JP2013239542A - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP2013239542A
JP2013239542A JP2012111071A JP2012111071A JP2013239542A JP 2013239542 A JP2013239542 A JP 2013239542A JP 2012111071 A JP2012111071 A JP 2012111071A JP 2012111071 A JP2012111071 A JP 2012111071A JP 2013239542 A JP2013239542 A JP 2013239542A
Authority
JP
Japan
Prior art keywords
hollow particles
composite magnetic
magnetic body
coil
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012111071A
Other languages
Japanese (ja)
Inventor
Keisuke Akagi
啓祐 赤木
Takashi Yamaya
孝志 山家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2012111071A priority Critical patent/JP2013239542A/en
Publication of JP2013239542A publication Critical patent/JP2013239542A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a reactor suppressed in stress due to thermal expansion at an inside of a composite magnetic body.SOLUTION: A reactor comprises: a coil 2 formed by winding a conductor; and a composite magnetic body 1 containing soft magnetic powder, a binder and hollow particles 11. The coil 2 is buried in the composite magnetic body 1, and each of the hollow particle 11 has a D50 of less than 10 μm. The D50 is a volume-based cumulative 50% particle diameter. Preferably, the D50 of each of the hollow particles is 0.1 μm or more and 5.0 μm or less, and an average of a ratio between the inner diameter and the outer diameter in each of the hollow particles is 0.30 or more and 0.99 or less.

Description

本発明は、インダクタンスを有するリアクトルに関する。   The present invention relates to a reactor having an inductance.

導電体を螺旋状に巻回したコイルと、前記コイルを覆う絶縁皮膜と、絶縁皮膜を覆うように、磁性粉末と有機結合剤とを混合した複合磁性体を配したコイル部品であって、コイルの熱膨張を吸収するために、絶縁皮膜内部に気泡を内包する樹脂の球状粒子を含有されたコイル部品が特許文献1に開示されている。   A coil component in which a coil in which a conductor is spirally wound, an insulating film covering the coil, and a composite magnetic body in which magnetic powder and an organic binder are mixed so as to cover the insulating film are arranged. Patent Document 1 discloses a coil component containing resin spherical particles that enclose air bubbles inside an insulating film in order to absorb the thermal expansion.

また、磁性体粉末と、非磁性体粉末と、樹脂との混成物を硬化させて得られる磁芯に、不活性ガスが内部へ充填された平均粒径50μmの略球状シリカ中空粉を含有させることで、コイルや磁芯からの騒音を改善する技術が特許文献2に開示されている。   Also, a substantially spherical silica hollow powder having an average particle diameter of 50 μm and filled with an inert gas is contained in a magnetic core obtained by curing a composite of magnetic powder, nonmagnetic powder, and resin. Thus, Patent Document 2 discloses a technique for improving noise from a coil and a magnetic core.

特開2010−257999号公報JP 2010-257999 A 特開2006−024844号公報JP 2006-024844 A

複合磁性体へコイルを埋設したリアクトルでは、通電によりコイルが発熱し、コイル及びコイル周辺の複合磁性体が熱膨張する。また、同時に交流電流通電によりコイル周辺には交流磁界が誘起され、複合磁性体内部にも磁気損失が生じ、発熱する。しかしながら上記特許文献に開示された構成においては、熱膨張による複合磁性体内部応力の上昇と、内部応力による損傷発生の可能性について充分考慮されていないという課題がある。   In a reactor in which a coil is embedded in a composite magnetic body, the coil generates heat when energized, and the coil and the composite magnetic body around the coil are thermally expanded. At the same time, an alternating magnetic field is induced around the coil by the alternating current, and a magnetic loss is generated inside the composite magnetic body to generate heat. However, in the configuration disclosed in the above-mentioned patent document, there is a problem that the increase in the internal stress of the composite magnetic body due to thermal expansion and the possibility of damage due to the internal stress are not sufficiently considered.

従って本発明の目的は、複合磁性体内部の熱膨張による応力を抑えたリアクトルを提供することにある。   Accordingly, an object of the present invention is to provide a reactor in which stress due to thermal expansion inside the composite magnetic body is suppressed.

上記課題を本発明は、導体を巻き回したコイルと、軟磁性粉と結合材と中空粒子を含有する複合磁性体を備え、コイルは複合磁性体に埋設され、中空粒子のD50は10μmよりも小さいリアクトルにより解決する。ここで、D50とは体積基準の累積度数50%相当粒径のことである。   To solve the above problems, the present invention includes a coil around which a conductor is wound, a composite magnetic body containing soft magnetic powder, a binder, and hollow particles, the coil is embedded in the composite magnetic body, and the D50 of the hollow particles is more than 10 μm. Solve with a small reactor. Here, D50 is a particle size corresponding to a volume-based cumulative frequency of 50%.

また、中空粒子のD50が0.1μm以上、5.0μm以下であり、中空粒子における内径と外径の比の平均値が0.30以上、0.99以下であってもよい。ここで、中空粒子の内径とは、中空粒子中にある空洞部の直径のことである。また、中空粒子の外径とは、中空粒子の粒径のことである。   The D50 of the hollow particles may be 0.1 μm or more and 5.0 μm or less, and the average value of the ratio of the inner diameter to the outer diameter of the hollow particles may be 0.30 or more and 0.99 or less. Here, the inner diameter of the hollow particles is the diameter of the hollow portion in the hollow particles. The outer diameter of the hollow particles is the particle diameter of the hollow particles.

また、中空粒子のD50が0.3μm以上、2.0μm以下であり、中空粒子における内径と外径の比の平均値が0.7以上、0.9以下であってもよい。   The D50 of the hollow particles may be 0.3 μm or more and 2.0 μm or less, and the average value of the ratio of the inner diameter to the outer diameter of the hollow particles may be 0.7 or more and 0.9 or less.

また、複合磁性体における中空粒子の体積含有率が0.1%以上、5.0%以下であってもよい。   Further, the volume content of the hollow particles in the composite magnetic body may be 0.1% or more and 5.0% or less.

また、複合磁性体における中空粒子の体積含有率が0.5%以上、2.5%以下であってもよい。   The volume content of the hollow particles in the composite magnetic body may be 0.5% or more and 2.5% or less.

また、コイル表面近傍の複合磁性体内における中空粒子の体積含有率が、コイル表面近傍より一定距離以上離れた領域の複合磁性体内における中空粒子の体積含有率よりも低くてもよい。   In addition, the volume content of the hollow particles in the composite magnetic body in the vicinity of the coil surface may be lower than the volume content of the hollow particles in the composite magnetic body in a region separated by a certain distance or more from the vicinity of the coil surface.

本発明により、複合磁性体内部の熱膨張による応力を抑えたリアクトルを提供することができる。   According to the present invention, it is possible to provide a reactor in which stress due to thermal expansion inside the composite magnetic body is suppressed.

本発明におけるリアクトルの一例を示す斜視図である。It is a perspective view which shows an example of the reactor in this invention. 本発明におけるリアクトルの一例であって、図1におけるAA面の断面図である。It is an example of the reactor in this invention, Comprising: It is sectional drawing of the AA surface in FIG. 本発明におけるリアクトルの一例であって、図2におけるB−C部分の断面拡大図である。It is an example of the reactor in this invention, Comprising: It is a cross-sectional enlarged view of the BC section in FIG. 本発明におけるリアクトルの他の一例であって、図1におけるAA面の断面図である。It is another example of the reactor in this invention, Comprising: It is sectional drawing of the AA surface in FIG.

本発明の実施形態について、図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本発明は、例えば、導体を巻き回したコイルと、軟磁性粉と結合材と中空粒子を含有する複合磁性体を備え、コイルは複合磁性体に埋設され、中空粒子のD50が10μmよりも小さいリアクトルの実施形態を取り得る。
(Embodiment 1)
The present invention includes, for example, a coil wound with a conductor, a composite magnetic body containing soft magnetic powder, a binder, and hollow particles, the coil is embedded in the composite magnetic body, and the D50 of the hollow particles is smaller than 10 μm. Reactor embodiments may be taken.

特許文献2には中空粒子を含有する複合磁性体が記載されている。複合磁性体の熱膨張を吸収して中空粒子が収縮しようとすると、中空粒子の平均粒径が50μm以上と大き過ぎるため、中空粒子の形態が復元しない恐れがある。一方本実施形態では中空粒子のD50が10μmよりも小さいため、中空粒子の形態復元性が高く、熱膨張が繰り返し起きても中空粒子による膨張吸収作用を保つことができる。   Patent Document 2 describes a composite magnetic body containing hollow particles. If the hollow particles try to shrink by absorbing the thermal expansion of the composite magnetic body, the average particle diameter of the hollow particles is too large, ie 50 μm or more, so that the shape of the hollow particles may not be restored. On the other hand, in this embodiment, since the D50 of the hollow particles is smaller than 10 μm, the shape restoration property of the hollow particles is high, and the expansion absorption action by the hollow particles can be maintained even if the thermal expansion repeatedly occurs.

図1は、本発明におけるリアクトルの一例を示す斜視図である。   FIG. 1 is a perspective view showing an example of a reactor in the present invention.

本実施形態におけるリアクトルは、複合磁性体1にコイル2が埋設された構成となっている。コイル2を構成する導体の両端は、図示されない端子により通電することができる。   The reactor in this embodiment has a configuration in which a coil 2 is embedded in a composite magnetic body 1. Both ends of the conductor constituting the coil 2 can be energized by terminals not shown.

複合磁性体1にコイル2を埋設させる方法としては、軟磁性粉と、熱硬化型エポキシ樹脂等の未硬化液状樹脂結合材と、後述の中空粒子を主に含有する複合磁性体1を注ぎ込み、さらに型の中へコイル2を入れて複合磁性体1を硬化する方法などが挙げられる。   As a method for embedding the coil 2 in the composite magnetic body 1, the composite magnetic body 1 mainly containing soft magnetic powder, an uncured liquid resin binder such as a thermosetting epoxy resin, and hollow particles described later is poured. Furthermore, the method of putting the coil 2 in the mold and curing the composite magnetic body 1 can be mentioned.

さらに、複合磁性体1を硬化させる前に減圧下に置くことにより、複合磁性体1内部の結合材に含まれた気泡を除くことが望ましい。この場合、結合材は軟磁性粉及び中空粒子等の粒子間にほぼ隙間無く充填される。   Furthermore, it is desirable to remove bubbles contained in the binder inside the composite magnetic body 1 by placing the composite magnetic body 1 under reduced pressure before curing the composite magnetic body 1. In this case, the binder is filled with almost no space between the particles such as the soft magnetic powder and the hollow particles.

図2は、本発明におけるリアクトルの一例であって、図1におけるAA面の断面図である。   FIG. 2 is an example of a reactor in the present invention, and is a cross-sectional view of the AA plane in FIG.

コイル2には絶縁被覆21が設けられ、複合磁性体1との間を電気的に絶縁している。   The coil 2 is provided with an insulating coating 21 to electrically insulate it from the composite magnetic body 1.

また、複合磁性体1の内部には中空粒子11が含まれている。   The composite magnetic body 1 contains hollow particles 11.

ここで、中空粒子11のD50を10μmより小さくすることにより、結合材が未硬化の状態で液状の複合磁性体を型に注ぎ込む際の流動性を高めることができる。   Here, by making D50 of the hollow particles 11 smaller than 10 μm, it is possible to improve the fluidity when the liquid composite magnetic material is poured into the mold in a state where the binder is uncured.

特許文献1には平均粒径が10μmより小さいと気泡が潰れにくいとの記載がある。   Patent Document 1 describes that bubbles are less likely to collapse when the average particle size is less than 10 μm.

しかし本実施形態では、型に注ぎ込む際の流動性が複合磁性体に要求されるため、あえて中空粒子11のD50を10μmより小さくしている。   However, in this embodiment, since the fluidity when pouring into the mold is required for the composite magnetic body, D50 of the hollow particles 11 is intentionally made smaller than 10 μm.

なお、中空粒子11のD50を0.1μm以上、5.0μm以下とすることにより、結合材が未硬化の状態で液状の複合磁性体を型に注ぎ込む際の流動性をより高めることができる。   In addition, by setting D50 of the hollow particles 11 to 0.1 μm or more and 5.0 μm or less, it is possible to further improve the fluidity when pouring the liquid composite magnetic material into the mold in a state where the binder is uncured.

図3は、本発明におけるリアクトルの一例であって、図2におけるB−C部分の断面拡大図である。   FIG. 3 is an example of a reactor according to the present invention, and is a cross-sectional enlarged view of a B-C portion in FIG. 2.

本実施形態における複合磁性体1は、結合材10中に空洞部111と外皮部112を持つ中空粒子と、軟磁性粉12と、非磁性粉13を含有している。   The composite magnetic body 1 in the present embodiment includes hollow particles having a cavity portion 111 and an outer skin portion 112 in a binder 10, soft magnetic powder 12, and nonmagnetic powder 13.

ここで、軟磁性粉12としては、Fe−Si、Fe−Si−B、Fe−Si−Al、Fe−Si−Cr等の軟磁性金属粉や、フェライト粉砕粉などが挙げられるが、放熱性が重要視される大電流用途では、軟磁性金属粉が好適に用いられる。   Here, examples of the soft magnetic powder 12 include soft magnetic metal powders such as Fe-Si, Fe-Si-B, Fe-Si-Al, and Fe-Si-Cr, and ferrite pulverized powder. For high current applications where importance is attached, soft magnetic metal powder is preferably used.

中空粒子における内径d1と外径d2の比の平均値を0.30以上、0.99以下とすることにより、中空粒子が熱膨張を吸収して収縮する際の柔軟性と強度を両立させることができる。   By making the average value of the ratio of the inner diameter d1 and the outer diameter d2 in the hollow particles 0.30 or more and 0.99 or less, both the flexibility and strength when the hollow particles absorb and contract the thermal expansion are achieved. Can do.

ここで、中空粒子の内径d1とは、中空粒子中にある空洞部111の直径のことである。また、中空粒子の外径d2とは、中空粒子の外径のことである。中空粒子に複数の空洞部がある場合は、複数空洞部における内径の合計、例えば図3ではd1’とd1’’の合計を中空粒子の内径とする。   Here, the inner diameter d1 of the hollow particles is the diameter of the cavity 111 in the hollow particles. Moreover, the outer diameter d2 of the hollow particles is the outer diameter of the hollow particles. When the hollow particle has a plurality of cavities, the total inner diameter of the plurality of cavities, for example, the total of d1 ′ and d1 ″ in FIG.

また、中空粒子のD50を2.0μm以下、より望ましくは1.5μm以下に制限することで複合磁性体の膨張収縮による中空粒子の形態復元性を高めることができる。さらに、中空粒子のD50を0.3μm以上、より望ましくは0.5μm以上に制限することで中空粒子が熱膨張を吸収して収縮する際の柔軟性を高めることができる。   Further, by limiting the D50 of the hollow particles to 2.0 μm or less, and more desirably 1.5 μm or less, the shape restoration property of the hollow particles due to the expansion and contraction of the composite magnetic material can be enhanced. Furthermore, by limiting the D50 of the hollow particles to 0.3 μm or more, and more desirably 0.5 μm or more, the flexibility when the hollow particles absorb and contract by thermal expansion can be enhanced.

また、中空粒子における内径d1と外径d2の比の平均値を0.7以上とすることにより、中空粒子が熱膨張を吸収して収縮する際の柔軟性をより高めることができる。さらに、中空粒子における内径d1と外径d2の比の平均値を0.9以下とすることにより外皮部112の厚さを中空粒子が内包する気体の大気圧による膨張を抑制することができる、すなわち、中空粒子がある程度の硬さを持つため、型に注ぎ込まれた液状の複合磁性体を真空引きにより脱泡する際、中空粒子が必要以上に膨張して液状の複合磁性体が型から溢れ出すのを防ぐことができる。   In addition, by setting the average value of the ratio of the inner diameter d1 and the outer diameter d2 in the hollow particles to 0.7 or more, the flexibility when the hollow particles contract by absorbing thermal expansion can be further increased. Furthermore, by setting the average value of the ratio of the inner diameter d1 and the outer diameter d2 in the hollow particles to 0.9 or less, it is possible to suppress expansion due to the atmospheric pressure of the gas that the hollow particles contain the thickness of the outer skin portion 112. In other words, since the hollow particles have a certain degree of hardness, when the liquid composite magnetic material poured into the mold is degassed by evacuation, the hollow particles expand more than necessary and the liquid composite magnetic material overflows from the mold. Can be prevented.

また、複合磁性体における中空粒子の体積含有率を0.1%以上、5.0%以下とすることにより、中空粒子が熱膨張を充分吸収でき、しかも軟磁性粉の充填率を高めることで磁気特性を高めることができる。   In addition, by setting the volume content of the hollow particles in the composite magnetic body to 0.1% or more and 5.0% or less, the hollow particles can sufficiently absorb thermal expansion, and the filling rate of the soft magnetic powder can be increased. Magnetic characteristics can be enhanced.

さらに、複合磁性体における中空粒子の体積含有率を0.5%以上、2.5%以下とすることにより、複合磁性体の熱伝導率を高めることができる。   Furthermore, the heat conductivity of a composite magnetic body can be raised by making volume content rate of the hollow particle in a composite magnetic body into 0.5% or more and 2.5% or less.

(実施形態2)
また、本発明は、コイル表面近傍の複合磁性体内における中空粒子の体積含有率が、コイル表面近傍より一定距離以上離れた領域の複合磁性体内における中空粒子の体積含有率よりも低いリアクトルの実施形態を取り得る。
(Embodiment 2)
Further, the present invention provides an embodiment of a reactor in which the volume content of the hollow particles in the composite magnetic body near the coil surface is lower than the volume content of the hollow particles in the composite magnetic body in a region separated by a certain distance or more from the vicinity of the coil surface. Can take.

複合磁性体内でも特にコイル近傍へ大きな磁界が印加されるため、リアクトルのインダクタンスを高める上ではコイル表面近傍の軟磁性粉の含有率を多くするのが望ましく、コイル近傍にある複合磁性体からの放熱性を高める上ではコイル近傍の複合磁性体に中空粒子をできるだけ含有させないのが望ましい。   In order to increase the inductance of the reactor, it is desirable to increase the soft magnetic powder content in the vicinity of the coil surface and to release heat from the composite magnetic material in the vicinity of the coil, since a large magnetic field is applied to the vicinity of the coil even in the composite magnetic body. In order to improve the properties, it is desirable that the composite magnetic material in the vicinity of the coil contains as little hollow particles as possible.

この場合、コイル表面より一定距離以上離れた領域の複合磁性体に中空粒子を含有させることで複合磁性体の熱膨張を吸収することができる。   In this case, the thermal expansion of the composite magnetic body can be absorbed by incorporating hollow particles in the composite magnetic body in a region separated from the coil surface by a certain distance or more.

図4は、本発明におけるリアクトルの他の一例であって、図1におけるAA面の断面図である。   FIG. 4 is another example of the reactor in the present invention, and is a cross-sectional view of the AA plane in FIG.

まずコイル2の絶縁被覆21より一定距離Lの範囲に複合磁性体101を形成し、一定距離Lを超える範囲には、先に形成した複合磁性体101よりも中空粒子11の体積含有率が高い複合磁性体102を形成する。   First, the composite magnetic body 101 is formed in the range of a certain distance L from the insulating coating 21 of the coil 2, and the volume content of the hollow particles 11 is higher than the previously formed composite magnetic body 101 in the range exceeding the certain distance L. The composite magnetic body 102 is formed.

このようなリアクトルを作成する方法としては、例えば複合磁性体を2段階に分けて形成する方法が挙げられる。   As a method for creating such a reactor, for example, a method of forming a composite magnetic body in two stages can be mentioned.

すなわち、最初にコイル2の絶縁被覆21表面へ中空粒子を含有しない複合磁性体101を形成し、さらにその外側を覆うように複合磁性体102を形成することで図4のリアクトルを作成することができる。   That is, the reactor shown in FIG. 4 can be created by first forming the composite magnetic body 101 containing no hollow particles on the surface of the insulating coating 21 of the coil 2 and further forming the composite magnetic body 102 so as to cover the outside. it can.

なお、コイル2の絶縁被覆21より一定距離Lの範囲にある複合磁性体101が中空粒子11を含有していなくとも良い。   Note that the composite magnetic body 101 in the range of a certain distance L from the insulating coating 21 of the coil 2 may not contain the hollow particles 11.

実施形態1の構成で、厚さ1mm、幅10mmの平角導線を30ターン巻き回したものをコイル2として、コイル2表面に絶縁被覆21を形成した。   The insulation coating 21 was formed on the surface of the coil 2 using the configuration of the first embodiment as a coil 2 in which a rectangular conductor wire having a thickness of 1 mm and a width of 10 mm was wound for 30 turns.

未硬化の液状エポキシ樹脂からなる結合材10に、アクリル酸等の不飽和カルボン酸とスチレン等のラジカル重合体モノマーの重合体からなる中空粒子11、Fe−Si系の軟磁性粉12、非磁性粉13を配合した複合磁性体1に絶縁被覆21を形成したコイル2を埋設し、結合材10を熱硬化させてリアクトルを作製した。   A binder 10 made of an uncured liquid epoxy resin, hollow particles 11 made of a polymer of an unsaturated carboxylic acid such as acrylic acid and a radical polymer monomer such as styrene, Fe-Si soft magnetic powder 12, non-magnetic The coil 2 in which the insulating coating 21 was formed was embedded in the composite magnetic body 1 in which the powder 13 was blended, and the binder 10 was thermoset to produce a reactor.

なお、中空粒子11の内径は0.9μm、外径は1.1μmである。また、複合磁性体1における中空粒子11の体積含有率は1%である。   The hollow particles 11 have an inner diameter of 0.9 μm and an outer diameter of 1.1 μm. Further, the volume content of the hollow particles 11 in the composite magnetic body 1 is 1%.

本実施形態のリアクトルを5台作製し、コイルに200Aの直流電流を70秒通電する試験を行い、コイル周辺の複合磁性体について断面観察を行ったところ、いずれのリアクトルも複合磁性体内部に熱膨張による微小なヒビ等の損傷は認められなかった。   Five reactors of the present embodiment were produced, a test was conducted in which a DC current of 200 A was passed through the coil for 70 seconds, and cross-sectional observation was performed on the composite magnetic body around the coil. All reactors were heated inside the composite magnetic body. No damage such as fine cracks due to expansion was observed.

試験を行うまでは、複合磁性体に中空粒子を含有させることで放熱性が低下し、コイル近傍にある複合磁性体へ熱が篭もることで複合磁性体の熱膨張が促進され、複合磁性体内部でより過剰な応力が発生されることも懸念された。   Until the test is performed, the inclusion of hollow particles in the composite magnetic material reduces the heat dissipation, and heat builds up on the composite magnetic material in the vicinity of the coil, which accelerates the thermal expansion of the composite magnetic material and There was also concern that more stress would be generated inside the body.

しかし本実施例における試験結果より、複合磁性体に含有された中空粒子が放熱性抑制よりも熱膨張を吸収する作用を主に有することが確認された。   However, the test results in this example confirmed that the hollow particles contained in the composite magnetic body mainly have an action of absorbing thermal expansion rather than suppressing heat dissipation.

1、101、102 複合磁性体
2 コイル
10 結合材
11 中空粒子
12 軟磁性粉
13 非磁性粉
21 絶縁被覆
111 空洞部
112 外皮部
d1、d1’、d1’’ 内径
d2 外径
L 距離
1, 101, 102 Composite magnetic body 2 Coil 10 Binder 11 Hollow particle 12 Soft magnetic powder 13 Nonmagnetic powder 21 Insulation coating 111 Cavity 112 Outer skin part d1, d1 ', d1''Inner diameter d2 Outer diameter L Distance

Claims (6)

導体を巻き回したコイルと、
軟磁性粉と結合材と中空粒子を含有する複合磁性体を備え、
前記コイルは前記複合磁性体に埋設され、
前記中空粒子のD50は10μmよりも小さいことを特徴とするリアクトル。
A coil wound with a conductor;
Comprising a composite magnetic body containing soft magnetic powder, a binder and hollow particles;
The coil is embedded in the composite magnetic body,
The reactor, wherein D50 of the hollow particles is smaller than 10 μm.
前記中空粒子のD50は0.1μm以上、5.0μm以下であり、
前記中空粒子における内径と外径の比の平均値が0.30以上、0.99以下であることを特徴とする請求項1に記載のリアクトル。
D50 of the hollow particles is 0.1 μm or more and 5.0 μm or less,
The reactor according to claim 1, wherein an average value of a ratio of an inner diameter and an outer diameter of the hollow particles is 0.30 or more and 0.99 or less.
前記中空粒子のD50は0.3μm以上、2.0μm以下であり、
前記中空粒子における内径と外径の比の平均値が0.7以上、0.9以下であることを特徴とする請求項1に記載のリアクトル。
D50 of the hollow particles is 0.3 μm or more and 2.0 μm or less,
The reactor according to claim 1, wherein an average value of a ratio of an inner diameter and an outer diameter of the hollow particles is 0.7 or more and 0.9 or less.
前記複合磁性体における前記中空粒子の体積含有率は0.1%以上、5.0%以下であることを特徴とする請求項1から請求項3のいずれかに記載のリアクトル。   The reactor according to any one of claims 1 to 3, wherein a volume content of the hollow particles in the composite magnetic body is 0.1% or more and 5.0% or less. 前記複合磁性体における前記中空粒子の体積含有率は0.5%以上、2.5%以下であることを特徴とする請求項4に記載のリアクトル。   The reactor according to claim 4, wherein the volume content of the hollow particles in the composite magnetic body is 0.5% or more and 2.5% or less. 前記コイル表面近傍の前記複合磁性体内における前記中空粒子の体積含有率は、
前記コイル表面近傍より一定距離以上離れた領域の前記複合磁性体内における前記中空粒子の体積含有率よりも低いことを特徴とする請求項1から請求項5のいずれかに記載のリアクトル。
The volume content of the hollow particles in the composite magnetic body in the vicinity of the coil surface is:
The reactor according to any one of claims 1 to 5, wherein the reactor has a volume content lower than that of the hollow particles in the composite magnetic body in a region separated by a certain distance or more from the vicinity of the coil surface.
JP2012111071A 2012-05-15 2012-05-15 Reactor Pending JP2013239542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111071A JP2013239542A (en) 2012-05-15 2012-05-15 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111071A JP2013239542A (en) 2012-05-15 2012-05-15 Reactor

Publications (1)

Publication Number Publication Date
JP2013239542A true JP2013239542A (en) 2013-11-28

Family

ID=49764337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111071A Pending JP2013239542A (en) 2012-05-15 2012-05-15 Reactor

Country Status (1)

Country Link
JP (1) JP2013239542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524256A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
US10308786B2 (en) 2014-09-11 2019-06-04 Moda-Innochips Co., Ltd. Power inductor and method for manufacturing the same
US10573451B2 (en) 2014-08-07 2020-02-25 Moda-Innochips Co., Ltd. Power inductor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837994A (en) * 1981-08-29 1983-03-05 株式会社デンソー Injection electric part and method of producing same
JPS61174605A (en) * 1985-01-28 1986-08-06 Mitsubishi Electric Corp Cast electric machine
JPH03222404A (en) * 1990-01-29 1991-10-01 Hitachi Ltd Ignition coil for internal combustion engine
JPH08188012A (en) * 1995-01-09 1996-07-23 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2002235644A (en) * 2001-02-09 2002-08-23 Denso Corp Ignitor for internal combustion engine and its manufacturing method
JP2003138194A (en) * 2001-10-31 2003-05-14 Tombow Pencil Co Ltd Water-based ink composition erasable with eraser, writing implement using the same and method of producing the rubber-erasable water-based ink composition
JP2005347588A (en) * 2004-06-04 2005-12-15 Murata Mfg Co Ltd Winding coil
JP2006024844A (en) * 2004-07-09 2006-01-26 Nec Tokin Corp Magnetic core and coil component using same
JP2006261331A (en) * 2005-03-16 2006-09-28 Nec Tokin Corp Inductance component and its manufacturing method
JP2008187119A (en) * 2007-01-31 2008-08-14 Nec Tokin Corp Coil component
JP2008192887A (en) * 2007-02-06 2008-08-21 Nec Tokin Corp Coil component
JP2008210820A (en) * 2007-01-31 2008-09-11 Nec Tokin Corp Coil component
JP2008218724A (en) * 2007-03-05 2008-09-18 Nec Tokin Corp Winding component
JP2010257999A (en) * 2009-04-02 2010-11-11 Nec Tokin Corp Coil component
US20100289609A1 (en) * 2009-05-15 2010-11-18 Cyntec Co., Ltd. Electronic device and manufacturing method thereof

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837994A (en) * 1981-08-29 1983-03-05 株式会社デンソー Injection electric part and method of producing same
JPS61174605A (en) * 1985-01-28 1986-08-06 Mitsubishi Electric Corp Cast electric machine
JPH03222404A (en) * 1990-01-29 1991-10-01 Hitachi Ltd Ignition coil for internal combustion engine
JPH08188012A (en) * 1995-01-09 1996-07-23 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2002235644A (en) * 2001-02-09 2002-08-23 Denso Corp Ignitor for internal combustion engine and its manufacturing method
JP2003138194A (en) * 2001-10-31 2003-05-14 Tombow Pencil Co Ltd Water-based ink composition erasable with eraser, writing implement using the same and method of producing the rubber-erasable water-based ink composition
JP2005347588A (en) * 2004-06-04 2005-12-15 Murata Mfg Co Ltd Winding coil
JP2006024844A (en) * 2004-07-09 2006-01-26 Nec Tokin Corp Magnetic core and coil component using same
JP2006261331A (en) * 2005-03-16 2006-09-28 Nec Tokin Corp Inductance component and its manufacturing method
JP2008187119A (en) * 2007-01-31 2008-08-14 Nec Tokin Corp Coil component
JP2008210820A (en) * 2007-01-31 2008-09-11 Nec Tokin Corp Coil component
JP2008192887A (en) * 2007-02-06 2008-08-21 Nec Tokin Corp Coil component
JP2008218724A (en) * 2007-03-05 2008-09-18 Nec Tokin Corp Winding component
JP2010257999A (en) * 2009-04-02 2010-11-11 Nec Tokin Corp Coil component
US20100289609A1 (en) * 2009-05-15 2010-11-18 Cyntec Co., Ltd. Electronic device and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524256A (en) * 2014-08-07 2017-08-24 モダ−イノチップス シーオー エルティディー Power inductor
US10541076B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
US10541075B2 (en) 2014-08-07 2020-01-21 Moda-Innochips Co., Ltd. Power inductor
US10573451B2 (en) 2014-08-07 2020-02-25 Moda-Innochips Co., Ltd. Power inductor
US10308786B2 (en) 2014-09-11 2019-06-04 Moda-Innochips Co., Ltd. Power inductor and method for manufacturing the same
US10508189B2 (en) 2014-09-11 2019-12-17 Moda-Innochips Co., Ltd. Power inductor

Similar Documents

Publication Publication Date Title
US8686820B2 (en) Reactor
JP4924811B2 (en) Method for producing soft magnetic composite material
JP4748397B2 (en) Soft magnetic composite materials for reactors and reactors
JP2016219758A (en) Soft magnetic composite material, magnetic core arranged by use of soft magnetic composite material, and reactor arranged by use of soft magnetic composite material
JP2005354001A (en) Magnetic core and coil component using it
JP2019216199A (en) Core, reactor, manufacturing method of the core, and manufacturing method of the reactor
JP5660164B2 (en) Method for producing soft magnetic composite material
JP2013239542A (en) Reactor
JP6532198B2 (en) Method of manufacturing magnetic core using soft magnetic composite material, method of manufacturing reactor
JP2010283379A (en) Reactor
JP5187599B2 (en) Soft magnetic composite material and core for reactor
JP2011049586A (en) Reactor
JP5700298B2 (en) Reactor, soft magnetic composite material, and booster circuit
JP2014225516A (en) Reactor
JP6024927B2 (en) Soft magnetic composite material
JP6545734B2 (en) Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP2015065483A (en) Soft magnetic composite material and reactor
JP5408272B2 (en) Reactor core, reactor, and converter
JP2010257999A (en) Coil component
JP6557527B2 (en) Reactor
JP2012199580A (en) Method of manufacturing soft magnetic composite material
JP2006024844A (en) Magnetic core and coil component using same
JP6087708B2 (en) Winding element manufacturing method
JP5874769B2 (en) Soft magnetic composite material and reactor
JP7138736B2 (en) CORE, REACTOR, CORE MANUFACTURING METHOD AND REACTOR MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150430

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150430

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170215