JP2013225495A - Positive active material for lithium ion secondary battery, and method of manufacturing the same - Google Patents

Positive active material for lithium ion secondary battery, and method of manufacturing the same Download PDF

Info

Publication number
JP2013225495A
JP2013225495A JP2013047510A JP2013047510A JP2013225495A JP 2013225495 A JP2013225495 A JP 2013225495A JP 2013047510 A JP2013047510 A JP 2013047510A JP 2013047510 A JP2013047510 A JP 2013047510A JP 2013225495 A JP2013225495 A JP 2013225495A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013047510A
Other languages
Japanese (ja)
Inventor
Takeshi Yuki
健 結城
Yohei Hosoda
洋平 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013047510A priority Critical patent/JP2013225495A/en
Publication of JP2013225495A publication Critical patent/JP2013225495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery positive active material with high discharge capacity and high energy density, and a method of manufacturing the same.SOLUTION: A positive active material for a lithium ion secondary battery contains an olivine type crystal represented by the general formula LiABPO(A is at least one element selected from Mn, Co and Ni, and B is at least one element selected from Nb, Ti, V, Cr and Fe, with 0<x≤1). The positive active material for a lithium ion secondary battery includes an amorphous phase.

Description

本発明は、携帯型電子機器や電気自動車等に用いられるリチウムイオン二次電池を構成するリチウムイオン二次電池用正極活物質およびその製造方法に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery constituting a lithium ion secondary battery used in portable electronic devices, electric vehicles, and the like, and a method for producing the same.

リチウムイオン二次電池は、携帯電子端末や電気自動車に不可欠な、高容量で軽量な電源としての地位を確立している。リチウムイオン二次電池の正極活物質には、従来コバルト酸リチウム(LiCoO)やマンガン酸リチウム(LiMnO)等の無機金属酸化物が用いられてきた。しかし、近年の電子機器の高性能化により消費電力が増大し、リチウムイオン二次電池のさらなる高容量化や高エネルギー密度化が要求されている。 Lithium ion secondary batteries have established themselves as high-capacity and lightweight power supplies that are indispensable for portable electronic terminals and electric vehicles. Conventionally, inorganic metal oxides such as lithium cobaltate (LiCoO 2 ) and lithium manganate (LiMnO 2 ) have been used as the positive electrode active material of the lithium ion secondary battery. However, power consumption has increased due to recent high performance of electronic devices, and further increase in capacity and energy density of lithium ion secondary batteries are required.

近年、一般式LiFePOで表されるオリビン型結晶が注目されており、種々の研究および開発が進められている(例えば、特許文献1参照)。LiFePOはコバルト酸リチウムに比べて温度安定性に優れ、高温での安全な動作が期待される。また、リン酸を骨格とする構造であるため、充放電反応による体積変化が緩和され、構造劣化に対する耐性に優れるという特徴を有する。 In recent years, attention has been paid to olivine crystals represented by the general formula LiFePO 4 , and various researches and developments are underway (for example, see Patent Document 1). LiFePO 4 is superior in temperature stability to lithium cobaltate and is expected to operate safely at high temperatures. In addition, since the structure has phosphoric acid as a skeleton, volume change due to charge / discharge reaction is alleviated, and the structure has excellent characteristics of resistance to structural deterioration.

また、さらなるエネルギー密度向上のために、LiFePOより放電電圧の高い、一般式LiMnPO、LiCoPOまたはLiNiPO等で表されるオリビン型結晶についても研究および開発が進められている。 Moreover, for further improving the energy density, high discharge voltage than LiFePO 4, research and development has been promoted also general formula LiMnPO 4, LiCoPO 4 or olivine represented by LiNiPO 4 like crystals.

特開平9−134725号公報JP-A-9-134725

上記のMn、Co、Niを含むオリビン型結晶を含有するリチウムイオン二次電池用正極活物質を用いた正極は、特に正極活物質と電解質との界面におけるイオン伝導性が低いことに起因して、内部抵抗が発生しやすく、放電容量が十分に得られないという問題があった。   The positive electrode using the positive electrode active material for a lithium ion secondary battery containing the olivine type crystal containing Mn, Co and Ni is caused by low ion conductivity particularly at the interface between the positive electrode active material and the electrolyte. There is a problem that internal resistance tends to occur and a sufficient discharge capacity cannot be obtained.

したがって、本発明は、高放電容量および高エネルギー密度を有するリチウムイオン二次電池正極活物質およびその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a lithium ion secondary battery positive electrode active material having a high discharge capacity and a high energy density, and a method for producing the same.

本発明は、一般式LiA1−xPO(AはMn、Co、Niから選ばれる少なくとも1種、BはNb、Ti、V、CrおよびFeから選ばれる少なくとも1種であり、0<x≦1である)で表されるオリビン型結晶を含有するリチウムイオン二次電池用正極活物質であって、非晶質相を含有することを特徴とするリチウムイオン二次電池用正極活物質に関する。 The present invention is a compound represented by the general formula LiA x B 1-x PO 4 (A is at least one selected from Mn, Co and Ni, B is at least one selected from Nb, Ti, V, Cr and Fe, <X ≦ 1) A positive electrode active material for a lithium ion secondary battery containing an olivine-type crystal represented by the formula: Concerning substances.

既述の通り、リチウムイオン二次電池において、正極活物質と電解質との界面ではリチウムイオンと電子の伝導性が低く、内部抵抗が発生しやすいことが問題となっていた。そこで、正極活物質が非晶質相を含有する(特に正極活物質表面に非晶質相を含有する)ことにより、正極活物質と電解質との界面におけるリチウムイオン伝導性を改善することが可能となった。結果として、放電時の電流が大きくなった場合における電池の内部抵抗の上昇に起因して、放電容量が低下することを抑制できる。   As described above, in the lithium ion secondary battery, the lithium ion and electron conductivity is low at the interface between the positive electrode active material and the electrolyte, and internal resistance is likely to occur. Therefore, it is possible to improve the lithium ion conductivity at the interface between the positive electrode active material and the electrolyte by including the amorphous phase in the positive electrode active material (particularly, the surface of the positive electrode active material contains an amorphous phase). It became. As a result, it is possible to suppress a decrease in discharge capacity due to an increase in the internal resistance of the battery when the current during discharge increases.

第二に、本発明のリチウムイオン二次電池用正極活物質は、組成としてモル%で、LiO 10〜40%、MnO+CoO+NiO 35〜65%およびP 10〜40%を含有することが好ましい。 Secondly, the positive electrode active material for a lithium ion secondary battery of the present invention, the content in mole% as composition, Li 2 O 10 to 40%, a 35~65% MnO 2 + CoO + NiO and P 2 O 5 10 to 40% It is preferable to do.

当該構成によれば、一般式LiA1−xPOで表されるオリビン型結晶が得られやすくなる。 According to this configuration, the general formula LiA x B 1-x olivine type represented by PO 4 crystal is easily obtained.

第三に、リチウムイオン二次電池用正極活物質は、さらに、組成としてモル%で、Nb+TiO+V+Cr+Fe+SiO+B+GeO+Al+Ga+Sb+Bi 0.1〜25%を含有することが好ましい。 Thirdly, the positive electrode active material for a lithium ion secondary battery further has a composition of mol%, Nb 2 O 5 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Fe 2 O 3 + SiO 2 + B 2 O 3 + GeO 2 + Al preferably contains 2 O 3 + Ga 2 O 3 + Sb 2 O 3 + Bi 2 O 3 0.1~25%.

当該構成によれば、非晶質相を含有する正極活物質が得られやすくなる。   According to the said structure, the positive electrode active material containing an amorphous phase becomes easy to be obtained.

第四に、本発明のリチウムイオン二次電池用正極活物質において、一般式LiA1−xPOで表されるオリビン型結晶の結晶子サイズが25nm以下であることが好ましい。 Fourth, in the positive electrode active material for a lithium ion secondary battery of the present invention, it is preferable that the crystallite size of the olivine type crystal represented by the general formula LiA x B 1-x PO 4 is 25 nm or less.

当該構成によれば、リチウムイオンの伝導性をより一層向上させることができる。   According to this configuration, the lithium ion conductivity can be further improved.

第五に、本発明のリチウムイオン二次電池用正極活物質は、結晶融解開始温度が850℃以下であることが好ましい。   Fifth, the positive electrode active material for a lithium ion secondary battery of the present invention preferably has a crystal melting start temperature of 850 ° C. or lower.

当該構成によれば、正極活物質の表面に存在する非晶質相が流動しやすくなり、電解質に固体電解質を使用したときに、正極活物質と電解質との界面におけるリチウムイオン伝導性が良好になりやすい。   According to this configuration, the amorphous phase present on the surface of the positive electrode active material is likely to flow, and when a solid electrolyte is used as the electrolyte, the lithium ion conductivity at the interface between the positive electrode active material and the electrolyte is good. Prone.

第六に、本発明は、前記いずれかのリチウムイオン二次電池用正極活物質を用いたことを特徴とするリチウムイオン二次電池用正極に関する。   Sixth, the present invention relates to a positive electrode for a lithium ion secondary battery using any one of the positive electrode active materials for a lithium ion secondary battery.

第七に、本発明は、前記いずれかのリチウムイオン二次電池用正極活物質を製造するための方法であって、(1)原料バッチを加熱して溶融物を得る工程、(2)溶融物を成形すると同時に、一般式LiA1−xPOで表されるオリビン型結晶を析出させることにより、前駆体無機化合物を得る工程、および、(3)得られた前駆体無機化合物を粉砕する工程、を含むことを特徴とすることを特徴とするリチウムイオン二次電池用正極活物質の製造方法に関する。 Seventh, the present invention is a method for producing any one of the above-described positive electrode active materials for lithium ion secondary batteries, wherein (1) a step of heating a raw material batch to obtain a melt, (2) melting A step of obtaining a precursor inorganic compound by precipitating an olivine-type crystal represented by the general formula LiA x B 1-x PO 4 at the same time as molding the product, and (3) the obtained precursor inorganic compound And a pulverizing step. The present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery.

当該製造方法によれば、一般式LiA1−xPOで表されるオリビン型結晶を含有し、かつ、非晶質相を含有する前駆体無機粉末を容易に製造することが可能となる。 According to the production method, it is possible to easily produce a precursor inorganic powder containing an olivine type crystal represented by the general formula LiA x B 1-x PO 4 and containing an amorphous phase. Become.

第八に、本発明のリチウムイオン二次電池用正極活物質の製造方法は、工程(3)において、前駆体無機化合物の粉砕後における粉末X線回折ピーク面積強度が、前駆体無機化合物の粉砕前における粉末X線回折ピーク面積強度の0.95以下であることが好ましい。   Eighth, in the method for producing a positive electrode active material for a lithium ion secondary battery of the present invention, in step (3), the powder X-ray diffraction peak area intensity after pulverization of the precursor inorganic compound is pulverized by the precursor inorganic compound. It is preferably 0.95 or less of the powder X-ray diffraction peak area intensity before.

本発明によれば、高放電容量および高エネルギー密度を有するリチウムイオン二次電池正極活物質を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the lithium ion secondary battery positive electrode active material which has high discharge capacity and high energy density.

本発明のリチウムイオン二次電池用正極活物質は、一般式LiA1−xPO(AはMn、Co、Niから選ばれる少なくとも1種、BはNb、Ti、V、CrおよびFeから選ばれる少なくとも1種であり、0<x≦1である)で表されるオリビン型結晶を含有するリチウムイオン二次電池用正極活物質であって、非晶質相を含有することを特徴とする。 The positive electrode active material for a lithium ion secondary battery of the present invention has a general formula LiA x B 1-x PO 4 (A is at least one selected from Mn, Co, Ni, and B is Nb, Ti, V, Cr and Fe. A positive electrode active material for a lithium ion secondary battery containing an olivine-type crystal represented by 0 <x ≦ 1 and is characterized by containing an amorphous phase And

特に、非晶質相が正極活物質の表面に存在することにより、正極活物質と電解質との界面におけるイオン伝導性をより一層高めることが可能となる。また、非晶質相が正極活物質の表面に存在すれば、電解質として固体電解質を使用した場合に、正極活物質と固体電解質の密着性が向上しやすくなる。これは、正極活物質と固体電解質の混合物を焼結した際に、正極活物質の表面に存在する非晶質相が流動してバインダの役割を果たすためと考えられる。   In particular, the presence of an amorphous phase on the surface of the positive electrode active material can further increase the ionic conductivity at the interface between the positive electrode active material and the electrolyte. In addition, when an amorphous phase is present on the surface of the positive electrode active material, the adhesion between the positive electrode active material and the solid electrolyte is easily improved when a solid electrolyte is used as the electrolyte. This is presumably because when the mixture of the positive electrode active material and the solid electrolyte is sintered, the amorphous phase present on the surface of the positive electrode active material flows and plays the role of a binder.

正極活物質としては、組成としてモル%表示で、LiO 10〜40%、MnO+CoO+NiO 35〜65%およびP 10〜40%を含有することが好ましい。組成をこのように限定した理由を以下に説明する。 As the positive electrode active material, by mol% as composition, Li 2 O 10 to 40%, preferably contains 35~65% MnO 2 + CoO + NiO and P 2 O 5 10~40%. The reason for limiting the composition in this way will be described below.

LiOはLiA1−xPO結晶の主成分である。LiOの含有量は10〜40%、特に15〜35%であることが好ましい。LiOの含有量が少なすぎる、または、多すぎると、LiA1−xPO結晶が析出しにくくなる。 Li 2 O is the main component of LiA x B 1-x PO 4 crystal. The content of Li 2 O is preferably 10 to 40%, particularly preferably 15 to 35%. When the content of Li 2 O is too small or too large, LiA x B 1-x PO 4 crystals are difficult to precipitate.

MnO、CoOおよびNiOはいずれもLiA1−xPO結晶の主成分である。これらの成分は単独で含有していてもよく、2種以上を含有していてもよい。これらの成分の含有量は、合量で35〜65%、40〜60%、特に45〜55%であることが好ましい。これらの成分の合量が少なすぎると、LiA1−xPO結晶が析出しにくくなる。一方、これらの成分の合量が多すぎると、LiA1−xPO結晶が析出しにくくなるとともに、望まない異種結晶が析出しやすくなる。 MnO 2 , CoO and NiO are all main components of LiA x B 1-x PO 4 crystal. These components may be contained independently and may contain 2 or more types. The total content of these components is preferably 35 to 65%, 40 to 60%, particularly 45 to 55%. When the total amount of these components is too small, LiA x B 1-x PO 4 crystals are difficult to precipitate. On the other hand, when the total amount of these components is too large, LiA x B 1-x PO 4 crystals are difficult to precipitate, and unwanted heterogeneous crystals are likely to precipitate.

もLiA1−xPO結晶の主成分である。Pの含有量は10〜40%、特に15〜35%であることが好ましい。Pの含有量が少なすぎる、または、多すぎると、LiA1−xPO結晶が析出しにくくなる。 P 2 O 5 is also a main component of the LiA x B 1-x PO 4 crystal. The content of P 2 O 5 is preferably 10 to 40%, particularly preferably 15 to 35%. If the content of P 2 O 5 is too small or too large, LiA x B 1-x PO 4 crystals are difficult to precipitate.

また上記成分以外に、例えばNb、TiO、V、Cr、Fe、SiO、B、GeO、Al、Ga、SbまたはBiを含有していてもよい。上記成分の含有量は、合量で0.1〜25%、特に0.3〜10%であることが好ましい。上記成分の含有量が少なすぎると、非晶質相が形成されにくくなる。一方、上記成分の含有量が多すぎると、LiA1−xPO結晶の割合が低下しやすくなる。 In addition to the above components, for example, Nb 2 O 5 , TiO 2 , V 2 O 5 , Cr 2 O 3 , Fe 2 O 3 , SiO 2 , B 2 O 3 , GeO 2 , Al 2 O 3 , Ga 2 O 3 , Sb 2 O 3 or Bi 2 O 3 may be contained. The total content of the above components is preferably 0.1 to 25%, particularly preferably 0.3 to 10%. When there is too little content of the said component, it will become difficult to form an amorphous phase. On the other hand, the content of the component is too large, the proportion of LiA x B 1-x PO 4 crystal tends to decrease.

なかでも、Nbは均質な正極活物質を得るため、または、非晶質相を形成させやすくするために有効な成分である。Nbの含有量は0.1〜20%、0.2〜10%、特に0.3〜5%であることが好ましい。Nbの含有量が少なすぎると、上記効果が得られにくい。一方、Nbの含有量が多すぎると、結晶化の際に異種結晶が析出して、電池の充放電特性が低下する傾向がある。 Among these, Nb 2 O 5 is an effective component for obtaining a homogeneous positive electrode active material or for easily forming an amorphous phase. The content of Nb 2 O 5 is preferably 0.1 to 20%, 0.2 to 10%, particularly preferably 0.3 to 5%. If the content of Nb 2 O 5 is too small, it is difficult to obtain the above effect. On the other hand, when the content of Nb 2 O 5 is too large, heterogeneous crystals are precipitated during crystallisation, the charge-discharge characteristics of the battery tends to decrease.

正極活物質の平均粒子径は1.8μm以下、1.6μm以下、特に1.4μm以下であることが好ましい。正極活物質の平均粒子径が大きすぎると、正極活物質の比表面積が小さくなってリチウムイオンが拡散しにくくなるとともに、内部抵抗低が大きくなる傾向がある。結果として、放電容量が低下する傾向がある。一方、正極活物質の平均粒子径の下限は特に限定されないが、小さすぎると、正極活物質粒子同士の凝集力が強くなり、粗大粒子化しやすくなる。その結果、電極の内部抵抗が高くなり、出力電圧が低下しやすくなる。また、正極活物質の比表面積が大きくなりすぎて、ペースト化するために多量の分散媒が必要となり、結果として、電極密度が低下して、電極の単位体積あたりの放電容量が低下する傾向がある。また、電極乾燥時にひび割れが生じやすく、さらに、正極活物質に含まれる金属成分が電解質中に溶出し、電池の寿命が短くなりやすい等の問題がある。したがって、正極活物質の平均粒子径は0.05μm以上、0.1μm以上、特に0.2μm以上であることが好ましい。   The average particle size of the positive electrode active material is preferably 1.8 μm or less, 1.6 μm or less, and particularly preferably 1.4 μm or less. When the average particle size of the positive electrode active material is too large, the specific surface area of the positive electrode active material is decreased, lithium ions are less likely to diffuse, and the internal resistance tends to increase. As a result, the discharge capacity tends to decrease. On the other hand, the lower limit of the average particle diameter of the positive electrode active material is not particularly limited, but if it is too small, the cohesive force between the positive electrode active material particles becomes strong, and the particles are likely to become coarse particles. As a result, the internal resistance of the electrode increases and the output voltage tends to decrease. In addition, the specific surface area of the positive electrode active material becomes too large, and a large amount of dispersion medium is required to make a paste. As a result, the electrode density tends to decrease and the discharge capacity per unit volume of the electrode tends to decrease. is there. In addition, there is a problem that cracks are likely to occur when the electrode is dried, and further, metal components contained in the positive electrode active material are eluted into the electrolyte, and the battery life is likely to be shortened. Therefore, the average particle diameter of the positive electrode active material is preferably 0.05 μm or more, 0.1 μm or more, and particularly preferably 0.2 μm or more.

なお、本発明において、正極活物質の平均粒子径はD50(体積基準の平均粒子径)を意味し、レーザー回折散乱法により測定された値をいう。   In the present invention, the average particle diameter of the positive electrode active material means D50 (volume-based average particle diameter), which is a value measured by a laser diffraction scattering method.

正極活物質おけるLiA1−xPO結晶の含有量は、98質量%以下、95質量%以下、特に90質量%以下であることが好ましい。LiA1−xPO結晶の含有量が多すぎると、正極活物質中における非晶質相が少なくなり、既述の理由から、放電容量が低下する傾向がある。なお、下限については特に限定されないが、所望の放電容量を達成するため、40質量%以上、特に50質量%以上であることが好ましい。 The content of the LiA x B 1-x PO 4 crystal in the positive electrode active material is preferably 98% by mass or less, 95% by mass or less, and particularly preferably 90% by mass or less. When the content of the LiA x B 1-x PO 4 crystal is too large, the amorphous phase in the positive electrode active material decreases, and the discharge capacity tends to decrease for the reasons already described. In addition, although it does not specifically limit about a minimum, In order to achieve a desired discharge capacity, it is preferable that it is 40 mass% or more, especially 50 mass% or more.

結晶化度は、CuKα線を用いた粉末X線回折測定によって得られる2θ値で10〜60°の回折線プロファイルにおいて、結晶性回折線と非晶質ハローにピーク分離することで求められる。具体的には、回折線プロファイルからバックグラウンドを差し引いて得られた全散乱曲線から、10〜45°におけるブロードな回折線(非晶質ハロー)をピーク分離して求めた積分強度をIa、10〜60°において検出される各結晶性回折線をピーク分離して求めた積分強度の総和をIcとした場合、結晶化度Xcは次式から求められる。
Xc=[Ic/(Ic+Ia)]×100(%)
The degree of crystallinity is determined by separating the peak into a crystalline diffraction line and an amorphous halo in a diffraction line profile of 10 to 60 ° in terms of 2θ values obtained by powder X-ray diffraction measurement using CuKα rays. Specifically, the integrated intensity obtained by peak-separating a broad diffraction line (amorphous halo) at 10 to 45 ° from the total scattering curve obtained by subtracting the background from the diffraction line profile is Ia, 10 When the total integrated intensity obtained by peak separation of each crystalline diffraction line detected at ˜60 ° is Ic, the crystallinity Xc can be obtained from the following equation.
Xc = [Ic / (Ic + Ia)] × 100 (%)

なお、LiA1−xPO結晶の結晶子サイズが小さいほど、正極活物質粒子の平均粒子径を小さくすることが可能となり、電気伝導性を向上させることができる。具体的には、LiA1−xPO結晶の結晶子サイズは25nm以下、特に20nm以下であることが好ましい。下限については特に限定されないが、現実的には1nm以上、さらには5nm以上である。結晶子サイズは、粉末X線回折の解析結果からシェラーの式に従って求められる。なお、本発明において、結晶子サイズは、(111)面および(131)面に相当する回折角について測定した測定値がいずれも上記範囲内であることが好ましい。 In addition, the smaller the crystallite size of the LiA x B 1-x PO 4 crystal, the smaller the average particle diameter of the positive electrode active material particles can be, and the electrical conductivity can be improved. Specifically, the crystallite size of the LiA x B 1-x PO 4 crystal is preferably 25 nm or less, particularly preferably 20 nm or less. The lower limit is not particularly limited, but in reality, it is 1 nm or more, and further 5 nm or more. The crystallite size is determined according to Scherrer's equation from the analysis result of powder X-ray diffraction. In the present invention, as for the crystallite size, it is preferable that measured values measured for diffraction angles corresponding to the (111) plane and the (131) plane are both within the above range.

本発明の正極活物質は、結晶融解開始温度が、850℃以下であることが好ましく、830℃以下であることがより好ましく、800℃以下であることがさらに好ましい。当該範囲によれば、全固体電池等で正極を作製する際に、正極活物質の表面に存在する非晶質相と結晶が共晶溶融を引き起こして流動しやすくなり、正極活物質と固体電解質との界面におけるリチウムイオン伝導性が良好になりやすい。
なお、結晶融解開始温度は、示差熱分析(DTA)装置で測定可能である。DTAで結晶融解開始温度を測定する場合、室温から測定を開始し、昇温速度を10℃/分とすればよい。なお、DTAにおいて、結晶融解開始温度は、吸熱ピークの低温側の屈曲点(Tf)に相当し、検出される吸熱ピークの最大勾配部分の接線とベースラインとの交点の温度である。
The positive electrode active material of the present invention preferably has a crystal melting start temperature of 850 ° C. or lower, more preferably 830 ° C. or lower, and further preferably 800 ° C. or lower. According to this range, when producing a positive electrode in an all-solid battery or the like, the amorphous phase and crystals present on the surface of the positive electrode active material are likely to flow due to eutectic melting, and the positive electrode active material and the solid electrolyte Lithium ion conductivity at the interface is likely to be good.
The crystal melting start temperature can be measured with a differential thermal analysis (DTA) apparatus. When the crystal melting start temperature is measured by DTA, the measurement may be started from room temperature and the rate of temperature increase may be 10 ° C./min. In DTA, the crystal melting start temperature corresponds to the low-temperature side inflection point (Tf) of the endothermic peak, and is the temperature at the intersection of the tangent line of the maximum gradient portion of the detected endothermic peak and the baseline.

次に、本発明のリチウムイオン二次電池用正極活物質の製造方法について説明する。   Next, the manufacturing method of the positive electrode active material for lithium ion secondary batteries of this invention is demonstrated.

本発明のリチウムイオン二次電池用正極活物質は、例えば、(1)原料バッチを加熱して溶融物を得る工程、(2)溶融物を成形すると同時に、一般式LiA1−xPOで表されるオリビン型結晶を析出させることにより、前駆体無機化合物を得る工程、および、(3)得られた前駆体無機化合物を粉砕する工程、を含む方法により製造することが好ましい。このような溶融法により正極活物質を製造することにより、各構成成分が均質に混合された正極活物質が得られやすくなる。 The positive electrode active material for a lithium ion secondary battery of the present invention includes, for example, (1) a step of heating a raw material batch to obtain a melt, and (2) forming the melt at the same time as the general formula LiA x B 1-x PO. It is preferable to manufacture by the method including the process of obtaining a precursor inorganic compound by precipitating the olivine type | mold crystal represented by 4 , and the process of grind | pulverizing the precursor inorganic compound obtained (3). By producing the positive electrode active material by such a melting method, it is easy to obtain a positive electrode active material in which each component is homogeneously mixed.

ここで、工程(3)において、前駆体無機化合物の粉砕後における粉末X線回折ピーク面積強度が、前駆体無機化合物の粉砕前における粉末X線回折ピーク面積強度の0.95以下、特に0.9以下であることが好ましい。当該比率が大きすぎると、正極活物質における非晶質相の割合が不十分となり、既述の理由から、放電容量が低下する傾向がある。
なお、上記製造方法において「前駆体無機化合物の粉砕前における粉末X線回折ピーク面積強度」は、工程(2)で得られた前駆体無機化合物を、粉末X線回折が可能な程度に粗粉砕したもの(具体的には、平均粒子径が20〜50μm程度)を用いて測定した値を指す。
Here, in step (3), the powder X-ray diffraction peak area intensity after pulverization of the precursor inorganic compound is 0.95 or less of the powder X-ray diffraction peak area intensity before pulverization of the precursor inorganic compound. It is preferably 9 or less. If the ratio is too large, the proportion of the amorphous phase in the positive electrode active material becomes insufficient, and the discharge capacity tends to decrease for the reasons already described.
In the above production method, “powder X-ray diffraction peak area intensity before pulverization of precursor inorganic compound” means that the precursor inorganic compound obtained in step (2) is coarsely pulverized to the extent that powder X-ray diffraction is possible. (Specifically, the average particle size is about 20 to 50 μm).

本発明の正極活物質に対し、導電助剤および結着剤を添加し、これらを水や、N−メチルピロリドン等の溶媒に懸濁させてスラリー化し、このスラリーをアルミニウム箔等の集電体に塗布、乾燥、プレスして帯状にすることによりリチウムイオン二次電池用正極を作製することができる。   A conductive additive and a binder are added to the positive electrode active material of the present invention, and these are suspended in a solvent such as water or N-methylpyrrolidone to form a slurry, and this slurry is a current collector such as an aluminum foil. The positive electrode for a lithium ion secondary battery can be produced by coating, drying, and pressing into a belt shape.

導電助剤は、急速充放電を達成するために添加される成分である。具体例としては、アセチレンブラックやケッチェンブラック等の高導電性カーボンブラック、黒鉛、コークス等が挙げられる。なかでも、極少量の添加で優れた導電性を発揮する高導電性カーボンブラックを用いることが好ましい。   A conductive support agent is a component added in order to achieve rapid charging / discharging. Specific examples include highly conductive carbon black such as acetylene black and ketjen black, graphite, coke and the like. Among them, it is preferable to use highly conductive carbon black that exhibits excellent conductivity when added in a very small amount.

結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素系ゴム、スチレンーブタンジエンゴム(SBR)等の熱可塑性直鎖状高分子;熱硬化性ポリイミド、ポリアミドイミド、ポリアミド、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン等の熱硬化性樹脂;カルボキシメチルセルロース(カルボキシメチルセルロースナトリム等のカルボキシメチルセルロース塩も含む。以下同様)、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、エチルセルロースおよびヒドロキシメチルセルロース等のセルロース誘導体、ポリビニルアルコール、ポリアクリルアミド、ポリビニルピロリドンおよびその共重合体等の水溶性高分子が挙げられる。   Examples of the binder include thermoplastic linear polymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-based rubber, and styrene-butanediene rubber (SBR); thermosetting polyimide, polyamide Thermosetting resins such as imide, polyamide, phenolic resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane; carboxymethylcellulose (including carboxymethylcellulose salts such as carboxymethylcellulose sodium; the same shall apply hereinafter), hydroxypropylmethylcellulose , Cellulose derivatives such as hydroxypropylcellulose, hydroxyethylcellulose, ethylcellulose and hydroxymethylcellulose, polyvinyl alcohol, polyacrylamide, polyvinylpyrrolidone And water-soluble polymers such as copolymers thereof.

正極活物質、導電助剤および結着剤の配合比は、正極活物質 70〜95重量%、導電助剤 3〜20重量%、結着剤 2〜10重量%の範囲にすることが好ましい。   The compounding ratio of the positive electrode active material, the conductive assistant and the binder is preferably in the range of 70 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive assistant and 2 to 10% by weight of the binder.

集電体としては、例えばアルミニウム箔やアルミニウム合金箔を用いることができる。アルミニウム合金としては、アルミニウムと、マグネシウム、亜鉛、ケイ素等の元素とからなる合金が挙げられる。   As the current collector, for example, an aluminum foil or an aluminum alloy foil can be used. Examples of the aluminum alloy include alloys made of aluminum and elements such as magnesium, zinc, and silicon.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
(1)無機化合物の作製
メタリン酸リチウム(LiPO)、炭酸リチウム(LiCO)、二酸化マンガン(MnO)および酸化ニオブ(Nb)を原料とし、モル%で、LiO 24.9%、MnO 49.7%、P 24.9%およびNb 0.5%の組成となるように原料粉末を調合し、1250℃にて1時間、大気雰囲気中にて溶融を行った。得られた溶融物をツインローラーで成型することにより、前駆体無機化合物を得た。
Example 1
(1) Preparation of lithium metaphosphate inorganic compound (LiPO 3), lithium carbonate (Li 2 CO 3), manganese dioxide (MnO 2) and niobium oxide of (Nb 2 O 5) as a starting material, in mol%, Li 2 O The raw material powder was prepared so as to have a composition of 24.9%, MnO 2 49.7%, P 2 O 5 24.9% and Nb 2 O 5 0.5%, and air atmosphere at 1250 ° C. for 1 hour Melting was performed inside. A precursor inorganic compound was obtained by molding the obtained melt with a twin roller.

前駆体無機化合物の一部を採取し、乳鉢で粉砕した試料について粉末X線回折パターンを確認したところ、LiMnPO結晶由来の回折線が確認された。 When a part of the precursor inorganic compound was collected and a powder X-ray diffraction pattern was confirmed for a sample pulverized with a mortar, a diffraction line derived from a LiMnPO 4 crystal was confirmed.

(2)正極活物質の作製
前駆体無機化合物をボールミルで45時間粉砕した後、さらにビーズミルで8時間粉砕し、平均粒子径0.4μmの正極活物質を得た。粉末X線回折パターンを確認したところ、LiMnPO結晶由来の回折線と非晶質相由来のハローが確認された。
(2) Production of Positive Electrode Active Material The precursor inorganic compound was pulverized for 45 hours with a ball mill, and further pulverized with a bead mill for 8 hours to obtain a positive electrode active material having an average particle size of 0.4 μm. When the powder X-ray diffraction pattern was confirmed, a diffraction line derived from the LiMnPO 4 crystal and a halo derived from the amorphous phase were confirmed.

ここで、正極活物質の結晶化度を、粉末X線回折パターンを用いて、既述の方法により算出した。また、正極活物質におけるLiMnPO結晶の結晶子サイズを、統合粉末X線解析ソフトフェアJADE(株式会社リガク製)を用いて算出した。結晶子サイズは、回折角2θと積分幅βをパラメータとして、シェラーの式を用いて算出した。回折角は(111)面および(131)面に相当する回折角を用いた。 Here, the crystallinity of the positive electrode active material was calculated by the method described above using the powder X-ray diffraction pattern. Moreover, the crystallite size of the LiMnPO 4 crystal in the positive electrode active material was calculated using the integrated powder X-ray analysis software JADE (manufactured by Rigaku Corporation). The crystallite size was calculated using Scherrer's equation with the diffraction angle 2θ and the integral width β as parameters. The diffraction angles corresponding to the (111) plane and the (131) plane were used.

なお、前駆体無機化合物の粉砕前後における回折ピーク面積強度を算出し、その比率(前駆体無機化合物の粉砕後における回折ピーク面積強度/前駆体無機化合物の粉砕前における回折ピーク面積強度)を計算した。結果を表1に示す。   The diffraction peak area intensity before and after pulverization of the precursor inorganic compound was calculated, and the ratio (diffraction peak area intensity after pulverization of the precursor inorganic compound / diffraction peak area intensity before pulverization of the precursor inorganic compound) was calculated. . The results are shown in Table 1.

また、正極活物質の結晶融解開始温度を、DTAを用いて測定した。結果を表1に示す。   Moreover, the crystal melting start temperature of the positive electrode active material was measured using DTA. The results are shown in Table 1.

(実施例2)
(1)無機化合物の作製
メタリン酸リチウム(LiPO)、炭酸リチウム(LiCO)、酸化コバルト(CoO)および酸化ニオブ(Nb)を原料とし、モル%で、LiO 24.9%、CoO 49.7%、P 24.9%およびNb 0.5%となるように原料粉末を調合し、1250℃にて1時間、大気雰囲気中にて溶融を行った。得られた溶融物をツインローラーで成型することにより、前駆体無機化合物を得た。
(Example 2)
(1) Preparation of inorganic compound Lithium metaphosphate (LiPO 3 ), lithium carbonate (Li 2 CO 3 ), cobalt oxide (CoO), and niobium oxide (Nb 2 O 5 ) are used as raw materials in a molar percentage of Li 2 O 24. The raw material powder was prepared so as to be 9.9%, CoO 49.7%, P 2 O 5 24.9% and Nb 2 O 5 0.5%, and melted in the atmosphere at 1250 ° C. for 1 hour. Went. A precursor inorganic compound was obtained by molding the obtained melt with a twin roller.

前駆体無機化合物の一部を採取し、乳鉢で粉砕した試料について粉末X線回折パターンを確認したところ、LiCoPO結晶由来の回折線が確認された。 When a part of the precursor inorganic compound was collected and a powder X-ray diffraction pattern was confirmed for a sample pulverized in a mortar, a diffraction line derived from LiCoPO 4 crystals was confirmed.

(2)正極活物質の作製
前駆体無機化合物を実施例1と同様に粉砕して、平均粒子径0.4μmの正極活物質を得た。粉末X線回折パターンを確認したところ、LiCoPO結晶由来の回折線と非晶質相由来のハローが確認された。
(2) Preparation of positive electrode active material The precursor inorganic compound was pulverized in the same manner as in Example 1 to obtain a positive electrode active material having an average particle size of 0.4 μm. When the powder X-ray diffraction pattern was confirmed, a diffraction line derived from the LiCoPO 4 crystal and a halo derived from the amorphous phase were confirmed.

ここで、正極活物質の結晶化度およびLiCoPO結晶の結晶子サイズを、実施例1と同様にして算出した。また、実施例1と同様にして、前駆体無機化合物の粉砕前後における回折ピーク面積強度を算出し、その比率を計算した。結果を表1に示す。 Here, the crystallinity of the positive electrode active material and the crystallite size of the LiCoPO 4 crystal were calculated in the same manner as in Example 1. Moreover, it carried out similarly to Example 1, the diffraction peak area intensity before and behind the grinding | pulverization of a precursor inorganic compound was computed, and the ratio was computed. The results are shown in Table 1.

また、正極活物質の結晶融解開始温度を、DTAを用いて測定した。結果を表1に示す。   Moreover, the crystal melting start temperature of the positive electrode active material was measured using DTA. The results are shown in Table 1.

(実施例3)
(1)無機化合物の作製
メタリン酸リチウム(LiPO)、炭酸リチウム(LiCO)、酸化ニッケル(NiO)および酸化ニオブ(Nb)を原料とし、モル%で、LiO 24.9%、NiO 49.7%、P 24.9%およびNb 0.5%となるように原料粉末を調合し、1250℃にて1時間、大気雰囲気中にて溶融を行った。得られた溶融ガラスをツインローラーで成型することにより、前駆体無機化合物を得た。
(Example 3)
(1) Preparation of inorganic compound Lithium metaphosphate (LiPO 3 ), lithium carbonate (Li 2 CO 3 ), nickel oxide (NiO), and niobium oxide (Nb 2 O 5 ) are used as raw materials in a molar percentage of Li 2 O 24. The raw material powder was prepared so as to be 9.9%, NiO 49.7%, P 2 O 5 24.9% and Nb 2 O 5 0.5%, and melted in the atmosphere at 1250 ° C. for 1 hour. Went. A precursor inorganic compound was obtained by molding the obtained molten glass with a twin roller.

前駆体無機化合物の一部を採取し、乳鉢で粉砕した試料について粉末X線回折パターンを確認したところ、LiNiPO結晶由来の回折線が確認された。 When a part of the precursor inorganic compound was collected and a powder X-ray diffraction pattern was confirmed for a sample pulverized in a mortar, a diffraction line derived from a LiNiPO 4 crystal was confirmed.

(2)正極活物質の作製
前駆体無機化合物を実施例1と同様に粉砕して、平均粒子径0.4μmの正極活物質を得た。粉末X線回折パターンを確認したところ、LiNiPO結晶由来の回折線と非晶質層由来のハローが確認された。
(2) Preparation of positive electrode active material The precursor inorganic compound was pulverized in the same manner as in Example 1 to obtain a positive electrode active material having an average particle size of 0.4 μm. When the powder X-ray diffraction pattern was confirmed, a diffraction line derived from the LiNiPO 4 crystal and a halo derived from the amorphous layer were confirmed.

ここで、正極活物質の結晶化度およびLiNiPO結晶の結晶子サイズを、実施例1と同様にして算出した。また、実施例1と同様にして、前駆体無機化合物の粉砕前後における回折ピーク面積強度を算出し、その比率を計算した。結果を表1に示す。 Here, the crystallinity of the positive electrode active material and the crystallite size of the LiNiPO 4 crystal were calculated in the same manner as in Example 1. Moreover, it carried out similarly to Example 1, the diffraction peak area intensity before and behind the grinding | pulverization of a precursor inorganic compound was computed, and the ratio was computed. The results are shown in Table 1.

また、正極活物質の結晶融解開始温度を、DTAを用いて測定した。結果を表1に示す。   Moreover, the crystal melting start temperature of the positive electrode active material was measured using DTA. The results are shown in Table 1.

(比較例)
実施例1と同様にして得られた前駆体無機化合物を、擂潰機を用いて粗粉砕することにより正極活物質を得た。得られた正極活物質の粉末X線回折パターンを確認したところ、LiMnPO結晶由来の回折線が確認され、非晶質相由来のハローは確認されなかった。ここで、正極活物質の結晶化度およびLiMnPO結晶の結晶子サイズを実施例1と同様にして算出した。また、正極活物質の結晶融解開始温度を、DTAを用いて測定した。結果を表1に示す。
(Comparative example)
The precursor inorganic compound obtained in the same manner as in Example 1 was coarsely pulverized using a crusher to obtain a positive electrode active material. When the powder X-ray diffraction pattern of the obtained positive electrode active material was confirmed, diffraction lines derived from LiMnPO 4 crystals were confirmed, and no halo derived from the amorphous phase was confirmed. Here, the crystallinity of the positive electrode active material and the crystallite size of the LiMnPO 4 crystal were calculated in the same manner as in Example 1. Moreover, the crystal melting start temperature of the positive electrode active material was measured using DTA. The results are shown in Table 1.

以上のように、実施例1〜3において作製された正極活物質は、オリビン型結晶とともに非晶質相も含有する。したがって、当該正極活物質を含む正極を用いてリチウムイオン二次電池を作製した場合、正極活物質と電解質との界面におけるリチウムイオン伝導性が良好なものとなり、繰り返し充放電を行った際の放電容量の低下を抑制できると考えられる。   As described above, the positive electrode active materials produced in Examples 1 to 3 contain an olivine crystal and an amorphous phase. Therefore, when a lithium ion secondary battery is produced using a positive electrode containing the positive electrode active material, the lithium ion conductivity at the interface between the positive electrode active material and the electrolyte is good, and the discharge when repeated charge and discharge is performed. It is thought that the capacity reduction can be suppressed.

Claims (8)

一般式LiA1−xPO(AはMn、Co、Niから選ばれる少なくとも1種、BはNb、Ti、V、CrおよびFeから選ばれる少なくとも1種であり、0<x≦1である)で表されるオリビン型結晶を含有するリチウムイオン二次電池用正極活物質であって、非晶質相を含有することを特徴とするリチウムイオン二次電池用正極活物質。 General formula LiA x B 1-x PO 4 (A is at least one selected from Mn, Co, Ni, B is at least one selected from Nb, Ti, V, Cr and Fe, and 0 <x ≦ 1 A positive electrode active material for a lithium ion secondary battery containing an olivine-type crystal represented by the formula (1), wherein the positive electrode active material for a lithium ion secondary battery comprises an amorphous phase. 組成としてモル%で、LiO 10〜40%、MnO+CoO+NiO 35〜65%およびP 10〜40%を含有することを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。 2. The lithium ion secondary battery according to claim 1, wherein the composition contains, as a mole%, Li 2 O 10-40%, MnO 2 + CoO + NiO 35-65% and P 2 O 5 10-40%. Positive electrode active material. さらに、組成としてモル%で、Nb+TiO+V+Cr+Fe+SiO+B+GeO+Al+Ga+Sb+Bi 0.1〜25%を含有することを特徴とする請求項1または2に記載のリチウムイオン二次電池用正極活物質。 Furthermore, it is Nb 2 O 5 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Fe 2 O 3 + SiO 2 + B 2 O 3 + GeO 2 + Al 2 O 3 + Ga 2 O 3 + Sb 2 O 3 + Bi 2 O 3 in mol% as a composition. The positive electrode active material for a lithium ion secondary battery according to claim 1, comprising 0.1 to 25%. 一般式LiA1−xPOで表されるオリビン型結晶の結晶子サイズが25nm以下であることを特徴とする請求項1〜3のいずれか一項に記載のリチウムイオン二次電池用正極活物質。 4. The lithium ion secondary battery according to claim 1, wherein a crystallite size of the olivine-type crystal represented by the general formula LiA x B 1-x PO 4 is 25 nm or less. Positive electrode active material. 結晶融解開始温度が850℃以下であることを特徴とする請求項1〜4のいずれか一項に記載のリチウムイオン二次電池用正極活物質。   The positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the crystal melting start temperature is 850 ° C or lower. 請求項1〜5のいずれか一項に記載のリチウムイオン二次電池用正極活物質を用いたことを特徴とするリチウムイオン二次電池用正極。   The positive electrode for lithium ion secondary batteries using the positive electrode active material for lithium ion secondary batteries as described in any one of Claims 1-5. 請求項1〜5のいずれかに記載のリチウムイオン二次電池用正極活物質を製造するための方法であって、
(1)原料バッチを加熱して溶融物を得る工程、
(2)溶融物を成形すると同時に、一般式LiA1−xPOで表されるオリビン型結晶を析出させることにより、前駆体無機化合物を得る工程、および、
(3)得られた前駆体無機化合物を粉砕する工程、
を含むことを特徴とすることを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
A method for producing a positive electrode active material for a lithium ion secondary battery according to claim 1,
(1) A step of heating a raw material batch to obtain a melt,
(2) A step of obtaining a precursor inorganic compound by precipitating an olivine type crystal represented by the general formula LiA x B 1-x PO 4 at the same time as forming the melt, and
(3) a step of pulverizing the obtained precursor inorganic compound,
The manufacturing method of the positive electrode active material for lithium ion secondary batteries characterized by including these.
工程(3)において、前駆体無機化合物の粉砕後における粉末X線回折ピーク面積強度が、前駆体無機化合物の粉砕前における粉末X線回折ピーク面積強度の0.95以下であることを特徴とする請求項7に記載のリチウムイオン二次電池用正極活物質の製造方法。
In the step (3), the powder X-ray diffraction peak area intensity after pulverization of the precursor inorganic compound is 0.95 or less of the powder X-ray diffraction peak area intensity before pulverization of the precursor inorganic compound. The manufacturing method of the positive electrode active material for lithium ion secondary batteries of Claim 7.
JP2013047510A 2012-03-21 2013-03-11 Positive active material for lithium ion secondary battery, and method of manufacturing the same Pending JP2013225495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047510A JP2013225495A (en) 2012-03-21 2013-03-11 Positive active material for lithium ion secondary battery, and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012063102 2012-03-21
JP2012063102 2012-03-21
JP2013047510A JP2013225495A (en) 2012-03-21 2013-03-11 Positive active material for lithium ion secondary battery, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013225495A true JP2013225495A (en) 2013-10-31

Family

ID=49595394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047510A Pending JP2013225495A (en) 2012-03-21 2013-03-11 Positive active material for lithium ion secondary battery, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013225495A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450228A (en) * 2016-11-24 2017-02-22 杭州启澄科技有限公司 Composite nanometer material for lithium ion battery and preparing method thereof
JP2017531297A (en) * 2014-10-15 2017-10-19 サクティ3 インコーポレイテッド Amorphous cathode material for battery devices
JP2019114499A (en) * 2017-12-26 2019-07-11 Fdk株式会社 Method for manufacturing all-solid battery and all-solid battery
CN110364706A (en) * 2019-06-27 2019-10-22 华南理工大学 A kind of antimony oxide base negative electrode material and preparation method thereof with high reversible capacity
CN110521036A (en) * 2017-06-27 2019-11-29 日本电气硝子株式会社 Sodium ion secondary battery positive active material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531297A (en) * 2014-10-15 2017-10-19 サクティ3 インコーポレイテッド Amorphous cathode material for battery devices
CN106450228A (en) * 2016-11-24 2017-02-22 杭州启澄科技有限公司 Composite nanometer material for lithium ion battery and preparing method thereof
CN106450228B (en) * 2016-11-24 2017-08-25 赣州雄博新能源科技有限公司 A kind of lithium ion battery composite nano materials and preparation method thereof
CN110521036A (en) * 2017-06-27 2019-11-29 日本电气硝子株式会社 Sodium ion secondary battery positive active material
US11515534B2 (en) 2017-06-27 2022-11-29 Nippon Electric Glass Co., Ltd. Positive electrode active material for sodium-ion secondary battery
JP2019114499A (en) * 2017-12-26 2019-07-11 Fdk株式会社 Method for manufacturing all-solid battery and all-solid battery
CN110364706A (en) * 2019-06-27 2019-10-22 华南理工大学 A kind of antimony oxide base negative electrode material and preparation method thereof with high reversible capacity

Similar Documents

Publication Publication Date Title
TWI692141B (en) Positive electrode material for electric storage device and manufacturing method thereof
CN108923061B (en) Solid electrolyte material and all-solid-state lithium battery
JPWO2018123967A1 (en) All-solid-state lithium ion battery
JP6384661B2 (en) Positive electrode active material for sodium ion secondary battery and method for producing the same
JP5606654B2 (en) Lithium metal composite oxide
WO2014030298A1 (en) All-solid-state lithium ion battery and positive electrode mixture
JP2013225495A (en) Positive active material for lithium ion secondary battery, and method of manufacturing the same
JP2015011943A (en) Positive electrode material for electric power storage device, and method for manufacturing the same
WO2016147853A1 (en) Positive electrode active material powder for sodium ion secondary cells
JP6222433B2 (en) Method for producing negative electrode active material for power storage device
JP5604217B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP2012036049A (en) Process of producing vanadium lithium phosphate carbon composite
TWI699926B (en) Positive electrode active material for alkaline ion secondary battery
JP2014123559A (en) Cathode active material for lithium ion secondary battery and method of manufacturing the same
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2013191297A (en) Positive electrode material for power storage device
JP2014232569A (en) Positive electrode active material for lithium ion secondary batteries, and method for manufacturing the same
WO2017002933A1 (en) Lithium titanate powder for power storage device electrode, active material, and electrode sheet and power storage device using same
JP2016081800A (en) Positive electrode active material for nonaqueous secondary battery and manufacturing method thereof, and secondary battery
JP5831296B2 (en) Olivine-type lithium transition metal oxide and method for producing the same
JP6443701B2 (en) Negative electrode active material for sodium ion secondary battery and method for producing the same
JP2014146431A (en) Positive electrode material for electric power storage devices
JP2017063043A (en) Lithium titanate powder for power storage device electrode, active material material, and electrode sheet and power storage device which are arranged by use thereof
WO2013035830A1 (en) Method for manufacturing lithium-ion secondary cell positive electrode material