JP2013221189A - High-strength thick steel plate excellent in brittle crack propagation arresting capability - Google Patents

High-strength thick steel plate excellent in brittle crack propagation arresting capability Download PDF

Info

Publication number
JP2013221189A
JP2013221189A JP2012094272A JP2012094272A JP2013221189A JP 2013221189 A JP2013221189 A JP 2013221189A JP 2012094272 A JP2012094272 A JP 2012094272A JP 2012094272 A JP2012094272 A JP 2012094272A JP 2013221189 A JP2013221189 A JP 2013221189A
Authority
JP
Japan
Prior art keywords
steel plate
thick steel
crack propagation
strength thick
brittle crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012094272A
Other languages
Japanese (ja)
Inventor
Tadashi Ishikawa
忠 石川
Yuji Funatsu
裕二 船津
Jun Otani
潤 大谷
Hiroyuki Shirahata
浩幸 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012094272A priority Critical patent/JP2013221189A/en
Publication of JP2013221189A publication Critical patent/JP2013221189A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength thick steel plate free from deterioration of weld heat-affected zone toughness, free from anisotropy of mechanical properties, and excellent in brittle crack propagation arresting capability.SOLUTION: A high-strength thick steel plate contains, by mass%, 0.03-0.15% C: 0.1-0.5% Si: 0.5-2.0% Mn: 0.001-0.10% Al: 0.005-0.020% Ti: 0.15-2.00% Ni: and 0.001-0.008% N, with the balance comprising iron with unavoidable impurities, wherein (x) the microstructure is ferrite and/or pearlite structure having bainite as the matrix phase, (y) in the region from the surface of the steel plate to 5% of the plate thickness in the plate thickness direction, (y1) the rate of existence of crystal grains having grain sizes more than 17 μm is less than 5%, or (y2) the rate of existence of crystal grains of grain sizes more than 22 μm is less than 2%, and (z) in the region being outside the above regions and including the central part of the thickness of the plate, the average grain size of the crystal grains is 40 μm or less.

Description

本発明は、脆性亀裂伝播停止性能に優れた高強度厚鋼板に関する。   The present invention relates to a high-strength thick steel plate having excellent brittle crack propagation stopping performance.

造船、建築、タンク、海洋構造物、ラインパイプなどの構造物に用いる厚鋼板には、構造物の脆性破壊を防止するため、脆性破壊の原因となる亀裂の伝播を抑止する能力である脆性亀裂伝播停止性能(以下「アレスト性能」ということがある。)が求められる。   For steel plates used in shipbuilding, construction, tanks, offshore structures, line pipes, and other structures, brittle cracks are the ability to suppress the propagation of cracks that cause brittle fractures in order to prevent brittle fracture of structures. Propagation stopping performance (hereinafter sometimes referred to as “arrest performance”) is required.

近年、構造物の大型化に伴い、降伏応力が390〜500MPa、板厚40〜100mmの高強度厚鋼板が多用されている。しかし、鋼板のアレスト性能は、一般に、強度及び板厚とは相反する傾向にあるので、高強度厚鋼板のアレスト性能を向上させることが望まれている。   In recent years, high-strength thick steel plates having a yield stress of 390 to 500 MPa and a plate thickness of 40 to 100 mm are frequently used with the increase in size of structures. However, since the arrest performance of a steel sheet generally tends to conflict with the strength and the plate thickness, it is desired to improve the arrest performance of a high-strength thick steel plate.

厚鋼板のアレスト性能を向上させる方法として、例えば、結晶粒径を制御する方法(例えば、特許文献1〜3、参照。)、脆化第二相を制御する方法(例えば、特許文献4、参照)、及び、集合組織を制御する方法(例えば、特許文献5、参照。)が知られている。   As a method for improving the arrest performance of a thick steel plate, for example, a method of controlling the crystal grain size (see, for example, Patent Documents 1 to 3), a method of controlling an embrittled second phase (for example, see Patent Document 4,). ) And a method for controlling the texture (see, for example, Patent Document 5).

結晶粒径を制御する方法は、フェライトを母相とし、このフェライトを細粒化して、アレスト性能を向上させるものである。脆化第二相を制御する方法は、母相となるフェライト中に微細な脆化第二相(例えば、マルテンサイト)を分散させて、脆性亀裂先端部において脆化第二相に微小亀裂を発生させることにより、亀裂先端部の応力状態を緩和するものである。   The method for controlling the crystal grain size is to improve the arrest performance by using ferrite as a parent phase and then finely sizing the ferrite. The method of controlling the embrittled second phase is to disperse the fine embrittled second phase (for example, martensite) in the ferrite that is the parent phase, and to form microcracks in the embrittled second phase at the brittle crack tip. By generating it, the stress state at the crack tip is relaxed.

集合組織を制御する方法は、極低炭素(C<0.003%)のベイナイト単相鋼において、圧延面と平行な{211}面の集合組織を発達させるものである。   The method of controlling the texture is to develop a {211} plane texture parallel to the rolling surface in an ultra-low carbon (C <0.003%) bainite single phase steel.

その他、特許文献6に記載の高強度厚鋼板は、鋼板表層部の組織を微細化して延性破壊(以下「シアリップ」ということがある。)領域を形成して、アレスト性能を向上させたものである。また、特許文献7に記載の高強度厚鋼板は、鋼板の板厚方向の3つの領域で、それぞれ集合組織の形態を制御して、アレスト性能を向上させたものである。   In addition, the high-strength thick steel plate described in Patent Document 6 has improved the arrest performance by forming a ductile fracture (hereinafter sometimes referred to as “shear lip”) region by refining the structure of the steel plate surface layer portion. is there. Moreover, the high-strength thick steel plate described in Patent Document 7 has improved arrest performance by controlling the form of the texture in each of three regions in the thickness direction of the steel plate.

特開昭61−235534号公報JP 61-235534 A 特開2003−221619号公報JP 2003-221619 A 特開平05−148542号公報JP 05-148542 A 特開昭59−047323号公報JP 59-047323 A 特開2002−241891号公報JP 2002-241891 A 特許第4058097号公報Japanese Patent No. 4058097 特開2008−169467 号公報JP 2008-169467 A

しかし、高強度厚鋼板のアレスト性能の向上を図る上記従来方法には、次の課題がある。特許文献1〜3に記載の結晶粒径を制御する方法においては、軟質のフェライトを母相にしているので、高強度で板厚の厚い鋼板を得ることが困難である。   However, the above-described conventional method for improving the arrest performance of a high-strength thick steel plate has the following problems. In the method for controlling the crystal grain size described in Patent Documents 1 to 3, it is difficult to obtain a steel plate having high strength and a large thickness because soft ferrite is used as a parent phase.

特許文献4に記載の脆化第二相を制御する方法においては、フェライト中にマルテンサイトが分散しているので、耐脆性亀裂発生特性が著しく劣化してしまう。さらに、フェライトを母相としているので、同様に、高強度で板厚の厚い鋼板を得ることが困難である。   In the method of controlling the embrittled second phase described in Patent Document 4, since martensite is dispersed in the ferrite, the brittle crack resistance is significantly deteriorated. Furthermore, since ferrite is used as a parent phase, it is similarly difficult to obtain a steel plate having high strength and a large thickness.

特許文献5に記載の集合組織を制御する方法においては、組織を極低炭素のベイナイト単相にして、板厚方向に均一な集合組織を発達させているので、アレスト性能を飛躍的に向上させることができない。また、極低炭素鋼を得るための製鋼コストが極めて大きい。   In the method of controlling the texture described in Patent Document 5, the texture is made to be a single phase of ultra-low carbon and a uniform texture is developed in the thickness direction, so that the arrest performance is dramatically improved. I can't. Moreover, the steelmaking cost for obtaining ultra-low carbon steel is very high.

特許文献6に記載の高強度厚鋼板においては、優れたアレスト性能を安定的に確保することができない。この理由については後述する。特許文献7に記載の高強度厚鋼板においては、鋼板の板厚方向において集合組織の形態が異なるので、溶接継手部の欠陥検査などで用いる超音波検査で機械特性の異方性を検出し、必要な補正をしなければならず、構造物への適用の点で課題が残る。   In the high-strength thick steel plate described in Patent Document 6, excellent arrest performance cannot be secured stably. The reason for this will be described later. In the high-strength thick steel sheet described in Patent Document 7, since the form of the texture is different in the thickness direction of the steel sheet, the anisotropy of the mechanical properties is detected by ultrasonic inspection used for defect inspection of the welded joint part, Necessary corrections must be made, and problems remain in terms of application to structures.

本発明は、従来方法における上記課題に鑑み、溶接熱影響部靭性(以下「HAZ靭性」ということがある。)の劣化がなく、かつ、機械特性の異方性がない、アレスト性能に優れた高強度厚鋼板を、低コストで提供することを目的とする。   In view of the above-mentioned problems in the conventional method, the present invention has no deterioration in welding heat-affected zone toughness (hereinafter sometimes referred to as “HAZ toughness”), no mechanical property anisotropy, and excellent arrest performance. An object is to provide a high-strength thick steel plate at a low cost.

上記課題を解決するため、本発明に係る高強度厚鋼板は、以下の通りである。   In order to solve the above problems, the high-strength thick steel plate according to the present invention is as follows.

(1)質量%で、C:0.03〜0.15%、Si:0.1〜0.5%、Mn:0.5〜2.5%、P:0.02%以下、S:0.01%以下、Al:0.001〜0.10%、Ti:0.005〜0.020%、Ni:0.15〜4.00%、N:0.001〜0.008%を含有し、残部が鉄及び不可避的不純物からなる高強度厚鋼板において、
(x)ミクロ組織が、ベイナイトを母相とするフェライト及び/又はパーライト組織であり、かつ、
(y1)鋼板面から板厚方向に板厚の5%の領域では、粒径が17μmを超える結晶粒の存在率が5%未満であり、
(z)上記領域以外の板厚中心部を含む領域では、結晶粒の平均粒径が40μm以下である
ことを特徴とする脆性亀裂伝播停止性能に優れた高強度厚鋼板。
(1) By mass%, C: 0.03-0.15%, Si: 0.1-0.5%, Mn: 0.5-2.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.001 to 0.10%, Ti: 0.005 to 0.020%, Ni: 0.15 to 4.00%, N: 0.001 to 0.008% Containing, in the high-strength thick steel plate, the balance consisting of iron and inevitable impurities,
(X) the microstructure is a ferrite and / or pearlite structure having bainite as a parent phase, and
(Y1) In the region of 5% of the plate thickness in the plate thickness direction from the steel plate surface, the abundance of crystal grains having a particle size exceeding 17 μm is less than 5%,
(Z) A high-strength thick steel plate excellent in brittle crack propagation stopping performance, characterized in that the average grain size of crystal grains is 40 μm or less in a region including the thickness center other than the above region.

(2)前記粒径が17μm以下の結晶粒と、該結晶粒と隣接する結晶粒の結晶方位差が15°以上であることを特徴とする前記(1)に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   (2) The brittle crack propagation stopping performance as described in (1) above, wherein a crystal orientation difference between the crystal grain having a grain size of 17 μm or less and a crystal grain adjacent to the crystal grain is 15 ° or more. Excellent high-strength thick steel plate.

(3)質量%で、C:0.03〜0.15%、Si:0.1〜0.5%、Mn:0.5〜2.5%、P:0.02%以下、S:0.01%以下、Al:0.001〜0.10%、Ti:0.005〜0.020%、Ni:0.15〜4.00%、N:0.001〜0.008%を含有し、残部が鉄及び不可避的不純物からなる高強度厚鋼板において、
(x)ミクロ組織が、ベイナイトを母相とするフェライト及び/又はパーライト組織であり、かつ、
(y2)鋼板面から板厚方向に板厚の5%までの領域では、粒径が22μmを超える結晶粒の存在率が2%未満であり、
(z)上記領域以外の板厚中心部を含む領域では、結晶粒の平均粒径が40μm以下である
ことを特徴とする脆性亀裂伝播停止性能に優れた高強度厚鋼板。
(3) By mass%, C: 0.03-0.15%, Si: 0.1-0.5%, Mn: 0.5-2.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.001 to 0.10%, Ti: 0.005 to 0.020%, Ni: 0.15 to 4.00%, N: 0.001 to 0.008% Containing, in the high-strength thick steel plate, the balance consisting of iron and inevitable impurities,
(X) the microstructure is a ferrite and / or pearlite structure having bainite as a parent phase, and
(Y2) In the region from the steel plate surface to the plate thickness direction up to 5% of the plate thickness, the abundance of crystal grains having a particle size exceeding 22 μm is less than 2%,
(Z) A high-strength thick steel plate excellent in brittle crack propagation stopping performance, characterized in that the average grain size of crystal grains is 40 μm or less in a region including the thickness center other than the above region.

(4)前記粒径が22μm以下の結晶粒と、該結晶粒と隣接する結晶粒の結晶方位差が15°以上であることを特徴とする前記(3)に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   (4) The brittle crack propagation stopping performance as described in (3) above, wherein a crystal orientation difference between the crystal grain having a grain size of 22 μm or less and a crystal grain adjacent to the crystal grain is 15 ° or more. Excellent high-strength thick steel plate.

(5)前記(1)〜(4)のいずれかに記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板において、
(y3)上記鋼板の板厚Th(mm)、板厚中央部のシャルピー破面遷移温度vTrs(℃)、及び、鋼板面のNDT温度NDT(℃)が、下記式(1)を満たす
ことを特徴とする脆性亀裂伝播停止性能に優れた高強度厚鋼板。
NDT(℃)≦A1−C・Th−D・vTrs ・・・(1)
1、C、D:実験的に定まる係数で、
0≦A1≦16.0
1.5≦C≦3.0
0.5≦D≦1.4
(5) In the high-strength thick steel plate excellent in brittle crack propagation stopping performance according to any one of (1) to (4),
(Y3) Thickness Th (mm) of the steel sheet, Charpy fracture surface transition temperature vTrs (° C) at the center of the thickness, and NDT temperature NDT (° C) of the steel sheet surface satisfy the following formula (1). High strength thick steel plate with excellent brittle crack propagation stopping performance.
NDT (° C.) ≦ A 1 −C · Th−D · vTrs (1)
A 1 , C, D: coefficients determined experimentally,
0 ≦ A 1 ≦ 16.0
1.5 ≦ C ≦ 3.0
0.5 ≦ D ≦ 1.4

(6)前記式(1)において、A1=6.032、C=1.994、D=0.7525であることを特徴とする前記(5)に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。 (6) In the formula (1), A 1 = 6.032, C = 1.994, D = 0.7525, and the brittle crack propagation stopping performance described in (5) above is excellent High strength thick steel plate.

(7)前記(1)〜(4)のいずれかに記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板において、
(y4)上記鋼板の板厚Th(mm)、板厚中央部のシャルピー破面遷移温度vTrs(℃)、鋼板面のNDT温度NDT(℃)、及び、設計温度Te(℃)が、下記式(2)を満たす
ことを特徴とする脆性亀裂伝播停止性能に優れた高強度厚鋼板。
NDT(℃)≦A2+B・Te−C・Th−D・vTrs ・・・(2)
2、B、C、D:実験的に定まる係数で、
12.5≦A2≦37.5
1.60≦B≦2.5
1.5≦C≦3.0
0.5≦D≦1.4
(7) In the high-strength thick steel plate excellent in brittle crack propagation stopping performance according to any one of (1) to (4),
(Y4) The plate thickness Th (mm) of the steel plate, the Charpy fracture surface transition temperature vTrs (° C) at the center of the plate thickness, the NDT temperature NDT (° C) of the steel plate surface, and the design temperature Te (° C) are as follows: A high-strength thick steel plate excellent in brittle crack propagation stopping performance characterized by satisfying (2).
NDT (° C) ≤ A 2 + B · Te-C · Th-D · vTrs (2)
A 2 , B, C, D: coefficients determined experimentally,
12.5 ≦ A 2 ≦ 37.5
1.60 ≦ B ≦ 2.5
1.5 ≦ C ≦ 3.0
0.5 ≦ D ≦ 1.4

(8)前記式(2)において、A2=24.69、B=1.865、C=1.994、D=0.7525であることを特徴とする前記(7)に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。 (8) In the above formula (2), A 2 = 24.69, B = 1.865, C = 1.994, D = 0.7525, The brittle crack according to (7) High-strength thick steel plate with excellent propagation stop performance.

(9)前記鋼板面から板厚方向に板厚の5%までの領域では、圧延方向と垂直な面に対し±15°をなす{100}面が、面積率で30%以下存在することを特徴とする前記(1)〜(8)のいずれかに記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   (9) In the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, the {100} plane forming ± 15 ° with respect to the plane perpendicular to the rolling direction is present in an area ratio of 30% or less. The high-strength thick steel plate having excellent brittle crack propagation stopping performance according to any one of the above (1) to (8).

(10)前記鋼板面から板厚方向に板厚の5%までの領域以外の板厚中心部を含む領域では、圧延方向と垂直な面に対し±15°をなす{100}面が、面積率で15%以下存在することを特徴とする前記(1)〜(9)のいずれかに記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   (10) In the region including the central portion of the plate thickness other than the region up to 5% of the plate thickness in the plate thickness direction from the steel plate surface, the {100} plane forming ± 15 ° with respect to the plane perpendicular to the rolling direction has an area The high-strength thick steel plate excellent in brittle crack propagation stopping performance according to any one of the above (1) to (9), characterized by being present at a rate of 15% or less.

(11)前記高強度厚鋼板の板厚が40mm以上であることを特徴とする前記(1)〜(10)のいずれかに記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   (11) The high-strength thick steel plate excellent in brittle crack propagation stopping performance according to any one of (1) to (10), wherein the high-strength thick steel plate has a thickness of 40 mm or more.

(12)前記高強度厚鋼板の降伏応力が390MPa以上であることを特徴とする前記(1)〜(11)のいずれかに記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   (12) The high strength thick steel plate excellent in brittle crack propagation stopping performance according to any one of (1) to (11), wherein the yield strength of the high strength thick steel plate is 390 MPa or more.

(13)前記高強度厚鋼板が、さらに、質量%で、Cu:0.1〜1.0%、Cr:0.1〜1.0%、Mo:0.05〜0.50%、Nb:0.005〜0.05%、V:0.02〜0.15%、及び、B:0.0003〜0.003%の1種又は2種以上を含有することを特徴とする前記(1)〜(12)のいずれかに記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   (13) The high-strength thick steel plate is further mass%, Cu: 0.1 to 1.0%, Cr: 0.1 to 1.0%, Mo: 0.05 to 0.50%, Nb : 0.005-0.05%, V: 0.02-0.15%, and B: 0.0003-0.003% 1 type or 2 types or more, A high-strength thick steel plate excellent in brittle crack propagation stopping performance according to any one of 1) to (12).

(14)前記高強度厚鋼板が、さらに、質量%で、Ca:0.0003〜0.005%、Mg:0.0003〜0.005%、及び、REM:0.0003〜0.005%の1種又は2種以上を含有することを特徴とする前記(1)〜(13)のいずれかに記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   (14) The high-strength thick steel plate is further mass%, Ca: 0.0003 to 0.005%, Mg: 0.0003 to 0.005%, and REM: 0.0003 to 0.005%. The high-strength thick steel plate having excellent brittle crack propagation stopping performance according to any one of the above (1) to (13), comprising one or more of the following.

本発明によれば、HAZ靭性の劣化がなく、かつ、機械特性の異方性がない、アレスト性能に優れた高強度厚鋼板を低コストで提供することができる。   According to the present invention, it is possible to provide a high-strength thick steel plate excellent in arrest performance without degradation of HAZ toughness and without anisotropy in mechanical properties at low cost.

アレスト性能が目標6000N/mm1.5以上に達している鋼板の表面から板厚方向に板厚の5%までの領域における結晶粒径分布と結晶粒径の累積分布を示す図である。Arrest performance is a diagram showing the grain size distribution and cumulative distribution of grain size in the region from the surface of the steel sheet has reached more target 6000 N / mm 1.5 to 5% of the thickness in the thickness direction. アレスト性能が目標6000N/mm1.5以上に達していない鋼板の表面から板厚方向に板厚の5%までの領域における結晶粒径分布と結晶粒径の累積分布を示す図である。It is a figure which shows the crystal grain size distribution and the cumulative distribution of crystal grain size in the area | region from the surface of the steel plate which does not reach the target 6000 N / mm 1.5 or more to the plate thickness direction to 5% of plate thickness. アレスト性能が目標6000N/mm1.5以上に達していない別の鋼板の表面から板厚方向に板厚の5%までの領域における結晶粒径分布と結晶粒径の累積分布を示す図である。It is a figure which shows the cumulative distribution of the crystal grain size distribution in the area | region to 5% of plate | board thickness from the surface of another steel plate whose arrest performance has not reached the target of 6000 N / mm 1.5 or more to the plate thickness direction. 厚鋼板の表面から板厚方向に板厚の5%までの領域における95%最大値及び98%最大値の粒径と、鋼板のアレスト性能の関係を示す図である。It is a figure which shows the relationship between the 95% maximum value in the area | region to 5% of board thickness from the surface of a thick steel plate, the particle size of 98% maximum value, and the arrest performance of a steel plate.

本発明の脆性亀裂伝播停止性能に優れた高強度厚鋼板(以下「本発明鋼板」ということがある。)は、ミクロ組織を、ベイナイトを母相とするフェライト及び/又はパーライト組織とし、所要の機械的特性を確保し、かつ、板厚方向の結晶粒径を制御して、アレスト性能を向上させることを基本思想とするものである。   The high-strength thick steel plate excellent in brittle crack propagation stopping performance of the present invention (hereinafter sometimes referred to as “the present invention steel plate”) has a microstructure having a ferrite and / or pearlite structure with bainite as a parent phase, The basic idea is to improve the arrest performance by ensuring the mechanical properties and controlling the crystal grain size in the plate thickness direction.

具体的には、本発明鋼板は、質量%で、C:0.03〜0.15%、Si:0.1〜0.5%、Mn:0.5〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.001〜0.10%、Ti:0.005〜0.020%、Ni:0.15〜4.00%、N:0.001〜0.008%を含有し、残部が鉄及び不可避的不純物からなる高強度厚鋼板において、
(x)ミクロ組織が、ベイナイトを母相とするフェライト及び/又はパーライト組織であり、かつ、
(y1)鋼板面から板厚方向に板厚の5%までの領域では、粒径が17μmを超える結晶粒の存在率が5%未満であり、又は、
(y2)鋼板面から板厚方向に板厚の5%までの領域では、粒径が22μmを超える結晶粒の存在率が2%未満であり、
(z)上記領域以外の板厚中心部を含む領域では、結晶粒の平均粒径が40μm以下である
ことを特徴とする。
Specifically, the steel sheet of the present invention is in mass%, C: 0.03 to 0.15%, Si: 0.1 to 0.5%, Mn: 0.5 to 2.0%, P: 0 0.02% or less, S: 0.01% or less, Al: 0.001 to 0.10%, Ti: 0.005 to 0.020%, Ni: 0.15 to 4.00%, N: 0.00. In a high-strength thick steel plate containing 001 to 0.008%, the balance being iron and inevitable impurities,
(X) the microstructure is a ferrite and / or pearlite structure having bainite as a parent phase, and
(Y1) In the region from the steel plate surface to the plate thickness direction up to 5% of the plate thickness, the abundance of crystal grains having a particle size exceeding 17 μm is less than 5%, or
(Y2) In the region from the steel plate surface to the plate thickness direction up to 5% of the plate thickness, the abundance of crystal grains having a particle size exceeding 22 μm is less than 2%,
(Z) The region including the central portion of the plate thickness other than the above region is characterized in that the average grain size of crystal grains is 40 μm or less.

また、本発明鋼板は、さらに、
(y3)上記鋼板の板厚Th(mm)、板厚中央部のシャルピー破面遷移温度vTrs(℃)、及び、鋼板面のNDT温度NDT(℃)が、下記式(1)を満たす、又は、
(y4)上記鋼板の板厚Th(mm)、板厚中央部のシャルピー破面遷移温度vTrs(℃)、鋼板面のNDT温度NDT(℃)、及び、設計温度Te(℃)が、下記式(2)を満たす
ことを特徴とする。
The steel sheet of the present invention further includes
(Y3) The plate thickness Th (mm) of the steel plate, the Charpy fracture surface transition temperature vTrs (° C.) at the center of the plate thickness, and the NDT temperature NDT (° C.) of the steel plate surface satisfy the following formula (1), or ,
(Y4) The plate thickness Th (mm) of the steel plate, the Charpy fracture surface transition temperature vTrs (° C) at the center of the plate thickness, the NDT temperature NDT (° C) of the steel plate surface, and the design temperature Te (° C) are as follows: (2) is satisfied.

NDT(℃)≦A2−C・Th−D・vTrs ・・・(1)
1、C、D:実験的に定まる係数
NDT(℃)≦A1+B・Te−C・Th−D・vTrs ・・・(2)
2、B、C、D:実験的に定まる係数
NDT (° C.) ≦ A 2 −C · Th−D · vTrs (1)
A 1 , C, D: coefficients determined experimentally
NDT (° C) ≦ A 1 + B · Te−C · Th−D · vTrs (2)
A 2 , B, C, D: coefficients determined experimentally

以下、本発明鋼板について説明する。   Hereinafter, the steel sheet of the present invention will be described.

まず、本発明鋼板の成分組成を限定する理由について説明する。なお、%は質量%を意味する。   First, the reason which limits the component composition of this invention steel plate is demonstrated. In addition,% means the mass%.

Cは、強度と靭性を確保する元素である。添加効果を得るため、0.03%以上を添加する。0.15%を超えると、良好なHAZ靭性を確保するのが難しくなるので、上限を0.15%とする。   C is an element that ensures strength and toughness. In order to obtain the effect of addition, 0.03% or more is added. If it exceeds 0.15%, it becomes difficult to ensure good HAZ toughness, so the upper limit is made 0.15%.

Siは、脱酸元素及び強化元素として有効な元素である。添加効果を得るため、0.1%以上を添加する。0.5%を超えると、HAZ靭性が劣化するので、上限を0.5%とする。   Si is an effective element as a deoxidizing element and a strengthening element. In order to obtain the effect of addition, 0.1% or more is added. If it exceeds 0.5%, the HAZ toughness deteriorates, so the upper limit is made 0.5%.

Mnは、強度と靭性を経済的に確保する元素である。添加効果を得るため、0.5%以上を添加する。2.5%を超えると、中心偏析が顕著となり、偏析部分とHAZの靭性が劣化するので、上限を2.5%とする。   Mn is an element that economically secures strength and toughness. In order to obtain the effect of addition, 0.5% or more is added. If it exceeds 2.5%, the center segregation becomes prominent and the segregation part and the toughness of the HAZ deteriorate, so the upper limit is made 2.5%.

Pは、不純物元素であり、HAZ靭性を安定的に確保するため、0.02%以下に低減する。   P is an impurity element and is reduced to 0.02% or less in order to stably secure the HAZ toughness.

Sも、不純物元素であり、鋼板の機械特性及びHAZ靭性を安定的に確保するため、0.01%以下に低減する。好ましくは0.005%以下である。   S is also an impurity element, and is reduced to 0.01% or less in order to stably secure the mechanical properties and HAZ toughness of the steel sheet. Preferably it is 0.005% or less.

Alは、脱酸を担い、不純物元素のOを低減する元素である。MnやSiも脱酸に寄与するが、Mn、Siが添加されている場合でも、0.001%以上を添加する。0.10%を超えると、アルミナ系の粗大酸化物や、そのクラスターが生成し、鋼板の機械特性及びHAZ靭性が劣化するので、上限を0.10%とする。   Al is an element responsible for deoxidation and reducing O as an impurity element. Mn and Si also contribute to deoxidation, but even when Mn and Si are added, 0.001% or more is added. If it exceeds 0.10%, alumina-based coarse oxides and clusters thereof are formed, and the mechanical properties and HAZ toughness of the steel sheet deteriorate, so the upper limit is made 0.10%.

Tiは、本発明鋼板において重要な元素である。TiNを形成し、鋼片の加熱時にオーステナイト粒径が大きくなることを抑制する元素である。オーステナイト粒径が大きくなると、変態後のベイナイトの粒径も大きくなるので、所望のベイナイト粒径を得るために、0.005%以上を添加する。0.020%を超えると、TiCが生成してHAZ靭性が低下するので、上限を0.020%とする。   Ti is an important element in the steel sheet of the present invention. It is an element that forms TiN and suppresses an increase in the austenite grain size when the steel slab is heated. When the austenite particle size becomes large, the particle size of the bainite after transformation also becomes large. Therefore, in order to obtain a desired bainite particle size, 0.005% or more is added. If it exceeds 0.020%, TiC is generated and the HAZ toughness decreases, so the upper limit is made 0.020%.

Niは、本発明鋼板において重要な元素である。Ni量を調整し、かつ、鋼板冷却過程における冷却速度を制御することにより、ベイナイトのサブユニット、即ち、結晶方位差が15°以上の界面を粒界と定義した場合の結晶粒を微細化することができる。この結晶粒微細化効果を得るため、0.15%以上を添加する。Niは高価な元素であり、過剰添加はコストの上昇を招くので、上限を4.00%とする。好ましくは0.30〜1.50%である。   Ni is an important element in the steel sheet of the present invention. By adjusting the amount of Ni and controlling the cooling rate in the steel sheet cooling process, the bainite subunit, that is, the crystal grain when the interface having a crystal orientation difference of 15 ° or more is defined as the grain boundary is refined. be able to. In order to obtain this crystal grain refining effect, 0.15% or more is added. Ni is an expensive element, and excessive addition causes an increase in cost, so the upper limit is made 4.00%. Preferably it is 0.30 to 1.50%.

Nは、本発明鋼板において重要な元素である。TiNを形成するため、0.001%以上を添加する。Nの過剰添加は、鋼板の脆化を招くので、上限を0.008%とする。好ましくは0.003〜0.006%である。   N is an important element in the steel sheet of the present invention. In order to form TiN, 0.001% or more is added. Since excessive addition of N causes embrittlement of the steel sheet, the upper limit is made 0.008%. Preferably it is 0.003 to 0.006%.

本発明鋼板は、上記元素の他に、強度及び靭性を向上させるため、質量%で、Cu:0.1〜1.0%、Cr:0.1〜1.0%、Mo:0.05〜0.50%、Nb:0.005〜0.05%、V:0.02〜0.15%、B:0.0003〜0.003%の1種又は2種以上を含有してもよい。ただし、上限を超えると、HAZ靭性や溶接性が低下する。   In order to improve strength and toughness in addition to the above elements, the steel sheet of the present invention is in mass%, Cu: 0.1 to 1.0%, Cr: 0.1 to 1.0%, Mo: 0.05 -0.50%, Nb: 0.005-0.05%, V: 0.02-0.15%, B: 0.0003-0.003% 1 type or 2 types or more Good. However, if the upper limit is exceeded, the HAZ toughness and weldability are reduced.

さらに、本発明鋼板は、上記添加元素の他に、質量%で、Ca:0.0003〜0.005%、Mg:0.0003〜0.005%、REM:0.0003〜0.005%の1種又は2種以上を含有してもよい。これらの元素の添加により、HAZ靭性が向上するが、上限を超えると、粗大な介在物が生成し、HAZ靭性が逆に低下する。   Further, the steel sheet of the present invention is, in addition to the above additive elements, in mass%, Ca: 0.0003 to 0.005%, Mg: 0.0003 to 0.005%, REM: 0.0003 to 0.005%. 1 type (s) or 2 or more types may be contained. By adding these elements, the HAZ toughness is improved, but if the upper limit is exceeded, coarse inclusions are generated, and the HAZ toughness is reduced.

以下、本発明鋼板の要件について説明する。   Hereinafter, the requirements for the steel sheet of the present invention will be described.

本発明鋼板の要件(x)の技術的意義について説明する。ミクロ組織の母相がフェライトであると、所要の強度を確保することが難しい。本発明鋼板では、所要の強度を確保するため、ミクロ組織を、ベイナイトを母相とする組織とする。そして、ミクロ組織の第二相を、フェライト及び/又はパーライトとすることで、所要の機械特性を確保する。   The technical significance of requirement (x) of the steel sheet of the present invention will be described. If the matrix phase of the microstructure is ferrite, it is difficult to ensure the required strength. In the steel sheet of the present invention, the microstructure is a structure having bainite as a parent phase in order to ensure a required strength. And a required mechanical characteristic is ensured by making the 2nd phase of a microstructure into a ferrite and / or pearlite.

次に、本発明鋼板の要件(y1)及び要件(y2)の技術的意義について説明する。   Next, the technical significance of requirement (y1) and requirement (y2) of the steel sheet of the present invention will be described.

一般に、ベイナイトの粒径は、ベイナイトに変態する前のオーステナイトの粒径に支配される。それ故、ベイナイトの粒径を細粒化することは難しいが、特許文献6には、Ni添加量を多くすると結晶粒が微細化し、さらに、鋼板の冷却速度を速くすると結晶粒が微細化することが開示されている(特許文献6の図1、参照)。   In general, the particle size of bainite is governed by the particle size of austenite before transformation to bainite. Therefore, although it is difficult to reduce the grain size of bainite, in Patent Document 6, the crystal grains become finer when the Ni addition amount is increased, and further, the crystal grains become finer when the cooling rate of the steel sheet is increased. (See FIG. 1 of Patent Document 6).

板厚40mm以上の鋼板を冷却する場合、通常、鋼板面から板厚方向に板厚の10%までの領域(以下「鋼板表裏層部」ということがある。)では、冷却速度が約30℃/秒であり、鋼板表裏層部以外の板厚中心部を含む領域(以下「鋼板中心部」ということがある。)では、冷却速度が約5℃/秒である。   When cooling a steel plate having a thickness of 40 mm or more, the cooling rate is usually about 30 ° C. in the region from the steel plate surface to the plate thickness direction up to 10% of the plate thickness (hereinafter sometimes referred to as “steel plate front / back layer portion”). In the region including the center portion of the plate thickness other than the steel plate front and back layer portions (hereinafter sometimes referred to as “steel plate center portion”), the cooling rate is about 5 ° C./second.

このような厚鋼板の冷却態様において、Ni量が0.15質量%以上であれば、鋼板表裏層部の結晶粒径は15μm以下となり、鋼板中心部の結晶粒径は40μm以下となる(特許文献6の図1、参照)。   In such a cooling mode of a thick steel plate, if the Ni content is 0.15% by mass or more, the crystal grain size of the steel plate front and back layer portions is 15 μm or less, and the crystal grain size of the steel plate center portion is 40 μm or less (patent) See FIG. 1 of reference 6.)

特許文献6には、結晶粒径が、鋼板表裏層部で15μm以下、鋼板中心部で40μm以下の厚鋼板は、−10℃におけるKcaが6000N/mm1.5以上の高アレスト性能を示すことが開示されているが、本発明者らの調査によれば、結晶粒径が上記条件を満たしても、目標(6000N/mm1.5以上)のアレスト性能が得られない場合がある。即ち、前述したように、特許文献6に記載の高強度厚鋼板においては、優れたアレスト性能を安定して確保することが難しい。 Patent Document 6 discloses that a thick steel plate having a crystal grain size of 15 μm or less at the front and back layers of the steel plate and 40 μm or less at the center of the steel plate exhibits high arrest performance with a Kca at −10 ° C. of 6000 N / mm 1.5 or more. However, according to the investigation by the present inventors, even if the crystal grain size satisfies the above conditions, the target (6000 N / mm 1.5 or more) arrest performance may not be obtained. That is, as described above, in the high-strength thick steel plate described in Patent Document 6, it is difficult to stably ensure excellent arrest performance.

本発明者らは、目標(6000N/mm1.5以上)のアレスト性能が得られない原因を解明するため、アレスト性能が目標に達している鋼板の脆性亀裂伝播破面と、アレスト性能が目標に達していない鋼板の脆性亀裂伝播破面を詳細に観察した。その結果、アレスト性能が目標に達していない鋼板では、鋼板面から板厚方向に板厚10%までの領域の結晶粒の平均粒径が15μm以下であっても、シアリップが形成され難いことが判明した。 In order to elucidate the reason why the arrest performance of the target (6000 N / mm 1.5 or more) cannot be obtained, the present inventors have reached the target of the brittle crack propagation fracture surface of the steel plate in which the arrest performance has reached the target and the arrest performance. The brittle crack propagation fracture surface of the steel plate was not observed in detail. As a result, it is difficult to form a shear lip even when the average grain size of the crystal grains in the region from the steel plate surface to the plate thickness direction of 10% is 15 μm or less in the steel plate whose arrest performance has not reached the target. found.

即ち、アレスト性能が目標に達している鋼板と、アレスト性能が目標に達していない鋼板においては、シアリップの形成態様が実質的に異なることが判明した。   That is, it has been found that the formation of shear lip is substantially different between a steel plate that has reached the target of arrest performance and a steel plate that has not reached the target of arrest performance.

さらに、シアリップの形成が始まる領域の破面を詳細に観察した結果、シアリップには、比較的粗大な壁開破面が存在し、その破面に、粗大なフェライト粒が現出していることが判明した。また、その粗大な壁開破面は、鋼板表層部に近いほど、多数存在していることが判明した。   Furthermore, as a result of observing the fracture surface in the region where shear lip formation begins in detail, the shear lip has a relatively coarse wall opening surface, and coarse ferrite grains appear on the fracture surface. found. In addition, it was found that the rougher the wall breaking surface, the closer to the surface layer portion of the steel plate, the greater the number.

そこで、本発明者らは、鋼板の板厚方向において、鋼板の表層部から中心部にかけてミクロ組織を詳細に観察した。その結果、鋼板表層部に近いほど、粗大なフェライトが、僅かの量ではあるが存在していることが判明した。   Then, the present inventors observed the microstructure in detail from the surface layer part to the center part of the steel sheet in the thickness direction of the steel sheet. As a result, it was found that the closer to the surface layer portion of the steel sheet, the coarser the ferrite, although a small amount was present.

破壊現象は、機械特性が最も弱い領域の組織態様に支配されるので、平均結晶粒径が15μm以下であっても、粒径が15μmを超える粗大フェライトが僅かでも存在すれば、その粗大フェライトに、鋼板の破壊現象が支配されると考えられる。   Since the fracture phenomenon is governed by the structure of the weakest region of mechanical properties, even if the average crystal grain size is 15 μm or less, if there is even a small amount of coarse ferrite having a grain size exceeding 15 μm, the coarse ferrite will It is thought that the destruction phenomenon of the steel sheet is dominated.

ミクロ組織の観察で、鋼板表層部に粗大フェライトが多く存在していることが解ったので、本発明者らは、粗大フェライトの存在がアレスト性能に及ぼす影響を調査するため、鋼板表層部を、研削する厚さを変えて研削し、ESSO試験を行った。   By observing the microstructure, it has been found that a large amount of coarse ferrite is present in the steel sheet surface layer part, so that the present inventors investigated the influence of the presence of coarse ferrite on the arrest performance, the steel sheet surface layer part, An ESSO test was performed by changing the thickness to be ground.

その結果、鋼板表層部から板厚方向に板厚の5%に相当する厚さを研削すると、目標のアレスト性能(6000N/mm1.5以上)を確保できることが判明した。このことは、本発明の基礎をなす知見である。 As a result, it was found that the target arrest performance (6000 N / mm 1.5 or more) can be secured by grinding a thickness corresponding to 5% of the plate thickness in the plate thickness direction from the surface layer portion of the steel plate. This is the knowledge that forms the basis of the present invention.

次に、本発明者らは、上記知見を踏まえ、鋼板面から板厚方向に板厚の5%の領域における結晶粒径分布を調査した。その結果の一部を図1〜3に示す。   Next, the inventors investigated the crystal grain size distribution in a region of 5% of the plate thickness from the steel plate surface in the plate thickness direction based on the above findings. A part of the result is shown in FIGS.

図1に、アレスト性能が目標(6000N/mm1.5以上)に達している鋼板(以下「鋼板1」ということがある。)の表面から板厚方向に板厚の5%の領域における結晶粒径分布と結晶粒径の累積分布を示す。 FIG. 1 shows the crystal grain size in the region of 5% of the plate thickness from the surface of the steel plate (hereinafter referred to as “steel plate 1”) whose arrest performance has reached the target (6000 N / mm 1.5 or more). The cumulative distribution of the distribution and crystal grain size is shown.

図2に、アレスト性能が目標(6000N/mm1.5以上)に達していない鋼板(以下「鋼板2」ということがある。)の表面から板厚方向に板厚の5%の領域における結晶粒径分布と結晶粒径の累積分布を示す。 FIG. 2 shows the crystal grain size in the region of 5% of the plate thickness from the surface of the steel plate (hereinafter referred to as “steel plate 2”) whose arrest performance has not reached the target (6000 N / mm 1.5 or more). The cumulative distribution of the distribution and crystal grain size is shown.

図3に、アレスト性能が目標(6000N/mm1.5以上)に達していない別の鋼板(以下「鋼板3」ということがある。)の表面から板厚方向に板厚の5%の領域における結晶粒径分布と結晶粒径の累積分布を示す。 FIG. 3 shows a crystal in the region of 5% of the plate thickness in the plate thickness direction from the surface of another steel plate (hereinafter referred to as “steel plate 3”) whose arrest performance has not reached the target (6000 N / mm 1.5 or more). The cumulative distribution of grain size distribution and crystal grain size is shown.

なお、鋼板1〜3は、成分組成が、質量%で、C:0.08%、Si:0.2%、Mn:1.4%、P:0.005%、S:0.005%、Al:0.01%、Ti:0.008%、Ni:1.0%、N:0.002%、Nb:0.015%、B:0.001%、Ca:0.001%であり、板厚が70mmの厚鋼板である。   In addition, as for the steel plates 1-3, a component composition is the mass%, C: 0.08%, Si: 0.2%, Mn: 1.4%, P: 0.005%, S: 0.005% Al: 0.01%, Ti: 0.008%, Ni: 1.0%, N: 0.002%, Nb: 0.015%, B: 0.001%, Ca: 0.001% There is a thick steel plate having a thickness of 70 mm.

鋼板1〜3のミクロ組織の結晶粒径分布は、次のように求めた。鋼板の板厚方向に、鋼板表面から0.5mmの深さ位置、板厚の2.5%の深さ位置、及び、板厚の5%の深さ位置において、それぞれ10視野につき粒径を測定して求めた。   The crystal grain size distribution of the microstructures of the steel plates 1 to 3 was determined as follows. In the plate thickness direction of the steel plate, the grain size is determined for each 10 fields at a depth of 0.5 mm from the steel plate surface, a depth position of 2.5% of the plate thickness, and a depth position of 5% of the plate thickness Determined by measurement.

鋼板1〜3の平均結晶粒径は15μm以下であるが、図2及び図3に示す結晶粒径分布によれば、アレスト性能が目標(6000N/mm1.5以上)に達していない鋼板2及び3においては、鋼板面から板厚方向に板厚の5%までの領域に、粒径が大きい結晶粒が多数存在していることが解る。 The average crystal grain size of the steel plates 1 to 3 is 15 μm or less, but according to the crystal grain size distribution shown in FIGS. 2 and 3, the steel plates 2 and 3 whose arrest performance has not reached the target (6000 N / mm 1.5 or more). In FIG. 5, it can be seen that a large number of crystal grains having a large grain size exist in a region from the steel plate surface to 5% of the plate thickness in the plate thickness direction.

図1〜3に示す結晶粒径の累積分布において、98%最大値(累積頻度が98%の場合における最大の結晶粒径)をみると、アレスト性能が目標(6000N/mm1.5以上)に達している鋼板1では16μmであり(図1、参照)、アレスト性能が目標に達していない鋼板2及び鋼板3では、それぞれ、25μm及び24μmである(図2及び3、参照)。 In the cumulative distribution of the crystal grain size shown in FIGS. 1 to 3, when the 98% maximum value (maximum crystal grain size when the cumulative frequency is 98%) is seen, the arrest performance reaches the target (6000 N / mm 1.5 or more). The steel plate 1 is 16 μm (see FIG. 1), and the steel plate 2 and the steel plate 3 whose arrest performance does not reach the target are 25 μm and 24 μm, respectively (see FIGS. 2 and 3).

このように、アレスト性能が目標に達している鋼板1と、アレスト性能が目標に達していない鋼板2及び3においては、粗大フェライトの粒径の点で、有意の差が存在する。即ち、鋼板の表面から板厚方向に板厚の5%までの領域に存在する粗大フェライトが、脆性破壊し易いために、シアリップの形成を阻害するので、鋼板のアレスト性能の良否を支配しているといえる。   Thus, there is a significant difference in the grain size of the coarse ferrite between the steel plate 1 whose arrest performance has reached the target and the steel plates 2 and 3 whose arrest performance has not reached the target. That is, coarse ferrite existing in the region from the surface of the steel plate to 5% of the plate thickness in the plate thickness direction easily breaks brittlely, and thus inhibits the formation of shear lip. It can be said that.

また、上記累積分布において、95%最大値(累積頻度が95%の場合における最大の結晶粒径)をみると、アレスト性能が目標(6000N/mm1.5以上)に達している鋼板1では15μmであり(図1、参照)、アレスト性能が目標に達していない鋼板2及び鋼板3では、それぞれ、18μm及び22μmである(図2及び3、参照)。 Further, in the cumulative distribution, when the 95% maximum value (maximum crystal grain size when the cumulative frequency is 95%) is seen, the steel plate 1 whose arrest performance has reached the target (6000 N / mm 1.5 or more) is 15 μm. Yes (see FIG. 1), the steel plate 2 and the steel plate 3 whose arrest performance does not reach the target are 18 μm and 22 μm, respectively (see FIGS. 2 and 3).

このように、アレスト性能が目標に達している鋼板1と、アレスト性能が目標に達していない鋼板2及び3においては、粗大フェライトの粒径の点で、依然として有意の差が存在する。即ち、前述したように、鋼板の表面から板厚方向に板厚の5%までの領域に存在する粗大フェライトが、鋼板のアレスト性能の良否を支配しているのである。このことは、本発明者らが見いだした新規な知見である。   Thus, there is still a significant difference in terms of the grain size of the coarse ferrite between the steel plate 1 whose arrest performance has reached the target and the steel plates 2 and 3 whose arrest performance has not reached the target. That is, as described above, the coarse ferrite existing in the region from the surface of the steel plate to 5% of the plate thickness in the plate thickness direction dominates the quality of the arrest performance of the steel plate. This is a new finding found by the present inventors.

そこで、本発明者らは、鋼板面から板厚方向に板厚の5%までの領域における95%最大値及び98%最大値と、鋼板のアレスト性能の関係を詳細に調査した。その結果を、図4に示す。95%最大値が17μmを超えると、アレスト性能は目標以下に低下し、また、98%最大値が22μmを超えると、同じく、アレスト性能は目標以下に低下することが解る。   Therefore, the present inventors investigated in detail the relationship between the 95% maximum value and 98% maximum value in the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, and the arrest performance of the steel plate. The result is shown in FIG. It can be seen that when the 95% maximum value exceeds 17 μm, the arrest performance decreases below the target, and when the 98% maximum value exceeds 22 μm, the arrest performance decreases similarly below the target.

即ち、鋼板表裏面から板厚方向に板厚の5%までの領域において、粒径が17μmを超える結晶粒の存在率が5%未満であると、目標とするアレスト性能が得られ、また、粒径が22μmを超える結晶粒の存在率が2%未満であると、同様に、目標とするアレスト性能が得られることが解る。   That is, in the region from the front and back surfaces of the steel sheet to 5% of the sheet thickness in the sheet thickness direction, if the abundance of crystal grains having a grain size exceeding 17 μm is less than 5%, the target arrest performance is obtained, It can be seen that when the abundance of crystal grains having a grain size exceeding 22 μm is less than 2%, the desired arrest performance can be obtained.

一般に、結晶粒径が微細であると、次の理由でアレスト性能が向上する。隣接する結晶粒の結晶方位が異なると、亀裂が隣接する結晶粒に伝播するとき、亀裂の伝播方向が変化する。亀裂の伝播方向の変化により、ミクロ組織内に未破断領域が生じ、亀裂伝播応力は分散されて、亀裂閉口応力となる。その結果、ミクロ組織内で亀裂を伝播させる駆動力が低下して、アレスト性能が向上する。   Generally, when the crystal grain size is fine, the arrest performance is improved for the following reason. If the crystal orientations of the adjacent crystal grains are different, the propagation direction of the cracks changes when the crack propagates to the adjacent crystal grains. Due to the change in the propagation direction of the crack, an unbroken region is generated in the microstructure, and the crack propagation stress is dispersed and becomes a crack closing stress. As a result, the driving force for propagating cracks in the microstructure is reduced, and the arrest performance is improved.

また、ミクロ組織内の未破断領域が最終的に延性破壊する際、脆性破壊に要するエネルギーを吸収するので、アレスト性能が向上する。   In addition, when the unbroken region in the microstructure finally undergoes ductile fracture, energy required for brittle fracture is absorbed, so that the arrest performance is improved.

結晶粒が微細で、粗大結晶粒が存在しない鋼板の表層部では、シアリップが形成され易いので、脆性破壊が生じ難い。鋼板表層部の結晶粒を細粒化し、かつ、粗大結晶粒の存在率を小さくすれば、シアリップ領域の形成を促進できる。   In the surface layer portion of a steel plate having fine crystal grains and no coarse crystal grains, a shear lip is easily formed, so that brittle fracture hardly occurs. Formation of the shear lip region can be promoted by reducing the crystal grains in the surface layer portion of the steel sheet and reducing the abundance of coarse crystal grains.

以上の知見に基づいて、本発明鋼板においては、
(y1)鋼板面から板厚方向に板厚の5%までの領域では、粒径が17μmを超える結晶粒の存在率を5%未満とし、又は、
(y2)鋼板面から板厚方向に板厚の5%までの領域では、粒径が22μmを超える結晶粒の存在率を2%未満とする。
Based on the above knowledge, in the steel sheet of the present invention,
(Y1) In the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, the abundance of crystal grains having a grain size exceeding 17 μm is less than 5%, or
(Y2) In the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, the abundance of crystal grains having a grain size exceeding 22 μm is set to less than 2%.

次に、本発明鋼板の要件(y3)及び要件(y4)の技術的意義について説明する。   Next, the technical significance of requirement (y3) and requirement (y4) of the steel sheet of the present invention will be described.

本発明者らは、本発明鋼板の脆性亀裂伝播停止性能に加え、基本的機械特性である耐衝撃性能について調査した。その結果、本発明鋼板は、鋼板の板厚Th(mm)、板厚中央部のシャルピー破面遷移温度vTrs(℃)、及び、鋼板面のNDT温度NDT(℃)が、下記式(1)を満たすことが判明した。   The present inventors investigated not only the brittle crack propagation stopping performance of the steel sheet of the present invention but also impact resistance performance, which is a basic mechanical property. As a result, in the steel sheet of the present invention, the plate thickness Th (mm) of the steel plate, the Charpy fracture surface transition temperature vTrs (° C.) at the center of the plate thickness, and the NDT temperature NDT (° C.) of the steel plate surface are expressed by the following formula (1). It turns out to satisfy.

NDT(℃)≦A1−C・Th−D・vTrs ・・・(1)
1、C、Dは、実験的に定まる係数で、0≦A1≦16、1.5≦C≦3.0、0.5≦D≦1.4である。好ましくは、A1=6.032、C=1.994、D=0.7525である。
NDT (° C.) ≦ A 1 −C · Th−D · vTrs (1)
A 1 , C, and D are experimentally determined coefficients, and 0 ≦ A 1 ≦ 16, 1.5 ≦ C ≦ 3.0, and 0.5 ≦ D ≦ 1.4. Preferably, A 1 = 6.032, C = 1.994, and D = 0.7525.

鋼板の板厚Th(mm)、板厚中央部のシャルピー破面遷移温度vTrs(℃)、及び、鋼板表面から採取した落重試験片により求めたNDT温度NDT(℃)に、設計温度Te(℃)を加えると、下記式(2)を満たすことが判明した。   The design temperature Te (thickness Th (mm) of the steel plate, the Charpy fracture surface transition temperature vTrs (° C) at the center of the plate thickness, and the NDT temperature NDT (° C) obtained from the drop weight test piece taken from the steel plate surface It was found that the following formula (2) was satisfied when (° C.) was added.

NDT(℃)≦A2+B・Te−C・Th−D・vTrs ・・・(2)
2、B、C、Dは、実験的に定まる係数で、12.5≦A2≦37.5、1.6≦B≦2.5、1.5≦C≦3.0、0.5≦D≦1.4である。好ましくは、A2=24.69、B=1.865、C=1.994、D=0.7525である。
NDT (° C) ≤ A 2 + B · Te-C · Th-D · vTrs (2)
A 2 , B, C, D are experimentally determined coefficients, 12.5 ≦ A 2 ≦ 37.5, 1.6 ≦ B ≦ 2.5, 1.5 ≦ C ≦ 3.0, 0. 5 ≦ D ≦ 1.4. Preferably, A 2 = 24.69, B = 1.865, C = 1.994, and D = 0.7525.

本発明者らの調査によれば、隣接する結晶粒の結晶方位差が15°未満であると、結晶粒界は脆性亀裂の伝播を阻止する障害となり難い。それ故、鋼板面から板厚方向に板厚の5%までの領域において、隣接する結晶粒の結晶方位差は15°以上が好ましい。   According to the investigation by the present inventors, when the crystal orientation difference between adjacent crystal grains is less than 15 °, the crystal grain boundary is unlikely to be an obstacle to preventing the propagation of brittle cracks. Therefore, in the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, the crystal orientation difference between adjacent crystal grains is preferably 15 ° or more.

それ故、本発明鋼板において、目標とするアレスト性能を確実に確保するため、鋼板面から板厚方向に板厚の5%までの領域において、粒径17μm又は22μm以下の結晶粒と、該結晶粒に隣接する結晶粒との結晶方位差を15°以上とすることが好ましい。   Therefore, in the steel plate of the present invention, in order to ensure the target arrest performance, in the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, crystal grains having a grain size of 17 μm or 22 μm or less, and the crystal It is preferable that a crystal orientation difference with a crystal grain adjacent to the grain is 15 ° or more.

鋼板面から板厚方向に板厚の5%までの領域以外の板厚中心部を含む領域の結晶粒については、平均結晶径を40μm以下とする。平均結晶粒が40μmを超えると、上記板厚中心部を含む領域の靭性が低下して、該領域内における脆性亀裂の伝播が支配的となる。その結果、鋼板表層部に対する破壊駆動力が大きくなって、鋼板表層部にシアリップが形成され難くなる。   For the crystal grains in the region including the central portion of the plate thickness other than the region up to 5% of the plate thickness in the plate thickness direction from the steel plate surface, the average crystal diameter is 40 μm or less. When the average crystal grain exceeds 40 μm, the toughness of the region including the center portion of the plate thickness is lowered, and the propagation of brittle cracks in the region becomes dominant. As a result, the fracture driving force with respect to the steel plate surface layer portion is increased, and it is difficult to form a shear lip on the steel plate surface layer portion.

鋼板が外部応力を受けた際に発生する脆性亀裂は、{100}面の壁開面に沿って伝播するので、外部応力と垂直な面に{100}面が発達していれば、結晶粒径制御によるアレスト性能向上効果が減少することが判明した。   Brittle cracks that occur when a steel sheet is subjected to external stress propagate along the wall opening of the {100} plane, so if the {100} plane develops in a plane perpendicular to the external stress, It was found that the effect of improving the arrest performance by the diameter control decreases.

厚鋼板は、通常、圧延方向に主応力が作用するように鋼構造物に組み込まれることから、鋼板面から板厚方向に板厚の5%までの領域において、圧延方向と垂直な面に対し±15°の角度をなす{100}面の面積率を30%以下に抑制すれば、結晶粒径制御によるアレスト性能向上効果は阻害されず、アレスト性能は充分に目標を達成することが判明した。   Thick steel plates are usually incorporated into steel structures so that the main stress acts in the rolling direction, so in the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, the surface is perpendicular to the rolling direction. It was found that if the area ratio of the {100} plane forming an angle of ± 15 ° is suppressed to 30% or less, the arrest performance improvement effect by controlling the crystal grain size is not hindered, and the arrest performance sufficiently achieves the target. .

また、上記領域以外の板厚中心部を含む領域において、上記{100}面の面積率を15%以下に抑制すれば、結晶粒径制御によるアレスト性能向上効果は阻害されず、アレスト性能は充分に目標を達成することが判明した。   Further, if the area ratio of the {100} plane is suppressed to 15% or less in a region including the plate thickness center other than the region, the arrest performance improvement effect by controlling the crystal grain size is not hindered, and the arrest performance is sufficient. Turned out to achieve the goal.

{100}面の面積率が、鋼板面から板厚方向に板厚の5%までの領域において30%以下、及び/又は、該領域以外の板厚中心部を含む領域において15%以下を満足する鋼板は、−10℃におけるKcaが7000N/mm1.5と高いアレスト性能を示した。また、鋼板の破面に、鋼板表層部において、板厚の約10%のシアリップが観察された。 The area ratio of the {100} plane satisfies 30% or less in the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, and / or 15% or less in the region including the plate thickness center other than the region. The steel sheet to be used exhibited a high arrest performance with Kca of 7000 N / mm 1.5 at −10 ° C. Further, a shear lip of about 10% of the plate thickness was observed on the surface of the steel plate on the fracture surface of the steel plate.

{100}面の面積率が小さいほど、アレスト性能は向上するが、極端に小さいと、他の組織が発達しアレスト性能に異方性が生じるので、{100}面の面積率は、鋼板面から板厚方向に板厚の5%までの領域においては5%以上、該領域以外の板厚中心部を含む領域においては3%以上が好ましい。   As the area ratio of the {100} plane is smaller, the arrest performance is improved. However, when the area is extremely small, other structures develop and anisotropy occurs in the arrest performance. Is preferably 5% or more in the region up to 5% of the plate thickness in the plate thickness direction, and 3% or more in the region including the central portion of the plate thickness other than the region.

本発明鋼板のアレスト性能向上効果は、降伏応力が390〜500MPaの鋼板、及び、板厚が40〜100mmの鋼板において、顕著に発現する。降伏応力が390MPa未満、又は、500MPa超であると、所望の組織及び結晶粒径を得ることが困難である。また、板厚が40mm未満、又は、100mm超であると、同様に、所望の組織及び結晶粒径を得ることが困難である。   The effect of improving the arrest performance of the steel sheet of the present invention is remarkably exhibited in a steel sheet having a yield stress of 390 to 500 MPa and a steel sheet having a thickness of 40 to 100 mm. When the yield stress is less than 390 MPa or more than 500 MPa, it is difficult to obtain a desired structure and crystal grain size. Similarly, when the plate thickness is less than 40 mm or more than 100 mm, it is difficult to obtain a desired structure and crystal grain size.

次に、本発明鋼板の製造方法について説明する。   Next, the manufacturing method of this invention steel plate is demonstrated.

上記成分組成の溶鋼を、転炉製鋼法等の公知の方法で製造し、連続鋳造等の公知の方法で鋳造する。鋳造時の冷却途中又は冷却後に鋳片を950〜1200℃に加熱し、組織をオーステナイト単相とする。950℃未満では、溶体化が不十分であり、1200℃超では、オーステナイト粒が粗大化して、圧延後に微細組織が得られず靭性が低下する。   Molten steel having the above component composition is produced by a known method such as converter steelmaking, and is cast by a known method such as continuous casting. The slab is heated to 950 to 1200 ° C. during or after cooling at the time of casting to make the structure austenite single phase. If it is less than 950 ° C., the solution is insufficient, and if it exceeds 1200 ° C., the austenite grains become coarse, and a fine structure cannot be obtained after rolling, resulting in a decrease in toughness.

加熱した鋳片に、オーステナイトの細粒化を図るため、900℃以上で再結晶圧延を施してもよい。950〜1250℃に加熱した鋳片を、Ar3〜Ar3+100℃、累積圧下率30%以上で熱間圧延し、Ar3−20℃以上で仕上げ圧延を終了し冷却する。冷却速度は、鋼板面において25℃/秒以上、鋼板中心部において5℃/秒以上が望ましい。   The heated slab may be subjected to recrystallization rolling at 900 ° C. or higher in order to make austenite finer. The slab heated to 950 to 1250 ° C. is hot-rolled at Ar 3 to Ar 3 + 100 ° C. and a cumulative reduction ratio of 30% or more, and finish rolling is finished at Ar 3 −20 ° C. or more and cooled. The cooling rate is desirably 25 ° C./second or more at the steel plate surface and 5 ° C./second or more at the central portion of the steel plate.

なお、自己焼戻を行うことを目的として、水冷を、500℃以下から空冷に切り替えてもよい。また、必要に応じて、冷却後に、300〜650℃で焼戻しを行い、鋼板の強度と靭性を調節してもよい。   In addition, for the purpose of performing self-tempering, water cooling may be switched from 500 ° C. or lower to air cooling. Further, if necessary, after cooling, tempering at 300 to 650 ° C. may be performed to adjust the strength and toughness of the steel sheet.

本発明鋼板の製造方法においては、極低温圧延や、複雑な熱処理を必要としないので、本発明鋼板を、高い生産性で、かつ、低コストで製造することができる。また、本発明鋼板の製造方法においては、鋼板内の残留応力を低減できるので、形状矯正に起因したコストの増加を抑制することができる。   In the manufacturing method of the steel sheet of the present invention, since cryogenic rolling and complicated heat treatment are not required, the steel sheet of the present invention can be manufactured with high productivity and at low cost. Moreover, in the manufacturing method of this invention steel plate, since the residual stress in a steel plate can be reduced, the increase in the cost resulting from shape correction can be suppressed.

本発明鋼板の製造方法により、鋼板表層部で、平均粒径15μm以下、鋼板中央部で、平均粒径40μm以下を達成することができるが、95%最大値(粒径)を17μm以下にするためには、圧延終了温度を厳格に管理する必要がある。   According to the method for producing a steel sheet of the present invention, an average particle diameter of 15 μm or less can be achieved at the steel sheet surface layer portion, and an average particle diameter of 40 μm or less can be achieved at the steel sheet central portion, but the 95% maximum value (particle diameter) should be 17 μm or less. Therefore, it is necessary to strictly control the rolling end temperature.

鋼板面の圧延温度は、圧延中に低下し易い。圧延温度が、フェライト変態温度のAr3以下になると、局所的にフェライトが生成する。生成したフェライトが圧延により歪を受けると、歪エネルギーにより、フェライトが粒成長し、95%最大値(粒径)は大きな値となる。   The rolling temperature of the steel sheet surface tends to decrease during rolling. When the rolling temperature is lower than Ar3 of the ferrite transformation temperature, ferrite is locally generated. When the generated ferrite is distorted by rolling, the ferrite grows due to strain energy, and the 95% maximum value (particle diameter) becomes a large value.

圧延温度がAr3より僅かに低下しても、与える歪が小さければ、フェライトの粒成長は顕著でない。圧延終了温度がAr3−20℃になる場合は、Ar3以下での圧下率を10%以下とすることが必要である。   Even if the rolling temperature is slightly lower than Ar3, if the applied strain is small, the grain growth of ferrite is not remarkable. When the rolling end temperature is Ar3-20 ° C., it is necessary that the rolling reduction at Ar3 or less is 10% or less.

所要のNiを含有する鋼板のベイナイト主体のミクロ組織の結晶粒径を微細化し、さらに、必要に応じ、圧延方向と垂直な面に±15°で配向した{100}面の面積率を低減することにより、本発明鋼板において、アレスト性能を顕著に向上させることができる。   Refine the crystal grain size of the bainite-based microstructure of the steel sheet containing the required Ni, and if necessary, reduce the area ratio of the {100} plane oriented at ± 15 ° in the plane perpendicular to the rolling direction. Thereby, in this invention steel plate, arrest performance can be improved notably.

そして、降伏応力が390〜500MPa、板厚が40〜100mmの厚鋼板において、アレスト性能を示す−10℃におけるKcaを6000N/mm1.5以上にすることができる。 In a thick steel plate having a yield stress of 390 to 500 MPa and a plate thickness of 40 to 100 mm, Kca at −10 ° C., which shows arrest performance, can be 6000 N / mm 1.5 or more.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表1に成分組成を示す鋼を通常の方法で鋳片とした。この鋳片を表2に示す条件で、板厚50〜100mmの厚鋼板を製造した。この厚鋼板のミクロ組織を観察するとともに、アレスト性能を調査した。結果を表3に示す。

Figure 2013221189
Figure 2013221189
Figure 2013221189
表3から、発明例では、目標とする6000N/mm1.5以上のアレスト性能が得られていることが解る。
(実施例2)
実施例1で製造した厚鋼板の機械特性を調査した。結果を、アレスト性能とともに、表4に示す。なお、(2)式の右辺の値は、A2=24.69、B=1.865、C=1.994、D=0.7525、設計温度を−10℃として算出した。
Figure 2013221189
Example 1
Steel whose component composition is shown in Table 1 was made into a slab by a usual method. A thick steel plate having a thickness of 50 to 100 mm was manufactured under the conditions shown in Table 2 for this slab. While observing the microstructure of this thick steel plate, the arrest performance was investigated. The results are shown in Table 3.
Figure 2013221189
Figure 2013221189
Figure 2013221189
From Table 3, it can be seen that in the invention examples, the targeted arrest performance of 6000 N / mm 1.5 or more is obtained.
(Example 2)
The mechanical properties of the thick steel plate produced in Example 1 were investigated. The results are shown in Table 4 together with arrest performance. In addition, the value on the right side of the formula (2) was calculated assuming that A 2 = 24.69, B = 1.865, C = 1.994, D = 0.725, and the design temperature was −10 ° C.
Figure 2013221189

前述したように、本発明によれば、HAZ靭性の劣化がなく、かつ、機械特性の異方性がない、アレスト性能に優れた高強度厚鋼板を低コストで提供することができる。その結果、鋼構造物の建造コストの低減や安全性の向上を図ることが可能となる。よって、本発明は、鋼構造物産業において利用可能性が高いものである。   As described above, according to the present invention, it is possible to provide a high-strength thick steel plate excellent in arrest performance without degradation of HAZ toughness and without anisotropy in mechanical properties at low cost. As a result, it is possible to reduce the construction cost and improve the safety of the steel structure. Therefore, the present invention has high applicability in the steel structure industry.

Claims (14)

質量%で、C:0.03〜0.15%、Si:0.1〜0.5%、Mn:0.5〜2.5%、P:0.02%以下、S:0.01%以下、Al:0.001〜0.10%、Ti:0.005〜0.020%、Ni:0.15〜4.00%、N:0.001〜0.008%を含有し、残部が鉄及び不可避的不純物からなる高強度厚鋼板において、
(x)ミクロ組織が、ベイナイトを母相とするフェライト及び/又はパーライト組織であり、かつ、
(y1)鋼板面から板厚方向に板厚の5%までの領域では、粒径が17μmを超える結晶粒の存在率が5%未満であり、
(z)上記領域以外の板厚中心部を含む領域では、結晶粒の平均粒径が40μm以下である
ことを特徴とする脆性亀裂伝播停止性能に優れた高強度厚鋼板。
In mass%, C: 0.03-0.15%, Si: 0.1-0.5%, Mn: 0.5-2.5%, P: 0.02% or less, S: 0.01 %: Al: 0.001-0.10%, Ti: 0.005-0.020%, Ni: 0.15-4.00%, N: 0.001-0.008%, In the high-strength thick steel plate with the balance consisting of iron and inevitable impurities,
(X) the microstructure is a ferrite and / or pearlite structure having bainite as a parent phase, and
(Y1) In the region from the steel plate surface to the plate thickness direction up to 5% of the plate thickness, the abundance of crystal grains having a particle size exceeding 17 μm is less than 5%,
(Z) A high-strength thick steel plate excellent in brittle crack propagation stopping performance, characterized in that the average grain size of crystal grains is 40 μm or less in a region including the thickness center other than the above region.
前記粒径が17μm以下の結晶粒と、該結晶粒と隣接する結晶粒の結晶方位差が15°以上であることを特徴とする請求項1に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   2. The high strength with excellent brittle crack propagation stopping performance according to claim 1, wherein a crystal orientation difference between the crystal grain having a grain size of 17 μm or less and a crystal grain adjacent to the crystal grain is 15 ° or more. Thick steel plate. 質量%で、C:0.03〜0.15%、Si:0.1〜0.5%、Mn:0.5〜2.5%、P:0.02%以下、S:0.01%以下、Al:0.001〜0.10%、Ti:0.005〜0.020%、Ni:0.15〜4.00%、N:0.001〜0.008%を含有し、残部が鉄及び不可避的不純物からなる高強度鋼板において、
(x)ミクロ組織が、ベイナイトを母相とするフェライト及び/又はパーライト組織であり、かつ、
(y2)鋼板面から板厚方向に板厚の5%までの領域では、粒径が22μmを超える結晶粒の存在率が2%未満であり、
(z)上記領域以外の板厚中心部を含む領域では、結晶粒の平均粒径が40μm以下である
ことを特徴とする脆性亀裂伝播停止性能に優れた高強度厚鋼板。
In mass%, C: 0.03-0.15%, Si: 0.1-0.5%, Mn: 0.5-2.5%, P: 0.02% or less, S: 0.01 %: Al: 0.001-0.10%, Ti: 0.005-0.020%, Ni: 0.15-4.00%, N: 0.001-0.008%, In the high-strength steel plate with the balance consisting of iron and inevitable impurities,
(X) the microstructure is a ferrite and / or pearlite structure having bainite as a parent phase, and
(Y2) In the region from the steel plate surface to the plate thickness direction up to 5% of the plate thickness, the abundance of crystal grains having a particle size exceeding 22 μm is less than 2%,
(Z) A high-strength thick steel plate excellent in brittle crack propagation stopping performance, characterized in that the average grain size of crystal grains is 40 μm or less in a region including the thickness center other than the above region.
前記粒径が22μm以下の結晶粒と、該結晶粒と隣接する結晶粒の結晶方位差が15°以上であることを特徴とする請求項3に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   4. The high strength excellent in brittle crack propagation stopping performance according to claim 3, wherein a crystal orientation difference between the crystal grain having a grain size of 22 μm or less and a crystal grain adjacent to the crystal grain is 15 ° or more. Thick steel plate. 請求項1〜4のいずれか1項に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板において、
(y3)上記鋼板の板厚Th(mm)、板厚中央部のシャルピー破面遷移温度vTrs(℃)、及び、鋼板面のNDT温度NDT(℃)が、下記式(1)を満たす
ことを特徴とする脆性亀裂伝播停止性能に優れた高強度厚鋼板。
NDT(℃)≦A1−C・Th−D・vTrs ・・・(1)
1、C、D:実験的に定まる係数で、
0≦A1≦16.0
1.5≦C≦3.0
0.5≦D≦1.4
In the high-strength thick steel plate excellent in the brittle crack propagation stop performance according to any one of claims 1 to 4,
(Y3) Thickness Th (mm) of the steel sheet, Charpy fracture surface transition temperature vTrs (° C) at the center of the thickness, and NDT temperature NDT (° C) of the steel sheet surface satisfy the following formula (1). High strength thick steel plate with excellent brittle crack propagation stopping performance.
NDT (° C.) ≦ A 1 −C · Th−D · vTrs (1)
A 1 , C, D: coefficients determined experimentally,
0 ≦ A 1 ≦ 16.0
1.5 ≦ C ≦ 3.0
0.5 ≦ D ≦ 1.4
前記式(1)において、A1=6.032、C=1.994、D=0.7525であることを特徴とする請求項5に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。 In the formula (1), A 1 = 6.032 , C = 1.994, high strength thick steel plate superior in brittle crack propagation stopping performance according to claim 5, characterized in that a D = 0.7525 . 請求項1〜4のいずれか1項に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板において、
(y4)上記鋼板の板厚Th(mm)、板厚中央部のシャルピー破面遷移温度vTrs(℃)、鋼板面のNDT温度NDT(℃)、及び、設計温度Te(℃)が、下記式(2)を満たす
ことを特徴とする脆性亀裂伝播停止性能に優れた高強度厚鋼板。
NDT(℃)≦A2+B・Te−C・Th−D・vTrs ・・・(2)
2、B、C、D:実験的に定まる係数で、
12.5≦A2≦37.5
1.6≦B≦2.5
1.5≦C≦3.0
0.5≦D≦1.4
In the high-strength thick steel plate excellent in the brittle crack propagation stop performance according to any one of claims 1 to 4,
(Y4) The plate thickness Th (mm) of the steel plate, the Charpy fracture surface transition temperature vTrs (° C) at the center of the plate thickness, the NDT temperature NDT (° C) of the steel plate surface, and the design temperature Te (° C) are as follows: A high-strength thick steel plate excellent in brittle crack propagation stopping performance characterized by satisfying (2).
NDT (° C) ≤ A 2 + B · Te-C · Th-D · vTrs (2)
A 2 , B, C, D: coefficients determined experimentally,
12.5 ≦ A 2 ≦ 37.5
1.6 ≦ B ≦ 2.5
1.5 ≦ C ≦ 3.0
0.5 ≦ D ≦ 1.4
前記式(2)において、A2=24.69、B=1.865、C=1.994、D=0.7525であることを特徴とする請求項7に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。 In the formula (2), A 2 = 24.69 , B = 1.865, C = 1.994, the brittle crack propagation stopping performance according to claim 7, characterized in that the D = 0.7525 Excellent high-strength thick steel plate. 前記鋼板面から板厚方向に板厚の5%までの領域では、圧延方向と垂直な面に対し±15°をなす{100}面が、面積率で30%以下存在することを特徴とする請求項1〜8のいずれか1項に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   In the region from the steel plate surface to 5% of the plate thickness in the plate thickness direction, the {100} plane forming ± 15 ° with respect to the plane perpendicular to the rolling direction exists in an area ratio of 30% or less. The high-strength thick steel plate excellent in the brittle crack propagation stop performance of any one of Claims 1-8. 前記鋼板面から板厚方向に板厚の5%までの領域以外の板厚中心部を含む領域では、圧延方向と垂直な面に対し±15°をなす{100}面が、面積率で15%以下存在することを特徴とする請求項1〜9のいずれか1項に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   In the region including the plate thickness center other than the region up to 5% of the plate thickness in the plate thickness direction from the plate surface, the {100} plane forming ± 15 ° with respect to the plane perpendicular to the rolling direction is 15 in area ratio. % High-strength thick steel plate excellent in brittle crack propagation stop performance according to any one of claims 1 to 9. 前記高強度厚鋼板の板厚が40mm以上であることを特徴とする請求項1〜10のいずれか1項に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   The plate thickness of the high-strength thick steel plate is 40 mm or more, The high-strength thick steel plate excellent in brittle crack propagation stopping performance according to any one of claims 1 to 10. 前記高強度厚鋼板の降伏応力が390MPa以上であることを特徴とする請求項1〜11のいずれか1項に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   The high-strength thick steel plate excellent in brittle crack propagation stopping performance according to any one of claims 1 to 11, wherein a yield stress of the high-strength thick steel plate is 390 MPa or more. 前記高強度厚鋼板が、さらに、質量%で、Cu:0.1〜1.0%、Cr:0.1〜1.0%、Mo:0.05〜0.50%、Nb:0.005〜0.05%、V:0.02〜0.15%、及び、B:0.0003〜0.003%の1種又は2種以上を含有することを特徴とする請求項1〜12のいずれか1項に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   The high-strength thick steel plate is further, in mass%, Cu: 0.1 to 1.0%, Cr: 0.1 to 1.0%, Mo: 0.05 to 0.50%, Nb: 0.00. It contains one or more of 005 to 0.05%, V: 0.02 to 0.15%, and B: 0.0003 to 0.003%. The high-strength thick steel plate excellent in the brittle crack propagation stop performance of any one of these. 前記高強度厚鋼板が、さらに、質量%で、Ca:0.0003〜0.005%、Mg:0.0003〜0.005%、及び、REM:0.0003〜0.005%の1種又は2種以上を含有することを特徴とする請求項1〜13のいずれか1項に記載の脆性亀裂伝播停止性能に優れた高強度厚鋼板。   Further, the high-strength thick steel plate is one type of Ca: 0.0003 to 0.005%, Mg: 0.0003 to 0.005%, and REM: 0.0003 to 0.005% by mass%. Or the high strength thick steel plate excellent in the brittle crack propagation stop performance of any one of Claims 1-13 characterized by containing 2 or more types.
JP2012094272A 2012-04-17 2012-04-17 High-strength thick steel plate excellent in brittle crack propagation arresting capability Pending JP2013221189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094272A JP2013221189A (en) 2012-04-17 2012-04-17 High-strength thick steel plate excellent in brittle crack propagation arresting capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094272A JP2013221189A (en) 2012-04-17 2012-04-17 High-strength thick steel plate excellent in brittle crack propagation arresting capability

Publications (1)

Publication Number Publication Date
JP2013221189A true JP2013221189A (en) 2013-10-28

Family

ID=49592394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094272A Pending JP2013221189A (en) 2012-04-17 2012-04-17 High-strength thick steel plate excellent in brittle crack propagation arresting capability

Country Status (1)

Country Link
JP (1) JP2013221189A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503744A (en) * 2014-12-24 2018-02-08 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504524A (en) * 2014-12-24 2018-02-15 ポスコPosco Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same
JP2018504523A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504520A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
CN109023137A (en) * 2018-09-04 2018-12-18 南京钢铁股份有限公司 A kind of high-strength steel sheet that brittle crack crack arrest characteristic is excellent and its manufacturing method
CN111118399A (en) * 2020-02-20 2020-05-08 包头钢铁(集团)有限责任公司 Corrosion-resistant high-crack-resistance submarine pipeline steel X65MO with thickness of 15-22mm and production method thereof
CN111235465A (en) * 2020-02-20 2020-06-05 包头钢铁(集团)有限责任公司 Corrosion-resistant high-crack-resistance submarine pipeline steel X65MO with thickness of 8-15mm and production method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503744A (en) * 2014-12-24 2018-02-08 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504524A (en) * 2014-12-24 2018-02-15 ポスコPosco Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same
JP2018504523A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504520A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
US10822671B2 (en) 2014-12-24 2020-11-03 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
US10883159B2 (en) 2014-12-24 2021-01-05 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
CN109023137A (en) * 2018-09-04 2018-12-18 南京钢铁股份有限公司 A kind of high-strength steel sheet that brittle crack crack arrest characteristic is excellent and its manufacturing method
CN111118399A (en) * 2020-02-20 2020-05-08 包头钢铁(集团)有限责任公司 Corrosion-resistant high-crack-resistance submarine pipeline steel X65MO with thickness of 15-22mm and production method thereof
CN111235465A (en) * 2020-02-20 2020-06-05 包头钢铁(集团)有限责任公司 Corrosion-resistant high-crack-resistance submarine pipeline steel X65MO with thickness of 8-15mm and production method thereof

Similar Documents

Publication Publication Date Title
JP4058097B2 (en) High strength steel plate with excellent arrestability
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5064150B2 (en) High strength steel plate with excellent brittle crack propagation stopping performance
JP6648270B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP2013221190A (en) High-strength thick steel plate excellent in brittle crack propagation arresting capability
JP6475837B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2013221189A (en) High-strength thick steel plate excellent in brittle crack propagation arresting capability
JP6435122B2 (en) Thick steel plate for cold-pressed square steel pipe, cold-pressed square steel pipe, and welding method
JP6648271B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP6475836B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
WO2016119500A1 (en) Steel plate having high crack-arresting performance, and manufacturing method thereof
JP5445723B1 (en) Ultra high strength steel plate for welding
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
WO2017107779A1 (en) Thick steel plate for high heat input welding and having great heat-affected area toughness and manufacturing method therefor
JP5064149B2 (en) High strength thick steel plate with excellent brittle crack propagation stopping performance and method for producing the same
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP5668668B2 (en) Steel with excellent toughness of weld heat affected zone, welded joint, and method for manufacturing welded joint
JP4276574B2 (en) Thick steel plate with excellent toughness of heat affected zone
JP2019183221A (en) Thick steel sheet and manufacturing method therefor
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP5811044B2 (en) Thick high-strength steel sheet excellent in weldability and weld heat-affected zone toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105