JP2010257999A - Coil component - Google Patents

Coil component Download PDF

Info

Publication number
JP2010257999A
JP2010257999A JP2009101899A JP2009101899A JP2010257999A JP 2010257999 A JP2010257999 A JP 2010257999A JP 2009101899 A JP2009101899 A JP 2009101899A JP 2009101899 A JP2009101899 A JP 2009101899A JP 2010257999 A JP2010257999 A JP 2010257999A
Authority
JP
Japan
Prior art keywords
coil
insulating film
coil component
magnetic core
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009101899A
Other languages
Japanese (ja)
Other versions
JP5240856B2 (en
Inventor
Takashi Yamaya
孝志 山家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009101899A priority Critical patent/JP5240856B2/en
Publication of JP2010257999A publication Critical patent/JP2010257999A/en
Application granted granted Critical
Publication of JP5240856B2 publication Critical patent/JP5240856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil component having high reliability and safety by preventing crack or damage of a magnetic core. <P>SOLUTION: An insulating coating 2 is formed by mixing spherical particles involving a gas portion 2a with a silicone resin and has a thickness d1 on the outer circumference of a coil 1, wherein a large number of substantially circular gas portions 2a are substantially uniformly formed in the inside. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁芯及びコイルから構成される、特に大電流対応のリアクトル等のコイル部品に関する。   The present invention relates to a coil component including a magnetic core and a coil, particularly a reactor such as a reactor corresponding to a large current.

一般に、このような大電流対応のコイル部品は、数百Aなどの大電流においても磁気飽和せずに良好な直流重畳特性を示し、かつ低騒音を実現させるため、磁性体粉末と樹脂とをそれぞれ適宜配合比を調整して混合した複合磁性体を硬化させた磁芯が多く使用されている。   In general, such a coil component compatible with a large current exhibits a good DC superposition characteristic without magnetic saturation even at a large current such as several hundreds A, and in order to realize low noise, a magnetic powder and a resin are used. A magnetic core obtained by curing a composite magnetic material obtained by appropriately adjusting the mixing ratio is used.

図3は、従来のコイル部品を説明する斜視図である。
コイル部品30は、磁芯33として、磁性体粉末A、Bと非磁性体粉末A1、B1と樹脂とをそれぞれ適宜配合比を調整して混合した複合磁性体を硬化させて得られる磁芯とし、その磁芯にコイル31を埋設した構造である。
磁性体粉末A、Bと非磁性体粉末A1、B1は略球状粉末であり、79.3kA/mの磁界中で10以上の比透磁率を有し、前記複合磁性体における樹脂の配合比は20体積%以上から90体積%以下の範囲であり、非磁性体粉末A1、B1は、シリカ粉、アルミナ粉、酸化チタン粉、石英ガラス粉、ジルコニウム粉、炭酸カルシウム粉又は水酸化アルミニウム粉を含む無機質材系粉末、ガラス繊維から選択された少なくとも一つの材質からなり、不活性ガスが充填された球状の中空粉である。
このようなコイル部品は、例えば特許文献1に開示されている。
FIG. 3 is a perspective view for explaining a conventional coil component.
The coil component 30 has, as the magnetic core 33, a magnetic core obtained by curing a composite magnetic body in which magnetic powders A and B, non-magnetic powders A1 and B1, and a resin are appropriately mixed and mixed. The coil 31 is embedded in the magnetic core.
The magnetic powders A and B and the nonmagnetic powders A1 and B1 are substantially spherical powders, have a relative magnetic permeability of 10 or more in a magnetic field of 79.3 kA / m, and the compounding ratio of the resin in the composite magnetic material is The nonmagnetic powder A1, B1 contains silica powder, alumina powder, titanium oxide powder, quartz glass powder, zirconium powder, calcium carbonate powder, or aluminum hydroxide powder. It is a spherical hollow powder made of at least one material selected from inorganic material-based powders and glass fibers and filled with an inert gas.
Such a coil component is disclosed in Patent Document 1, for example.

特開2006−24844号公報JP 2006-24844 A

特許文献1に開示されているような従来技術によるコイル部品では、コイルや磁芯の外周部に、中空粉からなる非磁性体粉末を内在させた絶縁物を配したり、内部に中空粉からなる非磁性体粉末を内在させた磁芯を用いる構造とすることで、大電流を通電した場合でも、磁気飽和せずに良好な直流電流重畳特性を得ると共に、低騒音を実現することを目的としており、大電流によるコイルや磁芯の発熱による熱膨張応力に関する記載はない。   In the coil component according to the prior art as disclosed in Patent Document 1, an insulator containing a non-magnetic powder made of hollow powder is arranged on the outer peripheral portion of the coil or the magnetic core, or from the hollow powder inside. By using a magnetic core containing non-magnetic powder, it is possible to obtain good DC current superposition characteristics without magnetic saturation and achieve low noise even when a large current is applied. There is no description regarding thermal expansion stress due to heat generation of the coil or magnetic core due to a large current.

しかしながら、高温環境下での使用や、大電流を通電する場合においては、コイルや磁芯の発熱が大きく、その発熱による熱膨張応力が無視できなくなるため、信頼性や安全性に関しては不十分である。
コイルに通電を行うと、コイルの損失によりジュール熱が発生しコイル自身が発熱する、また、その通電によって磁芯自体も発熱するので、コイルの周囲の磁芯にその熱膨張応力が加わり、磁芯に亀裂や破損が生じ、その亀裂や破損によって磁束を分断してインダクタンスを低下させてしまうと共に、亀裂により高周波振動の異音(騒音)が発生したり、破損部が欠落して周囲の部品に悪影響を与えてしまう可能性がある。特に、数百A等の大電流を流す場合は、さらにその影響が顕著となる。
However, when used in a high temperature environment or when a large current is applied, the coil and magnetic core generate a large amount of heat, and the thermal expansion stress due to the generated heat cannot be ignored. is there.
When the coil is energized, Joule heat is generated due to the loss of the coil and the coil itself generates heat, and the magnetic core itself also generates heat due to the energization. Therefore, the thermal expansion stress is applied to the magnetic core around the coil, and the magnet Cracks or breakage occurs in the core, and the cracks or breakage breaks the magnetic flux and lowers the inductance. Also, the crack generates abnormal noise (noise) of the high-frequency vibration, or the damaged part is missing and surrounding parts. May be adversely affected. In particular, when a large current of several hundred A or the like is passed, the influence becomes more remarkable.

本発明は、上記課題を解決するため、磁芯の亀裂や損傷を防止し、信頼性および安全性の高いコイル部品の提供を目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a coil component that prevents cracking and damage of a magnetic core and has high reliability and safety.

本発明は、上記課題を解決すべく、コイルと、その周囲を磁性粉末と有機結合剤との複合磁性体からなる磁芯で覆ったコイル部品において、コイルと、コイルの外周部に配設された磁芯との境界部に、絶縁皮膜を介在させた構造とし、前記絶縁皮膜は、皮膜内部に気体部が略均一に内包された構造とすることで、大電流を通電した際のコイルの発熱による熱膨張応力(変位量)を該気体部で吸収させ、磁芯への応力を緩和し、磁芯の割れや亀裂を防止して、高耐熱、高信頼性を確保するものである。   In order to solve the above-described problems, the present invention provides a coil and a coil component in which the periphery is covered with a magnetic core made of a composite magnetic material of magnetic powder and an organic binder. The insulating film is interposed at the boundary with the magnetic core, and the insulating film has a structure in which the gas part is substantially uniformly contained inside the film, so that the coil when a large current is passed through is formed. Thermal expansion stress (displacement amount) due to heat generation is absorbed by the gas portion, stress on the magnetic core is relaxed, cracking and cracking of the magnetic core are prevented, and high heat resistance and high reliability are ensured.

なお、気体部とは、中空の球体の内部の空隙のほか、互いに独立した空隙を持つ気泡や、スポンジや粒子の集合体などの連続した空隙であってもよい。   The gas part may be a void inside the hollow sphere, or a continuous void such as an air bubble having a void independent from each other, a sponge, or an aggregate of particles.

なお、絶縁皮膜の厚さは、コイルとその周囲の磁芯との絶縁性を確保する必要があるため、一般的な固体樹脂の絶縁耐力は10〜20KV/mmであることより、0.5〜1.0mmとするのが好適である(要求耐圧値:5KVmax)。従って、その厚みの内部または内外表面に近接して形成する必要がある。なお、上記の絶縁被膜の厚さは、コイル自身の導体絶縁皮膜として、例えばポリイミド樹脂等の高絶縁性のものを用いた場合には0.5mm以下としてもよい。   In addition, since it is necessary to ensure the insulation of a coil and the magnetic core of the circumference | surroundings about the thickness of an insulating film, since the dielectric strength of a general solid resin is 10-20KV / mm, it is 0.5. It is preferable to be set to ˜1.0 mm (required withstand voltage value: 5 KVmax). Therefore, it is necessary to form it close to the inner or inner / outer surface of the thickness. The thickness of the insulating film may be 0.5 mm or less when a highly insulating material such as a polyimide resin is used as the conductor insulating film of the coil itself.

また、絶縁皮膜の厚さに占める気体部の体積含有率は、熱伝導性(放熱性)とコイルの発熱による熱膨張応力による変位量(体積変化量)を充分吸収できる程度により調整することができる。体積含有率が小さい場合は、気泡の数が少ないため熱伝導性(放熱性)が良好で温度上昇を低く抑えることのできるが、変位量を吸収できず磁芯の亀裂や破損が起こり易くなる。一方、体積含有率が大きい場合は、気泡の数が多くなるため応力は充分吸収できるが、その気泡によりコイルのジュール熱が充分放熱されなくなり、コイルの温度上昇が大きくなって効率や磁気特性に悪影響を与えてしまう。   Moreover, the volume content of the gas part in the thickness of the insulating film can be adjusted by adjusting the degree of thermal conductivity (heat dissipation) and the amount of displacement (volume change) due to thermal expansion stress due to heat generation of the coil. it can. When the volume content is small, the number of bubbles is small, so the thermal conductivity (heat dissipation) is good and the temperature rise can be kept low, but the amount of displacement cannot be absorbed and the core is likely to crack or break. . On the other hand, when the volume content is large, the number of bubbles increases, so the stress can be absorbed sufficiently, but due to the bubbles, the Joule heat of the coil is not sufficiently dissipated, and the temperature rise of the coil increases, resulting in efficiency and magnetic properties. It will have an adverse effect.

発明者らは、上記の絶縁性確保に必要な絶縁皮膜の厚さを0.5〜1.0mmとし、望ましい気泡の体積含有率は、0.5%〜60%であることを見出した。   The inventors have found that the thickness of the insulating film necessary for ensuring the insulation is 0.5 to 1.0 mm, and the desirable volume content of bubbles is 0.5% to 60%.

また、本発明のコイル部品を用いた電力変換システムや、その電力変換システムを用いて駆動する、特にハイブリッド車、電気自動車などに搭載される電動機にも適用できる。   Further, the present invention can also be applied to a power conversion system using the coil component of the present invention, and an electric motor that is driven using the power conversion system, particularly mounted in a hybrid vehicle, an electric vehicle, or the like.

本発明によれば、導電体を螺旋状に巻回したコイルと、コイルの端子部を除く一部または全部を包囲するように覆う絶縁皮膜と、絶縁皮膜を覆うように、磁性粉末と有機結合剤とを混合した複合磁性体を配したコイル部品であって、絶縁皮膜は内部に気体部を備えていることを特徴とするコイル部品が得られる。   According to the present invention, a coil in which a conductor is spirally wound, an insulating film covering a part or all of the coil except for a terminal portion of the coil, and an organic bond with the magnetic powder so as to cover the insulating film A coil component in which a composite magnetic body mixed with an agent is disposed, and the insulating film includes a gas portion therein is obtained.

本発明によれば、絶縁皮膜は、内部に気体部を有する樹脂と、他の同一または異なる樹脂を含むことを特徴とする上記のコイル部品が得られる。   According to the present invention, the above-described coil component is obtained in which the insulating film includes a resin having a gas portion therein and another identical or different resin.

本発明によれば、気体部の絶縁皮膜に対して占める体積含有率が0.5%〜60%であることを特徴とする上記のコイル部品が得られる。   According to the present invention, it is possible to obtain the coil component described above, wherein the volume content of the gas portion with respect to the insulating film is 0.5% to 60%.

本発明によれば、気体部は、変形および伸縮が可能であることを特徴とする上記のコイル部品が得られる。   According to the present invention, the above-described coil component is obtained in which the gas portion can be deformed and stretched.

本発明によれば、気体部は、気泡であることを特徴とする上記のコイル部品が得られる。   According to the present invention, the coil part is obtained in which the gas part is a bubble.

本発明によれば、上記のいずれかのコイル部品を用いた電力変換システムが得られる。   According to the present invention, a power conversion system using any one of the coil components described above can be obtained.

本発明によれば、上記の電力変換システムにより駆動する電動機が得られる。   According to the present invention, an electric motor driven by the power conversion system is obtained.

本発明のコイル部品によれば、高温度環境下での使用や、コイルに大電流を通電し発熱が大きい状態で使用される場合でも、磁芯に加わる熱膨張応力を緩和し、磁芯の割れや亀裂の発生を低減し、磁気特性や耐振動・衝撃性の低下を防止して、信頼性及び安全性を向上させることができる。
また、本発明のコイル部品を用いた電力変換システムや、その電力変換システムを用いて駆動する、特にハイブリッド車、電気自動車などに搭載される電動機にも適用でき、その場合は、より効果を奏する。
According to the coil component of the present invention, the thermal expansion stress applied to the magnetic core is relieved even when used in a high temperature environment or when the coil is used in a state where a large current is passed and the heat generation is large. It is possible to reduce the occurrence of cracks and cracks, prevent deterioration of magnetic properties, vibration resistance and impact resistance, and improve reliability and safety.
Further, the present invention can be applied to a power conversion system using the coil component of the present invention, and an electric motor that is driven using the power conversion system, and particularly mounted on a hybrid vehicle, an electric vehicle, and the like. .

本発明によるコイル部品を説明する図、図1(a)は斜視図、図1(b)は図1(a)におけるA面断面図。BRIEF DESCRIPTION OF THE DRAWINGS The figure explaining the coil components by this invention, Fig.1 (a) is a perspective view, FIG.1 (b) is A surface sectional drawing in Fig.1 (a). 本発明のコイル部品による絶縁皮膜を説明する断面模式図、図2(a)は図1(a)におけるB−B線断面図、図2(b)はコイルへの通電前のC部拡大図、図2(c)はコイルへの通電後のC部拡大図。FIG. 2 (a) is a cross-sectional view taken along line BB in FIG. 1 (a), and FIG. 2 (b) is an enlarged view of a portion C before energization of the coil. FIG. 2 (c) is an enlarged view of part C after energization of the coil. 従来のコイル部品を説明する斜視図。The perspective view explaining the conventional coil components.

以下、本発明の実施の形態について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明によるコイル部品を説明する図で、図1(a)は斜視図、図1(b)は図1(a)におけるA面断面図である。なお、図1(b)において、絶縁皮膜には斜線を施している。   1A and 1B are diagrams illustrating a coil component according to the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view taken along a plane A in FIG. In FIG. 1B, the insulating film is hatched.

図1に示したように、コイル部品4は、絶縁皮膜で覆われた導電体を螺旋状に巻回したコイル1の内周部と外周部に絶縁皮膜2を形成し、更にその内周部と外周部を磁芯3で覆って埋設した構造である。また、コイル1の先端部1a、1bは、磁芯3の側面から引き出されているが上面、下面など任意の面から引き出されていても良い。   As shown in FIG. 1, the coil component 4 has an insulating film 2 formed on the inner and outer peripheral portions of a coil 1 in which a conductor covered with an insulating film is spirally wound, and the inner peripheral portion thereof. And the outer peripheral portion is covered with the magnetic core 3 and buried. Moreover, although the front-end | tip parts 1a and 1b of the coil 1 are pulled out from the side surface of the magnetic core 3, you may be pulled out from arbitrary surfaces, such as an upper surface and a lower surface.

図2は、本発明によるコイル部品の絶縁皮膜を説明する断面模式図で、図2(a)は図1(a)におけるB−B線断面図、図2(b)はコイルへの通電前のC部拡大図、図2(c)はコイルへの通電後のC部拡大図をそれぞれ示す。   FIG. 2 is a schematic cross-sectional view for explaining an insulating film of a coil component according to the present invention. FIG. 2 (a) is a cross-sectional view taken along line BB in FIG. 1 (a), and FIG. FIG. 2 (c) shows an enlarged view of part C after energization of the coil.

図2(b)に示したように、絶縁皮膜2は、気体部2aを内包する球体粒子を加熱前にシリコーン樹脂と混合させたものであり、コイル1の外周部に厚さd1で、その内部に多数の略円形の気体部2aがほぼ均一に形成されている。
ここでは、球体粒子を加熱前にシリコーン樹脂と混合させているが、これは加熱前の方が粒子が固いため、混合により粒子が潰れたり破れたりするのを防ぐためである。もちろん、球体粒子を加熱後に混合しても体積変化を吸収できる応力緩衝被膜を得ることができる。
As shown in FIG. 2 (b), the insulating film 2 is obtained by mixing spherical particles enclosing the gas portion 2a with a silicone resin before heating. A number of substantially circular gas portions 2a are formed substantially uniformly inside.
Here, the spherical particles are mixed with the silicone resin before heating. This is because the particles are harder before heating, so that the particles are prevented from being crushed or torn by mixing. Of course, it is possible to obtain a stress buffering film that can absorb volume change even if spherical particles are mixed after heating.

この状態で、コイル1に通電すると、図2(c)に示したように、ジュール熱によってコイル1は熱膨張し、外側方向、すなわち図中の矢印方向に変位(体積変化)する。その変位(体積変化)分を、絶縁皮膜2の内部に形成された気体部2aが吸収し、潰れた気体部2bに変わり、絶縁皮膜2も厚さd2となることで、磁芯3への応力が緩和される。絶縁皮膜2がどれだけ低いヤング率であったとしても、体積変化に対する吸収性がなければ、コイル1が熱膨張した際の応力を充分吸収することができないため、油や水などの液体や固体に比べて体積変化率が非常に大きい気体を内包することで応力緩衝効果をより高めることができ、結果として磁芯3の亀裂や破損を防止することができる。   When the coil 1 is energized in this state, as shown in FIG. 2C, the coil 1 is thermally expanded by Joule heat, and is displaced (volume change) in the outer direction, that is, the arrow direction in the figure. The displacement (volume change) is absorbed by the gas part 2a formed inside the insulating film 2 and converted into a crushed gas part 2b, and the insulating film 2 also has a thickness d2, so that Stress is relieved. No matter how low the Young's modulus of the insulating film 2 is, if the coil 1 has no absorbability with respect to volume change, it cannot absorb the stress when the coil 1 is thermally expanded. By enclosing a gas having a very large volume change rate compared to the above, the stress buffering effect can be further enhanced, and as a result, cracking and breakage of the magnetic core 3 can be prevented.

気体部を内包する絶縁皮膜2は、発泡剤となる気泡を含有する樹脂の球状粒子を、液状の有機結合剤と混合して固化して作成すると、気体部の形状および粒径が安定した絶縁皮膜が得られるため望ましい。液状の有機結合剤に空気を送り込んで泡立てたり、液状の有機結合剤に5−フェニルテトラゾール、重炭酸ナトリウムなどの発泡剤を混合して固化してもよい。また、化学処理等により後から多孔質としてもよい。   The insulating film 2 enclosing the gas part is formed by mixing and solidifying resin spherical particles containing bubbles serving as a foaming agent with a liquid organic binder, so that the shape and particle size of the gas part are stable. This is desirable because a film can be obtained. Air may be sent into a liquid organic binder to make bubbles, or a foaming agent such as 5-phenyltetrazole or sodium bicarbonate may be mixed with the liquid organic binder to be solidified. Further, it may be made porous later by chemical treatment or the like.

また、有機結合剤としては、シリコンゴム、ウレタン、エポキシ樹脂などのヤング率0.1〜20GPa程度の柔軟性を有し、コイルのジュール熱や使用環境温度に対して充分な耐熱性のある材料を使用するのが望ましい。   In addition, as the organic binder, a material having a Young's modulus of about 0.1 to 20 GPa, such as silicon rubber, urethane, epoxy resin, etc., and sufficient heat resistance to the Joule heat of the coil and the use environment temperature It is desirable to use

また、気泡を内包する樹脂の球状粒子の平均粒径は1μm以上、100μm以下であることが望ましい。平均粒径が10μmより小さいと気泡が潰れにくくなり、平均粒径が100μmより大きいと粒子の形状が安定しなくなったり、球状粒子が破れやすくなる。   Further, it is desirable that the average particle diameter of the resin spherical particles enclosing the bubbles is 1 μm or more and 100 μm or less. When the average particle size is smaller than 10 μm, the bubbles are not easily crushed, and when the average particle size is larger than 100 μm, the particle shape becomes unstable or the spherical particles are easily broken.

磁芯3は、磁性粉末と有機結合剤とを適宜配合比を調整して混錬した複合磁性体であり、磁性粉末は、材質が高透磁率の磁性材料であればどんなものでもよく、Mn−Zn系やNi−Zn系のフェライト粉末、アモルファスやパーマロイなどの金属系、鉄系や鉄合金系の粉末等でもよく、要求特性に応じて適宜選定するのが好ましい。
また、有機結合剤は、エポキシ系樹脂等の熱硬化性樹脂や熱可塑性樹脂の何れでもよく、要求特性に応じて適宜選定するのが好ましい。
The magnetic core 3 is a composite magnetic material in which magnetic powder and an organic binder are kneaded with an appropriate mixing ratio. The magnetic powder may be any material as long as the material is a magnetic material having a high magnetic permeability. -Zn-based or Ni-Zn-based ferrite powder, metal such as amorphous or permalloy, iron-based or iron alloy-based powder, or the like may be used, and it is preferable to select appropriately according to required characteristics.
Further, the organic binder may be any of a thermosetting resin such as an epoxy resin and a thermoplastic resin, and is preferably selected as appropriate according to required characteristics.

コイル1は、銅、アルミニウム、ステンレス、真鍮などの金属材料やそれらの合金からなる導電体に、天然樹脂または合成樹脂塗料を焼き付けたエナメル皮膜導線や、絶縁性を高めたPVC被覆電線などの何れ導線を用いてもよい。また、コイル1の断面形状は、一般的な丸線に限らず、平角線でもよいが、大電流対応では電気抵抗を小さくできる平角線が望ましい。更に、コイルの巻数も、要求特性に応じ適宜設計・調整するのが好ましい。   The coil 1 can be any of enamel film conductors in which natural resin or synthetic resin paint is baked on a conductor made of a metal material such as copper, aluminum, stainless steel, brass, or an alloy thereof, or a PVC-coated electric wire with improved insulation. You may use conducting wire. In addition, the cross-sectional shape of the coil 1 is not limited to a general round wire, but may be a flat wire, but a rectangular wire that can reduce electrical resistance is desirable for handling a large current. Furthermore, it is preferable that the number of turns of the coil is appropriately designed and adjusted according to the required characteristics.

以下、実施例を用いて詳述する。実施例では、図1に示したコイル1、絶縁皮膜2の材質、磁芯3は共通とし、絶縁皮膜2の厚さと、気泡の体積含有率をそれぞれ変化させた場合のコイル部品を作製した。   Hereinafter, it explains in full detail using an Example. In the example, the coil 1 and the material of the insulating film 2 and the magnetic core 3 shown in FIG. 1 were used in common, and the coil component was produced when the thickness of the insulating film 2 and the volume content of bubbles were changed.

コイル1として、ポリアミドイミド樹脂を主体とした絶縁ワニスを焼付けた、厚さ1mm、幅10mmの平角銅線を用い、螺旋状に30ターン巻回し直径40mm、高さ35mmの円柱状のコイルを作成した。   As a coil 1, a rectangular copper wire with a diameter of 40 mm and a height of 35 mm is produced by winding 30 turns in a spiral using a rectangular copper wire 1 mm thick and 10 mm wide baked with an insulating varnish mainly composed of polyamideimide resin. did.

絶縁皮膜2として、その内部に気体を形成させるための発砲剤は、球状粒子からなる樹脂粉末(積水化学工業株式会社製:ADVANCELL)を用いた。この球体粒子は、その平均粒径は20〜40μmで、粒子の内部に気体を有しており、115℃から170℃の温度にすることで、粒子内部の気体の圧力が上昇し、30〜80倍に膨張する発泡粒子である。また、絶縁皮膜2に含有する有機結合剤として、シリコーン樹脂を用いた。   As the insulating film 2, a foaming agent for forming a gas therein was a resin powder made of spherical particles (manufactured by Sekisui Chemical Co., Ltd .: ADVANCEL). The spherical particles have an average particle diameter of 20 to 40 μm and have a gas inside the particles. By setting the temperature to 115 ° C. to 170 ° C., the pressure of the gas inside the particles increases, Expanded particles that expand 80 times. A silicone resin was used as the organic binder contained in the insulating film 2.

磁芯3として、材質がFe−Si系粉末で、平均粒径が150μmの磁性粉末を用い、エポキシ系の有機結合剤を重量比10%で混合したものを準備した。   As the magnetic core 3, a magnetic powder made of Fe—Si powder and having an average particle diameter of 150 μm and an epoxy organic binder mixed at a weight ratio of 10% was prepared.

(実施例1)
常温にて、上記のシリコーン樹脂に、上記の球体粒子からなる発泡剤を、加熱膨張後の絶縁皮膜全体に対する体積含有率が0.5%となるように混合し、十分混練し液状の絶縁皮膜の原液を用意した。
Example 1
At room temperature, the above-mentioned silicone resin is mixed with the above-mentioned foaming agent composed of spherical particles so that the volume content with respect to the whole insulating film after heat expansion is 0.5%, and is sufficiently kneaded to obtain a liquid insulating film. A stock solution was prepared.

その後、同じく常温にて、コイル1を上記の液状の絶縁皮膜の原液に浸漬し、引き上げた状態で160℃で加熱硬化(仮乾燥)される工程を3回繰り返し、コイルの外周部に約0.5mmの厚さで絶縁皮膜2を形成した。   Thereafter, the process of dipping the coil 1 in the above-mentioned stock solution of the liquid insulating film at room temperature and heating and curing (temporary drying) at 160 ° C. in the pulled-up state is repeated three times. The insulating film 2 was formed with a thickness of 5 mm.

その後、上記の磁芯3に絶縁皮膜が形成されたコイル1を浸漬し、そのまま加熱硬化して、図1に示した本発明のコイル部品4を作製した。   Thereafter, the coil 1 having an insulating film formed on the magnetic core 3 was dipped and heat-cured as it was to produce the coil component 4 of the present invention shown in FIG.

(実施例2)
実施例2として、実施例1と同一材料、同一製法で、気泡の体積含有率のみを1.0%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 2)
As Example 2, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 1 and using a stock solution of an insulating film in which only the volume content of bubbles was 1.0%.

(実施例3)
実施例3として、実施例1と同一材料、同一製法で、気泡の体積含有率のみを5.0%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 3)
As Example 3, a coil component 4 of the present invention was produced by using the same material and the same manufacturing method as in Example 1 and using a stock solution of an insulating film in which only the volume content of bubbles was 5.0%.

(実施例4)
実施例4として、実施例1と同一材料、同一製法で、気泡の体積含有率のみを10%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
Example 4
As Example 4, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 1 and using a stock solution of an insulating film in which only the volume content of bubbles was 10%.

(実施例5)
実施例5として、実施例1と同一材料、同一製法で、気泡の体積含有率のみを20%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 5)
As Example 5, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 1 and using a stock solution of an insulating film in which only the volume content of bubbles was 20%.

(実施例6)
実施例6として、実施例1と同一材料、同一製法で、気泡の体積含有率のみを30%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 6)
As Example 6, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 1 and using a stock solution of an insulating film in which only the volume content of bubbles was 30%.

(実施例7)
実施例7として、実施例1と同一材料、同一製法で、気泡の体積含有率のみを60%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 7)
As Example 7, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 1 and using a stock solution of an insulating film in which only the volume content of bubbles was 60%.

(実施例8)
常温にて、上記のシリコーン樹脂に、上記の球体粒子からなる発泡剤を、加熱膨張後の絶縁皮膜全体に対する体積含有率が0.5%となるように混合し、十分混練し液状の絶縁皮膜の原液を用意した。
(Example 8)
At room temperature, the above-mentioned silicone resin is mixed with the above-mentioned foaming agent composed of spherical particles so that the volume content with respect to the whole insulating film after heat expansion is 0.5%, and is sufficiently kneaded to obtain a liquid insulating film. A stock solution was prepared.

その後、同じく常温にて、コイル1を上記の液状の絶縁皮膜の原液に浸漬し、引き上げた状態で160℃で加熱硬化(仮乾燥)される工程を6回繰り返し、コイルの外周部に約1.0mmの厚さで絶縁皮膜2を形成した。   Thereafter, the process of immersing the coil 1 in the above-mentioned stock solution of the liquid insulating film and heating and curing (temporary drying) at 160 ° C. in the pulled-up state is repeated 6 times, and about 1 on the outer periphery of the coil. The insulating film 2 was formed with a thickness of 0.0 mm.

その後、上記の磁芯3に絶縁皮膜が形成されたコイル1を浸漬し、そのまま加熱硬化して、図1に示した本発明のコイル部品4を作製した。   Thereafter, the coil 1 having an insulating film formed on the magnetic core 3 was dipped and heat-cured as it was to produce the coil component 4 of the present invention shown in FIG.

(実施例9)
実施例9として、実施例8と同一材料、同一製法で、気泡の体積含有率のみを1.0%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
Example 9
As Example 9, the coil component 4 of the present invention was produced by using the same material and the same manufacturing method as in Example 8 and using a stock solution of an insulating film in which only the volume content of bubbles was 1.0%.

(実施例10)
実施例10として、実施例8と同一材料、同一製法で、気泡の体積含有率のみを5.0%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 10)
As Example 10, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 8 and using a stock solution of an insulating film in which only the volume content of bubbles was 5.0%.

(実施例11)
実施例11として、実施例8と同一材料、同一製法で、気泡の体積含有率のみを10%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 11)
As Example 11, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 8 and using a stock solution of an insulating film in which only the volume content of bubbles was 10%.

(実施例12)
実施例12として、実施例8と同一材料、同一製法で、気泡の体積含有率のみを20%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 12)
As Example 12, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 8 and using a stock solution of an insulating film in which only the volume content of bubbles was 20%.

(実施例13)
実施例13として、実施例8と同一材料、同一製法で、気泡の体積含有率のみを30%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 13)
As Example 13, the coil component 4 of the present invention was manufactured by using the same material and the same manufacturing method as in Example 8 and using a stock solution of an insulating film in which only the volume content of bubbles was 30%.

(実施例14)
実施例14として、実施例8と同一材料、同一製法で、気泡の体積含有率のみを60%となるような絶縁皮膜の原液を用いた、本発明のコイル部品4を作製した。
(Example 14)
As Example 14, the coil component 4 of the present invention was produced by using the same material and the same manufacturing method as in Example 8 and using a stock solution of an insulating film in which only the volume content of bubbles was 60%.

(比較例1)
比較例1として、実施例1と同一材料、同一製法で、気泡の体積含有率のみを0.1%となるような絶縁皮膜の原液を用いたコイル部品4を作製した。
(Comparative Example 1)
As Comparative Example 1, a coil component 4 was manufactured using the same material and the same manufacturing method as in Example 1 and using a stock solution of an insulating film in which only the volume content of bubbles was 0.1%.

(比較例2)
比較例2として、実施例1と同一材料、同一製法で、気泡の体積含有率のみを70%となるような絶縁皮膜の原液を用いたコイル部品4を作製した。
(Comparative Example 2)
As Comparative Example 2, a coil component 4 using the same material and the same manufacturing method as in Example 1 and using a stock solution of an insulating film in which only the volume content of bubbles is 70% was produced.

(比較例3)
比較例3として、実施例8と同一材料、同一製法で、気泡の体積含有率のみを0.1%となるような絶縁皮膜の原液を用いたコイル部品4を作製した。
(Comparative Example 3)
As Comparative Example 3, a coil component 4 was manufactured using the same material and the same manufacturing method as in Example 8 and using a stock solution of an insulating film in which only the volume content of bubbles was 0.1%.

(比較例4)
比較例4として、実施例8と同一材料、同一製法で、気泡の体積含有率のみを70%となるような絶縁皮膜の原液を用いたコイル部品4を作製した。
(Comparative Example 4)
As Comparative Example 4, a coil component 4 was manufactured using the same material and the same manufacturing method as in Example 8 and using a stock solution of an insulating film in which only the volume content of bubbles was 70%.

(比較例5)
比較例5として、実施例1において、発砲剤としての球状粒子からなる樹脂粉末を含有しないシリコーン樹脂のみの絶縁皮膜をコイルに形成した場合のコイル部品を作製した。
(Comparative Example 5)
As Comparative Example 5, a coil component was produced in the case where an insulating film made of only a silicone resin not containing resin powder composed of spherical particles as a foaming agent in Example 1 was formed on a coil.

(比較例6)
比較例6として、実施例8において、発砲剤としての球状粒子からなる樹脂粉末を含有しないシリコーン樹脂のみの絶縁皮膜をコイルに形成した場合のコイル部品を作製した。
(Comparative Example 6)
As Comparative Example 6, a coil component was produced in the case where an insulating film of only a silicone resin not containing resin powder made of spherical particles as a foaming agent in Example 8 was formed on a coil.

上記の要領により作製した、実施例1〜実施例14、および比較例1〜比較例6の各コイル部品について、信頼性試験を行った。試験条件は、実使用時の通電電流より厳しい約数倍程度の200Aをコイルに通電し、温度上昇が飽和した時のコイルの温度上昇を測定し、その後、コイル部品を切断して磁芯亀裂の有無を観察した。サンプル数は各n=10とした。その比較結果を表1に示す。   A reliability test was performed on each of the coil components of Examples 1 to 14 and Comparative Examples 1 to 6 produced according to the above procedure. The test condition is that the coil is energized with 200A, which is about several times more severe than the energizing current during actual use, and the temperature rise of the coil is measured when the temperature rise is saturated. The presence or absence of was observed. The number of samples was n = 10 for each. The comparison results are shown in Table 1.

Figure 2010257999
Figure 2010257999

測定、観察の結果、実施例1と実施例8において、磁芯亀裂がそれぞれ2個確認されているが温度上昇も含めた総合的には良好と判断できる。また、それ以外の実施例では、磁芯亀裂は無く、温度上昇もほぼ良好であることがわかった。一方、比較例1、比較例3、比較例5、比較例6では、共に温度上昇は低く良好であるが、磁芯亀裂が比較例1、比較例3では比較的多い3〜4個、比較例5、比較例6では非常に多い6〜7個確認された。また、比較例2と比較例4は、磁芯亀裂は無いが温度上昇が10℃以上も高くなることがわかった。
温度上昇が大きくなったのは、コイルの隙間や周辺に気泡が多数存在することで、熱伝導性が低下し、熱がこもることによるものと推測できる。
従って、本発明のコイル部品により、磁芯の亀裂と温度上昇を共に低減し、信頼性と安全性を向上させることができる。
As a result of measurement and observation, in Example 1 and Example 8, two magnetic core cracks were confirmed, but it can be judged that the total including the temperature rise is good. In the other examples, it was found that there was no magnetic core crack and the temperature rise was almost good. On the other hand, in Comparative Example 1, Comparative Example 3, Comparative Example 5, and Comparative Example 6, the temperature rise is low and good, but the comparative example 1 and comparative example 3 have relatively many 3 to 4 magnetic core cracks. In Example 5 and Comparative Example 6, a very large number of 6 to 7 pieces was confirmed. Further, it was found that Comparative Example 2 and Comparative Example 4 did not have a magnetic core crack, but the temperature increase was as high as 10 ° C. or more.
The increase in temperature can be presumed to be due to the presence of many bubbles in the gaps and the periphery of the coil, resulting in a decrease in thermal conductivity and the accumulation of heat.
Therefore, the coil component of the present invention can reduce both cracking and temperature rise of the magnetic core and improve reliability and safety.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明のコイル部品により、特にハイブリッド車、電気自動車などの大電流対応、高熱環境下で使用される駆動装置に搭載するリアクトル等の高信頼性、安全性を確保することができ、今後益々発展が期待される省エネルギー、環境技術市場の技術構築にも寄与できる。   With the coil component of the present invention, it is possible to ensure high reliability and safety such as reactors mounted on drive devices used in high heat environments, especially for hybrid cars and electric cars, and will develop further in the future. Can contribute to the construction of technology in the energy-saving and environmental technology market.

1、31 コイル
1a、1b 先端部
2 絶縁皮膜
2a、2b 気体部
3、33 磁芯
4、30 コイル部品
32、34 絶縁物
A、B 磁性体粉末
A1、B1 非磁性体粉末
d1、d2 厚さ
DESCRIPTION OF SYMBOLS 1, 31 Coil 1a, 1b Tip part 2 Insulating film 2a, 2b Gas part 3, 33 Magnetic core 4, 30 Coil parts 32, 34 Insulator A, B Magnetic substance powder A1, B1 Nonmagnetic substance powder d1, d2 Thickness

Claims (7)

導電体を螺旋状に巻回したコイルと、前記コイルの端子部を除く一部または全部を包囲するように覆う絶縁皮膜と、前記絶縁皮膜を覆うように、磁性粉末と有機結合剤とを混合した複合磁性体を配したコイル部品であって、前記絶縁皮膜は内部に気体部を備えていることを特徴とするコイル部品。   A coil in which a conductor is wound in a spiral shape, an insulating film covering a part or all of the coil except for a terminal portion, and a magnetic powder and an organic binder are mixed so as to cover the insulating film A coil component in which the composite magnetic material is disposed, wherein the insulating film has a gas portion therein. 前記絶縁皮膜は、内部に気体部を有する樹脂と他の同一または異なる樹脂を含むことを特徴とする請求項1に記載のコイル部品。   The coil component according to claim 1, wherein the insulating film includes a resin having a gas portion therein and other same or different resin. 前記気体部の、前記絶縁皮膜に対して占める体積含有率が0.5%〜60%であることを特徴とする請求項1又は2に記載のコイル部品。   3. The coil component according to claim 1, wherein a volume content of the gas portion with respect to the insulating film is 0.5% to 60%. 前記気体部は、変形および伸縮が可能であることを特徴とする請求項1から3のいずれかに記載のコイル部品。   The coil part according to claim 1, wherein the gas part can be deformed and stretched. 前記気体部は、気泡であることを特徴とする請求項1から4のいずれかに記載のコイル部品。   The coil part according to any one of claims 1 to 4, wherein the gas part is a bubble. 請求項1から5のいずれかに記載のコイル部品を用いた電力変換システム。   A power conversion system using the coil component according to claim 1. 請求項6記載の電力変換システムにより駆動する電動機。   An electric motor driven by the power conversion system according to claim 6.
JP2009101899A 2009-04-02 2009-04-20 Coil parts Active JP5240856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101899A JP5240856B2 (en) 2009-04-02 2009-04-20 Coil parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009090560 2009-04-02
JP2009090560 2009-04-02
JP2009101899A JP5240856B2 (en) 2009-04-02 2009-04-20 Coil parts

Publications (2)

Publication Number Publication Date
JP2010257999A true JP2010257999A (en) 2010-11-11
JP5240856B2 JP5240856B2 (en) 2013-07-17

Family

ID=43318623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101899A Active JP5240856B2 (en) 2009-04-02 2009-04-20 Coil parts

Country Status (1)

Country Link
JP (1) JP5240856B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239542A (en) * 2012-05-15 2013-11-28 Nec Tokin Corp Reactor
JP2015005651A (en) * 2013-06-21 2015-01-08 Necトーキン株式会社 Coil and reactor
CN107430931A (en) * 2015-04-14 2017-12-01 株式会社自动网络技术研究所 The manufacture method of reactor and reactor
JP2019157962A (en) * 2018-03-12 2019-09-19 株式会社ヴァレオジャパン Electromagnetic coil of electromagnetic clutch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837994A (en) * 1981-08-29 1983-03-05 株式会社デンソー Injection electric part and method of producing same
JPS61174605A (en) * 1985-01-28 1986-08-06 Mitsubishi Electric Corp Cast electric machine
JPH03222404A (en) * 1990-01-29 1991-10-01 Hitachi Ltd Ignition coil for internal combustion engine
JP2002235644A (en) * 2001-02-09 2002-08-23 Denso Corp Ignitor for internal combustion engine and its manufacturing method
JP2005347588A (en) * 2004-06-04 2005-12-15 Murata Mfg Co Ltd Winding coil
JP2006024844A (en) * 2004-07-09 2006-01-26 Nec Tokin Corp Magnetic core and coil component using same
JP2006261331A (en) * 2005-03-16 2006-09-28 Nec Tokin Corp Inductance component and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837994A (en) * 1981-08-29 1983-03-05 株式会社デンソー Injection electric part and method of producing same
JPS61174605A (en) * 1985-01-28 1986-08-06 Mitsubishi Electric Corp Cast electric machine
JPH03222404A (en) * 1990-01-29 1991-10-01 Hitachi Ltd Ignition coil for internal combustion engine
JP2002235644A (en) * 2001-02-09 2002-08-23 Denso Corp Ignitor for internal combustion engine and its manufacturing method
JP2005347588A (en) * 2004-06-04 2005-12-15 Murata Mfg Co Ltd Winding coil
JP2006024844A (en) * 2004-07-09 2006-01-26 Nec Tokin Corp Magnetic core and coil component using same
JP2006261331A (en) * 2005-03-16 2006-09-28 Nec Tokin Corp Inductance component and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239542A (en) * 2012-05-15 2013-11-28 Nec Tokin Corp Reactor
JP2015005651A (en) * 2013-06-21 2015-01-08 Necトーキン株式会社 Coil and reactor
CN107430931A (en) * 2015-04-14 2017-12-01 株式会社自动网络技术研究所 The manufacture method of reactor and reactor
JP2019157962A (en) * 2018-03-12 2019-09-19 株式会社ヴァレオジャパン Electromagnetic coil of electromagnetic clutch

Also Published As

Publication number Publication date
JP5240856B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP4514031B2 (en) Coil component and coil component manufacturing method
US10381149B2 (en) Composite material, reactor, converter, and power conversion device
EP1486993B1 (en) Coil component and fabrication method of the same
JP5110628B2 (en) Wire ring parts
US7795538B2 (en) Flexible insulated wires for use in high temperatures and methods of manufacturing
JP2008192887A (en) Coil component
JP2014013803A (en) Inductor
JP2010118574A (en) Reactor, and method of manufacturing the same
JP5240856B2 (en) Coil parts
JP2017126679A (en) Reactor
JP2013222741A (en) Reactor
JP2007141507A (en) Insulated wire and electric coil using this
JP6452312B2 (en) Coil parts
JP2009099732A (en) Soft magnetic metal particle with insulating oxide coating
WO2017110567A1 (en) Composite material molded body, reactor and method for producing composite material molded body
JP4577759B2 (en) Magnetic core and wire ring parts using the same
JP2006004958A (en) Magnetic core and coil component using the same
JP5314569B2 (en) Magnetic element
JP5658485B2 (en) Magnetic element
US10825591B2 (en) Composite material molded article and reactor
JP6472614B2 (en) Coil parts
JP2013239542A (en) Reactor
CN107644731B (en) Power transformer comprising insulating material and method of manufacturing such a transformer
JP5398636B2 (en) Magnetic element
JP2009253105A (en) Reactor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250