JP3884558B2 - Peripheral surface stereoscopic observation device using ultra-compact proximity imaging device - Google Patents

Peripheral surface stereoscopic observation device using ultra-compact proximity imaging device Download PDF

Info

Publication number
JP3884558B2
JP3884558B2 JP09745998A JP9745998A JP3884558B2 JP 3884558 B2 JP3884558 B2 JP 3884558B2 JP 09745998 A JP09745998 A JP 09745998A JP 9745998 A JP9745998 A JP 9745998A JP 3884558 B2 JP3884558 B2 JP 3884558B2
Authority
JP
Japan
Prior art keywords
optical axis
lens
mounting frame
ultra
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09745998A
Other languages
Japanese (ja)
Other versions
JPH11295053A (en
Inventor
道夫 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirox Co Ltd
Original Assignee
Hirox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirox Co Ltd filed Critical Hirox Co Ltd
Priority to JP09745998A priority Critical patent/JP3884558B2/en
Publication of JPH11295053A publication Critical patent/JPH11295053A/en
Application granted granted Critical
Publication of JP3884558B2 publication Critical patent/JP3884558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Lens Barrels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超小型近接撮影装置を用いてIC等のような被写体を、その周囲から立体観察するための装置に関する。
【0002】
【従来の技術とその問題点】
超小型近接撮影装置を用いてIC等のような被写体を、その周囲から立体観察する装置として、本発明者は特開平5−256785号公報に掲載のIC観察装置を提案している。
【0003】
このIC観察装置は、超小型近接撮影装置に対して回転自在に取り付けられた回転リングと、この回転リングと一緒に回転し、且つ光軸に置かれた光軸反射ミラーと、この光軸反射ミラーに対してICを斜め上方から反射して、この反射像を前記光軸反射ミラーに向けて投写することができ、前記回転リングにより光軸反射ミラーと一緒にICの周囲を回転する周回転ミラーと、超小型近接撮影装置側の照明用リングレンズの前面に位置し、照明用光路を補正する照明光路補正用リングレンズと、から成るものであるが、次のような問題がある。
【0004】
上記IC観察装置の場合、像面倍率が0.5〜2.5倍位の所謂低倍率では、実用上問題とならないが、像面倍率が約2.5倍以上で、モニター上での倍率が約100倍以上の場合、レンズ系の作動距離を実際の作動距離の約2倍とらなくてはならいことから、このように長い作動距離で倍率を高くとるようにすると、加工及び組み立て精度との関係で、作動誤差が拡大されてしまい、周回反射面を経由する光路から被写体の観察ポイントが外れて観察ができなくなったり、立体映像とならなくなったりするという問題がある。例えば、像面倍率を約5倍にとると、視野が約1mm程度になる。この時、仮にレンズ系の作動距離を20mmとすると、この約倍のレンズ系の作動距離が必要になる。これを度数に直すと約1.4度となる。
【0005】
この約1.4度の範囲で周回反射面を回転させながら、360°方向から被写体を立体観察をするためには、視野の約5%の範囲までの誤差は許容されるが、しかし、1mmの約5%は約50μとなるため、超小型近接撮影装置の先端に立体観察装置を取り付けた場合、先端のレンズから最初に光路を曲げられる光軸反射面までの距離が5mmとすると、立体観察装置の回転機構の回転軸と光軸との間のズレは、約6μが許容される限度になる(問題点1)。
【0006】
又、従来の低倍率においては、光軸反射面と周回反射面を正確に配置することにより観察ポイントをねらうことはできていたが、倍率が上がり、観察ポイント付近を常にねらう(画面の5%程度以内のズレ)ことができるように、立体観察装置を加工し、組み立て、そして立体観察装置を超小型近接撮影装置に組み付けることは、現在の加工及び組み立て並びに組み付け技術では困難である(問題点2)。
【0007】
以上に述べた問題点1と問題点2は、現象として同じ結果を招くが、2種類の現象を分けて確認し、この現象を分けて夫々微調整を行うことができないと、高倍率において立体観察を行うことはできない。
【0008】
【発明が解決しようとする課題】
本発明の目的は、超小型近接撮影装置を用いた周面立体観察装置において、高倍率において立体観察を行うことができるようにすることである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明においては、任意の光学結像倍率を持つ可変倍率レンズ又は固定倍率レンズから成るレンズ系と小型CCDカメラ及び照明系を一体化した超小型近接撮影装置及び前記レンズ系の最先端レンズと被写体間のレンズ系光軸上に光軸反射面を配置し、前記光軸反射面と対向する側方の位置に周回反射面を配置し、更に前記光軸反射面と周回反射面を前記レンズ系光軸を中心として前記超小型近接撮影装置に取り付けられた回転機構により一緒に回転する立体観察装置を組み合わせて成るCCDカメラを用いた周面立体観察装置において、前記立体観察装置の取付フレームを小型近接撮影装置の鏡筒より大径に形成すると共に、この大径に形成した取付フレームを小型近接撮影装置の鏡筒に外装し、取付フレームにその中心方向に向けて調整ねじを90°間隔で取り付け、この調整ねじの締め込みで小型近接撮影装置の鏡筒外周面と取付フレーム間を取付フレームの半径方向において間隔調整自在に構成してレンズ系光軸に対する回転機構側の回転リングの回転軸を微調整自在に構成すると共に、前記取付フレームに回転自在に取り付けられた回転リングに対して周回反射ミラーを調整ノブにより角度調整自在に取り付けて成ることを特徴とするものである。
【0012】
上記発明において、光軸反射面及び周回反射面は反射ミラー又はプリズムにて構成できる。又、照明系は、被写体をその周囲から照明できるように、光源から光ファイバー等を経由して送られて来た光を被写体にその周囲から投射できるリング状の反射レンズを用いてもよいし、投射部を回転機構の周回反射面側に設けてこの周回反射面と一緒に回転して観察ポイントを照明できる方式等としてもよい。
【0013】
【作用】
被写体は、レンズ系光軸の延長線上に置き、この周囲を回転機構に取り付けられた周回反射面が前記レンズ系光軸を中心として回転し、更にこの周回反射面と対向する光軸反射面が一緒に回転することにより、被写体をその周囲から、任意の観察ポイントで立体観察を行うことができる。つまり、被写体の観察ポイントの光は、周回反射面で反射して光軸反射面に入り、更にここで反射してレンズ系光路に入り、この光はレンズ系光路を経由してCCDカメラに捕えられ、電子的な変換手続を経てモニター画面上に映し出される。
この映像は、被写体を、例えば45°斜め上方から観察しているため、例えば100倍以上に拡大された立体映像となるので、例えば、ICの端子部分の観察(検査)等には最適となる。
【0014】
このような立体観察において、請求項1に記載の本発明においては、回転機構の回転軸を微調整することができ、請求項2に記載の本発明においては、周回反射面の角度を微調整することができ、請求項3に記載の本発明においては、回転機構の回転軸と周回反射面の角度の双方を微調整することができることによって、立体観察装置の加工及び組み立て精度並びに組み付け精度上の問題(誤差)を解消することができる。
【0015】
【実施例】
請求項に記載の本発明の実施例を図1〜図5に基づいて詳述する。図1はレンズ系及び像の電子変換部を包含した超小型近接撮影装置とこれに組み付けた立体観察装置の正面図、図2は超小型近接撮影装置の先端に取り付けられた立体観察装置とこの回転機構部分の断面図、図3はA−A′線断面図、図4(a)(b)は回転軸及び周回反射面の角度調整の説明図、図5は回転軸及び周回反射面の角度調整の説明図である。
【0016】
符号の1は超小型近接撮影装置であって、この内部には、被写体を拡大するためのレンズ群(実施例はズームレンズ)とこのレンズ群でとらえた被写体を撮影するCCDカメラ1bと、このカメラ1bでとらえた映像を電子信号に変換してモニター側に送出するための電子変換回路及び光源から送られて来た光を被写体に投射するためのリングレンズを含む照明機構が組み込まれている。
【0017】
2は前記超小型近接撮影装置1の先端に取り付けられた立体観察装置であって、この立体観察装置2は、図2、図3に示すように、超小型近接撮影装置1側に対して90°間隔で調整ねじ4により取り付けられた取付フレーム3と、この取付フレーム3に対してボールベアリング5を介して回転自在に取り付けられた回転機構(回転リング)6と、この回転機構6に対して前記超小型近接撮影装置1のレンズ系光軸a内に位置するように取り付けられた光軸反射ミラー7と、前記光軸反射ミラー7と対向する半径方向に位置するようにして取り付けられた角度調整ノブ8aにより角度調整自在の周回反射ミラー8とから成り、この回転機構6の回転軸bは、前記レンズ系光軸aと同軸になるように組み付けられている。
【0018】
図中9は被写体であって、この被写体9には照明系を経由して光源から光が照射されている。観察に際しては、超小型近接撮影装置1側において焦点を合わせたのち、立体観察装置2の回転機構6を回転させながら、被写体9の観察ポイントに周回反射ミラー8の位置を合わせる。このようにすると、観察ポイントの光は周回反射ミラー8→光軸反射ミラー7と反射し、この光軸反射ミラー7で反射した光は超小型近接撮影装置1内のCCDカメラ1bで撮影され、この映像はモニター画面上に拡大して映し出される。
【0019】
上記観察に際し、被写体9の観察ポイントがズレたり、映像そのものが映し出されない場合がある。これは、図4(a)に示すように、回転機構6の回転軸bがレンズ系光軸aとズレている場合、調整ねじ4を用いて、回転機構6の回転軸bを、図4(b)に示すように、レンズ系光軸a側に合わせる調整を行う。又は(及び)、図5に示すように、周回反射ミラー8の角度を調整する。この調整は、モニター映像を見ながら、周回反射ミラー8を左右又は上下等、任意の方向 に制御することにより行う。
上記のようにして微調整を行うことにより、被写体9の撮影ポイントに光軸を合わせることができる。
【0020】
【発明の効果】
発明によると、以上のように、立体観察装置の加工・組み立て精度及び超小型近接撮影装置に対する組み付け精度上の技術的な限界を、あとで調整(補正)することができるため、高倍率において、周回方向から任意のポイントで立体観察ができるようになる。
【図面の簡単な説明】
【図1】超小型近接撮影装置とこれに組み付けた立体観察装置の側面図。
【図2】立体観察装置の断面図。
【図3】A−A′線断面図。
【図4】立体観察装置の回転軸の調整例の説明図。
【図5】立体観察装置の周回反射ミラーの角度調整例の説明図。
【符号の説明】
1 超小型近接撮影装置
2 立体観察装置
3 取付フレーム
4 調整ねじ
5 ボールベアリング
6 回転機構(回転リング)
7 光軸反射ミラー
8 周回反射ミラー
8a 調整ノブ
9 被写体
a レンズ系光軸
b 回転軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for stereoscopically observing a subject such as an IC or the like from its surroundings using a microminiature proximity imaging apparatus.
[0002]
[Prior art and its problems]
The present inventor has proposed an IC observation device described in Japanese Patent Laid-Open No. 5-256785 as a device for stereoscopically observing a subject such as an IC from the periphery using an ultra-compact proximity photographing device.
[0003]
This IC observation device includes a rotating ring that is rotatably attached to a microminiature proximity imaging device, an optical axis reflecting mirror that rotates together with the rotating ring and is placed on the optical axis, and the optical axis reflecting The IC can be reflected obliquely from above to the mirror, and the reflected image can be projected toward the optical axis reflecting mirror. The rotating ring rotates the periphery of the IC together with the optical axis reflecting mirror. Although it is composed of a mirror and an illumination optical path correction ring lens that is positioned in front of the illumination ring lens on the microminiature proximity imaging apparatus side and corrects the illumination optical path, there are the following problems.
[0004]
In the case of the above-mentioned IC observation apparatus, there is no practical problem at a so-called low magnification where the image plane magnification is about 0.5 to 2.5 times, but the magnification on the monitor is about 2.5 times or more. Is about 100 times or more, the working distance of the lens system must be about twice the actual working distance. Therefore, if the magnification is increased at such a long working distance, the processing and assembly accuracy is increased. Therefore, there is a problem that the operation error is enlarged, and the observation point of the subject is out of the optical path passing through the orbiting reflection surface, so that the observation cannot be performed or the stereoscopic image cannot be obtained. For example, when the image plane magnification is about 5 times, the field of view is about 1 mm. At this time, if the working distance of the lens system is 20 mm, a working distance of the lens system that is approximately double this is required. When this is converted to frequency, it becomes about 1.4 degrees.
[0005]
In order to stereoscopically observe the subject from the 360 ° direction while rotating the circular reflection surface in the range of about 1.4 degrees, an error up to about 5% of the field of view is allowed, but 1 mm About 5% is about 50 μ, so when a stereoscopic observation device is attached to the tip of the ultra-compact proximity imaging device, if the distance from the lens at the tip to the optical axis reflecting surface where the optical path can be bent first is 5 mm, The deviation between the rotation axis of the rotation mechanism of the observation apparatus and the optical axis is a limit of about 6 μ (problem 1).
[0006]
In addition, in the conventional low magnification, the observation point can be aimed by accurately arranging the optical axis reflection surface and the circular reflection surface, but the magnification is increased, and the vicinity of the observation point is always aimed (5% of the screen). It is difficult to process and assemble the stereoscopic observation apparatus and assemble the stereoscopic observation apparatus to the microminiature close-up photographing apparatus with current processing, assembly, and assembly techniques (problems). 2).
[0007]
Problem 1 and problem 2 described above have the same result as a phenomenon. However, if two types of phenomena are confirmed separately and fine adjustment cannot be performed separately for each of these phenomena, a three-dimensional image can be obtained at high magnification. You cannot make observations.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to enable stereoscopic observation at a high magnification in a peripheral surface stereoscopic observation apparatus using an ultra-compact close-up photographing apparatus.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an ultra-compact proximity in which a lens system composed of a variable magnification lens or a fixed magnification lens having an arbitrary optical imaging magnification, a compact CCD camera, and an illumination system are integrated. An optical axis reflecting surface is disposed on the lens system optical axis between the imaging device and the most advanced lens of the lens system and the subject, a circular reflecting surface is disposed at a position opposite to the optical axis reflecting surface, and Peripheral surface stereoscopic observation using a CCD camera comprising a combination of a stereoscopic observation device in which an optical axis reflection surface and a circular reflection surface are rotated together by a rotation mechanism attached to the microminiature close-up photographing device around the optical axis of the lens system In the apparatus, the mounting frame of the stereoscopic observation device is formed to have a larger diameter than the lens barrel of the small proximity imaging device, and the mounting frame formed in this large diameter is externally mounted on the lens barrel of the small proximity imaging device, Mounting at intervals of 90 ° the adjusting screw towards the center direction with the frame, the interval adjustably configured between barrel outer peripheral surface and the mounting frame in the radial direction of the mounting frame of the small close-up device in tightening of the adjustment screw The rotation axis of the rotation ring on the rotation mechanism side with respect to the optical axis of the lens system can be finely adjusted, and the angle of the circular reflection mirror can be adjusted by the adjustment knob with respect to the rotation ring that is rotatably mounted on the mounting frame. It is characterized by being attached to.
[0012]
In the above invention, the optical axis reflection surface and the round reflection surface can be constituted by a reflection mirror or a prism. In addition, the illumination system may use a ring-shaped reflection lens that can project the light transmitted from the light source via the optical fiber or the like to the subject from the surroundings so that the subject can be illuminated from the surroundings. It is good also as a system etc. which can provide a projection part in the circumference reflective surface side of a rotation mechanism, and can rotate an observation point by rotating with this circumference reflective surface.
[0013]
[Action]
The subject is placed on the extension line of the optical axis of the lens system, and the circumference reflection surface attached to the rotation mechanism rotates around the optical axis of the lens system, and the optical axis reflection surface facing the circumference reflection surface further By rotating together, the subject can be stereoscopically observed from its surroundings at an arbitrary observation point. In other words, the light at the observation point of the subject is reflected by the orbital reflecting surface and enters the optical axis reflecting surface, and further reflected here and enters the lens system optical path, and this light is captured by the CCD camera via the lens system optical path. And is displayed on the monitor screen through an electronic conversion procedure.
This image is a stereoscopic image that is magnified 100 times or more, for example, because the subject is observed from, for example, 45 ° obliquely upward, and thus is optimal for, for example, observation (inspection) of the terminal portion of the IC. .
[0014]
In such stereoscopic observation, in the present invention described in claim 1, the rotation axis of the rotating mechanism can be finely adjusted, and in the present invention described in claim 2, the angle of the circular reflection surface is finely adjusted. In the present invention described in claim 3, since both the rotation axis of the rotation mechanism and the angle of the circular reflection surface can be finely adjusted, the processing and assembly accuracy and the assembly accuracy of the stereoscopic observation apparatus are improved. The problem (error) can be solved.
[0015]
【Example】
An embodiment of the present invention as set forth in claim 1 will be described in detail with reference to FIGS. FIG. 1 is a front view of an ultra-compact proximity imaging apparatus including a lens system and an image electronic conversion unit and a stereoscopic observation apparatus assembled thereto, and FIG. 2 is a stereoscopic observation apparatus attached to the tip of the ultra-compact proximity imaging apparatus. 3 is a cross-sectional view of the rotation mechanism portion, FIG. 3 is a cross-sectional view taken along the line AA ′, FIGS. 4A and 4B are explanatory diagrams of angle adjustment of the rotation shaft and the circular reflection surface, and FIG. It is explanatory drawing of angle adjustment.
[0016]
Reference numeral 1 denotes an ultra-compact close-up device, which includes a lens group for enlarging a subject (a zoom lens in the embodiment), a CCD camera 1b for photographing a subject captured by the lens group, An electronic conversion circuit for converting an image captured by the camera 1b into an electronic signal and sending it to the monitor side and an illumination mechanism including a ring lens for projecting light sent from the light source onto the subject are incorporated. .
[0017]
Reference numeral 2 denotes a stereoscopic observation apparatus attached to the tip of the ultra-small close-up photographing apparatus 1, and this stereoscopic observation apparatus 2 is 90 to the ultra-small close-up photographing apparatus 1 side as shown in FIGS. 2 and 3. An attachment frame 3 attached by adjusting screws 4 at intervals of °, a rotation mechanism (rotation ring) 6 rotatably attached to the attachment frame 3 via a ball bearing 5, and the rotation mechanism 6 An optical axis reflecting mirror 7 attached so as to be located in the lens system optical axis a of the microminiature proximity photographing apparatus 1 and an angle attached so as to be located in a radial direction facing the optical axis reflecting mirror 7. The rotary reflecting mirror 8 is adjustable in angle by an adjusting knob 8a, and the rotating shaft b of the rotating mechanism 6 is assembled so as to be coaxial with the lens system optical axis a.
[0018]
In the figure, reference numeral 9 denotes a subject, and the subject 9 is irradiated with light from a light source via an illumination system. When observing, after focusing on the micro close proximity photographing apparatus 1 side, the rotation mechanism 6 of the stereoscopic observation apparatus 2 is rotated, and the position of the circular reflection mirror 8 is aligned with the observation point of the subject 9. In this way, the light at the observation point is reflected from the orbital reflecting mirror 8 to the optical axis reflecting mirror 7, and the light reflected by the optical axis reflecting mirror 7 is photographed by the CCD camera 1b in the microminiature proximity photographing apparatus 1, This image is enlarged and displayed on the monitor screen.
[0019]
During the above observation, the observation point of the subject 9 may be shifted or the video itself may not be displayed. As shown in FIG. 4A, when the rotation axis b of the rotation mechanism 6 is displaced from the lens system optical axis a, the adjustment screw 4 is used to change the rotation axis b of the rotation mechanism 6 to that of FIG. As shown in (b), an adjustment is made to match the lens system optical axis a side. Or (and) as shown in FIG. 5, the angle of the circular reflection mirror 8 is adjusted. This adjustment is performed by controlling the circular reflection mirror 8 in an arbitrary direction such as right and left or up and down while watching the monitor image.
By performing fine adjustment as described above, the optical axis can be adjusted to the shooting point of the subject 9.
[0020]
【The invention's effect】
According to the present invention, as described above, the processing and assembly accuracy of the stereoscopic observation apparatus and the technical limit on the assembly accuracy of the ultra-small proximity imaging apparatus can be adjusted (corrected) later. The stereoscopic observation can be performed at an arbitrary point from the circulation direction.
[Brief description of the drawings]
FIG. 1 is a side view of a microminiature close-up photographing apparatus and a stereoscopic observation apparatus assembled thereto.
FIG. 2 is a cross-sectional view of a stereoscopic observation apparatus.
FIG. 3 is a sectional view taken along line AA ′.
FIG. 4 is an explanatory diagram of an example of adjusting the rotation axis of the stereoscopic observation apparatus.
FIG. 5 is an explanatory diagram of an example of angle adjustment of a circular reflection mirror of the stereoscopic observation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ultra-compact proximity imaging device 2 Stereoscopic observation device 3 Mounting frame 4 Adjustment screw 5 Ball bearing 6 Rotating mechanism (rotating ring)
7 Optical axis reflection mirror 8 Circular reflection mirror 8a Adjustment knob 9 Subject a Lens system optical axis b Rotation axis

Claims (1)

任意の光学結像倍率を持つ可変倍率レンズ又は固定倍率レンズから成るレンズ系と小型CCDカメラ及び照明系を一体化した超小型近接撮影装置及び前記レンズ系の最先端レンズと被写体間のレンズ系光軸上に光軸反射面を配置し、前記光軸反射面と対向する側方の位置に周回反射面を配置し、更に前記光軸反射面と周回反射面を前記レンズ系光軸を中心として前記超小型近接撮影装置に取り付けられた回転機構により一緒に回転する立体観察装置を組み合わせて成るCCDカメラを用いた周面立体観察装置において、前記立体観察装置の取付フレームを小型近接撮影装置の鏡筒より大径に形成すると共に、この大径に形成した取付フレームを小型近接撮影装置の鏡筒に外装し、取付フレームにその中心方向に向けて調整ねじを90°間隔で取り付け、この調整ねじの締め込みで小型近接撮影装置の鏡筒外周面と取付フレーム間を取付フレームの半径方向において間隔調整自在に構成してレンズ系光軸に対する回転機構側の回転リングの回転軸を微調整自在に構成すると共に、前記取付フレームに回転自在に取り付けられた回転リングに対して周回反射ミラーを調整ノブにより角度調整自在に取り付けて成る超小型近接撮影装置を用いた周面立体観察装置。A lens system consisting of a variable magnification lens having an arbitrary optical imaging magnification or a fixed magnification lens, a compact CCD camera and an illumination system, and an ultra-compact close-up photographing device, and a lens system light between the most advanced lens of the lens system and a subject An optical axis reflection surface is disposed on the axis, a circular reflection surface is disposed at a position opposite to the optical axis reflection surface, and the optical axis reflection surface and the circular reflection surface are centered on the optical axis of the lens system. In the peripheral stereoscopic observation apparatus using a CCD camera, which is a combination of a stereoscopic observation apparatus that rotates together by a rotation mechanism attached to the ultra-small proximity imaging apparatus, the mounting frame of the stereoscopic observation apparatus is a mirror of the small proximity imaging apparatus. The mounting frame formed to have a larger diameter than the tube is mounted on the lens barrel of the small close-up close-up camera, and adjustment screws are provided at 90 ° intervals toward the center of the mounting frame. Ri attached, the rotation of the rotary ring of the rotary mechanism side relative to the lens system optical axis by distance adjustably configured in the radial direction of the barrel outer peripheral surface between the mounting frame mounting frame of the small close-up device in tightening of the adjustment screw A three-dimensional surface using an ultra-compact close-up photographing device having a shaft that can be finely adjusted, and a rotating reflection mirror that is mounted on the mounting frame so as to be rotatable. Observation device.
JP09745998A 1998-04-09 1998-04-09 Peripheral surface stereoscopic observation device using ultra-compact proximity imaging device Expired - Lifetime JP3884558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09745998A JP3884558B2 (en) 1998-04-09 1998-04-09 Peripheral surface stereoscopic observation device using ultra-compact proximity imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09745998A JP3884558B2 (en) 1998-04-09 1998-04-09 Peripheral surface stereoscopic observation device using ultra-compact proximity imaging device

Publications (2)

Publication Number Publication Date
JPH11295053A JPH11295053A (en) 1999-10-29
JP3884558B2 true JP3884558B2 (en) 2007-02-21

Family

ID=14192897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09745998A Expired - Lifetime JP3884558B2 (en) 1998-04-09 1998-04-09 Peripheral surface stereoscopic observation device using ultra-compact proximity imaging device

Country Status (1)

Country Link
JP (1) JP3884558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507138B2 (en) * 2009-07-10 2014-05-28 株式会社ハイロックス Adapter for ultra-small proximity camera

Also Published As

Publication number Publication date
JPH11295053A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
US6281506B1 (en) X-ray imaging apparatus
CN110651214B (en) Optical adapter for a microscope and method for adjusting the orientation of an optical image
JP3478687B2 (en) Compound eye imaging device
JP3884558B2 (en) Peripheral surface stereoscopic observation device using ultra-compact proximity imaging device
JP2006284989A (en) Optical adapter for taking stereoscopic picture
JP2005148265A (en) Camera apparatus
JP2005062385A (en) Lens device
JPH05224277A (en) Camera apparatus for electronic cinematograph
JPH06133201A (en) Solid-state image recording device
JP5944736B2 (en) Peripheral stereoscopic observation device
JP2005070296A (en) Photographing apparatus
WO2013162079A1 (en) Device for three-dimensional observation of circumferential surface
JP2019537755A (en) Adapter to rotate the lens
JPH08110483A (en) Video microscope
JPH11216102A (en) Image-pickup device for endoscope
JPH1123983A (en) Television camera apparatus for endoscope and its focusing method
JPS62100723A (en) Television camera device for inspecting inside of tube
JPS6062781A (en) Video camera
JP3575700B2 (en) Ultra-small close-up imaging device
KR200298201Y1 (en) A microscope with a digital photographing apparatus
JPH06141219A (en) Photographic lens for video camera
ES2181651T3 (en) A DIGITAL CAMERA THAT HAS FUNCTIONALITIES OF PANORAMIC TAKES AND / OR INCLINATION, AND A DEVICE FOR ROTATING IMAGES FOR SUCH CAMERA.
JP5507138B2 (en) Adapter for ultra-small proximity camera
JPS63281121A (en) Optical adaptor device for endoscope
JPH01126946A (en) Television camera for endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term