにより、グランドパターン21とグランドパターン22bとが電気的に接続される。
本実施の形態においては、上記の誘電体層10、アンテナパターン11、第1の絶縁層20、グランドパターン21、マイクロストリップ線路22aおよびグランドパターン22bを含む積層構造が、アンテナ基板部100を構成する。
アンテナ基板部100の第1の絶縁層20の下面上に、マイクロストリップ線路22aおよびグランドパターン22bを覆うように第2の絶縁層30が形成されている。第2の絶縁層30は上面および下面を有する。第2の絶縁層30の下面上にRFIC1Bを実装可能な実装領域1BAが設けられる。図1(a),(b)では、実装領域1BAが2点差線で示される。
第2の絶縁層30の下面上では、実装領域1BAに複数の電極パターン31a,31b,31cが形成されている。また、電極パターン31cから実装領域1BA外に延びるように配線パターン31dが形成されている。
第2の絶縁層30における2つの電極パターン31a,31bの形成領域にそれぞれ2つのスルーホール30hが形成されている。各スルーホール30h内に導電性材料として銅VCが充填される。これにより、マイクロストリップ線路22aと電極パターン31aとが電気的に接続される。また、グランドパターン21と電極パターン31bとがグランドパターン22bを通して電気的に接続される。
3つの電極パターン31a,31b,31c上には、それぞれ3つの電極端子40a,40b,40cが形成されている。
ここで、RFIC1Bは、電力端子50a、接地端子50bおよび外部端子50cを有する。電力端子50aは、RFIC1Bから高周波電力を出力するためまたはRFIC1Bに高周波電力を入力するために用いられる。外部端子50cは、RFIC1Bから外部信号を出力するためまたはRFIC1Bに外部信号を入力するために用いられる。外部端子50cは、RFIC1Bへの電源電圧の供給のために用いられてもよい。
第2の絶縁層30の実装領域1BA上にRFIC1Bを実装する場合には、RFIC1Bの電力端子50a、接地端子50bおよび外部端子50cが、それぞれ図示しないはんだを介して電極端子40a,40b,40cに接続される。この状態で、第2の絶縁層30の下面とRFIC1Bとの間の空間に封止樹脂41が充填される。
第2の絶縁層30の下面上では、さらに配線パターン31dの一部を覆うようにカバー絶縁層42が形成される。カバー絶縁層42から露出する配線パターン31dの部分にはんだボール43が設けられている。
本実施の形態に係るRFモジュール1においては、RFIC1Bの電力端子50aからマイクロストリップ線路22aへ高周波電力が供給される。それにより、アンテナパターン11がグランドパターン21のスロット21sを通してマイクロストリップ線路22aと電磁的に結合する。それにより、アンテナパターン11から電波が放射される。
また、このRFモジュール1においては、アンテナパターン11による電波の受信時に、アンテナパターン11がグランドパターン21のスロット21sを通してマイクロストリップ線路22aと電磁的に結合する。それにより、マイクロストリップ線路22aに高周波電力が発生する。発生した高周波電力は、RFIC1Bの電力端子50aに入力される。
本実施の形態において、アンテナパターン11から放射される電波およびアンテナパターン11により受信される電波の周波数帯域は、50GHz以上80GHz以下であることが好ましく、55GHz以上77GHz以下であることがより好ましい。
(2)アンテナ基板部100およびRFモジュール1の製造方法
図2は、図1(b)のアンテナ基板部100の製造方法を示す模式図である。図2(a)〜(e)においては、図1(a)のA−A線断面図に相当する断面図が示される。
まず、図2(a)に示すように、第1の絶縁層20および2つの導体層21x,22xからなる三層基材20xを用意する。三層基材20xにおいては、第1の絶縁層20の上面および下面にそれぞれ導体層21x,22xが形成されている。
第1の絶縁層20は、例えば液晶ポリマーまたは多孔質性の樹脂からなる。第1の絶縁層20は、後述する誘電体層10と同じ材料により構成されてもよい。本例では、1GHzの周波数における第1の絶縁層20の比誘電率は、例えば1.00よりも大きく5以下であり、1.00よりも大きく3.5以下であることが好ましい。
1GHzの周波数における第1の絶縁層20の誘電正接は、例えば0.01以下であり、0.005以下であることが好ましく、0.004以下であることがより好ましい。
第1の絶縁層20の厚みは、例えば20μm以上150μm以下であり、25μm以上125μm以下であることが好ましく、50μm以上100μm以下であることがより好ましい。
導体層21x,22xはそれぞれ銅からなる。導体層21x,22xの各々の厚みは、60GHzの周波数における導体層21x,22xの表皮深さ以上の大きさを有する。導体層21x,22xの各々の厚みは、例えば0.5μm以上35μm以下であり、1μm以上20μm以下であることが好ましく、3μm以上18μm以下であることがより好ましい。
次に、図2(b)に示すように、一方の導体層21xの一部領域をエッチングすることにより導体層21xに図1のスロット21sを形成する。それにより、第1の絶縁層20の上面上にグランドパターン21が形成される。また、他方の導体層22xの一部領域をエッチングする。それにより、第1の絶縁層20の下面上にマイクロストリップ線路22aおよびグランドパターン22bが形成される。さらに、グランドパターン22bの形成領域にスルーホール20hを形成し、電解めっきによりスルーホール20h内に銅VCを充填する。このようにして、グランドパターン21とグランドパターン22bとを電気的に接続する。
次に、図2(c)に示すように、グランドパターン21上に多孔質性の樹脂により誘電体層10を形成する。誘電体層10の形成方法については後述する。誘電体層10の形成時には、誘電体層10を構成する多孔質性の樹脂の一部がグランドパターン21のスロット21s部分に充填される。
本実施の形態においては、誘電体層10に多孔質性の樹脂を用いることにより、1GHzの周波数における誘電体層10の比誘電率が1.00よりも大きく2.00以下に設定される。この場合、RFモジュール1における電波の放射効率および受信効率が向上する。また、RFモジュール1において放射可能および受信可能な電波の周波数帯域が拡大される。これらのアンテナ特性をさらに向上させるために、周波数1GHzにおける誘電体層10の比誘電率は、1.00よりも大きく1.60以下であることが好ましく、1.00よりも大きく1.50以下であることがより好ましい。
多孔質材料の比誘電率は、次のようにして求めることができる。まず、空洞共振器接動法により1GHzの周波数における多孔質材料の複素誘電率を測定する。測定結果のうち実数部を多孔質材料の比誘電率とする。例えば1GHzの周波数の空洞共振器(関東電子応用開発社製)とネットワークアナライザ(アジレント・テクノロジー社製;N5230C)とを用いることにより、空洞共振器接動法で1GHzの周波数おける多孔質材料の複素誘電率を測定することができる。
1GHzの周波数における誘電体層10の誘電正接は、例えば0.005以下である。この場合、誘電体層10による誘電損失が低減され、RFモジュール1における電波の放射効率および受信効率が向上する。RFモジュール1における電波の放射効率および受信効率をより向上させるために、1GHzの周波数における誘電体層10の誘電正接は、0.004以下であることが好ましい。
誘電体層10の厚みは、例えば20μm以上150μm以下であり、25μm以上125μm以下であることが好ましく、50μm以上100μm以下であることがより好ましい。誘電体層10の厚みが20μm以上である場合、誘電体層10による誘電損失が低減され、RFモジュール1における電波の放射効率および受信効率が向上する。また、誘電体層10の厚みが150μm以下である場合、RFモジュール1における不要な高次モードの発生が抑制される。
誘電体層10に含まれる複数の空孔の平均孔径は、例えば0μmよりも大きく5μm以下であり、0μmよりも大きく3μm以下であることが好ましい。複数の空孔の平均孔径が0μmよりも大きく5μm以下である場合には、誘電体層10の絶縁性および誘電体層10の機械的強度を低下させることなく、誘電体層10の比誘電率および誘電正接を低くすることができる。
誘電体層10に含まれる複数の空孔の平均孔径は、次のようにして求めることができる。例えば、誘電体層10の切断面を走査型電子顕微鏡を用いて観察することにより、誘電体層10の切断面の画像を得る。得られた画像に画像処理(二値化処理)を行う。それにより、複数の空孔画像を抽出する。抽出された複数の空孔画像のうち一部(外形の大きい空孔から順に50個程度)の空孔画像について、各空孔画像の外径の最大値を測定する。測定結果に基づいて複数の空孔の平均孔径を算出する。
誘電体層10は、例えば独立気泡構造または半連続半独立気泡構造を有する。半連続半独立気泡構造とは、独立気泡構造と連続気泡構造とが混在している構造である。誘電体層10は、独立気泡構造部が80%以上であることが好ましく、独立気泡構造部が90%以上であることがより好ましい。独立気泡構造によれば、後述するアンテナパターン11の形成時に、誘電体層10にエッチング液が浸透することが防止される。なお、誘電体層10は連続気泡構造を有してもよい。
誘電体層10の単位体積当りにおける複数の空孔の体積の割合(以下、空孔率と呼ぶ。)は例えば40%以上であり、70%以上であることが好ましく、80%以上であることがより好ましい。誘電体層10の空孔率が40%以上であると、誘電体層10内で複数の空孔が均一に分散される。それにより、誘電体層10における比誘電率のばらつきの発生が抑制される。
誘電体層10の空孔率は、例えば次のようにして求めることができる。誘電体層10に用いられる樹脂であって、多孔質化されていない樹脂の比重を測定する。また、誘電体層10に用いられる多孔質性の樹脂の比重を測定する。その後、測定された樹脂の比重をD1とし、測定された多孔質性の樹脂の比重をD2とした場合に、空孔率Pは下記式(1)を用いて算出することができる。
P(%)=[1−(D2/D1)]×100 …(1)
多孔質化されていない樹脂の比重および多孔質性の樹脂の比重を測定するために、例えば比重計(アルファーミラージュ社製;MD−300S)を用いることができる。
次に、誘電体層10の上面上に、例えばスパッタリング法によりクロムおよび銅の積層膜からなるシード層を形成する。シード層は、クロムおよび銅の積層膜に限らず、例えばクロムの単層膜であってもよい。シード層を無電解めっきにより形成してもよい。その後、図2(d)に示すように、シード層上の全体に硫酸銅等のめっき液を用いた電解めっきにより例えば銅からなる導体層11xを形成する。図2(d)では、シード層の図示を省略する。
次に、図2(e)に示すように、導体層11xおよびシード層の一部領域をエッチングする。具体的には、導体層11x上に例えば感光性ドライフィルムレジスト等のレジスト膜を形成する。その後、レジスト膜を所定のパターンで露光した後、炭酸ナトリウム等の現像液を用いて現像することによりエッチングレジストを形成する。続いて、エッチングレジストから露出する導体層11xの部分およびシード層の露出する部分を塩化第二鉄等のエッチング液を用いてエッチングする。その後、エッチングレジストを水酸化ナトリウム等の剥離液より除去する。それにより、誘電体層10の上面上に導体層11xおよびシード層からなるアンテナパターン11が形成される。このように、本例では、アンテナパターン11がサブトラクティブ法により形成される。これにより、アンテナ基板部100が完成する。
アンテナパターン11は銅からなる。アンテナパターン11の厚みは、60GHzの周波数におけるアンテナパターン11の表皮深さ以上の大きさを有する。アンテナパターン11の厚みは、例えば0.5μm以上35μm以下であり、1μm以上20μm以下であることが好ましく、3μm以上18μm以下であることがより好ましい。
図3は、図2(e)のアンテナ基板部100を用いたRFモジュール1の製造方法を示す模式図である。図3(a)〜(d)においては、図1(a)のA−A線断面図に相当する断面図が示される。
図3(a)に示すように、アンテナ基板部100の第1の絶縁層20の下面上にマイクロストリップ線路22aおよびグランドパターン22bを覆うように第2の絶縁層30を形成する。
第2の絶縁層30は、例えば液晶ポリマーまたは多孔質性の樹脂からなる。第2の絶縁層30の厚みは、例えば20μm以上150μm以下であり、25μm以上125μm以下であることが好ましく、50μm以上100μm以下であることがより好ましい。
第2の絶縁層30として液晶ポリマーまたは多孔質性の樹脂からなるシート部材を用いる場合には、そのシート部材を第1の絶縁層20の下面上に熱圧着により接合する。それにより、第1の絶縁層20の下面上に第2の絶縁層30が形成される。
第2の絶縁層30は、誘電体層10と同じ材料により構成されてもよい。第2の絶縁層30として誘電体層10と同じ材料を用いる場合には、後述する誘電体層10の形成方法と同じ方法で、第1の絶縁層20の下面上に第2の絶縁層30が形成される。
次に、図3(b)に示すように、アディティブ法、セミアディティブ法またはサブトラクティブ法等により第2の絶縁層30の下面上の所定領域に3つの電極パターン31a,31b,31cおよび配線パターン31dを形成する。さらに、2つの電極パターン31a,31bの形成領域にそれぞれ2つのスルーホール30hを形成し、電解めっきによりスルーホール30h内に銅VCを充填する。このようにして、マイクロストリップ線路22aと電極パターン31aとを電気的に接続し、グランドパターン22bと電極パターン31bとを電気的に接続する。第2の絶縁層30の下面上では、3つの電極パターン31a,31b,31cを含む領域が図1のRFIC1Bの実装領域1BAとして設定される。
複数の電極パターン31aおよび配線パターン31dの厚みは、例えば0.5μm以上35μm以下であり、1μm以上20μm以下であることが好ましく、3μm以上18μm以下であることがより好ましい。
次に、図3(c)に示すように、3つの電極パターン31a,31b,31c上にそれぞれ3つの電極端子40a,40b,40cを形成する。電極端子40a,40b,40cの材料としては、金、銀またはそれらの合金等の金属材料を用いることができる。
また、配線パターン31dの一部を覆うように第2の絶縁層30の下面上にカバー絶縁層42を形成する。カバー絶縁層42の材料としては、ポリイミド等の樹脂を用いることができる。さらに、カバー絶縁層42から露出する配線パターン31dの部分にはんだボール43を設ける。
最後に、図3(d)に示すように、RFIC1Bの電力端子50a、接地端子50bおよび外部端子50cがそれぞれ3つの電力端子40a,40b,40cに接続されるように、第1の絶縁層20の実装領域1BA上にRFIC1Bを実装する。また、第2の絶縁層30の下面とRFIC1Bとの間の空間に封止樹脂41を充填する。それにより、図1のRFモジュール1が完成する。封止樹脂41としては、ポリイミドまたはエポキシ樹脂等を用いることができる。
(3)誘電体層10
(3−a)誘電体層10の形成方法
図2(c)に示される誘電体層10の形成方法の一例を説明する。誘電体層10に用いられる多孔質性の樹脂は、耐熱性を有する熱硬化性樹脂、エンジニアリングプラスチックまたはスーパーエンジニアリングプラスチックであることが好ましい。また、誘電体層10を形成するための樹脂は、5%重量減少温度が250℃以上の樹脂であることが好ましく、5%重量減少温度が280℃以上の樹脂であることがより好ましい。誘電体層10を形成するための樹脂として熱可塑性樹脂を用いる場合には、ガラス転移温度が150℃以上である熱可塑性樹脂を用いることが好ましい。
誘電体層10を形成するための樹脂としては、例えばポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレートまたは環状ポリオレフィン等のエンジニアリングプラスチックを用いることができる。また、誘電体層10を形成するための樹脂としては、例えばポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミドまたはポリエーテルイミド等のスーパーエンジニアリングプラスチックを用いることができる。また、誘電体層10を形成するための樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂(ユリア樹脂)、アルキド樹脂、不飽和ポリエステル樹脂、ポリウレタン、熱硬化性ポリイミド、シリコーン樹脂またはジアリルフタレート樹脂等の熱硬化性樹脂を用いることができる。誘電体層10を形成するための樹脂としては、上記の複数の樹脂のうち1つの樹脂を単独で用いてもよいし、2種類以上の複数の樹脂の混合物を用いてもよい。
ポリイミドおよびポリエーテルイミドは、温度変化時の寸法変化量が小さい特性を有する。したがって、誘電体層10を形成するための樹脂としては、上記の熱可塑性樹脂のうちポリイミドおよびポリエーテルイミドを用いることがより好ましい。これにより、信頼性の高いRFモジュール用基板1A(図1)を作製することができる。
ポリイミドは、例えば有機テトラカルボン酸二無水物とジアミノ化合物とを反応させてポリイミド前駆体(ポリアミド酸)を合成し、合成されたポリイミド前駆体を脱水閉環反応させることにより得ることができる。ポリエーテルイミドは、例えば2,2,3,3−テトラカルボキシジフェニレンエーテル二無水物等の芳香族ビスエーテル無水物とジアミノ化合物との脱水閉環反応により得ることができる。
以下、誘電体層10を形成するための樹脂としてポリイミドを用いる場合について説明する。
この場合、有機テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4一ジカルボキシフェニル)スルホン二無水物またはこれらの有機テトラカルボン酸二無水物のうちいずれか2種以上の有機テトラカルボン酸二無水物の混合物を用いることができる。
上記ジアミノ化合物としては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、2,2−ビス(4−アミノフェノキシフェニル)ヘキサフルオロプロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,4−ジアミノトルエン、2,6−ジアミノトルエン、ジアミノジフェニルメタン、4,4’−ジアミノ−2,2’−ジメチルビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルまたはこれらのジアミノ化合物のうちいずれか2種以上のジアミノ化合物の混合物を用いることができる。
誘電体層10を形成するための樹脂としてポリイミドを用いる場合には、有機テトラカルボン酸二無水物として、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を用い、ジアミノ化合物としてp−フェニレンジアミンおよび4,4’−ジアミノフェニルエーテルの混合物を用いることが好ましい。
ポリイミド前駆体は、例えば0℃以上90℃以下の有機溶剤中で有機テトラカルボン酸二無水物とジアミノ化合物とを所定時間(1時間以上24時間以下)反応させることにより得られる。上記の有機溶媒として、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドまたはジメチルスルホキシド等の極性溶媒を用いることができる。また、上記の有機溶媒として、トルエンまたはキシレン等の芳香族炭化水素を用いてもよいし、メタノール、エタノールまたはイソプロピルアルコール等のアルコール類を用いてもよいし、メチルエチルケトンまたはアセトン等のケトン類を用いてもよい。ポリイミド前駆体100重量部に対して上記のいずれかの有機溶媒を100重量部以上500重量部以下混合することが好ましく、樹脂100重量部に対して上記のいずれかの有機溶媒を300重量部以上500重量部以下混合することがより好ましい。
ポリイミド前駆体の脱水閉環反応は、例えばポリイミド前駆体を300℃以上400℃以下の温度で加熱する、またはポリイミド前駆体に無水酢酸とピリジンの混合物などの脱水環化剤を作用させることにより行われる。
なお、ポリイミドは、上記の例に代えて、有機テトラカルボン酸二無水物とN−シリル化ジアミンとを反応させることによりポリアミド酸シリルエステルを生成し、生成されたポリアミド酸シリルエステルを加熱して閉環反応させることにより得ることも可能である。
多孔質性のポリイミドを作製する場合、上記のようにして得られるポリイミド前駆体に相分離化剤を混合する。本実施の形態において、相分離化剤とは、流動性のポリイミド前駆体に対して相溶性を有しかつ硬化されたポリイミド前駆体と相分離する特性を有する化合物である。
このような相分離化剤としては、例えば、ポリエチレングリコール、トリプロピレングリコールまたはポリプロピレングリコール等のポリアルキレングリコールを用いることができる。また、相分離化剤としては、ポリアルキレングリコールの片末端メチル封鎖物を用いてもよいし、ポリアルキレングリコールの両末端メチル封鎖物を用いてもよい。また、相分離化剤としては、ポリアルキレングリコールの片末端(メタ)アクリレート封鎖物を用いてもよいし、ポリアルキレングリコールの両末端(メタ)アクリレート封鎖物を用いてもよい。また、相分離化剤としては、ウレタンプレポリマーを用いてもよい。また、相分離化剤としては、フェノキシポリエチレングリコール(メタ)アクリレート、ε−カプロラクトン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレートまたはオリゴエステル(メタ)アクリレート等の(メタ)アクリレート系化合物を用いてもよい。また、相分離化剤としては、上記の材料のうち1種類の材料を用いてもよいし、2種類以上の材料を混合して用いてもよい。
本例においては、上記の相分離化剤を用いることにより、微細なミクロ相分離構造を得ることができる。相分離化剤の重量平均分子量は、例えば100以上10000以下であることが好ましく、100以上2000以下であることがより好ましい。相分離化剤の重量平均分子量が100以上である場合、ポリイミド前駆体と相分離化剤とを確実に相分離させることができる。また、相分離化剤の重量平均分子量が10000以下である場合には、ポリイミド前駆体から作製される多孔質性のポリイミドに含まれる複数の空孔の平均孔径を容易に5μm以下にすることができる。
本実施の形態では、誘電体層10の空孔率は例えば40%以上である。誘電体層10の空孔率を40%以上にするために、例えばポリイミド前駆体100重量部に25重量部以上300重量部以下の相分離化剤を混合する。また、ポリイミド前駆体100重量部に50重量部以上200重量部以下の相分離化剤を混合することがより好ましい。
上記のように、多孔質性のポリイミドを得るためにポリイミド前駆体が用いられる場合には、相分離化剤としてポリアルキレングリコールを用いることが好ましい。
誘電体層10の形成時には、例えば上記のポリイミド前駆体と相分離化剤と有機溶剤とを混合することにより得られる組成物を、塗工機を用いてグランドパターン21上に塗布する。
次に、組成物中のポリイミド前駆体を硬化させることにより、相分離化剤をポリイミド前駆体に対して不溶化させる。この状態で、第1の絶縁層20上に塗布された組成物中の有機溶剤を蒸発させる。それにより、組成物中にミクロ相分離構造が形成された状態で、グランドパターン21上にポリイミド前駆体の膜(以下、ポリアミド酸膜と呼ぶ。)が形成される。有機溶剤を蒸発させる場合には、組成物の温度を例えば10℃以上250℃以下に調整することが好ましく、60℃以上200℃以下に調整することがより好ましい。
次に、ポリアミド酸膜から溶剤を用いて相分離化剤を抽出する。溶剤としては、相分離化剤に対して良溶媒でありかつ樹脂の硬化体(本例では、ポリアミド酸膜)を溶解しないものが用いられる。このような溶剤としては、例えば、トルエン、エタノール、酢酸エチルおよびヘプタン等の有機溶剤を用いることができる。また、溶剤として、液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素等を用いることができる。
溶剤として液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素を用いる場合には、上記のポリアミド酸膜を含む積層体を圧力容器内に収容した後、圧力容器内の温度および圧力が二酸化炭素の臨界点以上になるように、圧力容器内の温度および圧力を調整する。この場合、圧力容器内の雰囲気は、32℃以上230℃以下の温度かつ7.3MPa以上100MPa以下の圧力に設定されることが好ましく、40℃以上200℃以下の温度かつ10MPa以上50MPa以下の圧力に設定されることがより好ましい。
この状態で、液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素を圧力容器内へ連続的に供給するとともに、圧力容器内の雰囲気を排出する。これにより、ポリアミド酸膜に溶剤が浸透し、ポリアミド酸膜内の相分離化剤が抽出される。その結果、ポリアミド酸膜から相分離化剤が除去され、多孔質性のポリアミド酸膜が得られる。
最後に、多孔質性のポリアミド酸膜を300℃以上400℃以下の温度で加熱することにより、ポリアミド酸をポリイミドに変換する。このようにして、接着剤等の接合材料を用いることなく、グランドパターン21上に多孔質性のポリイミドからなる誘電体層10を形成することができる。
なお、本実施の形態において、誘電体層10は、樹脂に限らず添加剤を含んでもよい。添加剤としては、可塑剤、滑剤、着色剤、紫外線吸収剤、酸化防止剤、充填剤、補強剤、難燃剤または帯電防止剤等を用いることができる。
(3−b)誘電体層10の形成方法の具体例
上記の誘電体層10の形成方法の具体例について説明する。まず、1000mlの4つロフラスコに、N−メチル−2−ピロリドン(NMP)785.3g、p−フェニレンジアミン44.1gおよび4,4’−ジアミノジフェニルエーテル20.4gを入れ、これらの混合物を常温で攪拌する。それにより、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルをN−メチル−2−ピロリドンに溶解させる。
次に、4つロフラスコ内の組成物に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物150.2gを添加し、p−フェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルと3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とを25℃で1時間反応させる。その後、4つロフラスコ内の組成物を75℃で25時間加熱する。それにより、上記のポリイミド前駆体として溶液粘度が160Pa・sのポリアミド酸溶液(固形分濃度20wt%)を得る。ポリアミド酸溶液の溶液粘度は、例えばB型粘度計により測定される。
得られたポリアミド酸溶液に、相分離化剤として重量平均分子量400のポリプロピレングリコールをポリアミド酸溶液100重量部に対して120重量部添加し、その混合物を攪拌することにより均一かつ透明な組成物を得る。
得られた組成物を塗工機を用いてグランドパターン21上に塗布する。その後、組成物を110℃で3分間加熱することによりN−メチル−2−ピロリドンを蒸発させる。このようにして、グランドパターン21上にポリアミド酸膜を形成する。
次に、ポリアミド酸膜を含む積層体を圧力容器に入れ、圧力容器内の雰囲気を25℃かつ25MPaに調整する。その後、圧力容器内の圧力を25MPaに維持しつつ、約15L/minの流量(気体の流量)で5時間に渡って二酸化炭素を圧力容器内へ連続的に供給するとともに、圧力容器内の雰囲気を排出する。それにより、多孔質性のポリアミド酸膜を得る。
続いて、多孔質性のポリアミド酸膜を含む積層体を圧力容器から取り出し、取り出した積層体を真空オーブンに入れる。この状態で、真空オーブン内の圧力を5Torr以下に減圧し、真空オーブン内の温度を60分で340℃まで上昇させる。その後、真空オーブン内の圧力が5Torr以下かつ真空オーブン内の温度が340℃の状態を10分保持することにより、ポリアミド酸をポリイミドに変換する。このようにして、グランドパターン21上に多孔質性のポリイミドからなる誘電体層10を形成する。
(4)アンテナ基板部100の他の製造方法
図2の例では、グランドパターン21上にポリイミド前駆体を塗布し、多孔質性のポリイミドを生成することによりアンテナ基板部100が作製される。
これに限らず、アンテナ基板部100を以下のように作製してもよい。図4は、図1(b)のアンテナ基板部100の他の製造方法を示す模式図である。図4(a)〜(e)においては、図1(a)のA−A線断面図に相当する断面図が示される。
まず、図4(a)に示すように、樹脂製の多孔質材料からなるシート部材を誘電体層10として用意する。本例の多孔質材料としては、ePTFE(延伸ポリテトラフルオロエチレン)が用いられる。ePTFEは、連続孔(連続気泡構造)を有する。ePTFEの平均孔径は、例えば0.05μm以上1.0μm以下である。
本例においても、誘電体層10の厚みは例えば20μm以上150μm以下であり、25μm以上125μm以下であることが好ましく、50μm以上100μm以下であることがより好ましい。
次に、誘電体層10の上面上および下面上に、例えばスパッタリング法によりクロムおよび銅の積層膜からなるシード層を形成する。シード層を無電解めっきにより形成してもよい。その後、図4(b)に示すように、誘電体層10の上面上で、シード層上の全体に硫酸銅等のめっき液を用いた電解めっきにより例えば銅からなる導体層11xを形成する。同様に、誘電体層10の下面上で、例えば銅からなる導体層211xを形成する。図4(b)では、シード層の図示を省略する。
次に、図2(e)の工程で行われるエッチングと同様の方法で、図4(c)に示すように、導体層11x,211xおよびシード層の一部領域をエッチングする。このようにして、サブトラクティブ法により誘電体層10の上面上にアンテナパターン11が形成され、誘電体層10の下面上に所定の導体パターン211が形成される。導体パターン211においては、誘電体層10を挟んでアンテナパターン11の中心部分に対向する一部領域にスロット21sが形成される。
次に、図4(d)に示すように、誘電体層10の下面に形成された導体パターン211を、導電性の接合部材90を用いて図2(b)の第1の絶縁層20の上面に形成されたグランドパターン21上に接合する。それにより、図4(e)に示すように、アンテナ基板部100が完成する。
図4(e)のアンテナ基板部100においては、導体パターン211、接合部材90およびグランドパターン21が接地導体層として機能する。接合部材90としては、導電性接着剤またははんだペーストを用いることができる。
ePTFEは、ポリイミド等の他の樹脂よりも撥水性が高い。そのため、アンテナパターン11およびグランドパターン21を形成するためのエッチング時に、たとえエッチング液がePTFEの連続孔に浸入した場合でも、エッチング液が連続孔に残存することが防止される。
(5)図2(a)の三層基材20xの一製造例
図2(a)の三層基材20xの第1の絶縁層20が誘電体層10と同じ材料により構成される場合には、三層基材20xを以下のようにして作製してもよい。
図5は、図2(a)の三層基材20xの製造方法を示す模式的断面図である。まず、図5(a)に示すように、導体層21xとして銅箔を用意する。
次に、図5(b)に示すように、導体層21xの一面上に上記の誘電体層10の形成方法と同じ方法で多孔質性の樹脂からなる第1の絶縁層20を形成する。
次に、図5(c)に示すように、第1の絶縁層20上にシード層を形成し、電解めっきによりシード層上に銅からなる導体層22xを形成する。図5(c)では、シード層の図示を省略する。このようにして、接着剤等の接合材料を用いることなく、第1の絶縁層20および2つの導体層21x,22xからなる三層基材20xを得ることができる。
(6)効果
上記のRFモジュール用基板1Aにおいては、多孔質性の樹脂からなる誘電体層10が用いられることにより、1GHzの周波数における誘電体層10の比誘電率が2.00以下に設定される。それにより、RFモジュール1における電波の放射効率および受信効率が向上する。また、RFモジュール1において放射可能および受信可能な電波の周波数帯域が拡大される。
さらに、多孔質性の樹脂により形成される誘電体層10を用いることにより、アンテナパターン11とグランドパターン21との間の領域の比誘電率を複雑な構成を用いることなく容易に低減することができる。
これらの結果、簡単な構成でアンテナ特性を向上させることが可能になるとともに、RFモジュール用基板1Aの製造の容易化が実現される。
また、樹脂の比誘電率はガラスおよびセラミック等の他の材料の比誘電率に比べて低い。したがって、誘電体層10の比誘電率が十分に低減される。
また、上記のRFモジュール用基板1Aにおいては、接着剤等の接合材料を用いることなくアンテナパターン11が誘電体層10の上面上に形成される。同様に、接着剤等の接合材料を用いることなくグランドパターン21が誘電体層10の下面上に形成される。これにより、接合材料によりアンテナパターン11とグランドパターン21との間の領域の比誘電率が増加することが防止される。
(7)他の実施の形態
(7−a)上記の実施の形態では、アンテナパターン11がサブトラクティブ法により形成される例を説明したが、アンテナパターン11はセミアディティブ法により形成されてもよい。
この場合、例えば、図2(c)の誘電体層10の上面上に、例えばスパッタリング法によりクロムおよび銅の積層膜からなるシード層を形成する。シード層は、クロムおよび銅の積層膜に限らず、例えばクロムの単層膜であってもよい。シード層を無電解めっきにより形成してもよい。その後、シード層上に感光性ドライフィルムレジスト等によりレジスト膜を形成し、そのレジスト膜を所定のパターンで露光する。
続いて、露光後のレジスト膜を炭酸ナトリウム等の現像液を用いて現像することによりシード層上にめっきレジストを形成する。
次に、めっきレジストの領域を除いて、シード層上に硫酸銅等のめっき液を用いた電解めっきにより、例えば銅からなる導体層を形成する。
次に、めっきレジストを水酸化ナトリウム等の剥離液により除去し、シード層の露出する部分を塩化第二鉄等のエッチング液を用いたエッチングにより除去する。それにより、誘電体層10の上面上に導体層およびシード層からなるアンテナパターン11が形成される。
(7−b)アンテナパターン11、グランドパターン21、マイクロストリップ線路22a、グランドパターン22b、複数の電極パターン31a,31b,31cおよび配線パターン31dの材料としては、銅に限らず、金、銀、アルミニウム、リン青銅、銅−ベリリウム合金、鉄−ニッケル合金等の他の金属材料を用いてもよい。ただし、アンテナパターン11、グランドパターン21およびマイクロストリップ線路22aには、ミリ波帯の信号が伝送される。そのため、アンテナパターン11、グランドパターン21およびマイクロストリップ線路22aには、銅の電気伝導率と同等以上の電気伝導率を有する金属材料を用いることが好ましい。
(7−c)上記の実施の形態では、電解めっきによりアンテナパターン11、グランドパターン21、マイクロストリップ線路22a、グランドパターン22b、複数の電極パターン31aおよび配線パターン31dが形成されるが、電解めっきに代えて他の方法によりアンテナパターン11、グランドパターン21、マイクロストリップ線路22a、グランドパターン22b、複数の電極パターン31aおよび配線パターン31dが形成されてもよい。この場合、シード層を形成しなくてもよい。
(7−d)上記の実施の形態では、誘電体層10の多孔質材料として多孔質性の樹脂が用いられる。これに限らず、多孔質材料としては、上記の多孔質性の樹脂に代えて、1GHzの周波数における誘電体層10の比誘電率が2.00以下である多孔質性のガラスまたはセラミック等を用いてもよい。
また、上記の実施の形態では、第1の絶縁層20および第2の絶縁層30の材料として液晶ポリマーまたは多孔質性の樹脂が用いられる。これに限らず、第1の絶縁層20および第2の絶縁層30の材料としては、液晶ポリマーまたは多孔質性の樹脂に代えて、ガラスまたはセラミック等を用いてもよい。または、多孔質性のガラスまたはセラミック等を用いてもよい。
(7−e)上記の実施の形態においては、アンテナパターン11は正方形状を有する。これに限らず、アンテナパターン11は、円形状、長方形状または帯状等の他の形状を有してもよい。
また、上記の実施の形態においては、グランドパターン21のスロット21sが長方形状を有する。これに限らず、スロット21sは、円形状、長方形状または帯状等の他の形状を有してもよい。
(8)請求項の各構成要素と実施の形態の各部との対応関係
以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
上記実施の形態においては、RFモジュール用基板1Aが無線周波数モジュール用基板の例であり、第1の絶縁層20が第1の絶縁層の例であり、第1の絶縁層20の上面が第1の面の例であり、第1の絶縁層20の下面が第2の面の例であり、スロット21sが開口部の例である。
また、図1〜図3のグランドパターン21と図4(e)の導体パターン211、接合部材90およびグランドパターン21からなる積層体とが接地導体層の例であり、誘電体層10が誘電体層の例であり、アンテナパターン11がアンテナ素子の例であり、マイクロストリップ線路22aが導体パターンの例であり、第2の絶縁層30が第2の絶縁層の例である。
また、RFIC1Bが電子部品の例であり、実装領域1BAが実装領域の例であり、電力端子50aが電力端子の例であり、接地端子50bが接地端子の例であり、外部端子50cが外部端子の例である。
また、電極端子40aが第1の端子の例であり、電極端子40bが第2の端子の例であり、電極端子40cが第3の端子の例であり、配線パターン31dが配線パターンの例である。
請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
(9)実施例および比較例
シミュレーションにより、実施例1および比較例1〜6のサンプルについて、アンテナ特性についての評価を行った。まず、実施例1および比較例1〜6のサンプルの構成を説明する。
(9−a)実施例1
実施例1のサンプルは、図1および図2(e)のアンテナ基板部100と同じ構成を有する。実施例1のサンプルにおいては、誘電体層10が多孔質性の樹脂により構成されるものとする。誘電体層10の厚みは100μmに設定される。1GHzの周波数における誘電体層10の比誘電率は1.50に設定され、誘電正接は0.003に設定される。
また、第1の絶縁層20の厚みは100μmに設定される。1GHzの周波数における第1の絶縁層20の比誘電率は3.50に設定され、誘電正接は0に設定される。
さらに、アンテナパターン11、グランドパターン21およびマイクロストリップ線路22aの各々は、10μmの厚みを有する銅により構成される。
アンテナパターン11の一辺の長さAL(図1(a))は1.76mmに設定される。グランドパターン21におけるスロット21sの長さSL(図1(a))は0.65mmに設定され、スロット21sの幅SW(図1(a))は0.2mmに設定される。マイクロストリップ線路22aの幅MW(図1(a))は200μmに設定され、マイクロストリップ線路22aの特性インピーダンスは50Ωに設定される。また、マイクロストリップ線路22aが延びる方向において、アンテナパターン11に重なるように配置されたマイクロストリップ線路22aの開放端からスロット21sの中心までの距離d1(図1(a))は0.65mmに設定される。
(9−b)比較例1
比較例1のサンプルは、以下の点を除いて実施例1のサンプルと同じ構成を有する。比較例1のサンプルにおいては、1GHzの周波数における誘電体層10の比誘電率は3.50に設定され、誘電正接は0.002に設定される。また、アンテナパターン11の一辺の長さAL(図1(a))は1.15mmに設定される。グランドパターン21におけるスロット21sの長さSL(図1(a))は0.5mmに設定される。
(9−c)比較例2
比較例2のサンプルは、以下の点を除いて実施例1のサンプルと同じ構成を有する。比較例2のサンプルにおいては、1GHzの周波数における誘電体層10の比誘電率は9.50に設定され、誘電正接は0.0005に設定される。また、アンテナパターン11の一辺の長さAL(図1(a))は0.707mmに設定される。グランドパターン21におけるスロット21sの長さSL(図1(a))は0.3mmに設定される。
(9−d)比較例3
比較例3のサンプルは、以下の点を除いて実施例1のサンプルと同じ構成を有する。図6は、比較例3のサンプルの構成を説明するための模式図である。
図6に示すように、比較例3のサンプルにおいては、誘電体層10とグランドパターン21との間に、接着剤層71が設けられている。
誘電体層10は多孔質性の樹脂により構成されるものとする。本例では、誘電体層10の厚みt1は85μmに設定される。一方、接着剤層71の厚みt2は15μmに設定される。1GHzの周波数における接着剤層71の比誘電率は3.50に設定され、誘電正接は0.02に設定される。また、アンテナパターン11の一辺の長さAL(図1(a))は1.69mmに設定される。グランドパターン21におけるスロット21sの長さSL(図1(a))は0.65mmに設定される。
(9−e)比較例4
比較例4のサンプルは、以下の点を除いて比較例3のサンプルと同じ構成を有する。比較例4のサンプルにおいては、誘電体層10の厚みt1は70μmに設定される。一方、接着剤層71の厚みt2は30μmに設定される。また、アンテナパターン11の一辺の長さAL(図1(a))は1.64mmに設定される。グランドパターン21におけるスロット21sの長さSL(図1(a))は0.6mmに設定される。
(9−f)比較例5
比較例5のサンプルは、以下の点を除いて実施例1のサンプルと同じ構成を有する。図7は、比較例5のサンプルの構成を説明するための模式図である。
図7に示すように、比較例5のサンプルにおいては、誘電体層10とグランドパターン21との間に接着剤層71が設けられるとともに、誘電体層10とアンテナパターン11との間に接着剤層72が設けられている。
誘電体層10は多孔質性の樹脂により構成されるものとする。本例では、誘電体層10の厚みt1は70μmに設定される。一方、接着剤層71,72の厚みt2,t3はそれぞれ15μmに設定される。1GHzの周波数における接着剤層71,72の比誘電率はそれぞれ3.50に設定され、誘電正接はそれぞれ0.02に設定される。また、アンテナパターン11の一辺の長さAL(図1(a))は1.59mmに設定される。グランドパターン21におけるスロット21sの長さSL(図1(a))は0.6mmに設定される。
(9−g)比較例6
比較例6のサンプルは、以下の点を除いて比較例5のサンプルと同じ構成を有する。比較例6のサンプルにおいては、誘電体層10の厚みt1は40μmに設定される。一方、接着剤層71,72の厚みt2,t3は、それぞれ30μmに設定される。また、アンテナパターン11の一辺の長さAL(図1(a))は1.42mmに設定される。グランドパターン21におけるスロット21sの長さSL(図1(a))は0.55mmに設定される。
上記のように、実施例1および比較例1〜6のサンプルにおいては、アンテナパターン11における一辺の長さALおよびグランドパターン21におけるスロット21sの長さSLが互いに異なる。下記表1に、実施例1および比較例1〜6のサンプルにおける長さALおよび長さSLの一覧を示す。
Figure 2014011769
(9−h)評価
実施例1および比較例1〜6のサンプルについて、マイクロストリップ線路22aへ60GHzの周波数の高周波電力を供給した場合に、アンテナパターン11から電波が放射される場合のH面(本例では、マイクロストリップ線路22aの軸心に直交しかつアンテナパターン11の中心部を含む面)における放射パターンをシミュレーションにより求めた。シミュレーションには、Computer Simulation Technology 社製のMicrowave Studioというソフトウェアを用いた。
図8は、実施例1および比較例1,2のサンプルについてのシミュレーション結果を示す図である。図8では、縦軸がアンテナパターン11の中心から1m離れた位置における電波の絶対利得を示し、横軸がアンテナパターン11の中心に直交する軸を基準とするH面上の角度を示す。
図8においては、太い実線L1、太い一点鎖線L11および太い破線L12がそれぞれ実施例1および比較例1,2のサンプルについてのシミュレーション結果を示す。
図8によれば、実施例1のサンプルから放射される電波の絶対利得の最大値は約6.5dBである。一方、比較例1のサンプルから放射される電波の絶対利得の最大値は約3.5dBであり、比較例2のサンプルから放射される電波の絶対利得の最大値は約2.5dBである。
また、実施例1のサンプルから放射される電波の絶対利得は、約−70°以上約70°以下の範囲で比較例1,2のサンプルから放射される電波の絶対利得よりも大きい。
これらより、1GHzの周波数における比誘電率が低い誘電体層10を備えるアンテナ基板部100ほど高い放射特性を有することがわかる。その結果、1GHzの周波数における比誘電率が2.00以下である誘電体層10を用いることにより、アンテナ基板部100の放射特性が十分に向上することが明らかとなった。
図9は、実施例1および比較例3,4のサンプルについてのシミュレーション結果を示す図である。図9においても、縦軸がアンテナパターン11の中心から1m離れた位置における電波の絶対利得を示し、横軸がアンテナパターン11の中心に直交する軸を基準とするH面上の角度を示す。
図9においては、太い実線L1、太い一点鎖線L21および太い破線L22がそれぞれ実施例1および比較例3,4のサンプルについてのシミュレーション結果を示す。
図9によれば、実施例1のサンプルから放射される電波の絶対利得の最大値は約6.5dBである。一方、比較例3のサンプルから放射される電波の絶対利得の最大値は約5.8dBであり、比較例4のサンプルから放射される電波の絶対利得の最大値は約5.5dBである。
また、実施例1のサンプルから放射される電波の絶対利得は、約−70°以上約70°以下の範囲で比較例3,4のサンプルから放射される電波の絶対利得よりも大きい。
これらより、誘電体層10とグランドパターン21との間に設けられる接着剤層71の厚みt2が小さいアンテナ基板部100ほど高い放射特性を有することがわかる。その結果、誘電体層10とグランドパターン21との間に接着剤層71を設けないことにより、アンテナ基板部100の放射特性が十分に向上することが明らかとなった。
図10は、実施例1および比較例5,6のサンプルについてのシミュレーション結果を示す図である。図10においても、縦軸がアンテナパターン11の中心から1m離れた位置における電波の絶対利得を示し、横軸がアンテナパターン11の中心に直交する軸を基準とするH面上の角度を示す。
図10においては、太い実線L1、太い一点鎖線L31および太い破線L32がそれぞれ実施例1および比較例5,6のサンプルについてのシミュレーション結果を示す。
図10によれば、実施例1のサンプルから放射される電波の絶対利得の最大値は約6.5dBである。一方、比較例5のサンプルから放射される電波の絶対利得の最大値は約5.3dBであり、比較例6のサンプルから放射される電波の絶対利得の最大値は約4.0dBである。
また、実施例1のサンプルから放射される電波の絶対利得は、約−70°以上約70°以下の範囲で比較例5,6のサンプルから放射される電波の絶対利得よりも大きい。
これらより、誘電体層10とグランドパターン21との間に設けられる接着剤層71の厚みt2、および誘電体層10とアンテナパターン11との間に設けられる接着剤層72の厚みt3が小さいアンテナ基板部100ほど高い放射特性を有することがわかる。
その結果、誘電体層10とグランドパターン21との間に接着剤層71,72を設けないことにより、アンテナ基板部100の放射特性が十分に向上することが明らかとなった。
本発明は、種々の電気機器または電子機器等に利用することができる。
1A RFモジュール用基板
1B RFIC
1BA 実装領域
10 誘電体層
11 アンテナパターン
20 第1の絶縁層
21,22b グランドパターン
21s スロット
22a マイクロストリップ線路
20h,30h スルーホール
211 導体パターン
30 第2の絶縁層
31a,31b,31c 電極パターン
31d 配線パターン
40a,40b,40c 電極端子
41 封止樹脂
42 カバー絶縁層
43 はんだボール
50a 電力端子
50b 接地端子
50c 外部端子
90 接合部材
100 アンテナ基板部
VC 銅

Claims (12)

  1. 互いに対向する第1および第2の面を有する第1の絶縁層と、
    前記第1の絶縁層の前記第1の面上に形成され、開口部を有する接地導体層と、
    前記接地導体層上に多孔質材料により形成される誘電体層と、
    前記接地導体層の前記開口部に重なるように前記誘電体層上に形成されるアンテナ素子と、
    前記接地導体層の前記開口部に重なるように前記第1の絶縁層の前記第2の面上に形成される導体パターンとを備え、
    前記アンテナ素子、前記接地導体層の前記開口部および前記導体パターンは、前記導体パターンへの高周波電力の供給時または前記アンテナ素子による電波の受信時に前記アンテナ素子が前記開口部を通して前記導体パターンと電磁的に結合されるように配置され、
    1GHzの周波数における前記誘電体層の比誘電率は、2.00以下である、無線周波数モジュール用基板。
  2. 前記誘電体層に含まれる複数の空孔の平均孔径は、5μm以下であり、
    前記誘電体層の単位体積当りにおける複数の空孔の体積の割合は、40%以上である、請求項1記載の配線回路基板。
  3. 前記多孔質材料は、多孔質性の樹脂からなる、請求項1または2記載の配線回路基板。
  4. 前記樹脂は、ポリイミドまたはポリエーテルイミドである、請求項3記載の配線回路基板。
  5. 1GHzの周波数における前記誘電体層の誘電正接は、0.005以下である、請求項1〜4のいずれか一項に記載の無線周波数モジュール用基板。
  6. 前記導体パターンを覆うように前記第1の絶縁層の前記第2の面上に形成される第2の絶縁層をさらに備え、
    前記第2の絶縁層は、高周波電力が出力または入力される電力端子と接地端子とを有する電子部品が実装可能な実装領域を有し、
    前記第2の絶縁層の前記実装領域には、前記導体パターンに電気的に接続されかつ前記電子部品の電力端子に接続可能な第1の端子と、前記接地導体層に電気的に接続されかつ前記電子部品の接地端子に接続可能な第2の端子とが形成される、請求項1〜5のいずれか一項に記載の無線周波数モジュール用基板。
  7. 前記電子部品は、外部信号の入力もしくは出力または電源電圧の供給のための外部端子をさらに有し、
    前記第2の絶縁層の前記実装領域には、前記電子部品の前記外部端子に接続可能な第3の端子がさらに形成され、
    前記第2の絶縁層上に、前記第3の端子から前記実装領域外に延びる配線パターンが形成される、請求項6記載の無線周波数モジュール用基板。
  8. 導体パターン、絶縁層、開口部を有する接地導体層、多孔質材料からなる誘電体層およびアンテナ素子をこの順に含む積層構造を形成する工程を備え、
    前記アンテナ素子、前記接地導体層の前記開口部および前記導体パターンは、前記導体パターンへの高周波電力の供給時または前記アンテナ素子による電波の受信時に前記アンテナ素子が前記開口部を通して前記導体パターンと電磁的に結合されるように配置され、
    1GHzの周波数における前記誘電体層の比誘電率は、2.00以下である、無線周波数モジュール用基板の製造方法。
  9. 前記積層構造を形成する工程は、
    互いに対向する第1および第2の面を有する前記絶縁層を用意する工程と、
    前記絶縁層の前記第1の面上に前記接地導体層を形成する工程と、
    前記絶縁層の前記第2の面上に前記導体パターンを形成する工程と、
    前記接地導体層上に前記誘電体層を形成する工程と、
    前記誘電体層上に前記アンテナ素子を形成する工程とを含み、
    前記誘電体層を形成する工程は、
    流動性の樹脂および硬化した前記樹脂に対して相分離する相分離化剤を含む組成物を前記接地導体層上に塗布する工程と、
    前記樹脂を硬化させることにより前記接地導体層上でミクロ相分離構造を有する樹脂膜を形成する工程と、
    前記樹脂膜から前記相分離化剤を除去する工程とを含む、請求項8記載の無線周波数モジュール用基板の製造方法。
  10. 前記樹脂膜から前記相分離化剤を除去する工程は、
    前記樹脂膜に溶剤を含浸させることにより前記樹脂膜から前記相分離化剤を抽出する工程を含む、請求項9記載の無線周波数モジュール用基板の製造方法。
  11. 前記樹脂は、ポリアミド酸であり、
    前記誘電体層を形成する工程は、
    前記樹脂膜から前記相分離化剤を除去する工程の後、ポリアミド酸をポリイミドへ変換する工程をさらに含む、請求項9または10記載の無線周波数モジュール用基板の製造方法。
  12. 前記積層構造を形成する工程は、
    互いに対向する第1および第2の面を有する前記絶縁層を用意する工程と、
    開口部を有する第1の導体層を前記絶縁層の前記第1の面上に形成する工程と、
    前記絶縁層の前記第2の面上に前記導体パターンを形成する工程と、
    互いに対向する第3および第4の面を有する前記誘電体層を用意する工程と、
    開口部を有する第2の導体層を前記誘電体層の前記第3の面上に形成する工程と、
    前記誘電体層の前記第4の面上に前記アンテナ素子を形成する工程と、
    前記第1の導体層と前記第2の導体層とを接合することにより前記接地導体層を形成する工程とを含む、請求項8記載の無線周波数モジュール用基板の製造方法。
JP2012149333A 2012-07-03 2012-07-03 無線周波数モジュール用基板およびその製造方法 Active JP6002477B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149333A JP6002477B2 (ja) 2012-07-03 2012-07-03 無線周波数モジュール用基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149333A JP6002477B2 (ja) 2012-07-03 2012-07-03 無線周波数モジュール用基板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2014011769A true JP2014011769A (ja) 2014-01-20
JP6002477B2 JP6002477B2 (ja) 2016-10-05

Family

ID=50108047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149333A Active JP6002477B2 (ja) 2012-07-03 2012-07-03 無線周波数モジュール用基板およびその製造方法

Country Status (1)

Country Link
JP (1) JP6002477B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093015A (ja) * 2016-12-01 2018-06-14 太陽誘電株式会社 無線モジュール及び無線モジュールの製造方法
WO2018147381A1 (ja) * 2017-02-13 2018-08-16 日立金属株式会社 平面アンテナ
JP2019087987A (ja) * 2017-11-08 2019-06-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. アンテナモジュール
KR20190086434A (ko) 2016-11-29 2019-07-22 소니 세미컨덕터 솔루션즈 가부시키가이샤 고주파 모듈 및 통신 장치
JP2019199616A (ja) * 2017-04-06 2019-11-21 日東電工株式会社 ミリ波アンテナ用フィルム
CN112020796A (zh) * 2018-04-25 2020-12-01 株式会社村田制作所 天线模块和搭载该天线模块的通信装置
WO2021065704A1 (ja) * 2019-10-01 2021-04-08 東レ株式会社 熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、及び電子装置
WO2022234748A1 (ja) * 2021-05-07 2022-11-10 株式会社村田製作所 アンテナ素子、電子機器及びアンテナ素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026850A (ja) * 2001-07-13 2003-01-29 Nitto Denko Corp 多孔質ポリイミド樹脂の製造方法および多孔質ポリイミド樹脂
JP2005079762A (ja) * 2003-08-29 2005-03-24 Fujitsu Ltd 高周波回路モジュール及び高周波回路基板
JP2010109435A (ja) * 2008-10-28 2010-05-13 Hitachi Chem Co Ltd 平面アンテナ
JP2012019421A (ja) * 2010-07-09 2012-01-26 Furukawa Electric Co Ltd:The アンテナ装置
JP2012077294A (ja) * 2010-09-11 2012-04-19 Nitto Denko Corp 多孔質樹脂シート及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026850A (ja) * 2001-07-13 2003-01-29 Nitto Denko Corp 多孔質ポリイミド樹脂の製造方法および多孔質ポリイミド樹脂
JP2005079762A (ja) * 2003-08-29 2005-03-24 Fujitsu Ltd 高周波回路モジュール及び高周波回路基板
JP2010109435A (ja) * 2008-10-28 2010-05-13 Hitachi Chem Co Ltd 平面アンテナ
JP2012019421A (ja) * 2010-07-09 2012-01-26 Furukawa Electric Co Ltd:The アンテナ装置
JP2012077294A (ja) * 2010-09-11 2012-04-19 Nitto Denko Corp 多孔質樹脂シート及びその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190086434A (ko) 2016-11-29 2019-07-22 소니 세미컨덕터 솔루션즈 가부시키가이샤 고주파 모듈 및 통신 장치
US10965022B2 (en) 2016-11-29 2021-03-30 Sony Semiconductor Solutions Corporation High-frequency module and communication device
JP2018093015A (ja) * 2016-12-01 2018-06-14 太陽誘電株式会社 無線モジュール及び無線モジュールの製造方法
WO2018147381A1 (ja) * 2017-02-13 2018-08-16 日立金属株式会社 平面アンテナ
CN110192307A (zh) * 2017-02-13 2019-08-30 日立金属株式会社 平面天线
JP2019199616A (ja) * 2017-04-06 2019-11-21 日東電工株式会社 ミリ波アンテナ用フィルム
JP7184232B2 (ja) 2017-11-08 2022-12-06 サムソン エレクトロ-メカニックス カンパニーリミテッド. アンテナモジュール
JP2019087987A (ja) * 2017-11-08 2019-06-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. アンテナモジュール
CN112020796A (zh) * 2018-04-25 2020-12-01 株式会社村田制作所 天线模块和搭载该天线模块的通信装置
JP2022000976A (ja) * 2018-04-25 2022-01-04 株式会社村田製作所 基板
JP7136302B2 (ja) 2018-04-25 2022-09-13 株式会社村田製作所 基板
CN114450351A (zh) * 2019-10-01 2022-05-06 东丽株式会社 热固性树脂组合物、热固性树脂片材、电子部件及电子装置
WO2021065704A1 (ja) * 2019-10-01 2021-04-08 東レ株式会社 熱硬化性樹脂組成物、熱硬化性樹脂シート、電子部品、及び電子装置
WO2022234748A1 (ja) * 2021-05-07 2022-11-10 株式会社村田製作所 アンテナ素子、電子機器及びアンテナ素子の製造方法
JP7420315B2 (ja) 2021-05-07 2024-01-23 株式会社村田製作所 アンテナ素子、電子機器及びアンテナ素子の製造方法

Also Published As

Publication number Publication date
JP6002477B2 (ja) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6002477B2 (ja) 無線周波数モジュール用基板およびその製造方法
KR102336756B1 (ko) 밀리미터파 안테나용 필름
US7498392B2 (en) Methods and compositions for dielectric materials
KR102302832B1 (ko) 다공질의 저유전성 폴리머 필름 및 밀리파 안테나용 필름
KR20220158872A (ko) 밀리파 안테나용 필름
WO2012033168A1 (ja) 多孔質樹脂シート及びその製造方法
WO2012105678A1 (ja) 多孔質樹脂成型体、多孔体基板および前記多孔質樹脂成型体の製造方法
KR20130008007A (ko) 적층형 마이크로스트립 안테나
KR100712764B1 (ko) 회로 기판, 회로 기판을 이용한 전자기기 및 회로 기판의제조 방법
CN101233795A (zh) 多层电路基板及电子设备
US4751136A (en) Substrate for high-frequency circuit and process for making the same
Kakutani et al. Material design and high frequency characterization of novel ultra-low loss dielectric material for 5G and 6G applications
CN110691469A (zh) 一种高频线路板新型材料层结构的涂布成型方法及其制品
US20060210806A1 (en) Methods and compositions for dielectric materials
KR20120012425A (ko) 배선 회로 기판 및 그 제조 방법
WO2013133316A1 (ja) 多孔質樹脂シート及びその製造方法
JPH05175649A (ja) 回路基板の製造方法
Yousef et al. Substrate integrated waveguides (SIWs) in a flexible printed circuit board for millimeter-wave applications
US20230143088A1 (en) Planar antenna board
Song et al. Chip-embedded antenna-in-package module using modified polyimide (MPI) low-loss materials for millimeter-wave application
WO2007084166A2 (en) Methods and compositions for dielectric materials
JP2014049462A (ja) 多層基板、及び電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R150 Certificate of patent or registration of utility model

Ref document number: 6002477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250