JP2013232753A - Peripheral surface three-dimensional observation apparatus - Google Patents

Peripheral surface three-dimensional observation apparatus Download PDF

Info

Publication number
JP2013232753A
JP2013232753A JP2012103106A JP2012103106A JP2013232753A JP 2013232753 A JP2013232753 A JP 2013232753A JP 2012103106 A JP2012103106 A JP 2012103106A JP 2012103106 A JP2012103106 A JP 2012103106A JP 2013232753 A JP2013232753 A JP 2013232753A
Authority
JP
Japan
Prior art keywords
optical axis
point
reflection mirror
mirror
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012103106A
Other languages
Japanese (ja)
Inventor
Yoichi Jodai
洋一 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIROKKUSU KK
Original Assignee
HAIROKKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIROKKUSU KK filed Critical HAIROKKUSU KK
Priority to JP2012103106A priority Critical patent/JP2013232753A/en
Priority to PCT/JP2013/063223 priority patent/WO2013162079A1/en
Publication of JP2013232753A publication Critical patent/JP2013232753A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/565Optical accessories, e.g. converters for close-up photography, tele-convertors, wide-angle convertors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/02Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Microscoopes, Condenser (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the need for adjusting the focus by moving an observation apparatus vertically every time when the observation angle is changed in a three-dimensional observation apparatus.SOLUTION: In a three-dimensional observation apparatus 2, a rotary frame 6 is attached to a fixed frame 3 which is attached removably to the tip of an image pickup device 1, an optical axis reflection mirror 8 is attached to the rotary frame 6, and an orbitary reflection mirror 9 rotating on the front side of the optical axis reflection mirror 8 while facing the optical axis reflection mirror 8 is attached. When the intersection of the optical axis reflection mirror 8 and the optical axis is point A, the intersection of the orbitary reflection mirror 9 and the optical axis is point B, and the intersection of the focal plane of a subject and the optical axis is point C, physical relationship of the optical axis reflection mirror 8 and the orbitary reflection mirror 9 is set so that the sum L1+L2 of the distance L1 between points A, B and the distance L2 between points B, C is always constant. Consequently, an optical path is formed so that the focus to the subject does not shift even if the observation angle changes, and the observation angle can be set arbitrarily without requiring vertical adjustment of the whole image pickup device for focusing.

Description

本発明は、超小型近接撮影装置に取り付けて被写体をその周囲から立体観察するための装置に関する。   The present invention relates to an apparatus for stereoscopically observing a subject from the periphery by being attached to an ultra-compact proximity photographing apparatus.

従来の技術Conventional technology

超小型近接撮影装置を用いて被写体をその周囲から観察する装置としては、特開平5−256785号公報に掲載のIC観察装置がある。   As an apparatus for observing a subject from its surroundings using an ultra-compact proximity photographing apparatus, there is an IC observation apparatus described in Japanese Patent Application Laid-Open No. 5-256785.

このIC観察装置は、超小型近接撮影装置に対して回転自在に取り付けられた回転リングと、この回転リングと一緒に回転し、且つ光軸に置かれた光軸反射ミラーと、この光軸反射ミラーに対向した位置にある周回反射ミラーでICを斜め上方から反射して、この反射像を前記光軸反射ミラーに向けて投射することにより、ICの周囲を立体観察できる内容である。   This IC observation apparatus includes a rotating ring that is rotatably attached to a microminiature proximity imaging apparatus, an optical axis reflecting mirror that rotates together with the rotating ring and is placed on the optical axis, and the optical axis reflecting By reflecting the IC obliquely from above with a circular reflection mirror located at a position facing the mirror and projecting the reflected image toward the optical axis reflection mirror, the surroundings of the IC can be stereoscopically observed.

ここで、さらに詳細にICの周囲を観察するためには、斜め上方から見下ろす角度を
変更したい場合がある。
Here, in order to observe the periphery of the IC in more detail, there is a case where it is desired to change the angle looked down obliquely from above.

この場合には、まず前記周回反射ミラーの角度を変える必要があるが、単純にミラーの角度を変えるだけでは被写体に焦点が合わず観察ができない。   In this case, it is necessary to change the angle of the circular reflection mirror first, but simply changing the angle of the mirror does not focus on the subject and observation is impossible.

従って、周回反射ミラーの角度の変更と同時に光軸反射ミラーの位置も被写体に焦点が合う位置に変更し、なおかつ、撮影装置全体を上下させて焦点を合わせる必要がある。   Accordingly, it is necessary to change the position of the optical axis reflection mirror to a position where the subject is in focus simultaneously with the change of the angle of the circular reflection mirror, and to move the entire photographing apparatus up and down to adjust the focus.

このような作業を観察しながら行うのはとても煩雑であることや、焦点合わせのために撮影装置全体を動かすと照明の集光位置もずれてしまい、照明できないなどの不具合が生じ、実質上は斜め上方から見下ろす観察角度は最初に決めた一定の角度でしか観察ができないという不便がある。   It is very cumbersome to perform such work while observing such work, and if the whole imaging device is moved for focusing, the light condensing position shifts, causing problems such as inability to illuminate. There is an inconvenience that the observation angle seen from obliquely above can be observed only at a fixed angle determined first.

そのため、ICなどの被写体の周囲をより詳細に観察するためには、上方から見下ろす観察角度を簡単に変更できて、しかも焦点を合わるために撮影装置を上下に調整させなくてもよい装置が望まれていた。   Therefore, in order to observe the surroundings of subjects such as ICs in more detail, there is a device that can easily change the observation angle looking down from above, and does not have to adjust the imaging device up and down to focus. It was desired.

特開平5−256785号公報JP-A-5-256785

本発明の目的は、超小型近接撮影装置を用いた周面立体観察装置において、斜め上方から見下ろす観察角度を簡単に変更できるようにすることと、観察角度を変えた際に焦点合わせのために撮影装置全体を上下に調整しなくてもよくすることである。   An object of the present invention is to make it possible to easily change the observation angle looking down obliquely from above in a peripheral surface three-dimensional observation apparatus using an ultra-small close-up photographing apparatus, and for focusing when the observation angle is changed. It is not necessary to adjust the entire photographing apparatus up and down.

上記の目的を達成するため、請求項1に記載の発明において、周面立体観察装置において、任意の光学結像倍率を持つ可変倍率レンズ又は固定倍率から成るレンズ系と小型CCDカメラもしくは小型CMOSカメラ及び照明系を一体化した超小型近接撮影装置に取り付けて用いられる周回立体観察装置において、前記レンズ系の最先端レンズと被写体間のレンズ系光軸上に光軸反射ミラーを配置し、この光軸反射ミラーと対向する側方の位置に周回反射ミラーを配置し、更に前記光軸反射ミラーと周回反射ミラーは前記レンズ系光軸を中心として一緒に回転するように構成すると共に前記光軸反射ミラーの角度を可変自在に構成し、かつ周回反射ミラーは前記光軸反射ミラーと対向しながら円弧状に回転自在に構成し、その上で光軸反射ミラーと光軸の交点をA点、周回反射面と光軸の交点をB点、被写体の焦点面と光軸の交点をC点としたとき、A点とB点との距離が常に一定で、且つ、A点とB点との距離(L1)とB点とC点との距離(L2)の和L1+L2が常に一定となるように、光軸反射ミラーの角度と周回反射ミラーが円弧状に回転して移動する位置を保持させて、観察角度を変更しても被写体への焦点がずれない光路をつくることにより、焦点を合わせるために超小型近接撮影装置全体を上下に調整する必要がなく、そのままの位置で観察角度を任意に変更して観察できるように構成してなることを特徴とするものである。   In order to achieve the above object, according to the first aspect of the present invention, in the peripheral surface observation apparatus, a variable magnification lens having an arbitrary optical imaging magnification or a lens system comprising a fixed magnification and a small CCD camera or a small CMOS camera In an orbital stereoscopic observation device that is used by being attached to an ultra-compact close-up photographing device that integrates an illumination system, an optical axis reflecting mirror is disposed on the optical axis of the lens system between the most advanced lens of the lens system and the subject. An orbital reflecting mirror is disposed at a position opposite to the axial reflecting mirror, and the optical axis reflecting mirror and the orbiting reflecting mirror are configured to rotate together around the optical axis of the lens system and the optical axis reflecting. The angle of the mirror is configured to be variable, and the orbital reflecting mirror is configured to be rotatable in an arc shape while facing the optical axis reflecting mirror, on which the optical axis reflecting mirror and the optical axis are arranged. When the intersection is point A, the intersection of the orbital reflecting surface and the optical axis is point B, and the intersection of the subject's focal plane and the optical axis is point C, the distance between point A and point B is always constant, and point A So that the sum L1 + L2 of the distance (L1) between point B and point B and the distance (L2) between point B and point C is always constant, the angle of the optical axis reflection mirror and the circular reflection mirror rotate and move in an arc. By keeping the position to be focused and creating an optical path that does not shift the focus to the subject even if the observation angle is changed, there is no need to adjust the entire ultra-compact close-up device up and down to achieve focus. The observation angle is arbitrarily changed to enable observation.

更に、請求項2に記載の発明は、請求項1に記載の周面立体観察装置において、前記周面立体観察装置は、超小型近接撮影装置の先端に対して着脱自在の固定フレームと、この固定フレーム内に取り付けられた集光位置を光軸に置くリング状の集光プリズムと、前記固定フレームに対して周回自在に取り付けられたリング状の回転フレームと、前記回転フレームに対して取り付けられていると共に前記光軸上の照明光の集光位置に反射面の角度を変更自在に構成した光軸反射ミラーと、前記回転フレームに対して取り付けられていると共に前記光軸反射ミラーと対向しながら光軸反射ミラーの正面側を円弧状に回転自在に構成された周回反射ミラーと、前記光軸反ミラーと光軸の交点をA点、周回反射ミラーと光軸の交点をB点、被写体の焦点面と光軸の交点をC点としたとき、A点とB点との距離が常に一定で、且つ、A点とB点との距離(L1)とB点とC点との距離(L2)の和L1+L2が常に一定となるように、光軸反射ミラーの角度と周回反射ミラーの円弧状に移動する位置関係を設定することにより、観察角度を可変しても被写体への焦点がずれない光路をつくることにより、焦点を合わせるために超小型近接撮影装置全体を上下に調整する必要がなく、そのままの位置で観察角度を任意に変更できる機構と、からなることを特徴とするものである。   Furthermore, the invention according to claim 2 is the peripheral surface stereoscopic observation device according to claim 1, wherein the peripheral surface stereoscopic observation device includes a fixed frame that is detachable with respect to a tip of the microminiature proximity photographing device, A ring-shaped condensing prism that places the condensing position mounted in the fixed frame on the optical axis, a ring-shaped rotating frame that is mounted on the fixed frame so as to be rotatable, and is mounted on the rotating frame. And an optical axis reflecting mirror configured such that the angle of the reflecting surface can be freely changed at the condensing position of the illumination light on the optical axis, and is attached to the rotating frame and faces the optical axis reflecting mirror. While the front side of the optical axis reflection mirror is rotatable in a circular arc shape, the point of intersection of the optical axis anti-mirror and the optical axis is point A, the point of intersection of the circular reflection mirror and the optical axis is point B, the subject Focus When the intersection of the optical axis and the optical axis is point C, the distance between point A and point B is always constant, the distance between point A and point B (L1), and the distance between point B and point C (L2) By setting the positional relationship of the angle of the optical axis reflection mirror and the circular reflection mirror to move in a circular arc shape so that the sum L1 + L2 of the lens is always constant, the optical path where the focus on the subject does not shift even if the observation angle is varied Therefore, it is not necessary to adjust the entire ultra-compact proximity photographing apparatus up and down in order to adjust the focus, and the mechanism can arbitrarily change the observation angle at the same position.

請求項1及び2に記載の本発明によると、以上のように、斜め上方からの観察角度を簡単に可変できるようになり、焦点を合わせるために撮影装置を上下に調整する必要もなくなり、照明の集光状態も一定で観察できるため、IC等の被写体の周囲を観察角度を変えながら簡単に観察できる、よって今までよりも、より詳細な観察ができ、かつ観察の作業効率を著しく改善することができる。   According to the first and second aspects of the present invention, as described above, the observation angle from obliquely above can be easily changed, and it is not necessary to adjust the photographing apparatus up and down for focusing. Because it is possible to observe the light condensing state at a constant level, it is possible to easily observe the surroundings of an object such as an IC while changing the observation angle, so that more detailed observations can be made and the work efficiency of the observation can be significantly improved. be able to.

本発明に係る観察装置の全体図Overall view of the observation apparatus according to the present invention 立体観察装置の断面図Cross-sectional view of the stereoscopic observation device 図2の矢視b図Figure 2 arrow b 観察角度をα1、α2、α3と変えた場合の説明図Explanatory drawing when the observation angle is changed to α1, α2, α3

本発明の実施例を図1〜図4に基づいて詳述する。   An embodiment of the present invention will be described in detail with reference to FIGS.

図1はレンズ系及び像の電子変換部を包含した超小型近接撮影装置とこれに組み付けた立体観察装置の正面図、図2は超小型近接撮影部の先端に取り付けられた立体観察装置の周回観察時の断面図、図3は図2のb矢視図、図4は観察角度をα1、α2、α3と変えた場合の光路の変化を説明する図である。   FIG. 1 is a front view of a microminiature proximity imaging apparatus including a lens system and an image electronic conversion unit and a stereoscopic observation apparatus assembled thereto, and FIG. 2 is a circuit diagram of the stereoscopic observation apparatus attached to the tip of the microminiature proximity imaging unit. 3 is a cross-sectional view at the time of observation, FIG. 3 is a view taken in the direction of arrow b in FIG. 2, and FIG. 4 is a diagram for explaining the change in the optical path when the observation angle is changed to α1, α2, and α3.

符号1は超小型近接撮影装置であって、この内部には、被写体を拡大するためのレンズ群(実施例はズームレンズ)とこのレンズ群でとらえた映像を撮影するCCD(CMOS)カメラとこのカメラでとらえた映像を電子信号に変換してモニター側に送出するための電子変換回路及び光源から送られてきた光を被写体に投射するためのリングレンズを含む照明機構が組み込まれている。   Reference numeral 1 denotes an ultra-compact close-up device, which includes a lens group for enlarging a subject (a zoom lens in the embodiment), a CCD (CMOS) camera for photographing an image captured by the lens group, and this An illumination mechanism including an electronic conversion circuit for converting an image captured by a camera into an electronic signal and sending it to a monitor and a ring lens for projecting light transmitted from a light source onto a subject is incorporated.

2は前記超小型近接装置1の先端に取り付けられた立体観察装置であって、この立体観察装置2は図2に示すように、超小型近接撮影装置1側に対して90°間隔で調整ねじ4により着脱自在に取り付けられた固定フレーム3と、この固定フレーム3に対してボールベアリング5を介して回転自在に取り付けられた回転機構(回転フレーム)6と、この回転機構6に対して前記超小型近接撮影装置1のレンズ系光軸a内に位置するように取り付けられた光軸反射ミラー8と、前記光軸反射ミラー8と対向する半径方向に位置するように取り付けられた周回反射ミラー9とから成り、前記光軸反射ミラー8は支持フレーム7において、ツマミ10によりA点を中心として回転可能に構成されている。   Reference numeral 2 denotes a stereoscopic observation apparatus attached to the tip of the microminiature proximity apparatus 1, and this stereoscopic observation apparatus 2 has an adjustment screw at 90 ° intervals with respect to the microminiature proximity imaging apparatus 1 side as shown in FIG. 4, a fixed frame 3 detachably attached to the fixed frame 4, a rotating mechanism (rotating frame) 6 rotatably attached to the fixed frame 3 via a ball bearing 5, and the rotating mechanism 6 An optical axis reflection mirror 8 mounted so as to be located in the lens system optical axis a of the small-sized close-up photographing apparatus 1 and a circular reflection mirror 9 mounted so as to be positioned in a radial direction facing the optical axis reflection mirror 8. The optical axis reflecting mirror 8 is configured to be rotatable about a point A by a knob 10 in the support frame 7.

また、前記周回反射ミラー9はアーム13を介して支持フレーム7に回転軸12により接続されており、この回転軸12はアーム回転ツマミ11により、アーム13の長さRを半径とする円弧上を光軸反射ミラー8と対向しながら移動できる構造となっている。   Further, the circular reflection mirror 9 is connected to the support frame 7 via an arm 13 by a rotary shaft 12, and this rotary shaft 12 is moved by an arm rotary knob 11 on an arc having a length R of the arm 13 as a radius. The optical axis reflecting mirror 8 is movable while facing the mirror.

また、このアーム13が回転する中心位置を、図4に示すように、観察角度をα1、α2、α3、の各角度に可変した場合、L1+L2が常に一定になるようなB点(α1)、B点(α2)、B点(α3)の3点を定めて、この3点を通る円の中心に置くようにすると、図4から明らかに、光軸反射ミラー8の角度と周回反射ミラー9の円弧状の位置を図4に示す3つの光路が成立するように調整すれば、被写体15への焦点を合わせるために撮影装置を上下に調整することなく、3種の観察角度を可変して立体的に周回観察を行うことができる。   As shown in FIG. 4, when the observation angle is changed to each of α1, α2, and α3, the center position where the arm 13 rotates is a point B (α1) such that L1 + L2 is always constant. When three points B point (α2) and B point (α3) are determined and placed at the center of a circle passing through these three points, the angle of the optical axis reflection mirror 8 and the circular reflection mirror 9 are clearly shown in FIG. 4 is adjusted so that the three optical paths shown in FIG. 4 are established, the three observation angles can be varied without adjusting the photographing apparatus up and down to focus on the subject 15. It is possible to perform a circular observation in three dimensions.

図中16は、固定フレーム3に取り付けられたリング状の集光プリズムであって、光源から送られた光を焦点に集光させて被写体15を照明する。   In the figure, reference numeral 16 denotes a ring-shaped condensing prism attached to the fixed frame 3, and illuminates the subject 15 by condensing the light transmitted from the light source at the focal point.

なお、本実施例ではA点、B点、C点を3点としたが、各点を3点以上とした場合においても、L1+L2が常に一定となるように定めることで、観察角度を3種以上に設定して用いることができる。   In this embodiment, A point, B point, and C point are 3 points. However, even when each point is 3 points or more, by defining L1 + L2 to be always constant, there are 3 types of observation angles. It can be set and used as described above.

1 本発明に係る観察装置の全体図
2 立体観察装置
3 固定フレーム
4 調整ねじ
5 ボールベアリング
6 回転機構
7 支持フレーム
8 光軸反射ミラー
9 周回反射ミラー
10 光軸ミラー回転ツマミ
11 アーム回転ツマミ
12 回転軸
13 アーム
15 被写体
16 集光プリズム
a レンズ系の光軸
DESCRIPTION OF SYMBOLS 1 Overview view of observation apparatus 2 Stereoscopic observation apparatus 3 Fixed frame 4 Adjustment screw 5 Ball bearing 6 Rotating mechanism 7 Support frame 8 Optical axis reflection mirror 9 Circular reflection mirror 10 Optical axis mirror rotation knob 11 Arm rotation knob 12 Rotation Axis 13 Arm 15 Subject 16 Condensing prism a Optical axis of lens system

Claims (2)

任意の光学結像倍率を持つ可変倍率レンズ又は固定倍率から成るレンズ系と小型CCDカメラもしくは小型CMOSカメラ及び照明系を一体化した超小型近接撮影装置に取り付けて用いられる周回立体観察装置において、前記レンズ系の最先端レンズと被写体間のレンズ系光軸上に光軸反射ミラーを配置し、この光軸反射ミラーと対向する側方の位置に周回反射ミラーを配置し、更に前記光軸反射ミラーと周回反射ミラーは前記レンズ系光軸を中心として一緒に回転するように構成すると共に前記光軸反射ミラーの角度を可変自在に構成し、かつ周回反射ミラーは前記光軸反射ミラーと対向しながら円弧状に回転自在に構成し、その上で光軸反射ミラーと光軸の交点をA点、周回反射面と光軸の交点をB点、被写体の焦点面と光軸の交点をC点としたとき、A点とB点との距離が常に一定で、且つ、A点とB点との距離(L1)とB点とC点との距離(L2)の和L1+L2が常に一定となるように、光軸反射ミラーの角度と周回反射ミラーが円弧状に回転して移動する位置を保持させて、観察角度を変更しても被写体への焦点がずれない光路をつくることにより、焦点を合わせるために超小型近接撮影装置全体を上下に調整する必要がなく、そのままの位置で観察角度を任意に変更して観察できるように構成してなる周面立体観察装置。   In the orbital stereoscopic observation device used by being attached to a micro close proximity photographing device in which a variable magnification lens having an arbitrary optical imaging magnification or a lens system composed of a fixed magnification and a small CCD camera or a small CMOS camera and an illumination system are integrated. An optical axis reflection mirror is disposed on the optical axis of the lens system between the state-of-the-art lens of the lens system and the subject, a circular reflection mirror is disposed at a position opposite to the optical axis reflection mirror, and the optical axis reflection mirror is further disposed. And the circular reflection mirror are configured to rotate together around the optical axis of the lens system, and the angle of the optical axis reflection mirror is variable, and the circular reflection mirror is opposed to the optical axis reflection mirror. It is configured to be rotatable in an arc shape, on which the intersection of the optical axis reflection mirror and the optical axis is point A, the intersection of the circular reflection surface and the optical axis is point B, and the intersection of the focal plane of the subject and the optical axis is point C When Light so that the distance between point A and point B is always constant, and the sum L1 + L2 of the distance (L1) between point A and point B and the distance between point B and point C (L2) is always constant. The angle of the axial reflection mirror and the position where the circular reflection mirror rotates and moves in an arc shape are maintained, and an optical path that does not defocus the subject even if the observation angle is changed is created. There is no need to adjust the entire small close-up photographing apparatus up and down, and the peripheral surface stereoscopic observation apparatus is configured so that observation can be performed by arbitrarily changing the observation angle at the same position. 前記周面立体観察装置は、超小型近接撮影装置の先端に対して着脱自在の固定フレームと、
この固定フレーム内に取り付けられた集光位置を光軸に置くリング状の集光プリズムと、
前記固定フレームに対して周回自在に取り付けられたリング状の回転フレームと、
前記回転フレームに対して取り付けられていると共に前記光軸上の照明光の集光位置に反射面の角度を変更自在に構成した光軸反射ミラーと、
前記回転フレームに対して取り付けられていると共に前記光軸反射ミラーと対向しながら光軸反射ミラーの正面側を円弧状に回転自在に構成された周回反射ミラーと、
前記光軸反ミラーと光軸の交点をA点、周回反射ミラーと光軸の交点をB点、被写体の焦点面と光軸の交点をC点としたとき、A点とB点との距離が常に一定で、且つ、A点とB点との距離(L1)とB点とC点との距離(L2)の和L1+L2が常に一定となるように、光軸反射ミラーの角度と周回反射ミラーの円弧状に移動する位置関係を設定することにより、観察角度を可変しても被写体への焦点がずれない光路をつくることにより、焦点を合わせるために超小型近接撮影装置全体を上下に調整する必要がなく、そのままの位置で観察角度を任意に変更できる機構と、
からなる請求項1に記載の周面立体観察装置。
The peripheral surface stereoscopic observation device includes a fixed frame that is detachable with respect to the tip of the microminiature proximity photographing device;
A ring-shaped condensing prism that places the condensing position mounted in the fixed frame on the optical axis;
A ring-shaped rotating frame attached to the fixed frame so as to be freely rotatable,
An optical axis reflecting mirror that is attached to the rotating frame and is configured to freely change the angle of the reflecting surface at the condensing position of the illumination light on the optical axis;
An orbital reflecting mirror that is attached to the rotating frame and is configured to be rotatable in an arc shape on the front side of the optical axis reflecting mirror while facing the optical axis reflecting mirror;
The distance between point A and point B when the point of intersection of the optical axis opposite mirror and the optical axis is point A, the point of intersection of the revolving mirror and the optical axis is point B, and the point of intersection of the focal plane of the subject and the optical axis is point C Is always constant, and the angle of the optical axis reflection mirror and the circular reflection are such that the sum L1 + L2 of the distance (L1) between point A and point B and the distance (L2) between point B and point C is always constant. By setting the positional relationship of the mirror to move in an arc shape, the entire ultra-compact close-up device can be adjusted up and down to achieve focus by creating an optical path that does not shift the focus on the subject even if the observation angle is varied. A mechanism that allows the observation angle to be arbitrarily changed at the same position,
The peripheral surface stereoscopic observation apparatus according to claim 1, comprising:
JP2012103106A 2012-04-27 2012-04-27 Peripheral surface three-dimensional observation apparatus Pending JP2013232753A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012103106A JP2013232753A (en) 2012-04-27 2012-04-27 Peripheral surface three-dimensional observation apparatus
PCT/JP2013/063223 WO2013162079A1 (en) 2012-04-27 2013-04-26 Device for three-dimensional observation of circumferential surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012103106A JP2013232753A (en) 2012-04-27 2012-04-27 Peripheral surface three-dimensional observation apparatus

Publications (1)

Publication Number Publication Date
JP2013232753A true JP2013232753A (en) 2013-11-14

Family

ID=49483360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103106A Pending JP2013232753A (en) 2012-04-27 2012-04-27 Peripheral surface three-dimensional observation apparatus

Country Status (2)

Country Link
JP (1) JP2013232753A (en)
WO (1) WO2013162079A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949800B (en) 2015-09-17 2021-12-10 国立研究开发法人科学技术振兴机构 Optical module for microscope, optical module control device for microscope, and multiphoton excitation microscope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH651139A5 (en) * 1980-12-18 1985-08-30 Wild Heerbrugg Ag Strahlenumlenkvorrichtung for an optical instrument, especially a microscope.
JP3113375B2 (en) * 1992-03-13 2000-11-27 株式会社ハイロックス IC observation device using ultra-small close-up imaging device

Also Published As

Publication number Publication date
WO2013162079A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP6641470B2 (en) Stereo camera and stereo camera control method
JP2011075832A (en) Imaging system and lens device
KR20150038008A (en) Variable 3-dimensional adaptor assembly for camera
JP2015129855A (en) Image shake correction device, lens device, and imaging device
JP6679286B2 (en) Lens barrel and optical equipment
JP7413251B2 (en) Optical adapter for microscopes and methods for adjusting optical image orientation
TW200424743A (en) Digital camera
JP6987493B2 (en) microscope
WO2013162079A1 (en) Device for three-dimensional observation of circumferential surface
JP2010245831A (en) Photographic image synthesizer
JP5944736B2 (en) Peripheral stereoscopic observation device
JP2012181139A (en) Lens inspection device
JP5390865B2 (en) Stereo imaging device
JP2007139622A (en) Three-dimensional shape measuring device
JP4524793B2 (en) Confocal optical system and height measuring device
JP2012050624A (en) Fundus photographing apparatus
JP2013232752A (en) Peripheral surface three-dimensional observation device
JP3884558B2 (en) Peripheral surface stereoscopic observation device using ultra-compact proximity imaging device
JP5507138B2 (en) Adapter for ultra-small proximity camera
JP2005070296A (en) Photographing apparatus
JP2018142030A (en) Lens barrel and imaging device
JP2019537755A (en) Adapter to rotate the lens
JP2011085876A (en) Device for simultaneous photography of wide and narrow areas
JP2010156797A (en) Lens-barrel and imaging apparatus having the same
JP2004350070A (en) Image processing apparatus