JP2013246924A - Method of manufacturing positive electrode active material for secondary battery, and secondary battery - Google Patents

Method of manufacturing positive electrode active material for secondary battery, and secondary battery Download PDF

Info

Publication number
JP2013246924A
JP2013246924A JP2012118395A JP2012118395A JP2013246924A JP 2013246924 A JP2013246924 A JP 2013246924A JP 2012118395 A JP2012118395 A JP 2012118395A JP 2012118395 A JP2012118395 A JP 2012118395A JP 2013246924 A JP2013246924 A JP 2013246924A
Authority
JP
Japan
Prior art keywords
particles
lithium manganate
positive electrode
type lithium
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012118395A
Other languages
Japanese (ja)
Other versions
JP2013246924A5 (en
JP6008578B2 (en
Inventor
Takaki Mizuno
隆貴 水野
Kennosuke Tominaga
健之介 冨永
Akira Nakajima
昭 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2012118395A priority Critical patent/JP6008578B2/en
Publication of JP2013246924A publication Critical patent/JP2013246924A/en
Publication of JP2013246924A5 publication Critical patent/JP2013246924A5/ja
Application granted granted Critical
Publication of JP6008578B2 publication Critical patent/JP6008578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a positive electrode active material including Spinel-type lithium manganate particles for a secondary battery having a high operation voltage and good life property.SOLUTION: The method of manufacturing a Spinel-type lithium manganate particle positive-electrode active material comprises the following steps (a) to (c). The step (a) includes mixing manganese oxide particles (1), Spinel-type lithium manganate particles (2) and a lithium salt (3) together, provided that the ratio of numbers of atoms of constituents in the resultant mixture, Li:(Ni+Co):Mn is (1+x):y:(2-x-y), where 0≤x≤0.2 and 0.1<y<0.5, so that the weight ratio (W)/(W) of a solid content weight (W) of the manganese oxide particles (1) to a solid content weight (W) of the Spinel-type lithium manganate particles (2) falls in a range of 0.25-4, and preparing a mixture fluid dispersion so that the concentration of the solid contents in a dispersant falls in a range of 5-50 wt.%. The step (b) includes spraying the fluid dispersion, followed by drying. The step (c) includes baking the sprayed and dried fluid dispersion at 650-900°C.

Description

本発明は、一次粒子の集合体からなる二次粒子で構成された正極活物質であって、一次粒子の表層部のNiおよび/またはCoの含有量が少なく、一次粒子の中心部のNiおよび/またはCoの含有量が多いスピネル型マンガン酸リチウム粒子からなる正極活物質の製造方法ならびに該正極活物質を正極材に用いた二次電池に関する。   The present invention is a positive electrode active material composed of secondary particles composed of aggregates of primary particles, the Ni and / or Co content of the surface layer portion of the primary particles is small, the Ni and the central portion of the primary particles The present invention relates to a method for producing a positive electrode active material comprising spinel-type lithium manganate particles having a high Co content and a secondary battery using the positive electrode active material as a positive electrode material.

リチウムイオン電池用正極活物質として、コバルト酸リチウム、ニッケル酸リチウム及びマンガン酸リチウムなどが実用化され、高性能化を目指して研究・開発が進められている。   As a positive electrode active material for a lithium ion battery, lithium cobaltate, lithium nickelate, lithium manganate, and the like have been put into practical use, and research and development are being promoted aiming at high performance.

これらのうち、コバルト酸リチウムは原料のコバルトが高価であり、また実効蓄電量が理論量の約50%しかないと言う問題がある。またニッケル酸リチウムは安価で実効蓄電量がコバルト酸リチウムの約1.4倍もあり注目されているが、合成が困難であり、安全性にも問題がある。一方、マンガン酸リチウムは、実効蓄電量がコバルト酸リチウムより若干劣るものの、原料のマンガンが安価なことと、安全性がコバルト酸リチウムと同等であるので、リチウムイオン電池用正極活物質として期待されている。   Among these, lithium cobaltate has a problem that the raw material cobalt is expensive and the effective storage amount is only about 50% of the theoretical amount. Lithium nickelate is also attracting attention because it is inexpensive and has an effective storage capacity that is about 1.4 times that of lithium cobaltate. However, it is difficult to synthesize and has a problem with safety. On the other hand, lithium manganate is expected to be a positive electrode active material for lithium-ion batteries because its effective energy storage is slightly inferior to lithium cobaltate, but the raw material manganese is cheap and safety is equivalent to lithium cobaltate. ing.

これらの正極活物質は、微粒子状のものをグラファイトなどの炭素系導電剤及びバインダーと共に有機溶剤に混合してペースト状合剤とし、これを15〜20μmのアルミ箔に均一な厚さに塗布する。次いで、乾燥後合剤の密度を高くすると共に電極の厚さを均一にするためにプレス機で圧縮して電池用正極が製造される。この正極が負極、セパレーターなどと共に電池用容器に装填され電池が構成されるが、一定容積の電池中にできるだけ多くの正極材が充填されることが充電容量又は放電容量などの電池性能を向上させる意味で好ましい。このためには、合剤中の正極材の量を多くすれば良いが、合剤中に配合し得る正極材の量にも制限がある。   These positive electrode active materials are mixed in an organic solvent together with a carbon-based conductive agent such as graphite and a binder into a paste mixture, and this is applied to a 15 to 20 μm aluminum foil with a uniform thickness. . Next, after drying, the density of the mixture is increased and the electrode is compressed with a press to make the electrode thickness uniform, whereby a positive electrode for a battery is produced. This positive electrode is loaded into a battery container together with a negative electrode, a separator, etc., and the battery is configured. However, filling as much positive electrode material as possible into a certain volume of battery improves battery performance such as charge capacity or discharge capacity. Preferred in terms. For this purpose, the amount of the positive electrode material in the mixture may be increased, but the amount of the positive electrode material that can be blended in the mixture is also limited.

正極活物質としては重量当たりの放電容量と同時に、体積当たりの放電容量(重量当たりの放電容量×正極活物質微粒子の充填密度)の高いことが正極活物質の重要な因子である。そこで、できるだけ緻密な微粒子の正極活物質を用いれば、充填密度が大きいことから、単位体積当たりに充填される正極活物質の重量が多くなり、放電容量の高い電池が得られる。
しかしながら、従来正極活物質として用いられているマンガン酸リチウムの微粒子は、同じ粒径のコバルト酸リチウム、ニッケル酸リチウムの微粒子と比較した時の充填密度が小さい。そのため、同一容積の正極活物質を比較した場合、重量当たりの放電容量はコバルト酸リチウムの80%程度が期待できるが、体積当たりの放電容量は50〜60%程度と低くなると言う問題点がある。
As a positive electrode active material, a high discharge capacity per unit volume (discharge capacity per unit weight x packing density of positive electrode active material fine particles) is an important factor for the positive electrode active material. Therefore, if a positive electrode active material with fine particles as dense as possible is used, the packing density is large, so that the weight of the positive electrode active material filled per unit volume increases and a battery having a high discharge capacity can be obtained.
However, the fine particles of lithium manganate conventionally used as the positive electrode active material have a smaller packing density when compared with the fine particles of lithium cobaltate and lithium nickelate having the same particle diameter. Therefore, when comparing positive electrode active materials having the same volume, the discharge capacity per weight can be expected to be about 80% of lithium cobalt oxide, but the discharge capacity per volume is as low as about 50 to 60%. .

さらに、従来のマンガン酸リチウムを正極活物質として用いた電池では、充放電を繰り返すうちに次第に放電容量が低下するという、サイクル特性の低下の問題点がある。
これらの問題点を解決するために、マンガン酸リチウムに、例えばBなどの第三成分を添加したリチウム・マンガン複合酸化物が提案されている(特開平4−237970号公報:特許文献1)、特開平5−290846号公報:特許文献2、特開平8−195200号公報:特許文献3)。しかしながら、これらのリチウム・マンガン複合酸化物を正極活物質として用いた電池では、常温より高い温度で使用したときのサイクル特性が低いという問題が依然残されている。
Furthermore, in a battery using conventional lithium manganate as a positive electrode active material, there is a problem of deterioration in cycle characteristics in that the discharge capacity gradually decreases as charging and discharging are repeated.
In order to solve these problems, a lithium-manganese composite oxide in which a third component such as B is added to lithium manganate has been proposed (JP-A-4-237970: Patent Document 1). JP-A-5-290846: Patent Document 2, JP-A-8-195200: Patent Document 3). However, batteries using these lithium / manganese composite oxides as the positive electrode active material still have the problem of low cycle characteristics when used at temperatures higher than room temperature.

さらに、特表2011−519142号公報(特許文献4)には、基本的電池特性を劣化させずに安全性、特に熱安定性、高温耐久性、過充電安全性向上が課題として挙げられ、このため、複数のリチウム金属酸化物の一次粒子が凝集して形成されたリチウム金属酸化物二次粒子をコア部とし、このコア部の表面に複数のチタン酸バリウム粒子および酸化アルミニウム等の金属酸化物粒子をコーティングして形成した第1シェル部と、第1シェル部の表面に複数のオリビン型リン酸鉄リチウム粒子および導電性粒子をコーティングして形成した第2シェル部とを備えるリチウム二次電池用正極活物質を用いることが開示されている。この時、チタン酸バリウム粒子は、電解質の副反応を抑制したり、温度の上昇に伴って抵抗が増加する特性を持つサーミスタであることから、電池が高温環境におかれた場合、あるいは内部短絡によって過電流が発生するなどして電池内部で高熱が発生した場合、電子の流れを遮断し、正極活物質の熱安定性、高温耐久性を改善できることが開示されている。   Furthermore, JP 2011-519142 A (Patent Document 4) lists safety, particularly thermal stability, high temperature durability, and overcharge safety without degrading basic battery characteristics as issues. Therefore, a lithium metal oxide secondary particle formed by agglomerating primary particles of a plurality of lithium metal oxides is used as a core portion, and a plurality of barium titanate particles and a metal oxide such as aluminum oxide are formed on the surface of the core portion. A lithium secondary battery comprising: a first shell portion formed by coating particles; and a second shell portion formed by coating a plurality of olivine-type lithium iron phosphate particles and conductive particles on the surface of the first shell portion. It is disclosed that a positive electrode active material is used. At this time, the barium titanate particles are thermistors that have the property of suppressing side reactions of the electrolyte and increasing the resistance as the temperature rises. It is disclosed that when high heat is generated inside the battery due to an overcurrent or the like, the flow of electrons can be cut off to improve the thermal stability and high temperature durability of the positive electrode active material.

また、マンガン酸リチウムを正極活物質として用いた電池では、動作電圧が低く、充放電容量が小さいという問題点があった。このため、スピネル型マンガン酸リチウムのMnの一部をCo、Ni等の遷移金属に置換すると作動電圧が高くなることが知られている。(非特許文献1)
しかしながら、CoあるいはNiに置換したスピネル型マンガン酸リチウムを正極活物質として用いた二次電池では電解質の分解等の副反応を惹起し、リチウムイオン電池としての電池性能が低下する問題があった。
Further, a battery using lithium manganate as a positive electrode active material has a problem that the operating voltage is low and the charge / discharge capacity is small. For this reason, it is known that when a part of Mn of spinel type lithium manganate is replaced with a transition metal such as Co or Ni, the operating voltage is increased. (Non-Patent Document 1)
However, a secondary battery using spinel type lithium manganate substituted with Co or Ni as a positive electrode active material causes side reactions such as decomposition of the electrolyte, resulting in a problem that battery performance as a lithium ion battery is lowered.

さらに、特開2007−213866号公報(特許文献5)には、コア−シェル型構造を有する電池活物質であって、2種以上の活物質から構成され、コア部の活物質材料に対してシェル部の活物質材料が高出力である電池活物質が記載されている。この時、シェル部の活物質材料としてスピネルマンガン系のリチウム金属複合酸化物(LiMn24)が、コア部の活物質材料としてニッケル系のリチウム金属複合酸化物(層状構造を有するLiNiO2)が好ましいことが開示されている。 Furthermore, Japanese Patent Application Laid-Open No. 2007-218386 (Patent Document 5) discloses a battery active material having a core-shell type structure, which is composed of two or more active materials, A battery active material in which the active material of the shell portion has a high output is described. At this time, spinel manganese-based lithium metal composite oxide (LiMn 2 O 4 ) is used as the shell active material, and nickel-based lithium metal composite oxide (LiNiO 2 having a layered structure) is used as the core active material. Is preferred.

開示された活物質は、本願発明で得られる正極活物質粒子と類似しているが、本願発明ではマンガンの一部がNiおよび/またはCoで置換されたスピネル型マンガン酸リチウム粒子を用いるのに対し、特許文献5では層状構造を有するニッケル系のリチウム金属複合酸化物(LiNiO2)が用いられている。 Although the disclosed active material is similar to the positive electrode active material particles obtained in the present invention, the present invention uses spinel type lithium manganate particles in which a part of manganese is substituted with Ni and / or Co. On the other hand, in Patent Document 5, a nickel-based lithium metal composite oxide (LiNiO 2 ) having a layered structure is used.

特開平4−237970号公報JP-A-4-237970 特開平5−290846号公報Japanese Patent Laid-Open No. 5-290846 特開平8−195200号公報JP-A-8-195200 特表2011−519142号公報Special table 2011-519142 gazette 特開2007−213866号公報JP 2007-213866 A

電池ハンドブック(電気化学会電池技術委員会編、株式会社オーム社、発行日平成22年2月10日)Battery Handbook (Electrical Society of Japan Battery Technical Committee, edited by Ohm Co., Ltd., published February 10, 2010)

層状構造を有するニッケル系のリチウム金属複合酸化物(LiNiO2)粒子を用いると、ニッケル系のリチウム金属複合酸化物の平均作動電圧が低いため、スピネルマンガン酸リチウムを用いた場合の平均作動電圧よりも作動電圧が低下し、得られるエネルギー密度が低下する(充放電容量が不十分となる)問題があった。 When nickel-based lithium metal composite oxide (LiNiO 2 ) particles having a layered structure are used, the average operating voltage of nickel-based lithium metal composite oxide is low, so the average operating voltage when using spinel lithium manganate is lower than However, there was a problem that the operating voltage was lowered and the resulting energy density was lowered (charging / discharging capacity was insufficient).

また、層状構造を有するニッケル系のリチウム金属酸化物は相転移を起こしやすく、不安定であるため、電池寿命が短くなる欠点がある。   In addition, a nickel-based lithium metal oxide having a layered structure is liable to cause a phase transition and is unstable, and thus has a drawback of shortening the battery life.

本発明者等は、上記問題点に鑑み、電解質の分解等の副反応を惹起することなく作動電圧、充放電容量を高めた正極活物質の開発を目指して鋭意検討したところ、
(a)マンガン酸化物粒子(1)と、特定の組成・粒子径のマンガン酸リチウム粒子(2)と、 リチウム塩(3)との混合物分散液を噴霧乾燥して、焼成することで、CoあるいはNiに置換したスピネル型マンガン酸リチウム粒子の表面にCoあるいはNiを含まないスピネル型マンガン酸リチウムの前駆体層が形成された一次粒子を調製し、ついで高温で加熱処理することにより、一次粒子を用いると、一次粒子の中心から表層部に向かってCoあるいはNiの濃度(分布)が徐々に低下したマンガン酸リチウム粒子が得られる。これを正極活物質として用いると、作動電圧、充放電容量が向上し、しかも電解質の分解が抑制できることを見出して本発明を完成するに至った。なお、本発明でいう「一次粒子」とは、スピネル型マンガン酸リチウムの結晶粒子をいい、「二次粒子」とはこれらの結晶粒子が、一部融着した集合体からなる粒子をいう。
[1]下記の工程(a)〜(c)からなることを特徴とする、下記組成式(1)で表されるスピネル型マンガン酸リチウム粒子からなる正極活物質の製造方法;
Li1+x3(Ni+Co)y3Mn2-x3-y34 ・・・・(1)
(但し、0≦x3≦0.2、0.1<y3<0.5)
(a)マンガン酸化物粒子(1)と、
Li(1+x1)・(Niおよび/またはCo)y1・Mn(2-x1-y1)4(但し、0≦x1≦0.2、0.4≦y1≦0.6)で表され、平均粒子径(D2)が0.1〜5μmの範囲にあるスピネル型マンガン酸リチウム粒子(2)と、
リチウム塩(3)とを、
混合物のLi:(Ni+Co):Mnの原子比が(1+x2):y2:(2−x2−y2)(但し、0≦x2≦0.2、0.1<y2<0.5)の比率とし、かつ、前記マンガン酸化物粒子(1)の固形分重量(W1)とスピネル型マンガン酸リチウム粒子(2)の固形分重量(W2)との重量比(W1)/(W2)が0.25〜4の範囲となるように混合して、分散媒に固形分濃度が5〜50重量%の範囲となるように分散させて噴霧乾燥用混合物分散液を調製し、
(b)分散液を噴霧乾燥したのち、
(c)650〜900℃で焼成する。
[2]前記マンガン酸化物粒子(1)の平均粒子径(D1)が0.1〜5μmの範囲にある[1]の正極活物質の製造方法。
[3]前記工程(c)についで、下記の工程(d)を行う[1]の正極活物質の製造方法;
(d)平均2次粒子径(D3)が1〜30μmの範囲となるように解砕する。
[4]さらに、前記工程(a)の混合物が、Na、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、V、Nb、Ta、Mo、W、Ag、Zn、B、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Biからなる群から選ばれる1種以上の元素Mの化合物(4)を含み(但し、M/(M+Ni+Co)原子比=0.08〜0.32)、
該混合物のLi:(M+Ni+Co):Mnの原子比が(1+x4):y4:(2−x4−y4)(但し、0≦x4≦0.2、0.1<y4≦0.5)の比率である[1]の正極活物質の製造方法。
[5]前記正極活物質が一次粒子の集合体からなる二次粒子であり、該一次粒子の平均一次粒子径(D4)が0.1〜5.0μmの範囲にある[1]〜[4]の正極活物質の製造方法。
[6]前記正極活物質の比表面積が0.1〜3.0m2/gの範囲にある[1]〜[5]の正極活物質の製造方法。
[7]前記[1]〜[6]の正極活物質の製造方法によって得られた正極活物質を正極材に用いたことを特徴とする二次電池。
[8]リチウム負極に対する平均動作電圧が4.4〜4.6Vの範囲にある[7]の二次電池。
[9]充放電容量が120〜150mAh/gの範囲にある[7]または[8]の二次電池。
In view of the above problems, the present inventors have conducted intensive studies aiming to develop a positive electrode active material having an increased operating voltage and charge / discharge capacity without causing side reactions such as decomposition of the electrolyte.
(A) A mixture dispersion of manganese oxide particles (1), lithium manganate particles (2) having a specific composition and particle size, and lithium salt (3) is spray-dried and fired to produce Co. Alternatively, primary particles are prepared by preparing primary particles in which a precursor layer of spinel type lithium manganate not containing Co or Ni is formed on the surface of spinel type lithium manganate particles substituted with Ni, and then heat-treating at high temperature. When lithium is used, lithium manganate particles in which the concentration (distribution) of Co or Ni gradually decreases from the center of the primary particles toward the surface layer portion can be obtained. When this was used as the positive electrode active material, it was found that the operating voltage and charge / discharge capacity were improved and that decomposition of the electrolyte could be suppressed, and the present invention was completed. In the present invention, “primary particles” refer to crystal particles of spinel type lithium manganate, and “secondary particles” refer to particles formed of aggregates in which these crystal particles are partially fused.
[1] A method for producing a positive electrode active material comprising spinel-type lithium manganate particles represented by the following composition formula (1), comprising the following steps (a) to (c);
Li 1 + x3 (Ni + Co) y3 Mn 2-x3-y3 O 4 (1)
(However, 0 ≦ x 3 ≦ 0.2, 0.1 <y 3 <0.5)
(A) Manganese oxide particles (1);
Li (1 + x1) · (Ni and / or Co) y1 · Mn (2-x1-y1) O 4 (where 0 ≦ x 1 ≦ 0.2, 0.4 ≦ y 1 ≦ 0.6) A spinel-type lithium manganate particle (2) represented by an average particle diameter (D 2 ) in the range of 0.1 to 5 μm;
Lithium salt (3)
The atomic ratio of Li: (Ni + Co): Mn in the mixture is (1 + x 2 ): y 2 : (2-x 2 −y 2 ) (where 0 ≦ x 2 ≦ 0.2, 0.1 <y 2 <0 and the ratio of .5), and the manganese oxide particles (1) solids weight (W 1) and the weight ratio of the solid weight (W 2) of the spinel-type lithium manganate particles (2) of (W 1 ) / (W 2 ) is mixed so as to be in the range of 0.25 to 4, and is dispersed in the dispersion medium so that the solid content concentration is in the range of 5 to 50% by weight. Prepared,
(B) After spray drying the dispersion,
(C) Firing at 650 to 900 ° C.
[2] The method for producing a positive electrode active material according to [1], wherein the manganese oxide particles (1) have an average particle diameter (D 1 ) in the range of 0.1 to 5 μm.
[3] Following the step (c), the following step (d) is performed: [1] The method for producing a positive electrode active material;
(D) Crushing so that the average secondary particle diameter (D 3 ) is in the range of 1 to 30 μm.
[4] Further, the mixture of the step (a) is Na, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, V, Nb, Ta, Mo, W, Ag, Zn, Including a compound (4) of at least one element M selected from the group consisting of B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, Bi (provided that M / (M + Ni + Co) Atomic ratio = 0.08-0.32),
The atomic ratio of Li: (M + Ni + Co): Mn in the mixture is (1 + x 4 ): y 4 : (2-x 4 −y 4 ) (where 0 ≦ x 4 ≦ 0.2, 0.1 <y 4 ≦ 0.5) The method for producing a positive electrode active material according to [1].
[5] The positive electrode active material is secondary particles made of an aggregate of primary particles, and the average primary particle diameter (D 4 ) of the primary particles is in the range of 0.1 to 5.0 μm [1] to [ [4] The method for producing a positive electrode active material according to [4].
[6] The method for producing a positive electrode active material according to [1] to [5], wherein a specific surface area of the positive electrode active material is in a range of 0.1 to 3.0 m 2 / g.
[7] A secondary battery using the positive electrode active material obtained by the method for producing a positive electrode active material according to [1] to [6] as a positive electrode material.
[8] The secondary battery according to [7], wherein the average operating voltage with respect to the lithium negative electrode is in the range of 4.4 to 4.6V.
[9] The secondary battery according to [7] or [8], wherein the charge / discharge capacity is in the range of 120 to 150 mAh / g.

本発明によれば、一次粒子の集合体からなる二次粒子で構成されたスピネル型マンガン酸リチウム粒子の正極活物質において、一次粒子の表層部のNiおよび/またはCoの含有量が少なく、一次粒子の中心部のNiおよび/またはCoの含有量が多く、このため、電解質の分解等の副反応を惹起することなく作動電圧、充放電容量を高めることが可能な正極活物質を製造することができる。そして、かかる製造方法によって得られる正極活物質を正極材に用いた二次電池に用いた場合、従来のCoあるいはNiに置換してないスピネル型マンガン酸リチウムよりも作動電圧、充放電容量が高く、サイクル特性に優れ、電解質の分解等の副反応が抑制された二次電池を提供できる。   According to the present invention, in the positive electrode active material of spinel type lithium manganate particles composed of secondary particles composed of aggregates of primary particles, the content of Ni and / or Co in the surface layer portion of the primary particles is small, and the primary particles To produce a positive electrode active material that can increase the operating voltage and charge / discharge capacity without causing side reactions such as decomposition of the electrolyte, because the content of Ni and / or Co in the center of the particle is large. Can do. When the positive electrode active material obtained by such a manufacturing method is used in a secondary battery using a positive electrode material, the operating voltage and charge / discharge capacity are higher than those of conventional spinel type lithium manganate not substituted with Co or Ni. In addition, it is possible to provide a secondary battery that has excellent cycle characteristics and suppresses side reactions such as decomposition of the electrolyte.

本発明に係るスピネル型マンガン酸リチウム粒子の模式図(一次粒子)を示す。The schematic diagram (primary particle) of the spinel type lithium manganate particle | grains concerning this invention is shown. 本発明に係るスピネル型マンガン酸リチウム粒子の模式図(二次粒子)を示す。The schematic diagram (secondary particle) of the spinel type lithium manganate particle | grains concerning this invention is shown.

まず、本発明に係る正極活物質の製造方法について説明する。
正極活物質の製造方法
本発明に係る正極活物質の製造方法は、下記の工程(a)〜(c)からなる。
First, a method for producing a positive electrode active material according to the present invention will be described.
Method for Producing Positive Electrode Active Material The method for producing a positive electrode active material according to the present invention comprises the following steps (a) to (c).

[工程(a)]
まず、噴霧乾燥用の混合物分散液を調製する。
本発明で使用される混合物は、マンガン酸化物粒子(1)と、スピネル型マンガン酸リチウム粒子(2)と、リチウム塩(3)とからなる。
マンガン酸化物粒子(1)
本発明に用いるマンガン酸化物粒子(1)は、二酸化マンガン、三酸化二マンガンおよび四酸化三マンガン、オキシ水酸化マンガン等のマンガン酸化物粒子(マンガン水酸化物粒子を含む)が用いられる。
[Process (a)]
First, a mixture dispersion for spray drying is prepared.
The mixture used in the present invention comprises manganese oxide particles (1), spinel type lithium manganate particles (2), and lithium salt (3).
Manganese oxide particles (1)
As the manganese oxide particles (1) used in the present invention, manganese oxide particles (including manganese hydroxide particles) such as manganese dioxide, dimanganese trioxide, trimanganese tetraoxide, and manganese oxyhydroxide are used.

このようなマンガン酸化物粒子(1)として、通常、電解二酸化マンガン粉末、化学合成二酸化マンガン粉末が用いられる。また水酸化マンガン、炭酸マンガン、硝酸マンガンなどを熱分解して二酸化マンガンとなるマンガン化合物あるいはこれらの混合物を用いることができる。また、化学合成法で得られる四酸化三マンガン粉末も好適に用いることができる。   As such manganese oxide particles (1), electrolytic manganese dioxide powder and chemically synthesized manganese dioxide powder are usually used. In addition, a manganese compound or a mixture thereof, which is obtained by thermally decomposing manganese hydroxide, manganese carbonate, manganese nitrate, or the like, becomes manganese dioxide. Further, trimanganese tetroxide powder obtained by a chemical synthesis method can also be suitably used.

なかでも、本発明では、電解二酸化マンガン粉末、化学合成法四酸化三マンガン粉末が好適に用いられるが、そのまま用いた場合は粒子径が大きく、高温で加熱処理しても効率的にスピネル結晶化せず、マンガン酸化物として残存する場合があり、放充電容量、サイクル特性が不充分となる場合がある。   In particular, in the present invention, electrolytic manganese dioxide powder and chemically synthesized trimanganese tetroxide powder are preferably used, but when used as they are, the particle diameter is large, and spinel crystallization is efficiently performed even when heat treatment is performed at high temperature. In some cases, it remains as manganese oxide, and the charge / discharge capacity and cycle characteristics may be insufficient.

このようなマンガン酸化物を粉砕して用いることが好ましい。使用されるマンガン酸化物粒子(1)は、平均粒子径(D1)が0.1〜5μm、さらには0.1〜1.0μmの範囲にあることが好ましい。 It is preferable to pulverize and use such manganese oxide. The manganese oxide particles (1) to be used preferably have an average particle diameter (D 1 ) of 0.1 to 5 μm, more preferably 0.1 to 1.0 μm.

平均粒子径(D1)が前記範囲の下限よりも小さくすると、粉砕後に凝集が起こりやすくなり、現実的に取り扱いが困難である。平均粒子径(D1)が大きすぎると、スピネル型マンガン酸リチウム粒子(2)の表面にスピネル型マンガン酸リチウム前駆体層を均一に形成できない場合があり、正極活物質による電解質の分解等の副反応を抑制する効果が不充分となる場合がある。 When the average particle diameter (D 1 ) is smaller than the lower limit of the above range, aggregation tends to occur after pulverization, and handling is practically difficult. If the average particle diameter (D 1 ) is too large, the spinel-type lithium manganate precursor layer may not be formed uniformly on the surface of the spinel-type lithium manganate particles (2). The effect of suppressing side reactions may be insufficient.

また、加熱処理しても効率的にスピネル結晶化せず、マンガン酸化物として残存する場合があり、放充電容量、サイクル特性が不充分となる場合がある。
さらに、噴霧乾燥用混合物分散液中で、容易に沈降して、スピネル型マンガン酸リチウム粒子(2)の表面を十分に前駆体層で被覆できない場合がある。
Moreover, spinel crystallization is not efficiently performed even when heat treatment is performed, and it may remain as manganese oxide, which may result in insufficient charge / discharge capacity and cycle characteristics.
Furthermore, in some cases, the surface of the spinel type lithium manganate particles (2) cannot be sufficiently covered with the precursor layer due to sedimentation easily in the mixture dispersion for spray drying.

粉砕方法としては、マンガン酸化物粒子(1)の平均粒子径が前記範囲となれば特に制限はなく、従来公知の粉砕方法を採用することができる。通常、乾式、湿式のボールミル粉砕器が用いられるが、平均粒子径を調整するためには、湿式粉砕法を採用することが好ましい。このとき、マンガン酸化物粒子(1)を単独で粉砕、粒子径調整して用いることもできるが、マンガン酸化物粒子(1)とリチウム化合物と、必要に応じて用いるLi、Mn、Co、Ni以外の元素Mの化合物、さらには後述するスピネル型マンガン酸リチウム粒子(2)等を混合した分散液として粉砕することもできる。粒子径は充填するビーズの材質、粒子径、粒子との量比、分散液の濃度および処理時間を調整することによって調整することができる。   The pulverization method is not particularly limited as long as the average particle diameter of the manganese oxide particles (1) falls within the above range, and a conventionally known pulverization method can be employed. Usually, dry and wet ball mill grinders are used, but in order to adjust the average particle diameter, it is preferable to employ a wet grinding method. At this time, the manganese oxide particles (1) can be used by pulverizing and adjusting the particle size alone, but the manganese oxide particles (1) and the lithium compound, and Li, Mn, Co, Ni used as necessary It can also grind | pulverize as a dispersion liquid which mixed the compound of element M other than these, and also spinel type lithium manganate particle | grains (2) mentioned later. The particle diameter can be adjusted by adjusting the material of the beads to be filled, the particle diameter, the quantity ratio with the particles, the concentration of the dispersion and the treatment time.

本発明では、平均粒子径の測定は、超音波照射装置(日本精機製作所製:US-300)を用いて超音波を照射した直後に、レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製:LA−950V2)を用いて測定した。   In the present invention, the average particle size is measured immediately after irradiating with an ultrasonic wave using an ultrasonic irradiation device (manufactured by Nippon Seiki Seisakusho: US-300). Manufactured by: LA-950V2).

スピネル型マンガン酸リチウム粒子(2)
本発明に用いるスピネル型マンガン酸リチウム粒子(2)は、下記式(2)で表される。
Li(1+x1)・(Niおよび/またはCo)y1・Mn(2-x1-y1)4 ・・・(2)
(但し、0≦x1≦0.2、0.4≦y1≦0.6)
なお、Ni、Coの双方を含むものでも、一方のみを含むものであっても良い。
Spinel type lithium manganate particles (2)
The spinel type lithium manganate particles (2) used in the present invention are represented by the following formula (2).
Li (1 + x1) · (Ni and / or Co) y1 · Mn (2-x1-y1) O 4 (2)
(However, 0 ≦ x 1 ≦ 0.2, 0.4 ≦ y 1 ≦ 0.6)
It should be noted that both Ni and Co may be included, or only one of them may be included.

1が多すぎると、最終的に得られる正極活物質の充放電容量が低下する場合がある。y1が少なすぎると、平均作動電圧が低下する場合があり、y1が多すぎても充放電容量が低下する場合がある。 When x 1 is too large, the charge and discharge capacity of the finally obtained positive electrode active material may be lowered. If y 1 is too small, the average operating voltage may decrease, and even if y 1 is too large, the charge / discharge capacity may decrease.

なお、スピネル型マンガン酸リチウム粒子(2)にはLi、Mn、Co、Ni以外の元素Mを含んでいてもよい。元素Mを含む場合、下記式(2')で表される。
Li1(1+x1) ・(Niおよび/またはCo)y1・My1'・Mn(2-x1-y1-y1')4・・・・・(2')
但し、0≦x1≦0.2、0.4≦y1+y1'≦0.6を示す。
The spinel type lithium manganate particles (2) may contain an element M other than Li, Mn, Co, and Ni. When the element M is included, it is represented by the following formula (2 ′).
Li 1 (1 + x1) · (Ni and / or Co) y1 · M y1 ′ · Mn (2-x1-y1-y1 ′) O 4 (2 ′)
However, indicating the 0 ≦ x 1 ≦ 0.2,0.4 ≦ y 1 + y 1 '≦ 0.6.

1'は、0.008〜0.16の範囲にあり、y1'/(y1+y1')は0.08〜0.32の範囲あることが望ましい。
Mは、Na、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、V、Nb、Ta、Mo、W、Ag、Zn、B、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Biから選ばれる1種以上の元素である。
y 1 ′ is preferably in the range of 0.008 to 0.16, and y 1 ′ / (y 1 + y 1 ′ ) is preferably in the range of 0.08 to 0.32.
M is Na, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, V, Nb, Ta, Mo, W, Ag, Zn, B, Al, Ga, In, Si, Ge , Sn, Pb, P, As, Sb, and Bi.

スピネル型マンガン酸リチウム粒子(2)の平均粒子径(D2)は0.1〜5μm、さらには0.5〜3.0μmの範囲にあることが好ましい。
平均粒子径(D2)が小さいものは、後述する工程(c)において焼成して一次粒子が形成される際に、Niおよび/またはCoが一次粒子の表面に拡散し、一次粒子中心部のNiおよび/またはCoの含有量が低下し、Niおよび/またはCoを含有している効果、すなわち、平均作動電圧の向上効果が不充分となる場合がある。また、一次粒子の表面に拡散したNiおよび/またはCoの含有量が高くなり過ぎて、電解質の分解等の副反応を抑制する効果が不充分となる場合がある。
The average particle diameter (D 2 ) of the spinel type lithium manganate particles (2) is preferably in the range of 0.1 to 5 μm, more preferably 0.5 to 3.0 μm.
When the average particle size (D 2 ) is small, when primary particles are formed by firing in step (c) described later, Ni and / or Co diffuses to the surface of the primary particles, The content of Ni and / or Co decreases, and the effect of containing Ni and / or Co, that is, the effect of improving the average operating voltage may be insufficient. In addition, the content of Ni and / or Co diffused on the surface of the primary particles may become too high, and the effect of suppressing side reactions such as electrolyte decomposition may be insufficient.

平均粒子径(D2)が大きすぎても、後述する工程(c)において焼成して一次粒子が形成される際に、Niおよび/またはCoが一次粒子の表面に拡散しにくく、一次粒子中心部のNiおよび/またはCoの含有量(CB)が高いままとなり、平均作動電圧が高くなりすぎる場合がある。 Even when the average particle diameter (D 2 ) is too large, when primary particles are formed by firing in step (c) described later, Ni and / or Co are difficult to diffuse on the surface of the primary particles, and the primary particle center The Ni and / or Co content (C B ) of the part remains high and the average operating voltage may be too high.

平均粒子径(D2)が前記範囲にあると、工程(c)において焼成して一次粒子が形成される際の加熱処理温度によっても異なるが、最終的に得られる正極活物質中の一次粒子におけるNiおよび/またはCoの含有量分布が、一次粒子の中心部で高く、一次粒子の表層部になるほど低下し、電解質の分解等の副反応を抑制できるとともに、平均作動電圧の向上した二次電池用正極活物質が得られる。 When the average particle diameter (D 2 ) is within the above range, the primary particles in the positive electrode active material finally obtained are different depending on the heat treatment temperature when the primary particles are formed by firing in the step (c). The content distribution of Ni and / or Co in the secondary is higher at the center of the primary particle and lowers as the surface layer of the primary particle is reduced, and secondary reactions such as decomposition of the electrolyte can be suppressed, and the average operating voltage is improved. A positive electrode active material for a battery is obtained.

このようなスピネル型マンガン酸リチウム粒子(2)の製造方法は、前記したNiおよび/またはCoを所定量含有し所定の粒子径を有するスピネル型マンガン酸リチウム粒子(2)が得られれば特に制限はなく従来公知の方法を採用することができる。   The method for producing such spinel-type lithium manganate particles (2) is particularly limited as long as spinel-type lithium manganate particles (2) containing a predetermined amount of Ni and / or Co and having a predetermined particle diameter are obtained. It is possible to adopt a conventionally known method.

たとえば、マンガン酸化物粒子と、後述するリチウム化合物と、Ni化合物および/またはCo化合物と、必要に応じて他の元素Mの元素化合物の混合物が、Li:(Niおよび/またはCo):Mn(Li:(Niおよび/またはCo+M):Mnの原子比が前記した比率となるように混合して固形分濃度が5〜50重量%の範囲にある噴霧乾燥用混合物分散液を調製したのち、噴霧乾燥、焼成すればよい。
リチウム塩(3)
本発明に用いるリチウム化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、酸化リチウム等が挙げられる。中でも、水酸化リチウム、炭酸リチウムは好適に用いることができる。
元素Mの化合物
本発明ではさらに、Li、Mn、CoおよびNi以外の元素Mの化合物(4)を混合して用いることが好ましい。
For example, a mixture of manganese oxide particles, a lithium compound described later, a Ni compound and / or a Co compound, and, if necessary, an elemental compound of another element M is Li: (Ni and / or Co): Mn ( After mixing so that the atomic ratio of Li: (Ni and / or Co + M): Mn becomes the above-mentioned ratio, a mixture dispersion for spray drying having a solid content concentration in the range of 5 to 50% by weight is prepared, and then sprayed. What is necessary is just to dry and bake.
Lithium salt (3)
Examples of the lithium compound used in the present invention include lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, and lithium oxide. Among these, lithium hydroxide and lithium carbonate can be preferably used.
Compound of Element M In the present invention, a compound (4) of element M other than Li, Mn, Co and Ni is preferably used in combination.

Li、Mn、CoおよびNi以外の元素Mとしては、Na、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、V、Nb、Ta、Mo、W、Ag、Zn、B、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Biから選ばれる1種以上の元素が挙げられ、元素Mの化合物としては、塩、酸化物、酸素酸塩、酸素酸等が挙げられる。   Elements M other than Li, Mn, Co and Ni include Na, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, V, Nb, Ta, Mo, W, Ag, Zn, One or more elements selected from B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, and Bi are listed. Examples of the compound of the element M include salts, oxides, and oxyacid salts. And oxygen acid.

これらのなかでも、B、P、Sb、V等の酸化物の融点が800℃以下の元素Mの化合物(M1)を用いると、スピネル結晶の生成過程で上記の元素の酸化物が融剤として作用し、結晶の生成および成長が促進され、さらに結晶粒子が集合した微粒子の焼結が促進され、粒子密度の高いスピネル型マンガン酸リチウム粒子(3)を得ることができる。なお、元素Mはあらかじめ、スピネル型マンガン酸リチウム粒子(2)に含まれていてもよい。   Among these, when an element M compound (M1) having a melting point of an oxide of B, P, Sb, V or the like having an melting point of 800 ° C. or less is used, the oxide of the above element is used as a flux in the process of forming a spinel crystal. Thus, the formation and growth of crystals are promoted, and further, the sintering of fine particles in which crystal particles are aggregated is promoted, and spinel type lithium manganate particles (3) having a high particle density can be obtained. The element M may be included in advance in the spinel type lithium manganate particles (2).

また、Mg、Ti、Cr、Fe、Cu、Al、Ga、Ge等の元素Mの化合物(M2)を用いると、結晶構造の転移、格子欠陥の生成を抑制することができ、Mnの溶出を抑制できるとともに放充電容量、サイクル特性に優れたスピネル型マンガン酸リチウム粒子(3)を得ることができる。
混合物
上記した、マンガン酸化物粒子(1)、スピネル型マンガン酸リチウム粒子(2)およびリチウム化合物(3)を、マンガン酸化物粒子(1)の固形分重量(W1)とスピネル型マンガン酸リチウム粒子(2)の固形分重量(W2)との重量比(W1)/(W2)が0.25〜4、好ましくは0.3〜3の範囲となるようにする。このような比で混合すると、下記式(3)の組成比を有する混合物を調製できる。
In addition, when the compound (M2) of the element M such as Mg, Ti, Cr, Fe, Cu, Al, Ga, Ge is used, the transition of the crystal structure and the generation of lattice defects can be suppressed, and the elution of Mn. It is possible to obtain spinel type lithium manganate particles (3) that can be suppressed and are excellent in discharge capacity and cycle characteristics.
Mixture As described above, the manganese oxide particles (1), the spinel type lithium manganate particles (2) and the lithium compound (3), the solid content weight (W 1 ) of the manganese oxide particles ( 1 ) and the spinel type lithium manganate The weight ratio (W 1 ) / (W 2 ) to the solid content weight (W 2 ) of the particles (2) is in the range of 0.25 to 4, preferably 0.3 to 3. When mixed at such a ratio, a mixture having the composition ratio of the following formula (3) can be prepared.

比(W1)/(W2)が少なすぎると、得られるスピネル型マンガン酸リチウム粒子中のNiおよび/またはCoが多くなりすぎて、平均作動電圧が高くなりすぎてしまい、電解液の分解が起こりやすくなり、電池寿命が不十分となる場合がある。比(W1)/(W2)が多すぎると、得られるスピネル型マンガン酸リチウム粒子中のNiおよび/またはCoが少なくなり、平均作動電圧や充放電容量を高める効果が不十分となることがある。 If the ratio (W 1 ) / (W 2 ) is too small, Ni and / or Co in the spinel-type lithium manganate particles will be too much and the average operating voltage will be too high, resulting in decomposition of the electrolyte. May occur and battery life may be insufficient. If the ratio (W 1 ) / (W 2 ) is too large, the amount of Ni and / or Co in the obtained spinel type lithium manganate particles will decrease, and the effect of increasing the average operating voltage and charge / discharge capacity will be insufficient. There is.

Li(1+x2)・(Niおよび/またはCo)y2・Mn(2-x2-y2)4 ・・・(3)
(但し、0≦x2≦0.2、0.1<y2≦0.5)
混合する際は、通常、水に各原料の水分散液あるいは溶液を混合するが、混合物に水を加えることもできる。噴霧乾燥用混合物分散液の固形分としての濃度は5〜50重量%、さらには10〜40重量%の範囲にあることが好ましい。
Li (1 + x2) · (Ni and / or Co) y2 · Mn (2-x2-y2) O 4 (3)
(However, 0 ≦ x 2 ≦ 0.2, 0.1 <y 2 ≦ 0.5)
When mixing, the aqueous dispersion or solution of each raw material is usually mixed with water, but water can also be added to the mixture. The concentration of the mixture dispersion for spray drying as a solid content is preferably in the range of 5 to 50% by weight, more preferably 10 to 40% by weight.

元素Mの化合物を混合する場合、
Li(1+x2) ・(Niおよび/またはCo)y2・My2'・Mn(2-x2-y2-y2')4・・・・・(3')
但し、0≦x2≦0.2、0.1<y2+y2'≦0.5を示す。
When mixing a compound of element M,
Li (1 + x2) · (Ni and / or Co) y2 · My2 ' · Mn (2-x2-y2-y2') O 4 (3 ')
However, 0 ≦ x 2 ≦ 0.2 and 0.1 <y 2 + y 2 ′ ≦ 0.5 are shown.

2'は、0.008〜0.16の範囲にあり、y2/(y2+y2')は0.08〜0.32の範囲あることが望ましい。
前記Mが少ないと、結晶の生成および成長の促進、あるいは結晶構造の転移、格子欠陥の生成の抑制、Mn溶出の抑制等の効果が不十分となることがある。
y 2 ′ is preferably in the range of 0.008 to 0.16, and y 2 / (y 2 + y 2 ′ ) is preferably in the range of 0.08 to 0.32.
When the amount of M is small, effects such as promotion of crystal formation and growth, crystal structure transition, suppression of lattice defect generation, and suppression of Mn elution may be insufficient.

前記Mが多すぎると、Niおよび/またはCoを含むスピネル型マンガン酸リチウム粒子(2)を用いる効果、すなわち、作動電圧、充放電容量の向上効果が充分得られない場合がある。   If the M is too large, the effect of using the spinel type lithium manganate particles (2) containing Ni and / or Co, that is, the effect of improving the operating voltage and charge / discharge capacity may not be obtained sufficiently.

元素Mの化合物が粒子径の大きな難溶性の固体である場合、この場合も前記マンガン酸化物粒子(1)と同様に粉砕して用いることが好ましい。このような元素Mの化合物を混合した場合も、噴霧乾燥用混合物分散液の固形分としての濃度は5〜50重量%、さらには10〜40重量%の範囲にあることが好ましい。   In the case where the compound of the element M is a hardly soluble solid having a large particle size, it is preferably used after being pulverized in the same manner as the manganese oxide particles (1). Even when such a compound of element M is mixed, the concentration of the mixture dispersion for spray drying as a solid content is preferably in the range of 5 to 50% by weight, more preferably 10 to 40% by weight.

噴霧乾燥用混合物分散液の固形分濃度が低いと生産効率が低く、噴霧乾燥用混合物分散液の固形分濃度が高すぎると、噴霧乾燥して得られる粒子の中に凹部を有していたり、お碗状の粒子が存在し、これを高温で焼成して得られる粒子の粒子密度が変動しやすく、正極材として用いた際に電極の強度、充填密度等が低下する場合があり、また、放電容量、サイクル特性等が不充分となる場合がある。   When the solid content concentration of the mixture dispersion for spray drying is low, the production efficiency is low, and when the solid content concentration of the mixture dispersion for spray drying is too high, the particles obtained by spray drying have recesses, There are bowl-shaped particles, and the particle density of particles obtained by baking this at high temperature is likely to fluctuate, and when used as a positive electrode material, the strength of the electrode, the packing density, etc. may decrease, The discharge capacity, cycle characteristics, etc. may be insufficient.

分散液に使用される溶媒として、揮発性のものであれば特に制限されないが、通常、水、低級アルコールなどが使用され、好ましくは水である。
[工程(b)]
ついで、噴霧乾燥用混合物分散液を熱風気流中に噴霧して乾燥する。
The solvent used in the dispersion is not particularly limited as long as it is volatile, but usually water, lower alcohols and the like are used, preferably water.
[Step (b)]
Subsequently, the spray dispersion mixture dispersion is sprayed into a hot air stream and dried.

噴霧乾燥方法としては、前記噴霧乾燥用混合物の微小球状粒子が得られれば特に制限は無いが、回転ディスク法、加圧ノズル法、2流体ノズル法、4流体ノズル法等従来公知の方法を採用することができる。ここで、噴霧乾燥とは微小液滴を形成し、乾燥して所望の粒子を形成できればよく、噴射法等も含んで意味している。熱風気流の入口温度は、得られる粒子が球状で、緻密であり、平均粒子径が概ね1〜30μmの粒子が得られれば特に制限はないが、概ね180〜450℃、さらには190〜370℃の範囲にあることが好ましい。   The spray drying method is not particularly limited as long as fine spherical particles of the spray drying mixture can be obtained, but a conventionally known method such as a rotating disk method, a pressure nozzle method, a two-fluid nozzle method, or a four-fluid nozzle method is employed. can do. Here, spray-drying means that fine droplets can be formed and dried to form desired particles, and includes spraying and the like. The inlet temperature of the hot air stream is not particularly limited as long as the obtained particles are spherical and dense, and particles having an average particle diameter of approximately 1 to 30 μm can be obtained, but are generally 180 to 450 ° C., more preferably 190 to 370 ° C. It is preferable that it exists in the range.

熱風気流の入口温度が低すぎると、乾燥が不充分になることがあり、粒子内に水分が多く残存すると、高温焼成時に粒子内に微細な空隙の原因となり、得られるスピネル型マンガン酸リチウム粒子(3)の粒子密度が低下し、充放電容量、サイクル特性が不充分となる場合がある。熱風気流の入口温度が高すぎても、内部に空洞を有する粒子、あるいは粒子形状を維持してない非球状粒子が存在するようになり、これを焼成して得られるスピネル型マンガン酸リチウム粒子(3)の密度が低下し、充放電容量、サイクル特性が不充分となる場合がある。   If the inlet temperature of the hot air stream is too low, drying may be insufficient, and if a large amount of moisture remains in the particles, it will cause fine voids in the particles during high-temperature firing, resulting in spinel-type lithium manganate particles In some cases, the particle density of (3) decreases, and the charge / discharge capacity and cycle characteristics become insufficient. Even if the inlet temperature of the hot air stream is too high, there are particles with cavities inside, or non-spherical particles that do not maintain the particle shape, and spinel type lithium manganate particles obtained by firing this ( The density of 3) decreases, and the charge / discharge capacity and cycle characteristics may be insufficient.

また、熱風気流の出口温度は概ね80〜200℃、さらには90〜150℃の範囲にあることが好ましい。噴霧乾燥して得られる粒子の平均粒子径は概ね1〜30μmの範囲にある。   Moreover, it is preferable that the exit | outlet temperature of a hot air stream exists in the range of about 80-200 degreeC, and also 90-150 degreeC. The average particle size of the particles obtained by spray drying is generally in the range of 1 to 30 μm.

このとき、噴霧乾燥して得られる粒子は、Niおよび/またはCoを含むスピネル型マンガン酸リチウム粒子(2)の周囲に、Niおよび/またはCoを含まないスピネル型マンガン酸リチウム結晶相となるスピネル型マンガン酸リチウムの前駆体層が形成されていると考えられる。
[工程(c)]
ついで、噴霧乾燥して得られた粒子を焼成する。
At this time, the particles obtained by spray drying are spinels that form a spinel-type lithium manganate crystal phase that does not contain Ni and / or Co around the spinel-type lithium manganate particles (2) containing Ni and / or Co. It is considered that a precursor layer of type lithium manganate is formed.
[Step (c)]
Next, the particles obtained by spray drying are fired.

焼成する方法としては、所定範囲の組成を有し、結晶性に優れたスピネル型マンガン酸リチウム粒子が得られれば特に制限はなく、トンネル炉、マッフル炉、ロータリーキルン等従来公知の方法を採用することができる。本発明では、粒子密度が高く、比表面積が所定の範囲にあり、且つこれらの変動幅が小さいスピネル型マンガン酸リチウム粒子(3)が得られ、さらには、融着粒子が生成しないことから流動焼成法が好ましく、こうして得られるスピネル型マンガン酸リチウム粒子(3)を正極材に用いたリチウムイオン電池は充放電容量、サイクル特性に優れている。   The firing method is not particularly limited as long as spinel-type lithium manganate particles having a predetermined range of composition and excellent crystallinity can be obtained, and a conventionally known method such as a tunnel furnace, a muffle furnace, a rotary kiln, etc. should be adopted. Can do. In the present invention, spinel-type lithium manganate particles (3) having a high particle density, a specific surface area in a predetermined range, and a small fluctuation range are obtained, and furthermore, no fused particles are generated. A firing method is preferable, and a lithium ion battery using the spinel-type lithium manganate particles (3) thus obtained as a positive electrode material is excellent in charge / discharge capacity and cycle characteristics.

焼成温度は650〜900℃、さらには700〜850℃の範囲にあることが好ましい。
焼成温度が低いと、スピネル結晶化が不十分となり、電池性能が不充分となる場合がある。
The firing temperature is preferably in the range of 650 to 900 ° C, more preferably 700 to 850 ° C.
If the firing temperature is low, spinel crystallization may be insufficient and battery performance may be insufficient.

焼成温度が高すぎると、前記したNiおよび/またはCoを含むスピネル型マンガン酸リチウム粒子(2)からNiおよび/またはCoを含まないスピネル型マンガン酸リチウム結晶相へNiおよび/またはCoが拡散して移動し、一次粒子の表面のNiおよび/またはCoの濃度が高くなり過ぎる場合があり、このため電解質の分解等の副反応が顕著になる場合がある。また、中心部のNiおよび/またはCoの濃度が低下し、平均作動電圧を高く維持する効果が不充分となる場合がある。また、格子欠陥(特に酸素欠陥)が増加する傾向があり、正極材として使用した場合、Mnの溶出が増加し、放充電容量、サイクル特性が不充分になる場合がある。   If the firing temperature is too high, Ni and / or Co diffuses from the spinel-type lithium manganate particles (2) containing Ni and / or Co to the spinel-type lithium manganate crystal phase not containing Ni and / or Co. And the concentration of Ni and / or Co on the surface of the primary particles may become too high, and side reactions such as decomposition of the electrolyte may become prominent. In addition, the concentration of Ni and / or Co in the central portion may decrease, and the effect of maintaining the average operating voltage high may be insufficient. Moreover, there is a tendency for lattice defects (particularly oxygen defects) to increase, and when used as a positive electrode material, the elution of Mn increases and the charge / discharge capacity and cycle characteristics may be insufficient.

焼成して得られたスピネル型マンガン酸リチウム粒子(3)は、充分に成長した結晶粒子からなり、その結晶粒子(一次粒子)の大きさは、約0.1〜5.0μmの範囲にあり、このような結晶粒子が集合し、焼結して平均粒径が1〜30μmの球状粒子(二次粒子)を形成している。
[工程(d)]
前記工程(c)についで、平均粒子径(D3)が1〜30μm、好ましくは2〜25μmの範囲となるように解砕する。
The spinel-type lithium manganate particles (3) obtained by firing are composed of sufficiently grown crystal particles, and the size of the crystal particles (primary particles) is in the range of about 0.1 to 5.0 μm. Such crystal particles are aggregated and sintered to form spherical particles (secondary particles) having an average particle diameter of 1 to 30 μm.
[Step (d)]
Following the step (c), pulverization is performed so that the average particle diameter (D 3 ) is in the range of 1 to 30 μm, preferably 2 to 25 μm.

得られる粒子には軽度に融着した粒子が存在する場合があり、そのまま電極の製造に使用した場合、正極集電体を損傷して不具合を生じたり、正極の充填密度が低下したりする場合がある。   The particles obtained may have slightly fused particles, and when used directly in the production of the electrode, the positive electrode current collector may be damaged, resulting in a malfunction or the packing density of the positive electrode may be reduced. There is.

解砕方法としては、結晶性を損なうことなく平均粒子径(D3)が所定の範囲にあるスピネル型マンガン酸リチウム粒子が得られれば特に制限はなく従来公知の方法を採用することができる。 The crushing method is not particularly limited as long as spinel-type lithium manganate particles having an average particle diameter (D 3 ) in a predetermined range can be obtained without impairing crystallinity, and a conventionally known method can be adopted.

解砕後、必要に応じて、篩などの分級処理をおこなってもよい。
得られるスピネル型マンガン酸リチウム粒子の平均粒子径(D3)が小さすぎると、正極膜を作成するための電極用合剤の粘度が高くなり、電極膜形成性が低下する場合があり、さらにスピネル型マンガン酸リチウム粒子の体積当たりの放電容量が不充分となる場合がある。
After crushing, classification treatment such as sieving may be performed as necessary.
If the average particle diameter (D 3 ) of the obtained spinel type lithium manganate particles is too small, the viscosity of the electrode mixture for preparing the positive electrode film may be increased, and the electrode film formability may be reduced. The discharge capacity per volume of the spinel type lithium manganate particles may be insufficient.

得られるスピネル型マンガン酸リチウム粒子の平均粒子径(D3)が大きすぎると、導電剤および電解液との接触が不充分となり、充放電容量が不充分となる場合があり、また、電極作成時に均質な膜が得られない場合がある。 If the average particle diameter (D 3 ) of the obtained spinel-type lithium manganate particles is too large, the contact with the conductive agent and the electrolytic solution may be insufficient, and the charge / discharge capacity may be insufficient. Sometimes a homogeneous film cannot be obtained.

また、得られるスピネル型マンガン酸リチウム粒子の粒子径分布は概ね0.5〜60μm、さらには1〜50μmの範囲にあることが好ましい。
この範囲にあるものは、分散させた時の粘度が適切な範囲高くなり、電極膜形成性が高く、さらにスピネル型マンガン酸リチウム粒子の体積当たりの放電容量も高い。また粒子(3)によって正極集電体を損傷することもなく、導電剤および電解液との接触も高いので充放電容量が不充分となる場合がある。
Moreover, it is preferable that the particle diameter distribution of the obtained spinel type lithium manganate particles is in the range of about 0.5 to 60 μm, more preferably 1 to 50 μm.
In the range, the viscosity when dispersed is high in an appropriate range, the electrode film forming property is high, and the discharge capacity per volume of the spinel type lithium manganate particles is also high. Further, the positive electrode current collector is not damaged by the particles (3), and the contact with the conductive agent and the electrolytic solution is high, so that the charge / discharge capacity may be insufficient.

スピネル型マンガン酸リチウム粒子に、粒子径が0.5μm未満の粒子が存在すると、正極膜を作成するための電極用合剤の粘度が顕著に高くなり、電極膜形成性が低下し、さらにスピネル型マンガン酸リチウム粒子の体積当たりの放電容量が不充分となる場合がある。   When particles having a particle size of less than 0.5 μm are present in the spinel type lithium manganate particles, the viscosity of the electrode mixture for producing the positive electrode film is remarkably increased, and the electrode film forming property is lowered. The discharge capacity per volume of the type lithium manganate particles may be insufficient.

スピネル型マンガン酸リチウム粒子に粒子径が60μmを越える粒子が存在すると正極集電体を損傷する場合があり、また、導電剤および電解液との接触が不充分となり、充放電容量が不充分となる場合がある。   If the spinel-type lithium manganate particles contain particles having a particle size exceeding 60 μm, the positive electrode current collector may be damaged, and the contact with the conductive agent and the electrolytic solution becomes insufficient, and the charge / discharge capacity is insufficient. There is a case.

スピネル型マンガン酸リチウム粒子(二次粒子)の平均粒径および粒子径分布は、レーザー回折散乱式粒子径分布測定装置(堀場製作所製:LA−950v2)を用いて測定した。   The average particle size and particle size distribution of the spinel type lithium manganate particles (secondary particles) were measured using a laser diffraction / scattering type particle size distribution measuring apparatus (manufactured by Horiba: LA-950v2).

また、スピネル型マンガン酸リチウム粒子中の一次粒子の平均粒径は、走査型電子顕微鏡写真を撮影し、任意の一次粒子100個について粒子径を測定し、その平均値として求めた。   The average particle size of primary particles in the spinel type lithium manganate particles was obtained by taking a scanning electron micrograph, measuring the particle size of 100 arbitrary primary particles, and calculating the average value.

本発明の方法で得られるスピネル型マンガン酸リチウム粒子(3)は球状で、このような球状の微粒子を正極活物質として用いれば、正極活物質を含む電極用合剤をアルミ箔などに塗布する際にアルミ箔を傷つけるようなことがない。
正極活物質の特性
以上の製造方法で得られた正極活物質は、一次粒子からなる二次粒子である。 前記一次粒子の平均一次粒子径(D4)が0.2〜5.0μmの範囲にあり、前記二次粒子(正極活物質)の平均二次粒子径(D3)が1〜30μmの範囲にある。
一次粒子
上記製造方法によれば、一次粒子として、その表層部Ni/Coの含有量が少なく、中心部のNiおよび/またはCoの含有量が多いスピネル型マンガン酸リチウムからなる結晶の粒子が得られる。
The spinel type lithium manganate particles (3) obtained by the method of the present invention are spherical, and if such spherical fine particles are used as a positive electrode active material, an electrode mixture containing the positive electrode active material is applied to an aluminum foil or the like. There will be no damage to the aluminum foil.
The positive electrode active material obtained by the production method more than the characteristics of the positive electrode active material is secondary particles composed of primary particles. The average primary particle diameter (D 4 ) of the primary particles is in the range of 0.2 to 5.0 μm, and the average secondary particle diameter (D 3 ) of the secondary particles (positive electrode active material) is in the range of 1 to 30 μm. It is in.
Primary particles According to the above production method, as primary particles, crystalline particles composed of spinel type lithium manganate with a small content of surface layer Ni / Co and a large content of Ni and / or Co in the central part are obtained. It is done.

一次粒子表層部(厚み=50nm)のNiおよび/またはCoの含有量(CA)が金属として0〜4重量%、さらには0〜2重量%の範囲にあることが好ましい。
一次粒子表層部(厚み=50nm)のNiおよび/またはCoの含有量(CA)が多くなると、平均作動電圧が高過ぎたり電解質の分解等副反応を生じ、長期にわたって高い充放電容量、サイクル特性を維持できない場合がある。
The content (C A ) of Ni and / or Co in the primary particle surface layer (thickness = 50 nm) is preferably in the range of 0 to 4% by weight, more preferably 0 to 2% by weight, as a metal.
When the Ni and / or Co content (C A ) in the primary particle surface layer (thickness = 50 nm) increases, the average operating voltage is too high or side reactions such as electrolyte decomposition occur, resulting in a long charge / discharge capacity and cycle. The characteristics may not be maintained.

また、一次粒子の中心部のNiおよび/またはCoの含有量(CB)は、金属として8〜20重量%、さらには12〜20重量%の範囲にあることが好ましい。
一次粒子の中心部のNiおよび/またはCoの含有量(CB)が少なすぎても、平均作動電圧を向上する効果が充分得られない場合がある。一次粒子の中心部のNiおよび/またはCoの含有量(CB)が前記範囲を越えるものは得ることが困難である。
Further, the content (C B ) of Ni and / or Co in the central part of the primary particles is preferably in the range of 8 to 20% by weight, more preferably 12 to 20% by weight as a metal.
Even if the content (C B ) of Ni and / or Co in the central part of the primary particles is too small, the effect of improving the average operating voltage may not be sufficiently obtained. It is difficult to obtain a Ni particle and / or Co content (C B ) exceeding the above range in the center of the primary particles.

上記した一次粒子の表層部のNiおよび/またはCoの含有量(CA)および、中心部のNiおよび/またはCoの含有量(CB)は、飛行時間型二次イオン質量分析装置(TOF−SIMS)(アルバックファイ社製:TRIFT V nano TOFTM)を用いて、断面加工(スパッタリング)を行い、Niおよび/またはCoの含有量の測定を実施した。 The content of Ni and / or Co (C A ) in the surface layer portion of the primary particles and the content of Ni and / or Co (C B ) in the central portion are determined by a time-of-flight secondary ion mass spectrometer (TOF). -SIMS) (manufactured by ULVAC-PHI, Inc .: TRIFT V nano TOF ) was subjected to cross-section processing (sputtering), and the content of Ni and / or Co was measured.

また、平均一次粒子径(D4)は0.1〜5.0μm、さらには0.5〜3.0μmの範囲にあることが好ましい。
平均一次粒子径(D4)が小さいと電解液に接する外部表面積が大きくなりすぎ、マンガンなどの金属成分の溶出量が多くなり充分なサイクル特性が得られないことがある。 平均一次粒子径(D4)が多すぎても過電圧が高くなり、充分な充放電容量が得られない場合がある。
The average primary particle diameter (D 4) is 0.1 to 5.0 [mu] m, more preferably in the range of 0.5 to 3.0 [mu] m.
If the average primary particle size (D 4 ) is small, the external surface area in contact with the electrolyte solution becomes too large, and the amount of elution of metal components such as manganese increases, so that sufficient cycle characteristics may not be obtained. Even if the average primary particle size (D 4 ) is too large, the overvoltage becomes high and sufficient charge / discharge capacity may not be obtained.

本発明の正極活物質は前記一次粒子が一部融着して形成された二次粒子であり、平均二次粒子径(D3)は1〜30μm、さらには2〜25μmの範囲にあることが好ましい。
スピネル型マンガン酸リチウム粒子の平均粒子径(D3)が小さすぎると、正極膜を作成するための電極用合剤の粘度が高くなり、電極膜形成性が低下する場合があり、さらにスピネル型マンガン酸リチウム粒子の体積当たりの放電容量が不充分となる場合がある。
The positive electrode active material of the present invention is a secondary particle formed by fusing part of the primary particles, and the average secondary particle diameter (D 3 ) is in the range of 1 to 30 μm, more preferably 2 to 25 μm. Is preferred.
If the average particle diameter (D 3 ) of the spinel type lithium manganate particles is too small, the viscosity of the electrode mixture for preparing the positive electrode film may increase, and the electrode film formability may decrease, and the spinel type The discharge capacity per volume of the lithium manganate particles may be insufficient.

スピネル型マンガン酸リチウム粒子の平均粒子径(D3)が大きすぎると、導電剤および電解液との接触が不充分となり、充放電容量が不充分となる場合がある。
本発明のスピネル型マンガン酸リチウム粒子の比表面積は0.1〜3.0m2/g、さらには0.1〜2.5m2/gの範囲にあることが好ましい。
If the average particle diameter (D 3 ) of the spinel type lithium manganate particles is too large, the contact with the conductive agent and the electrolytic solution may be insufficient, and the charge / discharge capacity may be insufficient.
The specific surface area of the spinel type lithium manganate particles of the present invention is preferably in the range of 0.1 to 3.0 m 2 / g, more preferably 0.1 to 2.5 m 2 / g.

比表面積が前記範囲未満では、正極活物質として用いたとき、スピネル型マンガン酸リチウム粒子と導電剤及び電解液との接触が不十分となり、比表面積が前記範囲より大きくなると粒子の体積当たりの充放電容量の向上が見られなくなる。   When the specific surface area is less than the above range, when used as the positive electrode active material, the contact between the spinel type lithium manganate particles, the conductive agent and the electrolyte is insufficient, and when the specific surface area is larger than the above range, the charge per volume of the particles is increased. No improvement in discharge capacity is seen.

以上の製造方法で得られたスピネル型マンガン酸リチウム粒子の模式図を図1および2に示す。
スピネル型マンガン酸リチウム粒子は下記組成式(1)で表され、実質的には、上記混合物の組成が該当する。
1 and 2 show schematic views of spinel type lithium manganate particles obtained by the above production method.
The spinel type lithium manganate particles are represented by the following composition formula (1), and the composition of the above mixture substantially corresponds.

Li1+x3(Ni+Co)y3Mn2-x3-y34・・・・・(1)
(但し、0≦x3≦0.2、0.1<y3≦0.5)
ここで、x3が多すぎると、Mn3+サイトもしくはNiおよび/またはCoのサイトに置換し充放電によって挿入あるいは脱離できるLi量が減少し、放電容量が不十分となる場合がある。 y3が少なすぎても、平均作動電圧が不十分となり、充分なエネルギー密度(充放電容量)が得られない場合がある。y3が多すぎても、作動電圧が高くなりすぎ、電解液の分解が起こりやすくなり、電池寿命が不十分となる場合がある。
Li 1 + x3 (Ni + Co) y3 Mn 2-x3-y3 O 4 (1)
(However, 0 ≦ x 3 ≦ 0.2, 0.1 <y 3 ≦ 0.5)
Here, if there is too much x 3 , the amount of Li that can be replaced by Mn 3+ sites or Ni and / or Co sites and inserted or removed by charge / discharge decreases, and the discharge capacity may become insufficient. Even if y 3 is too small, the average operating voltage becomes insufficient, and a sufficient energy density (charge / discharge capacity) may not be obtained. Even if y 3 is too much, the operating voltage becomes too high, the electrolytic solution tends to decompose, and the battery life may be insufficient.

3が前記範囲にあると、作動電圧を調整することが可能であり、電解液の分解を起こすことなく充放電が可能となり、平均作動電圧が比較的高く、且つ、エネルギー密度が高く、充放電容量が高い電池寿命の向上した二次電池を得ることができる。 When y 3 is in the above range, the operating voltage can be adjusted, charging / discharging can be performed without causing decomposition of the electrolyte, the average operating voltage is relatively high, the energy density is high, A secondary battery having a high discharge capacity and an improved battery life can be obtained.

また他の元素Mを含む場合、下記組成式(1')で表される。
Li1+x3(M+Ni+Co)y3Mn2-x3-y34・・・・・(1')
(但し、0≦x3≦0.2、0.1<y3≦0.5であり、Mは、Na、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、V、Nb、Ta、Mo、W、Ag、Zn、B、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Biから選ばれる1種以上の元素、M/(M+Ni+Co)=0.08〜0.32である。)
元素Mとして例えば、B、P、Sb、V等の酸化物の融点が800℃以下の元素Mを含んでいると、結晶粒子が集合した微粒子の焼結が促進され、粒子密度の高いスピネル型リチウム・マンガン複合酸化物粒子を得ることができる。また、Mg、Ti、Al、Ga、Ge等の元素Mを含んでいると、結晶構造の転移、格子欠陥の生成を抑制することができ、Mnの溶出を抑制できるとともに放充電容量、サイクル特性に優れたスピネル型リチウム・マンガン複合酸化物粒子を得ることができる。
When other elements M are included, they are represented by the following composition formula (1 ′).
Li 1 + x3 (M + Ni + Co) y3 Mn 2-x3-y3 O 4 (1 ')
(However, 0 ≦ x 3 ≦ 0.2, 0.1 <y 3 ≦ 0.5, and M is Na, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, One or more elements selected from V, Nb, Ta, Mo, W, Ag, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, Bi, M / (M + Ni + Co ) = 0.08-0.32.)
If the element M contains, for example, an element M having a melting point of an oxide of B, P, Sb, V or the like of 800 ° C. or less, the sintering of the fine particles in which crystal particles are aggregated is promoted, and the spinel type having a high particle density Lithium / manganese composite oxide particles can be obtained. In addition, when the element M such as Mg, Ti, Al, Ga, Ge, etc. is included, the transition of the crystal structure and the generation of lattice defects can be suppressed, the elution of Mn can be suppressed and the discharge capacity and cycle characteristics Spinel type lithium / manganese composite oxide particles excellent in the above can be obtained.

前記M/(M+Ni+Co)が少ないと、前記元素Mを用いる効果、即ち、結晶の生成および成長の促進、あるいは結晶構造の転移、格子欠陥の生成の抑制、Mn溶出の抑制等の効果が充分得られない場合がある。前記M/(M+Ni+Co)が多すぎても、前記元素Mを用いる効果は得られるが、本願のNiおよび/またはCoを含むスピネル型マンガン酸リチウム粒子(2)を用いる効果、すなわち、作動電圧、充放電容量の向上効果が充分得られない場合がある。   When the amount of M / (M + Ni + Co) is small, the effect of using the element M, that is, the effect of promoting the formation and growth of crystals, the transition of crystal structure, the generation of lattice defects, the suppression of Mn elution, etc. is sufficiently obtained. It may not be possible. Even if there is too much M / (M + Ni + Co), the effect of using the element M is obtained, but the effect of using the spinel-type lithium manganate particles (2) containing Ni and / or Co of the present application, that is, operating voltage, In some cases, the effect of improving the charge / discharge capacity cannot be sufficiently obtained.

つぎに、本発明に係るリチウムイオン二次電池について説明する。
[リチウムイオン二次電池]
本発明に係るリチウムイオン二次電池は、電解質層と、正極集電体(1)上に形成された正極活物質層からなる正極と、電解質層中の積層する負極集電体(2)上に形成された負極活物質層からなる負極と、該正極と該負極とを隔絶するセパレーターとからなるリチウムイオン二次電池である。そして、該正極活物質に前記製造方法で得られたスピネル型マンガン酸リチウム粒子が用いられる。このような正極活物質を使用することで、安定な高性能なリチウム二次電池を得ることができる。
Next, the lithium ion secondary battery according to the present invention will be described.
[Lithium ion secondary battery]
The lithium ion secondary battery according to the present invention includes an electrolyte layer, a positive electrode composed of a positive electrode active material layer formed on the positive electrode current collector (1), and a negative electrode current collector (2) laminated in the electrolyte layer. And a separator that isolates the positive electrode from the negative electrode. And the spinel type lithium manganate particle | grains obtained with the said manufacturing method are used for this positive electrode active material. By using such a positive electrode active material, a stable high-performance lithium secondary battery can be obtained.

本発明のリチウム二次電池で用いる負極活物質には、従来公知のものを特に制限なく使用することができる。たとえば、リチウムまたはリチウムイオンを吸蔵放出可能な物質を用いることができる。具体的には、金属リチウム、リチウム/アルミニウム合金、リチウム/スズ合金、リチウム/鉛合金および電気化学的にリチウムイオンを挿入・脱離する炭素系材料が例示され、電気化学的にリチウムイオンを挿入・脱離する炭素系材料が安全性および電池の特性の面から特に好適である。   A conventionally well-known thing can be especially used for a negative electrode active material used with the lithium secondary battery of this invention without a restriction | limiting. For example, a substance capable of occluding and releasing lithium or lithium ions can be used. Specific examples include lithium metal, lithium / aluminum alloy, lithium / tin alloy, lithium / lead alloy, and carbon-based materials that electrochemically insert and desorb lithium ions, and electrochemically insert lithium ions. A carbon-based material that desorbs is particularly suitable from the viewpoints of safety and battery characteristics.

また、本発明のリチウム二次電池で用いる電解質としては、特に制限はないが、例えば、カーボネート類、スルホラン類、ラクトン類、エーテル類等の有機溶媒中にリチウム塩を溶解したものや、リチウムイオン導電性の固体電解質を用いることができる。   The electrolyte used in the lithium secondary battery of the present invention is not particularly limited. For example, an electrolyte obtained by dissolving a lithium salt in an organic solvent such as carbonates, sulfolanes, lactones, and ethers, or lithium ions A conductive solid electrolyte can be used.

本発明のリチウムイオン二次電池は、リチウム負極に対する平均動作電圧が4.4〜4.6V、さらには4.45〜4.6Vの範囲にあることが好ましい。このような電池は、エネルギー密度が高い。   In the lithium ion secondary battery of the present invention, the average operating voltage with respect to the lithium negative electrode is preferably in the range of 4.4 to 4.6V, more preferably 4.45 to 4.6V. Such a battery has a high energy density.

平均動作電圧が4.4V未満の場合は電圧が低くなるため、電池のエネルギー密度(充放電容量)が不十分となる場合がある。
平均動作電圧が4.6Vを越えると、電解液の分解等の副反応が促進され、長期にわたって高い充放電容量、サイクル特性を維持できない場合がある。
When the average operating voltage is less than 4.4 V, the voltage is low, and the energy density (charge / discharge capacity) of the battery may be insufficient.
When the average operating voltage exceeds 4.6 V, side reactions such as decomposition of the electrolytic solution are promoted, and high charge / discharge capacity and cycle characteristics may not be maintained over a long period of time.

また、本発明のリチウムイオン二次電池は充放電容量が120〜150mAh/g、さらには125〜145mAh/gの範囲にあることが好ましい。このような電池は、充放電容量が高く、サイクル特性にも優れる。   In addition, the lithium ion secondary battery of the present invention preferably has a charge / discharge capacity of 120 to 150 mAh / g, more preferably 125 to 145 mAh / g. Such a battery has a high charge / discharge capacity and excellent cycle characteristics.

充放電容量が120mAh/g未満の場合は、充放電容量が低くエネルギー密度が不十分となる。
充放電容量が150mAh/gを越えるものは、本発明の正極活物質を用いては得ることが困難であり、得られたとしてもLiの挿入あるいは脱離以外の反応などに起因する場合があり、サイクル特性が不十分となる場合がある。
When the charge / discharge capacity is less than 120 mAh / g, the charge / discharge capacity is low and the energy density is insufficient.
Those having a charge / discharge capacity exceeding 150 mAh / g are difficult to obtain using the positive electrode active material of the present invention, and even if obtained, may result from reactions other than insertion or desorption of Li. , The cycle characteristics may be insufficient.

以下、実施例により本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[実施例1]
スピネル型マンガン酸リチウム粒子(2-1)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8%)、ニッケル源としてNiO(関東化学(株)製:酸化ニッケル純度98.5重量%、平均粒子径=9.4μm)マンガン源として電解二酸化マンガン粉末(γ−MnO2 、純度60.64%平均粒子径=28.0μm)そして、それぞれの原料を、Li1.0Ni0.50Mn1.504となるよう秤量し、これらの原料を混合した後、固形分濃度が33.3質量%となるように純水を加え、次に、この混合物分散液を撹拌しながら、湿式粉砕機(アシザワファインテック社製:スターミルラボスターLMZ−06)を用いて、混合物分散液中の固形分の平均粒子径が0.4μmとなるまで、600mlの容器を用い、約1時間粉砕した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following Example.
[Example 1]
Preparation of spinel type lithium manganate particles (2-1) LiOH.H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8%) as a lithium source, NiO (manufactured by Kanto Chemical Co., Ltd .: nickel oxide) as a nickel source purity 98.5%, average particle diameter = 9.4 .mu.m) electrolytic manganese dioxide powder as the source of manganese (γ-MnO 2, purity 60.64% average particle size = 28.0μm) and the respective raw materials, Li 1.0 Ni 0.50 Mn 1.50 O 4 was weighed and these raw materials were mixed, then pure water was added so that the solid content concentration was 33.3% by mass, and then the mixture dispersion was stirred, Using a wet pulverizer (manufactured by Ashizawa Finetech Co., Ltd .: Star Mill Lab Star LMZ-06), using a 600 ml container until the average particle size of the solid content in the mixture dispersion becomes 0.4 μm, about 1 hour Crushed.

ここで、混合物分散液中の固形分の平均粒子径は、レーザー回折/散乱式粒度分布測定装置(堀場製作所:LA−950型粒度分布測定装置)を用いて測定し、室温大気中で、混合物分散液にヘキサメタリン酸ナトリウム水溶液を添加し、超音波を照射しながら撹拌して分散させ、87.5〜88.5%の光透過率となるように調節した後、前記装置を用いて粒度分布を測定した。結果を表に示す。   Here, the average particle size of the solid content in the mixture dispersion is measured using a laser diffraction / scattering particle size distribution measuring device (Horiba, Ltd .: LA-950 type particle size distribution measuring device), and the mixture is measured in the atmosphere at room temperature. After adding sodium hexametaphosphate aqueous solution to the dispersion, stirring and dispersing while irradiating with ultrasonic waves, adjusting the light transmittance to 87.5-88.5%, and then using the above apparatus Was measured. The results are shown in the table.

次に、粉砕後の混合物分散液について、ノズル型スプレードライヤー(大川原化工機社製:L−8型スプレードライヤー)を用いて噴霧乾燥を行った。ここで乾燥ガスとして空気を用いた。また、サイクロン差圧が0.7〜0.8kPaとなるよう調整し、乾燥ガスの入口温度は220℃に調整した。混合物分散液流量は3kg/hr、微粒化エアー圧力は0.1MPaとした。   Next, the pulverized mixture dispersion was spray-dried using a nozzle type spray dryer (Okawara Kakoki Co., Ltd .: L-8 type spray dryer). Here, air was used as the drying gas. Moreover, it adjusted so that cyclone differential pressure might be set to 0.7-0.8 kPa, and the inlet temperature of the dry gas was adjusted to 220 degreeC. The flow rate of the mixture dispersion was 3 kg / hr, and the atomization air pressure was 0.1 MPa.

そして、噴霧乾燥により得られた粒子状の前駆体を850℃で6時間空気中にて焼成することで、スピネル型マンガン酸リチウム粒子(2-1)を得た。
スピネル型マンガン酸リチウム粒子(2-1)の平均粒子径(二次粒子)を測定し結果を表に示す。
スピネル型マンガン酸リチウム粒子(3-1)の調製
スピネル型マンガン酸リチウム粒子(2-1)の固形分濃度33.3重量%の分散液を調製し、湿式粉砕機(アシザワファインテック社製:スターミルラボスターLMZ−06)にて、平均粒子径1.0μmとなるまで粉砕してコア粒子用スピネル型マンガン酸リチウム粒子(2-1)分散液を調製した。
And the spinel type lithium manganate particle | grains (2-1) were obtained by baking the particulate precursor obtained by spray-drying in the air at 850 degreeC for 6 hours.
The average particle diameter (secondary particles) of the spinel type lithium manganate particles (2-1) was measured, and the results are shown in the table.
Preparation of Spinel-type Lithium Manganate Particles (3-1) A dispersion of spinel-type lithium manganate particles (2-1) having a solid content concentration of 33.3% by weight was prepared, and a wet pulverizer (manufactured by Ashizawa Finetech Co., Ltd .: In a Star Mill Lab Star LMZ-06), a dispersion liquid of spinel type lithium manganate particles (2-1) for core particles was prepared by pulverization until the average particle size became 1.0 μm.

別途、アルミ源としてAl23(関東化学(株)製:純度96.9重量%、平均粒子径=31.6μm)の固形分濃度33.3重量%の分散液を調製し、湿式粉砕機(アシザワファインテック社製:スターミルラボスターLMZ−06)にて、平均粒子径0.20μmとなるまで粉砕してアルミナ粒子分散液を調製した。 Separately, a dispersion having a solid content concentration of 33.3% by weight of Al 2 O 3 (manufactured by Kanto Chemical Co., Inc .: purity 96.9% by weight, average particle size = 31.6 μm) was prepared as an aluminum source, and wet pulverized. Alumina particle dispersion was prepared by pulverizing with a machine (manufactured by Ashizawa Finetech Co., Ltd .: Star Mill Lab Star LMZ-06) until the average particle size became 0.20 μm.

また、別途、マンガン源として電解二酸化マンガン粉末(γ−MnO2 、純度60.64%、平均粒子径=28.0μm)の固形分濃度33.3重量%の分散液を調製し、湿式粉砕機(アシザワファインテック社製:スターミルラボスターLMZ−06)にて、平均粒子径0.35μmとなるまで粉砕して電解二酸化マンガン分散液を調製した。 Separately, a dispersion of electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%, average particle size = 28.0 μm) with a solid content concentration of 33.3% by weight as a manganese source was prepared, and a wet pulverizer (Ashizawa Finetech Co., Ltd .: Star Mill Lab Star LMZ-06) was pulverized to an average particle size of 0.35 μm to prepare an electrolytic manganese dioxide dispersion.

ついで、リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、アルミナ粒子分散液、電解二酸化マンガン分散液およびホウ素源としてH3BO3(和光純薬(株)製:純度99.9重量%)を用意し、それぞれの原料をLi1.07Al0.1Mn1.820.014となるよう秤量し、これにスピネル型マンガン酸リチウム粒子(2-1)分散液をLi1.07Al0.1Mn1.820.014とLi1.0Ni0.5Mn1.54としてのモル比が1:1となるように混合し、これに水を加えて固形分濃度33.3重量%の噴霧乾燥用混合物分散液を調製した。 Subsequently, LiOH.H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8% by weight) as the lithium source, alumina particle dispersion, electrolytic manganese dioxide dispersion, and H 3 BO 3 (Wako Pure Chemical Industries, Ltd.) as the boron source ): Purity 99.9% by weight), and weigh each raw material to be Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4, and add spinel type lithium manganate particles (2-1) dispersion to this Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4 and Li 1.0 Ni 0.5 Mn 1.5 O 4 were mixed so that the molar ratio was 1: 1, and water was added thereto to add a solid concentration of 33.3% by weight. A mixture dispersion for drying was prepared.

次に、噴霧乾燥用混合物分散液をノズル型スプレードライヤー(大川原化工機社製:L−8型スプレードライヤー)を用いて噴霧乾燥を行った。ここで乾燥ガスとして空気を用いた。また、サイクロン差圧が0.7〜0.8kPaとなるよう調整し、乾燥ガスの入口温度は220℃に調整した。噴霧乾燥用混合物分散液の流量は3kg/hr、微粒化エアー圧力は0.1MPaとした。   Next, the spray-dispersed mixture dispersion was spray-dried using a nozzle-type spray dryer (manufactured by Okawara Kako Co., Ltd .: L-8 type spray dryer). Here, air was used as the drying gas. Moreover, it adjusted so that cyclone differential pressure might be set to 0.7-0.8 kPa, and the inlet temperature of the dry gas was adjusted to 220 degreeC. The flow rate of the spray dispersion mixture dispersion was 3 kg / hr, and the atomization air pressure was 0.1 MPa.

そして、噴霧乾燥により得られた粒子を750℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(3-1)を得た。
スピネル型マンガン酸リチウム粒子(3-1)は立方晶のスピネル構造を有していた。
And the particle | grains obtained by spray drying were baked in the air at 750 degreeC for 10 hours, and the spinel type lithium manganate particle (3-1) was obtained.
The spinel type lithium manganate particles (3-1) had a cubic spinel structure.

また、得られたスピネル型マンガン酸リチウム粒子(3-1)について、比表面積を測定したところ、0.68m2/gであった。
また、得られたスピネル型マンガン酸リチウム粒子(3-1)は、平均粒子径が10.2μmでありほぼ球状の形状を有していた。また、平均一次粒子径(4)、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。
Further, the specific surface area of the obtained spinel type lithium manganate particles (3-1) was measured and found to be 0.68 m 2 / g.
Further, the obtained spinel type lithium manganate particles (3-1) had an average particle diameter of 10.2 μm and a substantially spherical shape. Further, the average primary particle diameter (4), the Ni concentration in the central portion of the primary particles, and the Ni concentration in the surface layer portion were measured, and the results are shown in the table.

性能評価
スピネル型マンガン酸リチウム粒子(3-1)を正極活物質として含む正極を用いてリチウムイオン電池(1)を作成し、電池性能を評価した。
Performance Evaluation A lithium ion battery (1) was prepared using a positive electrode containing spinel type lithium manganate particles (3-1) as a positive electrode active material, and the battery performance was evaluated.

まず、スピネル型リチウム・マンガン複合酸化物粒子(3-1)と導電材としてのアセチレンブラックおよびバインダーとしてのポリ四フッ化エチレンパウダーを、75:20:5の重量比で混合し、乳鉢で混練して正極用合剤を調製した。この合剤を展伸ローラーで厚さ0.1mmのシートとし、16mmφに型抜きした後、グローブボックス内で乾燥して試験用正極(1)を作成した。   First, spinel-type lithium / manganese composite oxide particles (3-1), acetylene black as a conductive material and polytetrafluoroethylene powder as a binder are mixed at a weight ratio of 75: 20: 5 and kneaded in a mortar. Thus, a positive electrode mixture was prepared. This mixture was made into a sheet having a thickness of 0.1 mm with a spreading roller, die-cut to 16 mmφ, and dried in a glove box to prepare a test positive electrode (1).

正極(1)と金属リチウム箔(厚さ0.2mm)を、セパレーター(商品名:セルガード)を介してコイン型電池ケースに積層し、体積比1:1のエチレンカーボネートとジメチルカーボネート混合溶媒に1mol/lのLiPF6を溶解した電解液を注入して試験用電池(1)を作成した。 A positive electrode (1) and a metal lithium foil (thickness: 0.2 mm) are stacked on a coin-type battery case via a separator (trade name: Celgard), and 1 mol of ethylene carbonate and dimethyl carbonate mixed solvent with a volume ratio of 1: 1. A test battery (1) was prepared by injecting an electrolytic solution in which 1 / L LiPF 6 was dissolved.

試験用電池(1)について、放電容量、高温サイクル劣化試験を行った。
放電容量は定電流で0.19mA/cm2の電流密度、充電電位5.0Vまで、放電電位3.0Vまでの電位規制の条件で充放電を行い、重量当たりの放電容量を測定した。高温サイクル劣化試験は 試験用電池を60℃の恒温槽に設置し、上記と同一の条件で100回の充放電試験を行い、高温サイクル特性を次式の容量維持率で評価した。
容量維持率(%)=(100回目の重量当たり放電容量/1回目の重量当たり放電容量)×100
平均作動電圧
放電曲線の範囲で積分値を計算することにより、放電エネルギー(mWh/g)を求め、さらに放電エネルギーを放電容量(mAh/g)で割ることで求めた。
The test battery (1) was subjected to a discharge capacity and high temperature cycle deterioration test.
The discharge capacity was a constant current of 0.19 mA / cm 2 , charge / discharge was performed under the conditions of potential regulation up to a charge potential of 5.0 V and a discharge potential of 3.0 V, and the discharge capacity per weight was measured. In the high-temperature cycle deterioration test, the test battery was placed in a constant temperature bath of 60 ° C., the charge / discharge test was conducted 100 times under the same conditions as described above, and the high-temperature cycle characteristics were evaluated by the capacity retention rate of the following equation.
Capacity maintenance rate (%) = (discharge capacity per 100th weight / discharge capacity per 1st weight) × 100
By calculating the integral value within the range of the average operating voltage discharge curve, the discharge energy (mWh / g) was obtained, and the discharge energy was further divided by the discharge capacity (mAh / g).

電解液の分解
電解液の分解については、電池特性を低下させる要因であることから、上記高温サイクル劣化試験での容量維持率を元に、以下の基準で評価した。
Decomposition of electrolytic solution Since the decomposition of the electrolytic solution is a factor that deteriorates the battery characteristics, the following criteria were evaluated based on the capacity retention rate in the high-temperature cycle deterioration test.

評価基準
維持率が95%以上 :◎
維持率が93%以上、95%未満:○
維持率が91%以上、93%未満:△
維持率が91%未満 :×
[実施例2]
スピネル型マンガン酸リチウム粒子(3-2)の調製
実施例1において、噴霧乾燥により得られた粒子を650℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(3-2)を得た。スピネル型マンガン酸リチウム粒子(3-2)は立方晶のスピネル構造を有していた。
Evaluation criteria Maintenance rate is 95% or more: ◎
Maintenance rate is 93% or more and less than 95%: ○
Maintenance rate is 91% or more and less than 93%:
Maintenance rate is less than 91%: ×
[Example 2]
Preparation of spinel-type lithium manganate particles (3-2) In Example 1, particles obtained by spray drying were fired in air at 650 ° C. for 10 hours to obtain spinel-type lithium manganate particles (3-2). Obtained. The spinel type lithium manganate particles (3-2) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(3-2)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (3-2), the specific surface area, the average particle diameter and the average primary particle diameter, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(3-2)を用いた以外は同様にしてリチウムイオン電池(2)を作成し、電池性能を評価し、結果を表に示す。
[実施例3]
スピネル型マンガン酸リチウム粒子(3-3)の調製
実施例1において、噴霧乾燥により得られた粒子を850℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(3-3)を得た。スピネル型マンガン酸リチウム粒子(3-3)は立方晶のスピネル構造を有していた。
Performance Evaluation In Example 1, a lithium ion battery (2) was prepared in the same manner except that spinel type lithium manganate particles (3-2) were used, the battery performance was evaluated, and the results are shown in the table.
[Example 3]
Preparation of spinel type lithium manganate particles (3-3) In Example 1, the particles obtained by spray drying were fired in air at 850 ° C. for 10 hours to obtain spinel type lithium manganate particles (3-3). Obtained. The spinel type lithium manganate particles (3-3) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(3-3)について、比表面積、平均粒子径をおよび平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (3-3), the specific surface area, the average particle diameter, the average primary particle diameter, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(3-3)を用いた以外は同様にしてリチウムイオン電池(3)を作成し、電池性能を評価し、結果を表に示す。
[実施例4]
スピネル型マンガン酸リチウム粒子(3-4)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、マンガン源として実施例1と同様にして調製した電解二酸化マンガン分散液をLi1.1Mn1.94となるように混合し、これに実施例1と同様にして調製したスピネル型マンガン酸リチウム粒子(2-1)をLi1.1Mn1.94とLi1.0Ni0.5Mn1.54としてのモル比が1:1となるように混合し、これに水を加えて固形分濃度33.3重量%の噴霧乾燥用混合物分散液を調製した。
Performance Evaluation In Example 1, a lithium ion battery (3) was prepared in the same manner except that spinel type lithium manganate particles (3-3) were used, the battery performance was evaluated, and the results are shown in the table.
[Example 4]
Preparation of spinel-type lithium manganate particles (3-4) LiOH.H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8% by weight) as a lithium source, and electrolysis prepared as in Example 1 as a manganese source A manganese dioxide dispersion was mixed so as to be Li 1.1 Mn 1.9 O 4, and spinel type lithium manganate particles (2-1) prepared in the same manner as in Example 1 were mixed with Li 1.1 Mn 1.9 O 4 and Li 1.0. Mixing was performed so that the molar ratio of Ni 0.5 Mn 1.5 O 4 was 1: 1, and water was added thereto to prepare a mixture dispersion for spray drying having a solid content concentration of 33.3% by weight.

以下、実施例1と同様にして噴霧乾燥し、噴霧乾燥により得られた粒子を750℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(3-4)を得た。スピネル型マンガン酸リチウム粒子(3-4)は立方晶のスピネル構造を有していた。   Thereafter, spray drying was carried out in the same manner as in Example 1, and particles obtained by spray drying were fired in air at 750 ° C. for 10 hours to obtain spinel type lithium manganate particles (3-4). The spinel type lithium manganate particles (3-4) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(3-4)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (3-4), the specific surface area, the average particle size and the average primary particle size, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(3-4)を用いた以外は同様にしてリチウムイオン電池(4)を作成し、電池性能を評価し、結果を表に示す。
[実施例5]
スピネル型マンガン酸リチウム粒子(3-5)の調製
実施例1において、スピネル型マンガン酸リチウム粒子(2-1)の固形分濃度33.3重量%の分散液を平均粒子径0.5μmとなるまで粉砕してコア粒子用スピネル型マンガン酸リチウム粒子(2-2)分散液を調製して用いた以外は同様にしてスピネル型マンガン酸リチウム粒子(3-5)を得た。 スピネル型マンガン酸リチウム粒子(3-5)は立方晶のスピネル構造を有していた。
Performance Evaluation In Example 1, a lithium ion battery (4) was prepared in the same manner except that spinel type lithium manganate particles (3-4) were used, the battery performance was evaluated, and the results are shown in the table.
[Example 5]
Preparation of spinel-type lithium manganate particles (3-5) In Example 1, a dispersion of spinel-type lithium manganate particles (2-1) having a solid content concentration of 33.3% by weight has an average particle size of 0.5 μm. Spinel-type lithium manganate particles (3-5) were obtained in the same manner except that a dispersion liquid of spinel-type lithium manganate particles (2-2) for core particles was prepared and used. The spinel type lithium manganate particles (3-5) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(3-5)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (3-5), the specific surface area, the average particle size and the average primary particle size, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(3-5)を用いた以外は同様にしてリチウムイオン電池(5)を作成し、電池性能を評価し、結果を表に示す。
[実施例6]
スピネル型マンガン酸リチウム粒子(3-6)の調製
実施例1において、スピネル型マンガン酸リチウム粒子(2-1)の固形分濃度33.3重量%の分散液を平均粒子径2.5μmとなるまで粉砕してコア粒子用スピネル型マンガン酸リチウム粒子(2-3)分散液を調製して用いた以外は同様にしてスピネル型マンガン酸リチウム粒子(3-6)を得た。
スピネル型マンガン酸リチウム粒子(3-6)は立方晶のスピネル構造を有していた。
Performance Evaluation In Example 1, a lithium ion battery (5) was prepared in the same manner except that spinel type lithium manganate particles (3-5) were used, the battery performance was evaluated, and the results are shown in the table.
[Example 6]
Preparation of Spinel Type Lithium Manganate Particles (3-6) In Example 1, a dispersion of spinel type lithium manganate particles (2-1) having a solid content concentration of 33.3% by weight has an average particle size of 2.5 μm. Spinel-type lithium manganate particles (3-6) were obtained in the same manner except that a dispersion liquid of spinel-type lithium manganate particles (2-3) for core particles was prepared and used.
The spinel type lithium manganate particles (3-6) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(3-6)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。
[実施例7]
スピネル型マンガン酸リチウム粒子(2-4)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、ニッケル源としてNiO(関東化学(株)製:酸化ニッケル純度98.5%、平均粒子径=9.4μm)マンガン源として電解二酸化マンガン粉末(γ−MnO2 、純度60.64%、平均粒子径=28.0μm)、ホウ素源としてH3BO3(和光純薬(株)製:純度99.9重量%)を用意した。そして、それぞれの原料を、Li1.0Ni0.4975Mn1.49250.014となるよう秤量し、これらの原料を混合した後、固形分濃度が33.3質量%となるように純水を加え、次に、この混合物分散液を撹拌しながら、湿式粉砕機(アシザワファインテック社製:スターミルラボスターLMZ−06)を用いて、混合物分散液中の固形分の平均粒子径が0.4μm以下になるまで粉砕して噴霧乾燥用混合物分散液を調製した。
For the spinel type lithium manganate particles (3-6), the specific surface area, the average particle size and the average primary particle size, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.
[Example 7]
Preparation of spinel type lithium manganate particles (2-4) LiOH.H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8% by weight) as a lithium source, NiO (manufactured by Kanto Chemical Co., Ltd .: oxidation) as a nickel source Nickel purity 98.5%, average particle size = 9.4 μm) Electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%, average particle size = 28.0 μm) as manganese source, H 3 BO 3 as boron source (Wako Pure Chemical Industries, Ltd .: purity 99.9% by weight) was prepared. Then, each raw material is weighed so as to be Li 1.0 Ni 0.4975 Mn 1.4925 B 0.01 O 4, and after mixing these raw materials, pure water is added so that the solid content concentration becomes 33.3 mass%. In addition, while stirring the mixture dispersion, using a wet pulverizer (manufactured by Ashizawa Finetech Co., Ltd .: Star Mill Lab Star LMZ-06), the average particle size of the solid content in the mixture dispersion is 0.4 μm or less. A mixture dispersion for spray drying was prepared by pulverizing until the above.

次に、噴霧乾燥用混合物分散液を実施例1と同様にして噴霧乾燥を行った。噴霧乾燥により得られた粒子を750℃で6時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(2-4)を得た。   Next, the spray dispersion mixture dispersion was spray dried in the same manner as in Example 1. The particles obtained by spray drying were calcined in the air at 750 ° C. for 6 hours to obtain spinel type lithium manganate particles (2-4).

スピネル型マンガン酸リチウム粒子(2-4)の平均粒子径を測定し結果を表に示す。
スピネル型マンガン酸リチウム粒子(3-7)の調製
実施例1において、スピネル型マンガン酸リチウム粒子(2-4)を用いた以外は同様にしてスピネル型マンガン酸リチウム粒子(3-7)を得た。スピネル型マンガン酸リチウム粒子(3-7)は立方晶のスピネル構造を有していた。
The average particle diameter of the spinel type lithium manganate particles (2-4) was measured, and the results are shown in the table.
Preparation of spinel type lithium manganate particles (3-7) Spinel type lithium manganate particles (3-7) were obtained in the same manner as in Example 1 except that spinel type lithium manganate particles (2-4) were used. It was. The spinel type lithium manganate particles (3-7) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(3-7)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (3-7), the specific surface area, the average particle size and the average primary particle size, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(3-7)を用いた以外は同様にしてリチウムイオン電池(7)を作成し、電池性能を評価し、結果を表に示す。
[実施例8]
スピネル型マンガン酸リチウム粒子(2-5)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度57.8重量%)、コバルト源としてCo34(関東化学(株)製:酸化コバルト98.8重量%、平均粒子径=5.8μm)マンガン源として電解二酸化マンガン粉末(γ−MnO2 、純度60.64%、平均粒子径=28.0μm)を用意した。そして、それぞれの原料を、Li1.0Co0.50Mn1.54となるように秤量して混合した後、固形分濃度が33.3質量%となるように純水を加え、この混合物分散液を撹拌しながら、湿式粉砕機(アシザワファインテック社製:スターミルラボスターLMZ−06)を用いて、混合物分散液中の固形分の平均粒子径が0.4μm以下になるまで粉砕して噴霧乾燥用混合物分散液を調製した。
Performance Evaluation In Example 1, a lithium ion battery (7) was prepared in the same manner except that spinel type lithium manganate particles (3-7) were used, the battery performance was evaluated, and the results are shown in the table.
[Example 8]
Preparation of spinel type lithium manganate particles (2-5) LiOH · H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 57.8 wt%) as a lithium source, Co 3 O 4 (Kanto Chemical Co., Ltd.) as a cobalt source Manufactured: Cobalt oxide 98.8% by weight, average particle size = 5.8 μm) As a manganese source, electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%, average particle size = 28.0 μm) was prepared. Each raw material is weighed and mixed so as to be Li 1.0 Co 0.50 Mn 1.5 O 4, and then pure water is added so that the solid content concentration becomes 33.3 mass%, and this mixture dispersion is stirred. While using a wet pulverizer (manufactured by Ashizawa Finetech Co., Ltd .: Star Mill Lab Star LMZ-06), the mixture is pulverized until the average particle size of the solid content in the mixture dispersion becomes 0.4 μm or less for spray drying. A mixture dispersion was prepared.

次に、噴霧乾燥用混合物分散液を実施例1と同様にして噴霧乾燥を行った。噴霧乾燥により得られた粒子を750℃で6時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(2-5)を得た。   Next, the spray dispersion mixture dispersion was spray dried in the same manner as in Example 1. The particles obtained by spray drying were fired in the air at 750 ° C. for 6 hours to obtain spinel type lithium manganate particles (2-5).

スピネル型マンガン酸リチウム粒子(2-5)の平均粒子径を測定し結果を表に示す。
スピネル型マンガン酸リチウム粒子(3-8)の調製
実施例1において、スピネル型マンガン酸リチウム粒子(2-5)を用いた以外は同様にしてスピネル型マンガン酸リチウム粒子(3-8)を得た。
スピネル型マンガン酸リチウム粒子(3-8)は立方晶のスピネル構造を有していた。
The average particle diameter of the spinel type lithium manganate particles (2-5) was measured, and the results are shown in the table.
Preparation of spinel type lithium manganate particles (3-8) Spinel type lithium manganate particles (3-8) were obtained in the same manner as in Example 1 except that spinel type lithium manganate particles (2-5) were used. It was.
Spinel-type lithium manganate particles (3-8) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(3-8)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (3-8), the specific surface area, the average particle diameter and the average primary particle diameter, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(3-8)を用いた以外は同様にしてリチウムイオン電池(7)を作成し、電池性能を評価し、結果を表に示す。
[比較例1]
スピネル型マンガン酸リチウム粒子(R3-1)の調製
実施例1において、噴霧乾燥により得られた粒子を500℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(R3-1)を得た。スピネル型マンガン酸リチウム粒子(R3-1)は立方晶のスピネル構造を有していた。
Performance Evaluation In Example 1, a lithium ion battery (7) was prepared in the same manner except that spinel type lithium manganate particles (3-8) were used, the battery performance was evaluated, and the results are shown in the table.
[Comparative Example 1]
Preparation of spinel type lithium manganate particles (R3-1) In Example 1, particles obtained by spray drying were fired in air at 500 ° C. for 10 hours to obtain spinel type lithium manganate particles (R3-1). Obtained. The spinel type lithium manganate particles (R3-1) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(R3-1)について、比表面積、平均粒子径を測定し、結果を表に示す。
また、平均一次粒子径(4)、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。
The spinel lithium manganate particles (R3-1) were measured for specific surface area and average particle diameter, and the results are shown in the table.
Further, the average primary particle diameter (4), the Ni concentration in the central portion of the primary particles, and the Ni concentration in the surface layer portion were measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(R3-1)を用いた以外は同様にしてリチウムイオン電池(R1)を作成し、電池性能を評価し、結果を表に示す。
[比較例2]
スピネル型マンガン酸リチウム粒子(R3-2)の調製
実施例1において、噴霧乾燥により得られた粒子を1050℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(R3-2)を得た。スピネル型マンガン酸リチウム粒子(R3-2)は立方晶のスピネル構造を有していた。
Performance Evaluation In Example 1, a lithium ion battery (R1) was prepared in the same manner except that spinel type lithium manganate particles (R3-1) were used, the battery performance was evaluated, and the results are shown in the table.
[Comparative Example 2]
Preparation of spinel type lithium manganate particles (R3-2) In Example 1, particles obtained by spray drying were fired in air at 1050 ° C. for 10 hours to obtain spinel type lithium manganate particles (R3-2). Obtained. The spinel type lithium manganate particles (R3-2) had a cubic spinel structure.

スピネル型マンガン酸リチウム粒子(R3-2)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (R3-2), the specific surface area, average particle size and average primary particle size, Ni concentration in the central portion of the primary particles, and Ni concentration in the surface layer portion were measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(R3-2)を用いた以外は同様にしてリチウムイオン電池(R2)を作成し、電池性能を評価し、結果を表に示す。
[比較例3]
スピネル型マンガン酸リチウム粒子(R3-3)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、アルミ源として実施例1と同様に粉砕したアルミナ粒子分散液、マンガン源として実施例1と同様に粉砕した電解二酸化マンガン分散液、およびホウ素源としてH3BO3(和光純薬(株)製:純度99.9重量%)を用意し、それぞれの原料を、Li1.07Al0.1Mn1.820.014となるよう混合した後、これに水を加えて固形分濃度33.3重量%の噴霧乾燥用混合物分散液を調製した。
Performance Evaluation In Example 1, a lithium ion battery (R2) was prepared in the same manner except that spinel type lithium manganate particles (R3-2) were used, the battery performance was evaluated, and the results are shown in the table.
[Comparative Example 3]
Preparation of spinel type lithium manganate particles (R3-3) LiOH.H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8 wt%) as a lithium source, and alumina particles crushed in the same manner as in Example 1 as an aluminum source Dispersion, electrolytic manganese dioxide dispersion pulverized in the same manner as in Example 1 as a manganese source, and H 3 BO 3 (manufactured by Wako Pure Chemical Industries, Ltd .: purity 99.9% by weight) as a boron source were prepared. After the raw materials were mixed so as to be Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4 , water was added thereto to prepare a spray-drying mixture dispersion having a solid content concentration of 33.3% by weight.

ついで、実施例1と同様に噴霧乾燥し、得られた粒子を750℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(R3-3)を得た。
性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(R3-3)を用いた以外は同様にしてリチウムイオン電池(R3)を作成し、電池性能を評価し、結果を表に示す。
[比較例4]
スピネル型マンガン酸リチウム粒子(R2-1)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、ニッケル源としてNiO(関東化学(株)製:酸化ニッケル純度98.5重量%、平均粒子径=9.4μm)マンガン源として電解二酸化マンガン粉末(γ−MnO2 、純度60.64%、平均粒子径=28.0μm)を用意した。そして、それぞれの原料を、Li1.0Ni0.1Mn1.94となるよう秤量し、これらの原料を混合した後、固形分濃度が33.3質量%となるように純水を加え、実施例1と同様にして粉砕して噴霧乾燥用混合物分散液を調製した。
Subsequently, spray drying was performed in the same manner as in Example 1, and the obtained particles were fired in the air at 750 ° C. for 10 hours to obtain spinel type lithium manganate particles (R3-3).
Performance Evaluation In Example 1, a lithium ion battery (R3) was prepared in the same manner except that spinel type lithium manganate particles (R3-3) were used, the battery performance was evaluated, and the results are shown in the table.
[Comparative Example 4]
Preparation of spinel type lithium manganate particles (R2-1) LiOH · H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8% by weight) as a lithium source, NiO (manufactured by Kanto Chemical Co., Ltd .: oxidation) as a nickel source Nickel purity 98.5% by weight, average particle size = 9.4 μm) An electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%, average particle size = 28.0 μm) was prepared as a manganese source. Then, each raw material was weighed so as to be Li 1.0 Ni 0.1 Mn 1.9 O 4, and after mixing these raw materials, pure water was added so that the solid content concentration would be 33.3 mass%. The mixture dispersion for spray drying was prepared by pulverizing in the same manner as described above.

ついで、粉砕した混合物分散液実施例1と同様にして噴霧乾燥し、得られた粒子状の前駆体を850℃で6時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(R2-1)を得た。スピネル型マンガン酸リチウム粒子(R2-1)の平均粒子径を測定し結果を表に示す。
スピネル型マンガン酸リチウム粒子(R3-4)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、アルミ源として実施例1と同様にして粉砕したアルミナ粒子分散液、マンガン源として実施例1と同様にして粉砕した電解二酸化マンガン分散液およびホウ素源としてH3BO3(和光純薬(株)製:純度99.9重量%)を用意し、それぞれの原料を、Li1.07Al0.1Mn1.820.014となるよう秤量し、これに実施例1と同様にして粉砕したスピネル型マンガン酸リチウム粒子(R2-1)分散液をLi1.07Al0.1Mn1.820.014とLi1.0Ni0.1Mn1.94としてのモル比が1:1となるように混合し、これに水を加えて固形分濃度33.3重量%の噴霧乾燥用混合物分散液を調製した。
Then, the pulverized mixture dispersion was spray-dried in the same manner as in Example 1. The obtained particulate precursor was fired in air at 850 ° C. for 6 hours to spinel type lithium manganate particles (R2-1). Got. The average particle diameter of the spinel type lithium manganate particles (R2-1) was measured, and the results are shown in the table.
Preparation of spinel type lithium manganate particles (R3-4) LiOH.H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8% by weight) as a lithium source, and alumina ground as in Example 1 as an aluminum source Prepare an electrolytic manganese dioxide dispersion pulverized in the same manner as in Example 1 as a particle dispersion and a manganese source, and H 3 BO 3 (manufactured by Wako Pure Chemical Industries, Ltd .: purity 99.9% by weight) as a boron source. The spinel-type lithium manganate particles (R2-1) dispersed in the same manner as in Example 1 were weighed so as to be Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4, and Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4 and Li 1.0 Ni 0.1 Mn 1.9 O 4 are mixed so that the molar ratio is 1: 1, and water is added thereto to add a solid dispersion concentration of 33.3% by weight. Was prepared.

ついで、実施例1と同様にして噴霧乾燥し、得られた粒子を750℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(R3-4)を得た。スピネル型マンガン酸リチウム粒子(R3-4)は立方晶のスピネル構造を有していた。   Subsequently, spray drying was carried out in the same manner as in Example 1. The obtained particles were fired in the air at 750 ° C. for 10 hours to obtain spinel type lithium manganate particles (R3-4). Spinel type lithium manganate particles (R3-4) had cubic spinel structure.

スピネル型マンガン酸リチウム粒子(R3-4)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (R3-4), the specific surface area, the average particle size and the average primary particle size, the Ni concentration in the central part of the primary particle, and the Ni concentration in the surface layer part are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(R3-4)を用いた以外は同様にしてリチウムイオン電池(R5)を作成し、電池性能を評価し、結果を表に示す。
[比較例5]
スピネル型マンガン酸リチウム粒子(R2-2)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、ニッケル源としてNiO(関東化学(株)製:酸化ニッケル純度98.5重量%、平均粒子径=9.4μm)マンガン源として電解二酸化マンガン粉末(γ−MnO2 、純度60.64%、平均粒子径=28.0μm)を用意した。そして、それぞれの原料を、Li1.0Ni1.2Mn0.84となるよう秤量し、これらの原料を混合した後、固形分濃度が33.3質量%となるように純水を加え、実施例1と同様に粉砕して噴霧乾燥用混合物分散液を調製した。
Performance Evaluation In Example 1, a lithium ion battery (R5) was prepared in the same manner except that spinel type lithium manganate particles (R3-4) were used, the battery performance was evaluated, and the results are shown in the table.
[Comparative Example 5]
LiOH · H 2 O Preparation <br/> lithium source spinel lithium manganate particles (R2-2) (Kanto Chemical Co., purity: 98.8 wt%), NiO (Kanto Kagaku as nickel source (strain ) Product: Nickel oxide purity 98.5% by weight, average particle size = 9.4 μm) As manganese source, electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%, average particle size = 28.0 μm) was prepared. . Then, each raw material was weighed so as to be Li 1.0 Ni 1.2 Mn 0.8 O 4, and after mixing these raw materials, pure water was added so that the solid content concentration would be 33.3 mass%. The mixture dispersion for spray drying was prepared by pulverizing as described above.

ついで、実施例1と同様にして噴霧乾燥し、得られた粒子を850℃で6時間空気中にて焼成を実施したが、スピネルの単相構造を得ることができず、NiOに帰属されるピークが検出された(R2-2)。リチウム含有酸化物粒子(R2-2)の平均粒子径を測定し結果を表に示す。
スピネル型マンガン酸リチウム粒子(R3-5)の調製
リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、アルミ源として実施例1と同様にして粉砕したアルミナ粒子分散液、マンガン源として実施例1と同様にして粉砕した電解二酸化マンガン分散液およびホウ素源としてH3BO3(和光純薬(株)製:純度99.9重量%)を用意し、それぞれの原料を、Li1.07Al0.1Mn1.820.014となるよう秤量し、これに実施例1と同様にして粉砕したスピネル型マンガン酸リチウム粒子(R2-2)分散液をLi1.07Al0.1Mn1.820.014とLi1.0Ni1.2Mn0.84としてのモル比が1:1となるように混合し、これに水を加えて固形分濃度33.3重量%の噴霧乾燥用混合物分散液を調製した。
Subsequently, spray drying was carried out in the same manner as in Example 1, and the obtained particles were calcined in the air at 850 ° C. for 6 hours. However, a single phase structure of spinel could not be obtained, and it was attributed to NiO. A peak was detected (R2-2). The average particle diameter of the lithium-containing oxide particles (R2-2) was measured, and the results are shown in the table.
Preparation of spinel type lithium manganate particles (R3-5) LiOH · H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8% by weight) as a lithium source, and alumina ground as in Example 1 as an aluminum source Prepare an electrolytic manganese dioxide dispersion pulverized in the same manner as in Example 1 as a particle dispersion and a manganese source, and H 3 BO 3 (manufactured by Wako Pure Chemical Industries, Ltd .: purity 99.9% by weight) as a boron source. The spinel-type lithium manganate particles (R2-2) dispersed in the same manner as in Example 1 were weighed so as to be Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4, and Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4 and Li 1.0 Ni 1.2 Mn 0.8 O 4 are mixed so that the molar ratio is 1: 1, and water is added thereto to add a solid dispersion concentration of 33.3% by weight. Was prepared.

ついで、噴霧乾燥用混合物分散液を実施例1と同様にして噴霧乾燥し、得られた粒子を700℃で10時間空気中にて焼成してスピネル型マンガン酸リチウム粒子(R3-5)を得た。
スピネル型マンガン酸リチウム粒子(R3-5)は立方晶のスピネル構造とは別にNiOを示す回折パターンを有していた。
Next, the spray-dispersed mixture dispersion was spray-dried in the same manner as in Example 1, and the obtained particles were calcined in the air at 700 ° C. for 10 hours to obtain spinel type lithium manganate particles (R3-5). It was.
The spinel type lithium manganate particles (R3-5) had a diffraction pattern showing NiO apart from the cubic spinel structure.

スピネル型マンガン酸リチウム粒子(R3-5)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。   For the spinel type lithium manganate particles (R3-5), the specific surface area, the average particle size and the average primary particle size, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(R3-5)を用いた以外は同様にしてリチウムイオン電池(R5)を作成し、電池性能を評価し、結果を表に示す。
[比較例6]
スピネル型マンガン酸リチウム粒子(R3-6)の調製
実施例1において、リチウム源としてLiOH・H2O(関東化学(株)製:純度98.8重量%)、アルミ源として実施例1と同様にして粉砕したアルミナ粒子分散液、マンガン源として実施例1と同様にして粉砕した電解二酸化マンガン分散液およびホウ素源としてH3BO3(和光純薬(株)製:純度99.9重量%)を用意し、それぞれの原料を、Li1.07Al0.1Mn1.820.014となるよう秤量し、これに実施例1と同様にして粉砕したスピネル型マンガン酸リチウム粒子(2-1)分散液をLi1.0Ni0.5Mn1.54とLi1.07Al0.1Mn1.820.014がモル比で1:9になるよう混合した以外、同様にしてスピネル型マンガン酸リチウム粒子(R3-6)を得た。
Performance evaluation In Example 1, except that spinel type lithium manganate particles (R3-5) were used, lithium ion batteries (R5) were prepared in the same manner, battery performance was evaluated, and the results are shown in the table.
[Comparative Example 6]
Preparation of spinel type lithium manganate particles (R3-6) In Example 1, LiOH.H 2 O (manufactured by Kanto Chemical Co., Inc .: purity 98.8% by weight) as a lithium source and the same as in Example 1 as an aluminum source Alumina particle dispersion pulverized as above, electrolytic manganese dioxide dispersion pulverized in the same manner as in Example 1 as a manganese source, and H 3 BO 3 as a boron source (manufactured by Wako Pure Chemical Industries, Ltd .: purity 99.9% by weight) Each of the raw materials was weighed so as to be Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4, and spinel-type lithium manganate particles (2-1) dispersion pulverized in the same manner as in Example 1 were prepared. Spinel-type lithium manganate particles (R3-6) were obtained in the same manner except that Li 1.0 Ni 0.5 Mn 1.5 O 4 and Li 1.07 Al 0.1 Mn 1.82 B 0.01 O 4 were mixed at a molar ratio of 1: 9. .

スピネル型マンガン酸リチウム粒子(R3-6)は立方晶のスピネル構造を有していた。
スピネル型マンガン酸リチウム粒子(R3-6)について、比表面積、平均粒子径および平均一次粒子径、一次粒子の中心部におけるNi濃度、表層部におけるNi濃度を測定し、結果を表に示す。
Spinel-type lithium manganate particles (R3-6) had a cubic spinel structure.
For the spinel type lithium manganate particles (R3-6), the specific surface area, the average particle size and the average primary particle size, the Ni concentration in the center of the primary particle, and the Ni concentration in the surface layer are measured, and the results are shown in the table.

性能評価
実施例1において、スピネル型マンガン酸リチウム粒子(R3-6)を用いた以外は同様にしてリチウムイオン電池(R4)を作成し、電池性能を評価し、結果を表に示す。
Performance Evaluation In Example 1, a lithium ion battery (R4) was prepared in the same manner except that spinel type lithium manganate particles (R3-6) were used, the battery performance was evaluated, and the results are shown in the table.

Claims (9)

下記の工程(a)〜(c)からなることを特徴とする、下記組成式(1)で表されるスピネル型マンガン酸リチウム粒子からなる正極活物質の製造方法;
Li(1+x3)(Ni+Co)y3Mn(2-x3-y3)4 ・・・・(1)
(但し、0≦x3≦0.2、0.1<y3<0.5)
(a)マンガン酸化物粒子(1)と、
Li(1+x1)・(Niおよび/またはCo)y1・Mn(2-x1-y1)4(但し、0≦x1≦0.2、0.4≦y1≦0.6)で表され、平均粒子径(D2)が0.1〜5μmの範囲にあるスピネル型マンガン酸リチウム粒子(2)と、
リチウム塩(3)とを、
混合物のLi:(Ni+Co):Mnの原子比が(1+x2):y2:(2−x2−y2)(但し、0≦x2≦0.2、0.1<y2<0.5)の比率とし、かつ、前記マンガン酸化物粒子(1)の固形分重量(W1)とスピネル型マンガン酸リチウム粒子(2)の固形分重量(W2)との重量比(W1)/(W2)が0.25〜4の範囲となるように混合して、分散媒に固形分濃度が5〜50重量%の範囲となるように分散させて噴霧乾燥用混合物分散液を調製し、
(b)分散液を噴霧乾燥したのち、
(c)650〜900℃で焼成する。
A method for producing a positive electrode active material comprising spinel type lithium manganate particles represented by the following composition formula (1), comprising the following steps (a) to (c);
Li (1 + x3) (Ni + Co) y3 Mn (2-x3-y3) O 4 ···· (1)
(However, 0 ≦ x 3 ≦ 0.2, 0.1 <y 3 <0.5)
(A) Manganese oxide particles (1);
Li (1 + x1) · (Ni and / or Co) y1 · Mn (2-x1-y1) O 4 (where 0 ≦ x 1 ≦ 0.2, 0.4 ≦ y 1 ≦ 0.6) A spinel-type lithium manganate particle (2) represented by an average particle diameter (D 2 ) in the range of 0.1 to 5 μm;
Lithium salt (3)
The atomic ratio of Li: (Ni + Co): Mn in the mixture is (1 + x 2 ): y 2 : (2-x 2 −y 2 ) (where 0 ≦ x 2 ≦ 0.2, 0.1 <y 2 <0 and the ratio of .5), and the manganese oxide particles (1) solids weight (W 1) and the weight ratio of the solid weight (W 2) of the spinel-type lithium manganate particles (2) of (W 1 ) / (W 2 ) is mixed so as to be in the range of 0.25 to 4, and is dispersed in the dispersion medium so that the solid content concentration is in the range of 5 to 50% by weight. Prepared,
(B) After spray drying the dispersion,
(C) Firing at 650 to 900 ° C.
前記マンガン酸化物粒子(1)の平均粒子径(D1)が0.1〜5μmの範囲にあることを特徴とする請求項1に記載の正極活物質の製造方法。 2. The method for producing a positive electrode active material according to claim 1, wherein the manganese oxide particles (1) have an average particle diameter (D 1 ) in the range of 0.1 to 5 μm. 前記工程(c)についで、下記の工程(d)を行うことを特徴とする請求項1に記載の正極活物質の製造方法;
(d)平均2次粒子径(D3)が1〜30μmの範囲となるように解砕する。
The method for producing a positive electrode active material according to claim 1, wherein the following step (d) is performed after the step (c).
(D) Crushing so that the average secondary particle diameter (D 3 ) is in the range of 1 to 30 μm.
さらに、前記工程(a)の混合物が、Na、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、V、Nb、Ta、Mo、W、Ag、Zn、B、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Biからなる群から選ばれる1種以上の元素Mの化合物(4)を含み(但し、M/(M+Ni+Co)原子比=0.08〜0.32)、
該混合物のLi:(M+Ni+Co):Mnの原子比が(1+x4):y4:(2−x4−y4)(但し、0≦x4≦0.2、0.1<y4≦0.5)の比率であることを特徴とする請求項1に記載の正極活物質の製造方法。
Further, the mixture of step (a) is Na, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, V, Nb, Ta, Mo, W, Ag, Zn, B, Al. , Ga, In, Si, Ge, Sn, Pb, P, As, Sb, Bi, and a compound (4) of at least one element M selected from the group consisting of (M / (M + Ni + Co) atomic ratio = 0.08 to 0.32),
The atomic ratio of Li: (M + Ni + Co): Mn in the mixture is (1 + x 4 ): y 4 : (2-x 4 −y 4 ) (where 0 ≦ x 4 ≦ 0.2, 0.1 <y 4 ≦ The method for producing a positive electrode active material according to claim 1, wherein the ratio is 0.5).
前記正極活物質が一次粒子の集合体からなる二次粒子であり、該一次粒子の平均一次粒子径(D4)が0.1〜5.0μmの範囲にあることを特徴とする請求項1〜4のいずれかに記載の正極活物質の製造方法。 2. The positive electrode active material is a secondary particle composed of an aggregate of primary particles, and the average primary particle diameter (D 4 ) of the primary particles is in the range of 0.1 to 5.0 μm. The manufacturing method of the positive electrode active material in any one of -4. 前記正極活物質の比表面積が0.1〜3.0m2/gの範囲にあることを特徴とする請求項1〜5のいずれかに記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to claim 1, wherein a specific surface area of the positive electrode active material is in a range of 0.1 to 3.0 m 2 / g. 請求項1〜6のいずれかに記載の正極活物質の製造方法によって得られた正極活物質を正極材に用いたことを特徴とする二次電池。   A secondary battery using a positive electrode active material obtained by the method for producing a positive electrode active material according to claim 1 as a positive electrode material. リチウム負極に対する平均動作電圧が4.4〜4.6Vの範囲にあることを特徴とする請求項7に記載の二次電池。   The secondary battery according to claim 7, wherein an average operating voltage with respect to the lithium negative electrode is in a range of 4.4 to 4.6V. 充放電容量が120〜150mAh/gの範囲にあることを特徴とする請求項7または8に記載の二次電池。   The secondary battery according to claim 7 or 8, wherein the charge / discharge capacity is in a range of 120 to 150 mAh / g.
JP2012118395A 2012-05-24 2012-05-24 Method for producing positive electrode active material for secondary battery and secondary battery Active JP6008578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118395A JP6008578B2 (en) 2012-05-24 2012-05-24 Method for producing positive electrode active material for secondary battery and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118395A JP6008578B2 (en) 2012-05-24 2012-05-24 Method for producing positive electrode active material for secondary battery and secondary battery

Publications (3)

Publication Number Publication Date
JP2013246924A true JP2013246924A (en) 2013-12-09
JP2013246924A5 JP2013246924A5 (en) 2015-06-18
JP6008578B2 JP6008578B2 (en) 2016-10-19

Family

ID=49846551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118395A Active JP6008578B2 (en) 2012-05-24 2012-05-24 Method for producing positive electrode active material for secondary battery and secondary battery

Country Status (1)

Country Link
JP (1) JP6008578B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094085A (en) * 2021-11-24 2022-02-25 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof
JP2022121132A (en) * 2021-02-08 2022-08-19 プライムプラネットエナジー&ソリューションズ株式会社 Cathode active material and lithium ion secondary battery with the cathode active material
CN115064685A (en) * 2022-07-13 2022-09-16 深圳中芯能科技有限公司 Lithium manganate composite material with long cycle life and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331824A (en) * 2002-05-10 2003-11-21 Nec Corp Positive pole for secondary battery and secondary battery using the positive pole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331824A (en) * 2002-05-10 2003-11-21 Nec Corp Positive pole for secondary battery and secondary battery using the positive pole

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022121132A (en) * 2021-02-08 2022-08-19 プライムプラネットエナジー&ソリューションズ株式会社 Cathode active material and lithium ion secondary battery with the cathode active material
JP7225282B2 (en) 2021-02-08 2023-02-20 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery comprising the positive electrode active material
CN114094085A (en) * 2021-11-24 2022-02-25 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof
CN114094085B (en) * 2021-11-24 2023-07-21 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof
CN115064685A (en) * 2022-07-13 2022-09-16 深圳中芯能科技有限公司 Lithium manganate composite material with long cycle life and preparation method thereof

Also Published As

Publication number Publication date
JP6008578B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP7107666B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP5505608B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US9640794B2 (en) Lithium transition metal oxide having layered structure
JP5137414B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP6578635B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
TWI740864B (en) Method of preparing lithium ion battery cathode material
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US10263244B2 (en) Lithium metal composite oxide having layered structure
JP5606654B2 (en) Lithium metal composite oxide
JP6251843B2 (en) Method for producing lithium metal composite oxide having layer structure
JP2014116296A (en) Lithium composite oxide and production method therefor, positive electrode active material for secondary battery containing lithium composite oxide, positive electrode for secondary battery containing the same, and lithium ion secondary battery using it as positive electrode
JP2011134708A (en) Particulate powder of positive active material for nonaqueous-electrolyte secondary battery and method of manufacturing the same, and nonaqueous-electrolyte secondary battery
CA2913121A1 (en) Manufacturing method of lithium-titanium composite doped with different metal, and lithium-titanium composite doped with different metal made by same
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
JP2014118335A (en) Lithium multiple oxide and method for manufacturing the same, anode active material for a secondary battery including the lithium multiple oxide, anode for a secondary battery including the same, and lithium ion secondary battery using the same as an anode
JP5447248B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using this positive electrode active material
JP6008578B2 (en) Method for producing positive electrode active material for secondary battery and secondary battery
JP5951518B2 (en) Method for producing lithium metal composite oxide having layer structure
JP2021086723A (en) Positive electrode active material composite for lithium ion secondary battery and manufacturing method thereof
JP2012248333A (en) Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
JP6013435B2 (en) ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP2014044897A (en) Lithium composite oxide and method for producing the same, positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode
JP2003146662A (en) Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6008578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250