JP6648270B2 - High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same - Google Patents

High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same Download PDF

Info

Publication number
JP6648270B2
JP6648270B2 JP2018522789A JP2018522789A JP6648270B2 JP 6648270 B2 JP6648270 B2 JP 6648270B2 JP 2018522789 A JP2018522789 A JP 2018522789A JP 2018522789 A JP2018522789 A JP 2018522789A JP 6648270 B2 JP6648270 B2 JP 6648270B2
Authority
JP
Japan
Prior art keywords
brittle crack
resistance
steel material
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018522789A
Other languages
Japanese (ja)
Other versions
JP2019502018A (en
Inventor
イ,ハク−チョル
ジャン,ソン−ホ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019502018A publication Critical patent/JP2019502018A/en
Application granted granted Critical
Publication of JP6648270B2 publication Critical patent/JP6648270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材及びその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a high-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of a weld, and a method for producing the same.

近年、国内外の船舶、海洋、建築、及び土木分野で用いられる構造物を設計するにあたり、高強度特性を有する極厚物鋼の開発が求められている。   2. Description of the Related Art In recent years, in designing structures used in the fields of ships, oceans, buildings, and civil engineering in and outside of Japan, the development of extremely thick steel having high strength characteristics has been required.

構造物の設計時に高強度鋼を用いる場合、構造物の形態を軽量化することができるため、経済的な利益が得られるだけでなく、鋼板の厚さを薄くすることができるため、加工及び溶接作業の容易性を同時に確保することができる。   When high-strength steel is used when designing a structure, the form of the structure can be reduced in weight, so that not only economic benefits can be obtained but also the thickness of the steel sheet can be reduced, so that processing and The easiness of the welding operation can be secured at the same time.

一般に、高強度鋼の場合、極厚物材の製造時に総圧下率が低下し、薄物材に比べて十分な変形が行われないため、極厚物材の微細組織が粗大となり、これに伴い、結晶粒度が最も大きな影響を与える低温物性が低下するようになる。   In general, in the case of high-strength steel, the total draft decreases during the production of extra-heavy materials, and sufficient deformation is not performed compared to thin materials, so the microstructure of extra-heavy materials becomes coarse. At the same time, the low-temperature physical properties at which the crystal grain size has the greatest influence are reduced.

特に、構造物の安定性を示す脆性亀裂伝播抵抗性の場合、船舶などの主要構造物への適用時に保証を求める事例が増加しつつあるが、微細組織が粗大化すると、脆性亀裂伝播抵抗性が非常に低下する現象が発生するため、極厚物高強度鋼材の脆性亀裂伝播抵抗性を向上させることは非常に難しい状況である。   In particular, in the case of brittle crack propagation resistance, which indicates the stability of a structure, the number of cases requiring assurance when applied to main structures such as ships is increasing, but when the microstructure becomes coarse, brittle crack propagation resistance is increased. Therefore, it is very difficult to improve the brittle crack propagation resistance of an extremely thick high-strength steel material.

一方、降伏強度460MPa以上の高強度鋼では、脆性亀裂伝播抵抗性を向上させるために、表層部の粒度を微細化するための仕上げ圧延時における表面冷却の適用、及び圧延時における曲げ応力の付与による粒度調節といった多様な技術が導入された。   On the other hand, in a high-strength steel with a yield strength of 460 MPa or more, in order to improve brittle crack propagation resistance, application of surface cooling at the time of finish rolling to refine the grain size of the surface layer portion, and application of bending stress at the time of rolling Various techniques, such as particle size control, have been introduced.

しかし、上記技術の場合、表層部の組織微細化には有利であるが、表層部を除いた残りの組織粗大化による衝撃靭性の低下は解決できないため、脆性亀裂伝播抵抗性への根本的な対策とは言い難い。   However, in the case of the above-mentioned technology, although it is advantageous for the refinement of the structure of the surface layer, the decrease in the impact toughness due to the coarsening of the structure other than the surface layer cannot be solved, so a fundamental effect on the brittle crack propagation resistance. It is hard to say that it is a measure.

これに加え、最近の大型コンテナ船などに適用される鋼材に対して、脆性亀裂開始自体を制御することにより、船舶の安全性を向上させようとした設計概念が導入されるにつれて、一般的に脆性亀裂開始に関連して最も脆弱な部位であるとされる溶接熱影響部の脆性亀裂開始抵抗性を保証する事例が増加している。   In addition, with the introduction of design concepts aimed at improving the safety of ships by controlling the initiation of brittle cracks themselves for steel materials used in recent large container ships, etc. There are increasing cases of ensuring the brittle crack initiation resistance of the weld heat affected zone, which is considered to be the most vulnerable part in relation to the brittle crack initiation.

一般に、高強度鋼の場合、溶接熱影響部(HAZ;Heat Affected Zone)の微細組織がベイナイトなどの強度の高い低温変態相からなるため、溶接部の熱影響部(HAZ)の靭性が非常に弱くなるという欠点を有する。   Generally, in the case of a high-strength steel, the microstructure of a heat affected zone (HAZ) is composed of a high-temperature, low-temperature transformation phase such as bainite, so that the toughness of the heat-affected zone (HAZ) of the weld zone is extremely high. It has the disadvantage of becoming weak.

特に、構造物の安定性を評価するために、一般的に行われるCTOD評価(Crack Tip Opening Displacement)における脆性亀裂開始抵抗性の場合には、低温変態相の生成時に未変態オーステナイトから生成される島状マルテンサイトが脆性亀裂発生の核生成サイト(site)になるため、高強度鋼材の脆性亀裂発生抵抗性を向上させることが非常に難しいのが実情である。   In particular, in the case of brittle crack initiation resistance in a generally performed CTOD evaluation (Crack Tip Opening Displacement) in order to evaluate the stability of a structure, it is formed from untransformed austenite when a low-temperature transformation phase is formed. Since the island-like martensite becomes a nucleation site (site) for brittle crack generation, it is actually difficult to improve the brittle crack generation resistance of a high-strength steel material.

従来の降伏強度460MPa以上の高強度鋼の場合、溶接部の脆性亀裂開始抵抗性を向上させるために、TiNを用いて溶接熱影響部の微細組織を微細化するか、または酸化物(oxide metallurgy)を用いて溶接熱影響部にフェライトを形成させる努力がなされた。しかしこれは、組織微細化による衝撃靭性の向上に一部役立つが、脆性亀裂開始抵抗性の低下に大きな影響を与える島状マルテンサイトの分率の低減には大きな効果がない。     In the case of a conventional high-strength steel having a yield strength of 460 MPa or more, in order to improve the brittle crack initiation resistance of the welded portion, the microstructure of the weld heat-affected zone is refined using TiN, or an oxide metallurgy is used. ) Was used to form ferrite in the heat affected zone. However, although this partially helps to improve the impact toughness due to the refinement of the structure, it does not have a great effect in reducing the fraction of island martensite, which has a large effect on the reduction in brittle crack initiation resistance.

また、母材の脆性亀裂開始抵抗性は、焼戻し(tempering)などを介して島状マルテンサイトを他の相に変態させることで物性を確保することが可能であるが、熱履歴によって焼戻し(tempering)の効果がなくなる溶接熱影響部の場合には、これを適用することが不可能である。   The brittle crack initiation resistance of the base material can be maintained by transforming the island-like martensite to another phase through tempering or the like. In the case of a weld heat affected zone where the effect of ()) is lost, it is impossible to apply this.

一方、島状マルテンサイトの生成を最小限に抑えるためには、C、Nbなどの元素を低減する必要があるが、これを低減すると、強度のレベルを確保することが難しく、強度のレベルを確保するために、Mo、Niなどの高価な元素を多量添加しなければならないため経済性が低下するという問題がある。   On the other hand, in order to minimize the formation of island-like martensite, it is necessary to reduce elements such as C and Nb. However, when this is reduced, it is difficult to secure a strength level, and the strength level is reduced. In order to ensure this, it is necessary to add a large amount of expensive elements such as Mo and Ni.

本発明の一側面は、脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材を提供することにその目的がある。   An object of one aspect of the present invention is to provide a high-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of a weld.

本発明の他の一側面は、脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法を提供することにその目的がある。   Another aspect of the present invention has an object to provide a method for producing a high-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of a weld.

本発明の一側面によると、重量%で、C:0.05〜0.09%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.04%、Ti:0.005〜0.04%、Cu:0.1〜0.8%、Si:0.05〜0.3%、Al:0.005〜0.05%、P:100ppm以下、S:40ppm以下、残りFe及びその他の不可避不純物からなり、中心部の微細組織が、面積%で、70%以上のアシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)の混合相、20%以下の上部ベイナイト(upper bainite)、及び残りのフェライト、パーライト、島状マルテンサイト(MA)からなる群より選択される1種以上からなり、前記上部ベイナイトのEBSD方法で測定された15°以上の高境界角を有する有効結晶粒の円相当直径が15μm(マイクロメートル)以下であり、表面直下2mm以下の領域における表面部の微細組織が、面積%で、20%以上のフェライト、及び残りのベイナイト、マルテンサイトのうち1種以上からなり、且つ、溶接時に形成される溶接熱影響部が、面積%で、5%以下の島状マルテンサイトを含む脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材が提供される。   According to one aspect of the present invention, C: 0.05 to 0.09%, Mn: 1.5 to 2.2%, Ni: 0.3 to 1.2%, and Nb: 0.005% by weight. 0.04%, Ti: 0.005 to 0.04%, Cu: 0.1 to 0.8%, Si: 0.05 to 0.3%, Al: 0.005 to 0.05%, P: 100 ppm or less, S: 40 ppm or less, composed of remaining Fe and other unavoidable impurities, and having a microstructure in the central part of 70% or more in area% of acicular ferrite and granular bainite. A mixed phase, not more than 20% of upper bainite, and the remaining one or more selected from the group consisting of ferrite, pearlite, and island martensite (MA); The equivalent crystal diameter of the effective crystal grains having a high boundary angle of 15 ° or more measured by the EBSD method of bainite is 15 μm (micrometer) or less, and the fine structure of the surface portion in a region 2 mm or less immediately below the surface is represented by area%. And at least 20% of ferrite and at least one of the remaining bainite and martensite, and the welding heat affected zone formed at the time of welding contains 5% or less of island martensite in area%. A high-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of a weld is provided.

前記Cu及びNiの含有量は、Cu/Niの重量比が0.8以下、好ましくは0.6以下となるように設定されることができる。   The content of Cu and Ni can be set so that the weight ratio of Cu / Ni is 0.8 or less, preferably 0.6 or less.

前記鋼材は、降伏強度が460MPa以上であることが好ましい。   The steel material preferably has a yield strength of 460 MPa or more.

前記鋼材は、鋼材の厚さ方向に、鋼材の厚さ1/2t(t:鋼板の厚さ)の位置におけるシャルピー破面遷移温度が−40℃以下であることが好ましい。   The steel material preferably has a Charpy fracture surface transition temperature of −40 ° C. or less at a position of a thickness of the steel material 1 / 2t (t: thickness of the steel plate) in a thickness direction of the steel material.

本発明の他の一側面によると、重量%で、C:0.05〜0.09%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.04%、Ti:0.005〜0.04%、Cu:0.1〜0.8%、Si:0.05〜0.3%、Al:0.005〜0.05%、P:100ppm以下、S:40ppm以下、残りFe及びその他の不可避不純物からなるスラブを1000〜1100℃で再加熱した後、1100〜900℃の温度で粗圧延する段階と、前記粗圧延されたバー(bar)を、中心部温度を基準に、Ar+60℃〜Ar℃の温度範囲で仕上げ圧延して鋼板を得る段階と、前記鋼板を500℃以下の温度まで冷却する段階と、を含む脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法が提供される。 According to another aspect of the present invention, C: 0.05 to 0.09%, Mn: 1.5 to 2.2%, Ni: 0.3 to 1.2%, and Nb: 0% by weight. 0.005 to 0.04%, Ti: 0.005 to 0.04%, Cu: 0.1 to 0.8%, Si: 0.05 to 0.3%, Al: 0.005 to 0.05 %, P: 100 ppm or less, S: 40 ppm or less, a slab consisting of the remaining Fe and other unavoidable impurities is reheated at 1000 to 1100 ° C., and then rough-rolled at a temperature of 1100 to 900 ° C .; Finishing the rolled bar in a temperature range of Ar 3 + 60 ° C. to Ar 3 ° C. based on the center temperature to obtain a steel sheet, and cooling the steel sheet to a temperature of 500 ° C. or less; -Strength steel with excellent brittle crack propagation resistance and brittle crack initiation resistance in welds Is provided.

前記粗圧延時の最後の3パス(pass)に対しては、パス(pass)当たりの圧下率を5%以上、総累積圧下率を40%以上とすることが好ましい。   For the last three passes during the rough rolling, the rolling reduction per pass is preferably 5% or more, and the total cumulative rolling reduction is preferably 40% or more.

前記粗圧延時の最後の3パス(pass)に対しては、変形速度(Strain rate)を2/sec以下とすることが好ましい。   For the last three passes during the rough rolling, the strain rate is preferably set to 2 / sec or less.

前記粗圧延後仕上げ圧延前のバーの厚さ中心部の結晶粒サイズは150μm以下、好ましくは100μm以下、より好ましくは80μm以下であることができる。   The crystal grain size at the center of the thickness of the bar before the rough rolling and before the finish rolling can be 150 μm or less, preferably 100 μm or less, more preferably 80 μm or less.

前記仕上げ圧延時の圧下比は、スラブの厚さ(mm)/仕上げ圧延後の鋼板の厚さ(mm)の比が3.5以上、好ましくは4以上になるように設定することができる。   The reduction ratio at the time of the finish rolling can be set so that the ratio of the thickness (mm) of the slab / the thickness (mm) of the steel sheet after the finish rolling becomes 3.5 or more, preferably 4 or more.

前記仕上げ圧延時の累積圧下率は40%以上に維持することが好ましく、調質圧延を除いたパス当たりの圧下率は4%以上に維持することが好ましい。ここで、調質圧延とは、板の平坦度を確保するために、低圧下率で圧延する過程を意味する。   The cumulative rolling reduction during the finish rolling is preferably maintained at 40% or more, and the rolling reduction per pass excluding temper rolling is preferably maintained at 4% or more. Here, the temper rolling means a process of rolling at a low rolling reduction in order to secure the flatness of the sheet.

前記鋼板の冷却は2℃/s以上の中心部冷却速度で行うことができる。   The cooling of the steel plate can be performed at a central cooling rate of 2 ° C./s or more.

前記鋼板の冷却は、3〜300℃/sの平均冷却速度で行うことができる。   The cooling of the steel sheet can be performed at an average cooling rate of 3 to 300 ° C / s.

さらに、上記した課題の解決手段は、本発明の特徴をすべて列挙したものではない。本発明の様々な特徴とそれに伴う利点及び効果は、以下の具体的な実施形態を通じてより詳細に理解することができる。   Furthermore, the means for solving the problems described above do not enumerate all the features of the present invention. The various features of the present invention and the advantages and advantages associated therewith can be more fully understood through the following specific embodiments.

本発明によると、高降伏強度を有するとともに、脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while having a high yield strength, the high strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of a weld part can be obtained.

本発明の発明者らは、厚さが厚い鋼材の降伏強度、ならびに脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性を向上させるために研究と実験を行った結果、本発明を提案するようになった。   The inventors of the present invention have conducted research and experiments to improve the yield strength of thick steel materials, brittle crack propagation resistance and brittle crack initiation resistance of welds, and propose the present invention. It became so.

本発明は、鋼材の鋼組成、組織及び製造条件を制御して、厚さが厚い鋼材の降伏強度、ならびに脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性をより向上させたものである。   The present invention controls the steel composition, structure, and manufacturing conditions of a steel material to further improve the yield strength of a thick steel material, as well as the brittle crack propagation resistance and the brittle crack initiation resistance of a weld. .

本発明の主要概念は次のとおりである。
1)固溶強化を通じて強度を向上させるために鋼組成を適切に制御する。特に、固溶強化のために、Mn、Ni、Cu及びSiの含有量を最適化する。
The main concept of the present invention is as follows.
1) Appropriate control of steel composition to improve strength through solid solution strengthening. In particular, the contents of Mn, Ni, Cu and Si are optimized for solid solution strengthening.

2)硬化能向上を通じて強度を向上させるために鋼組成を適切に制御する。特に、硬化能向上のために、Cの含有量だけでなく、Mn、Ni、及びCuの含有量を最適化する。
このように硬化能を向上させることで、低い冷却速度でも厚い鋼材の中心部まで微細組織が確保される。
2) Appropriate control of steel composition to improve strength through improvement of hardening ability. In particular, not only the content of C but also the contents of Mn, Ni, and Cu are optimized for improving the curing ability.
By improving the hardening ability in this manner, a fine structure can be secured up to the center of a thick steel material even at a low cooling rate.

3)島状マルテンサイトの分率を制御するために組成を適切に制御する。特に、島状マルテンサイトの生成に影響を与えるC、Si、及びNbの含有量を最適化する。
このように鋼組成を最適化させることで、溶接熱影響部においても優れた脆性亀裂開始抵抗性が確保される。
3) The composition is controlled appropriately in order to control the fraction of island martensite. In particular, the contents of C, Si, and Nb that affect the formation of island martensite are optimized.
By optimizing the steel composition in this way, excellent brittle crack initiation resistance is secured even in the weld heat affected zone.

4)強度及び脆性亀裂伝播抵抗性を向上させるために鋼材の組織を制御することが好ましい。特に、鋼材の厚さ方向における中心部領域及び表層部領域の組織を制御する。
このように微細組織を制御することにより、鋼材に必要な強度を確保するとともに、亀裂の生成を助長する微細組織を除外させることで、脆性亀裂伝播抵抗性を向上させる。
4) It is preferable to control the structure of the steel material in order to improve strength and brittle crack propagation resistance. In particular, the structure of the central region and the surface region in the thickness direction of the steel material is controlled.
By controlling the microstructure in this way, the strength required for the steel material is ensured, and the microstructure that promotes the generation of cracks is excluded, thereby improving the brittle crack propagation resistance.

5)鋼材の組織をより微細化させるために粗圧延条件を制御することが好ましい。
特に、粗圧延時の圧下条件を制御することにより、中心部に微細な組織が確保されるようにする。これにより、アシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)の生成も促進される。
5) It is preferable to control rough rolling conditions in order to further refine the structure of the steel material.
In particular, by controlling the rolling conditions during rough rolling, a fine structure is ensured at the center. This also promotes the formation of acicular ferrite and granular bainite.

6)鋼材の組織をより微細化させるために仕上げ圧延条件を制御する。特に、仕上げ圧延温度及び圧下条件を制御することにより、仕上げ圧延時のオーステナイト中に変形帯を多く生成させてフェライトの核生成サイト(site)を多く確保することで、鋼材の中心部まで微細組織が確保されるようにする。これにより、アシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)の生成も促進される。   6) Finish rolling conditions are controlled to further refine the structure of the steel material. In particular, by controlling the finish rolling temperature and the rolling reduction conditions, a large number of deformation zones are generated in austenite at the time of finish rolling to secure many ferrite nucleation sites (sites). Is ensured. This also promotes the formation of acicular ferrite and granular bainite.

以下、本発明の一側面による脆性亀裂伝播抵抗性及び脆性亀裂開始抵抗性に優れた高強度鋼材について詳細に説明する。   Hereinafter, a high-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance according to one aspect of the present invention will be described in detail.

本発明の一側面による脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材は、重量%で、C:0.05〜0.09%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.04%、Ti:0.005〜0.04%、Cu:0.1〜0.8%、Si:0.05〜0.3%、Al:0.005〜0.05%、P:100ppm以下、S:40ppm以下、残りFe及びその他の不可避不純物からなり、中心部の微細組織が、面積%で、70%以上のアシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)の混合相、20%以下の上部ベイナイト(upper bainite)、及び残りのフェライト、パーライト、島状マルテンサイト(MA)からなる群より選択される1種以上からなり、上記上部ベイナイトのEBSD方法で測定された15°以上の高境界角を有する有効結晶粒の円相当直径が15μm(マイクロメートル)以下であり、表面直下2mm以下の領域における表面部の微細組織が、面積%で、20%以上のフェライト、及び残りのベイナイト、マルテンサイトのうち1種以上からなり、且つ、溶接時に形成される溶接熱影響部が、面積%で、5%以下の島状マルテンサイトを含む。   The high-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of a weld according to one aspect of the present invention is, by weight%, C: 0.05 to 0.09% and Mn: 1.5 to 2%. 0.2%, Ni: 0.3 to 1.2%, Nb: 0.005 to 0.04%, Ti: 0.005 to 0.04%, Cu: 0.1 to 0.8%, Si: 0.05 to 0.3%, Al: 0.005 to 0.05%, P: 100 ppm or less, S: 40 ppm or less, remaining Fe and other unavoidable impurities, and the fine structure at the center is expressed in area%. , 70% or more of a mixed phase of acicular ferrite and granular bainite, 20% or less of an upper bainite, and the remaining ferrite, pearlite, and island-shaped Effective grains having a high boundary angle of 15 ° or more as measured by the EBSD method of the upper bainite and having a circle-equivalent diameter of 15 μm (micrometer) or less, comprising at least one selected from the group consisting of The microstructure of the surface in a region of 2 mm or less immediately below the surface consists of at least 20% ferrite in area% and at least one of the remaining bainite and martensite, and is formed at the time of welding. The heat-affected zone contains 5% or less of island martensite in area%.

以下、本発明の鋼成分及び成分範囲について説明する。   Hereinafter, the steel components and the component ranges of the present invention will be described.

C(炭素):0.05〜0.09重量%(以下、「%」と称する)
Cは、基本的な強度を確保するために最も重要な元素であるため、適切な範囲内で鋼中に含有される必要がある。このような添加効果を得るためには、Cを0.05%以上添加することが好ましい。しかし、Cの含有量が0.09%を超えると、大量の島状マルテンサイトが溶接熱影響部に生成されて脆性亀裂開始抵抗性を低下させ、母材のフェライト自体の高強度や低温変態相の多量生成などにより、低温靭性を低下させるため、上記Cの含有量は0.05〜0.09%に限定することが好ましい。また、上記Cの含有量は0.055〜0.08%に限定することがより好ましく、0.06〜0.075%に限定することがさらに好ましい。
C (carbon): 0.05 to 0.09% by weight (hereinafter, referred to as "%")
Since C is the most important element for securing the basic strength, it must be contained in steel within an appropriate range. In order to obtain such an effect, it is preferable to add C in an amount of 0.05% or more. However, when the content of C exceeds 0.09%, a large amount of martensite in the form of islands is formed in the heat-affected zone by welding to reduce the resistance to initiation of brittle cracks. The content of C is preferably limited to 0.05 to 0.09% in order to lower the low-temperature toughness due to generation of a large amount of phases. Further, the content of C is more preferably limited to 0.055 to 0.08%, and further preferably limited to 0.06 to 0.075%.

Mn(マンガン):1.5〜2.2%
Mnは、固溶強化により強度を向上させ、低温変態相が生成されるように硬化能を向上させる有用な元素である。また、硬化能向上により、遅い冷却速度でも低温変態相を生成させることができるため、極厚物材の中心部の強度を確保するための主な元素である。
よって、このような効果を得るためには、1.5%以上添加されることが好ましい。
しかし、Mnの含有量が2.2%を超えると、過度な硬化能の増加により、上部ベイナイト(Upper bainite)及びマルテンサイトの生成を促進し、衝撃靭性及び脆性亀裂伝播抵抗性を低下させ、溶接熱影響部の靭性も低下させる。したがって、上記Mnの含有量は1.5〜2.2%に限定することが好ましい。また、上記Mnの含有量は1.6〜2.0%に限定することがより好ましく、1.65〜1.95%に限定することがさらに好ましい。
Mn (manganese): 1.5 to 2.2%
Mn is a useful element that improves strength by solid solution strengthening and improves hardening ability so that a low-temperature transformation phase is generated. In addition, since the low-temperature transformation phase can be generated even at a low cooling rate by improving the hardening ability, it is a main element for securing the strength of the central part of the extremely thick material.
Therefore, in order to obtain such an effect, it is preferable to add 1.5% or more.
However, when the content of Mn exceeds 2.2%, the excessive hardening ability is increased, thereby promoting the formation of upper bainite and martensite, reducing impact toughness and brittle crack propagation resistance, It also reduces the toughness of the heat affected zone. Therefore, the content of Mn is preferably limited to 1.5 to 2.2%. Further, the content of Mn is more preferably limited to 1.6 to 2.0%, and still more preferably limited to 1.65 to 1.95%.

Ni(ニッケル):0.3〜1.2%
Niは低温で転位の交差すべり(Cross slip)を容易にして衝撃靭性及び硬化能を向上させることで強度を向上させる重要な元素である。このような効果を得るためには、0.3%以上添加されることが好ましい。しかし、上記Niが1.2%以上添加されると、硬化能が上昇しすぎることが原因で低温変態相が生成されて靭性を低下させ、他の硬化能元素に比べてNiの高価なコストが原因で製造コストを上昇させる可能性があるため、上記Niの含有量の上限は1.2%に限定することが好ましい。また、Niの含有量は、0.4〜1.0%に限定することがより好ましく、0.45〜0.9%に限定することがさらに好ましい。
Ni (nickel): 0.3 to 1.2%
Ni is an important element that enhances strength by facilitating cross slip of dislocations at low temperature and improving impact toughness and hardening ability. In order to obtain such an effect, it is preferable to add 0.3% or more. However, when Ni is added in an amount of 1.2% or more, a low-temperature transformation phase is generated due to an excessive increase in the hardening ability, thereby lowering the toughness. For this reason, the production cost may be increased, so the upper limit of the Ni content is preferably limited to 1.2%. Further, the content of Ni is more preferably limited to 0.4 to 1.0%, and further preferably limited to 0.45 to 0.9%.

Nb(ニオブ):0.005〜0.04%
Nbは、NbCまたはNbCNの形で析出して母材の強度を向上させる。
また、高温で再加熱する際に固溶されたNbは、圧延時にNbCの形で非常に微細に析出してオーステナイトの再結晶を抑制することで組織を微細化させるという効果を奏する。したがって、Nbは0.005%以上添加されることが好ましい。しかし、過剰に添加する場合、溶接熱影響部の島状マルテンサイトの生成を促進させて脆性亀裂開始抵抗性を低下させ、鋼材の端に脆性クラックを誘発させる可能性があるため、Nbの含有量の上限は0.04%に制限することが好ましい。また、Nbの含有量は0.01〜0.035%に限定することがより好ましく、0.015〜0.03%に限定することがさらに好ましい。
Nb (niobium): 0.005 to 0.04%
Nb precipitates in the form of NbC or NbCN to improve the strength of the base material.
Further, Nb dissolved as a solid solution at the time of reheating at a high temperature has an effect of precipitating very finely in the form of NbC at the time of rolling and suppressing recrystallization of austenite, thereby providing an effect of refining the structure. Therefore, Nb is preferably added at 0.005% or more. However, when excessively added, the formation of island martensite in the weld heat affected zone is promoted to reduce the brittle crack initiation resistance, and a brittle crack may be induced at the end of the steel material. The upper limit of the amount is preferably limited to 0.04%. Further, the content of Nb is more preferably limited to 0.01 to 0.035%, and further preferably limited to 0.015 to 0.03%.

Ti(チタン):0.005〜0.04%
Tiは、再加熱時にTiNとして析出して母材及び溶接熱影響部の結晶粒成長を抑制し、低温靭性を大幅に向上させる成分である。このような添加効果を得るためには、0.005%以上添加することが好ましい。しかし、Tiが過多に添加されると、連続鋳造ノズルの詰まりや中心部の晶出によって低温靭性が低下する可能性があるため、Tiの含有量は0.005〜0.04%に限定することが好ましい。また、Tiの含有量は、0.008〜0.03%に限定することがより好ましく、0.01〜0.02%に限定することがさらに好ましい。
Ti (titanium): 0.005 to 0.04%
Ti is a component that precipitates as TiN at the time of reheating, suppresses the growth of crystal grains in the base metal and the weld heat affected zone, and significantly improves low-temperature toughness. In order to obtain such an effect, it is preferable to add 0.005% or more. However, if too much Ti is added, the low-temperature toughness may decrease due to clogging of the continuous casting nozzle or crystallization of the central portion. Therefore, the content of Ti is limited to 0.005 to 0.04%. Is preferred. Further, the content of Ti is more preferably limited to 0.008 to 0.03%, and further preferably limited to 0.01 to 0.02%.

Si:0.05〜0.3%
Siは、置換型元素として固溶強化により鋼材の強度を向上させ、強力な脱酸効果を有するため、清浄鋼の製造に欠かせない元素である。したがって、Siを0.05%以上添加することが好ましい。しかし、多量添加すると、粗大な島状マルテンサイト(MA)相を生成させ、脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性を低下させることがあるため、上記Siの含有量の上限は0.3%に制限することが好ましい。また、Siの含有量は、0.1〜0.25%に限定することがより好ましく、0.1〜0.2%に限定することがさらに好ましい。
Si: 0.05-0.3%
Si is an indispensable element in the production of clean steel because it improves the strength of steel by solid solution strengthening as a substitution type element and has a strong deoxidizing effect. Therefore, it is preferable to add 0.05% or more of Si. However, if a large amount is added, a coarse island-like martensite (MA) phase is generated, and the brittle crack propagation resistance and the brittle crack initiation resistance of the welded portion may be reduced. Preferably, it is limited to 0.3%. Further, the content of Si is more preferably limited to 0.1 to 0.25%, and further preferably limited to 0.1 to 0.2%.

Cu:0.1〜0.8%
Cuは、硬化能を向上させ、固溶強化を起こして鋼材の強度を向上させる主要な元素であり、焼戻し(tempering)の適用時にイプシロンCu析出物の生成を通じて降伏強度を上げる主要な元素である。したがって、Cuを0.1%以上添加することが好ましい。しかし、多量添加すると、製鋼工程において赤熱脆性(hot shortness)によるスラブの亀裂を発生させることがあるため、上記Cuの含有量の上限は0.8%に制限することが好ましい。また、Cuの含有量は、0.2〜0.6%に限定することがより好ましく、0.25〜0.5%に限定することがさらに好ましい。
Cu: 0.1-0.8%
Cu is a main element that improves the hardening ability, causes solid solution strengthening, and improves the strength of the steel material, and is a main element that increases the yield strength through the formation of epsilon Cu precipitates when tempering is applied. . Therefore, it is preferable to add 0.1% or more of Cu. However, if a large amount is added, the slab may be cracked due to hot shortness in the steelmaking process, so the upper limit of the Cu content is preferably limited to 0.8%. Further, the content of Cu is more preferably limited to 0.2 to 0.6%, and further preferably limited to 0.25 to 0.5%.

上記Cu及びNiの含有量は、Cu/Niの重量比が0.8以下、好ましくは0.6以下となるように設定することができる。また、0.5以下に限定することがより好ましい。
上記のようにCu/Niの重量比を設定することで、表面品質をより改善することができる。
The content of Cu and Ni can be set so that the weight ratio of Cu / Ni is 0.8 or less, preferably 0.6 or less. Further, it is more preferable to limit it to 0.5 or less.
By setting the weight ratio of Cu / Ni as described above, the surface quality can be further improved.

Al:0.005〜0.05%
Alは、脱酸剤の役割を果たす成分である。しかし、過度に添加される場合には、介在物を形成して靭性を低下させることがあるため、Alの含有量を0.005〜0.05%に制限することが好ましい。
Al: 0.005 to 0.05%
Al is a component that plays a role of a deoxidizing agent. However, if added excessively, inclusions may be formed and the toughness may be reduced. Therefore, it is preferable to limit the Al content to 0.005 to 0.05%.

P:100ppm以下、S:40ppm以下
P、Sは、結晶粒界に脆性を誘発するか、または粗大な介在物を形成させて脆性を誘発する元素であるため、脆性亀裂伝播抵抗性を向上させるために、P:100ppm以下、S:40ppm以下に制限することが好ましい。
P: 100 ppm or less, S: 40 ppm or less P and S are elements that induce brittleness at crystal grain boundaries or form coarse inclusions to induce brittleness, and thus improve brittle crack propagation resistance. For this reason, it is preferable to limit P: 100 ppm or less and S: 40 ppm or less.

本発明の残りの成分は鉄(Fe)である。
但し、通常の製造過程では、原料や周囲の環境から意図しない不純物が必然的に混入される可能性があるため、これを排除することはできない。かかる不純物は、通常の技術者であれば誰でも分かるものであるため、そのすべての内容を具体的に言及しない。
The remaining component of the present invention is iron (Fe).
However, in a normal manufacturing process, unintended impurities may inevitably be mixed in from the raw material and the surrounding environment, and therefore cannot be excluded. Such impurities are known to anyone of ordinary skill in the art and will not be specifically described in their entirety.

本発明の鋼材は、中心部の微細組織が、面積%で、70%以上のアシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)の混合相、20%以下の上部ベイナイト(upper bainite)、及び残りのフェライト、パーライト、島状マルテンサイト(MA)からなる群より選択される1種以上からなり、上記上部ベイナイトのEBSD方法で測定された15°以上の高境界角を有する有効結晶粒の円相当直径が15μm(マイクロメートル)以下であり、表面直下2mm以下の領域における表面部の微細組織が、面積%で、20%以上のフェライト、及び残りのベイナイト、マルテンサイトのうち1種以上からなり、且つ、溶接時に形成される溶接熱影響部が、面積%で、5%以下の島状マルテンサイトを含む。   In the steel material of the present invention, the microstructure of the central portion is, by area%, a mixed phase of 70% or more of acidic ferrite and granular bainite, 20% or less of upper bainite, And at least one of the remaining ferrite, pearlite, and island martensite (MA) selected from the group consisting of effective crystal grains having a high boundary angle of 15 ° or more as measured by the EBSD method of the upper bainite. The microstructure of the surface portion in a region having a circle equivalent diameter of 15 μm (micrometer) or less and a region of 2 mm or less immediately below the surface is, by area%, 20% or more of ferrite, and the remaining bainite and martensite from at least one of them. And the heat affected zone formed during welding is Contains 5% or less of island martensite by volume%.

上記中心部の微細組織の上記アシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)の混合相の分率が70%未満の場合には、十分な降伏強度、例えば、460MPa以上の降伏強度を確保することが難しくなり得る。したがって、アシキュラーフェライトとグラニュラーベイナイトの混合相の分率は、75%以上に限定することがより好ましく、80%以上に限定することがさらに好ましい。   When the fraction of the mixed phase of the acicular ferrite and the granular bainite having the microstructure of the central portion is less than 70%, a sufficient yield strength, for example, a yield strength of 460 MPa or more, is obtained. It can be difficult to secure. Therefore, the fraction of the mixed phase of acicular ferrite and granular bainite is more preferably limited to 75% or more, and still more preferably to 80% or more.

上記アシキュラーフェライト(acicular ferrite)の分率は、20〜70%であることが好ましい。アシキュラーフェライト(acicular ferrite)の分率が70%を超えると、強度低下が原因で十分な降伏強度、例えば、460MPa以上の降伏強度を確保することが難しくなる可能性がある。また、20%未満の場合には、高強度が原因で衝撃靭性が低下するおそれがある。尚、アシキュラーフェライトの分率は、30〜50%に限定することがより好ましく、30〜40%に限定することがさらに好ましい。   The fraction of the acicular ferrite is preferably 20 to 70%. When the fraction of the acicular ferrite exceeds 70%, it may be difficult to secure a sufficient yield strength, for example, a yield strength of 460 MPa or more, due to a decrease in strength. On the other hand, if it is less than 20%, impact toughness may decrease due to high strength. Incidentally, the fraction of the acicular ferrite is more preferably limited to 30 to 50%, and further preferably limited to 30 to 40%.

上記グラニュラーベイナイト(granular bainite)の分率は、10〜60%であることが好ましい。グラニュラーベイナイト(granular bainite)の分率が60%を超えると、高強度が原因で衝撃靭性が低下する可能性があり、10%未満の場合には、強度低下が原因で十分な降伏強度、例えば、460MPa以上の降伏強度を確保することが難しくなるおそれがある。また、グラニュラーベイナイトの分率は、20〜50%に限定することがより好ましく、30〜50%に限定することがさらに好ましい。   The fraction of the granular bainite is preferably 10 to 60%. If the fraction of granular bainite (granular bainite) exceeds 60%, the impact toughness may decrease due to high strength, and if it is less than 10%, sufficient yield strength due to the decrease in strength, for example, It may be difficult to secure a yield strength of 460 MPa or more. Further, the fraction of granular bainite is more preferably limited to 20 to 50%, and further preferably limited to 30 to 50%.

上記中心部の上部ベイナイトの分率が20%を超えると、脆性亀裂伝播時に、クラック先端に微細クラックを誘発させて脆性亀裂伝播抵抗性を低下させるため、中心部の上部ベイナイトの分率は20%以下であることが好ましい。また、上部ベイナイトの分率は、15%以下に限定することがより好ましく、10%以下に限定することがさらに好ましい。
上記中心部の上部ベイナイトのEBSD方法で測定された15°以上の高境界角を有する有効結晶粒の円相当直径が15μm(マイクロメートル)を超えると、低い上部ベイナイトの分率にもかかわらず、クラックが容易に誘発されるという問題があるため、中心部の上部ベイナイトの有効結晶粒の円相当直径は15μm(マイクロメートル)以下であることが好ましい。
When the fraction of the upper bainite in the central portion exceeds 20%, a microcrack is induced at the crack tip at the time of brittle crack propagation, and the brittle crack propagation resistance is reduced. % Is preferable. Further, the fraction of the upper bainite is more preferably limited to 15% or less, further preferably 10% or less.
When the equivalent grain diameter of an effective grain having a high boundary angle of 15 ° or more measured by the EBSD method of the central upper bainite exceeds 15 μm (micrometer), despite the lower upper bainite fraction, Since there is a problem that cracks are easily induced, it is preferable that the equivalent crystal diameter of the effective crystal grains of the upper bainite at the center is 15 μm (micrometer) or less.

上記表面直下2mm以下の領域における表面部の微細組織が20%以上のフェライトを含む場合、脆性亀裂伝播時に、表面における亀裂伝播を効果的に妨害することにより脆性亀裂伝播抵抗性を向上させることができる。また、フェライトの分率は、30%以上に限定することがより好ましく、40%以上に限定することがさらに好ましい。上記中心部及び表面部の微細組織中の上記フェライトとは、多角形フェライト(Polygonal ferrite)または延伸された多角形フェライト(Elongatged Polygonal ferrite)を意味する。   In the case where the microstructure of the surface portion in the region of 2 mm or less immediately below the surface contains 20% or more of ferrite, the brittle crack propagation resistance can be improved by effectively hindering the crack propagation on the surface during brittle crack propagation. it can. Further, the ferrite fraction is more preferably limited to 30% or more, and further preferably limited to 40% or more. The ferrite in the microstructure of the central part and the surface part means a polygonal ferrite (Polygonal ferrite) or an elongated polygonal ferrite (Elongated Polygonal ferrite).

上記鋼材の溶接熱影響部の島状マルテンサイトが5%を超えると、クラック開始出発点として作用して脆性亀裂開始抵抗性を低下させるため、溶接熱影響部の島状マルテンサイトの分率は5%以下であることが好ましい。   When the island-like martensite in the weld heat-affected zone of the steel material exceeds 5%, it acts as a crack initiation starting point and reduces the brittle crack initiation resistance. It is preferably at most 5%.

上記溶接時の溶接入熱量は0.5〜10kJ/mmであることができる。   The heat input during welding can be 0.5 to 10 kJ / mm.

上記溶接時の溶接方法としては、特に限定されるものではないが、例えば、FCAW(Flux Cored Arc Welding)やSAW(Submerged Arc Welding)などを挙げることができる。   The welding method at the time of the above-mentioned welding is not particularly limited, and examples thereof include FCAW (Flux Cored Arc Welding) and SAW (Submerged Arc Welding).

上記鋼材は、降伏強度が460MPa以上であることが好ましい。   The steel material preferably has a yield strength of 460 MPa or more.

上記鋼材は、鋼材の厚さ方向に鋼材の厚さ1/2t(t:鋼板の厚さ)の位置におけるシャルピー破面遷移温度が−40℃以下であることが好ましい。   It is preferable that the steel material has a Charpy fracture surface transition temperature of −40 ° C. or less at a position where the thickness of the steel material is tt (t: the thickness of the steel sheet) in the thickness direction of the steel material.

上記鋼材は、50mm以上の厚さを有することができ、50〜100mmの厚さを有することが好ましい。   The steel material may have a thickness of 50 mm or more, and preferably has a thickness of 50 to 100 mm.

以下、本発明の他の側面による脆性亀裂伝播抵抗性に優れた高強度鋼材の製造方法について詳細に説明する。   Hereinafter, a method for producing a high-strength steel excellent in brittle crack propagation resistance according to another aspect of the present invention will be described in detail.

本発明の他の側面による脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法は、重量%で、C:0.05〜0.09%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.04%、Ti:0.005〜0.04%、Cu:0.1〜0.8%、Si:0.05〜0.3%、Al:0.005〜0.05%、P:100ppm以下、S:40ppm以下、残りFe及びその他の不可避不純物からなるスラブを1000〜1100℃で再加熱した後、1100〜900℃の温度で粗圧延する段階と、上記粗圧延されたバー(bar)を、中心部温度を基準に、Ar+60℃〜Ar℃の温度範囲で仕上げ圧延して鋼板を得る段階と、上記鋼板を500℃以下の温度まで冷却する段階と、を含む。 According to another aspect of the present invention, a method for producing a high-strength steel material having excellent brittle crack propagation resistance and brittle crack initiation resistance at a welded portion is as follows: C: 0.05 to 0.09%, Mn: 1 0.5 to 2.2%, Ni: 0.3 to 1.2%, Nb: 0.005 to 0.04%, Ti: 0.005 to 0.04%, Cu: 0.1 to 0.8 %, Si: 0.05 to 0.3%, Al: 0.005 to 0.05%, P: 100 ppm or less, S: 40 ppm or less, and slab composed of remaining Fe and other unavoidable impurities at 1000 to 1100 ° C. after reheating, the steps of rough rolling at a temperature of 1100 to 900 ° C., the crude rolled bar (bar), based on the core temperature, finish rolling at a temperature range of Ar 3 + 60 ℃ ~Ar 3 ℃ And obtaining a steel sheet, and cooling the steel sheet to a temperature of 500 ℃ or less ,including.

〔スラブ再加熱〕
粗圧延に先立ってスラブを再加熱する。スラブ再加熱温度は1000℃以上とすることが好ましい。これは、鋳造中に形成されたTi及び/またはNbの炭窒化物を固溶させるためである。但し、高すぎる温度で再加熱する場合には、オーステナイトが粗大化する可能性があるため、上記再加熱温度の上限は1100℃であることが好ましい。
[Slab reheating]
The slab is reheated prior to rough rolling. The slab reheating temperature is preferably set to 1000 ° C. or higher. This is for dissolving the carbonitride of Ti and / or Nb formed during casting. However, when reheating is performed at a temperature that is too high, austenite may be coarsened. Therefore, the upper limit of the reheating temperature is preferably 1100 ° C.

〔粗圧延〕
再加熱されたスラブを粗圧延する。粗圧延温度は、オーステナイトの再結晶が止まる温度(Tnr)以上とすることが好ましい。圧延により鋳造中に形成されたデンドライトなどの鋳造組織が破壊され、オーステナイトのサイズを小さくするという効果も奏することができる。かかる効果を得るために、粗圧延温度は1100〜900℃に制限することが好ましい。また、粗圧延温度は1050〜950℃であることがより好ましい。
(Rough rolling)
The reheated slab is roughly rolled. The rough rolling temperature is preferably equal to or higher than the temperature (Tnr) at which austenite recrystallization stops. The effect of reducing the size of austenite can also be achieved by destroying a cast structure such as dendrite formed during casting by rolling. In order to obtain such an effect, the rough rolling temperature is preferably limited to 1100 to 900 ° C. Further, the rough rolling temperature is more preferably from 1050 to 950 ° C.

本発明では、粗圧延時の中心部の組織を微細化するために粗圧延時の最後の3パスに対しては、パス当たりの圧下率を5%以上、総累積圧下率を40%以上とすることが好ましい。より好ましいパス当たりの圧下率は7〜20%である。さらに好ましい総累積圧下率は45%以上である。   In the present invention, the rolling reduction per pass is 5% or more and the total cumulative rolling reduction is 40% or more for the last three passes in the rough rolling in order to refine the structure of the central portion in the rough rolling. Is preferred. A more preferred rolling reduction per pass is 7 to 20%. A more preferred total cumulative reduction is 45% or more.

粗圧延時の初期圧延により再結晶した組織は、高い温度によって結晶粒成長が起こるようになるが、最後の3パスを行う際には、圧延待機中にバーが空冷されることによって結晶粒の成長速度が遅くなり、その結果、粗圧延時の最後の3パスの圧下率が最終微細組織の粒度に最も大きな影響を与えるようになる。また、粗圧延のパス当たりの圧下率が低くなる場合、中心部に十分な変形が伝達されず、中心部の粗大化によって靭性の低下が発生することがある。したがって、最後の3パスのパス当たりの圧下率を5%以上に制限することが好ましい。一方、中心部の組織を微細化するために、粗圧延時の総累積圧下率は40%以上に設定することが好ましい。   In the structure recrystallized by the initial rolling at the time of rough rolling, crystal growth occurs at a high temperature. However, when performing the last three passes, the bar is air-cooled during the rolling standby, so that the crystal is grown. The growth rate is reduced, and as a result, the rolling reduction in the last three passes during rough rolling has the greatest effect on the grain size of the final microstructure. In addition, when the rolling reduction per pass of the rough rolling is low, sufficient deformation is not transmitted to the central portion, and the toughness may decrease due to the coarsening of the central portion. Therefore, it is preferable to limit the rolling reduction per pass of the last three passes to 5% or more. On the other hand, in order to refine the structure at the center, it is preferable to set the total cumulative draft during rough rolling to 40% or more.

粗圧延時の最後の3パス(pass)に対しては、変形速度(Strain rate)を2/sec以下とすることが好ましい。一般に、粗圧延時の厚いバー(bar)の厚さにより、高圧下率で圧延することが難しいため、極厚物材の中心部まで圧下量を伝達することが難しくなり、中心部のオーステナイト粒度が粗大化するという問題がある。一方、変形速度が低くなるほど、少ない圧下量でも中心部まで変形が伝達され、粒度を微細化することができる利点がある。したがって、粗圧延時の最終粒度に最も大きな影響を与える最後の3パス(pass)に対しては、変形速度を2/sec以下に制限することにより、中心部の粒度を微細にすることで、アシキュラーフェライトとグラニュラーベイナイトの生成を促進させることができる。   For the last three passes during rough rolling, it is preferable that the deformation rate (Strain rate) is set to 2 / sec or less. In general, it is difficult to perform rolling at a high reduction rate due to the thickness of a thick bar at the time of rough rolling, so that it is difficult to transmit the reduction amount to the center of an extremely thick material, and the austenitic grain size at the center is large. However, there is a problem that is coarse. On the other hand, as the deformation speed decreases, the deformation is transmitted to the center even with a small amount of reduction, and there is an advantage that the particle size can be reduced. Therefore, for the last three passes that have the greatest effect on the final grain size during rough rolling, by limiting the deformation rate to 2 / sec or less, the central grain size can be made finer, The formation of acicular ferrite and granular bainite can be promoted.

〔仕上げ圧延〕
粗圧延されたバーをAr(フェライト変態開始温度)+60℃〜Ar℃で仕上げ圧延して鋼板を得る。これは、より微細化された微細組織を得るためのものである。Ar温度直上で圧延を行う場合、オーステナイトの内部に変形帯を多く生成させてフェライトの核生成サイトを多く確保することで、鋼材の中心部まで微細組織が確保されるようにするという効果を得ることができる。また、オーステナイト内部に変形帯を効果的に多く生成させるために、仕上げ圧延時の累積圧下率を40%以上に維持し、調質圧延を除いたパス当たりの圧下率を4%以上に維持することが好ましい。より好ましい累積圧下率は40〜80%である。
より好ましいパス当たりの圧下率は4.5%以上である。
(Finish rolling)
The rough-rolled bar is finish-rolled at Ar 3 (ferrite transformation start temperature) + 60 ° C. to Ar 3 ° C. to obtain a steel sheet. This is for obtaining a finer microstructure. When rolling is performed just above the temperature of Ar 3 , a large number of deformation bands are generated inside austenite to secure many nucleation sites of ferrite, thereby achieving an effect of securing a microstructure up to the center of a steel material. Obtainable. In addition, in order to effectively generate a large number of deformation zones inside austenite, the cumulative rolling reduction during finish rolling is maintained at 40% or more, and the rolling reduction per pass excluding temper rolling is maintained at 4% or more. Is preferred. The more preferred rolling reduction is 40 to 80%.
A more preferred rolling reduction per pass is 4.5% or more.

仕上げ圧延温度をAr以下に下げる場合、粗大なフェライトが圧延前に生成されて圧延中に長く延伸されるため、逆に衝撃靭性を下げることになる。また、Ar+60℃以上で仕上げ圧延される場合、粒度微細化に効果的でないため、仕上げ圧延時の仕上げ圧延温度はAr+60℃〜Ar℃に設定することが好ましい。 When the finish rolling temperature is reduced to Ar 3 or less, coarse ferrite is generated before rolling and is elongated during rolling, so that impact toughness is reduced. Also, as the finish rolling at Ar 3 + 60 ° C. or higher, because it is not effective in granularity finer finish rolling temperature during finish rolling is preferably set to Ar 3 + 60 ℃ ~Ar 3 ℃ .

本発明では、仕上げ圧延時の未再結晶領域における圧下率を40〜80%に制限することが好ましい。上記のように、未再結晶領域における圧下率を制御することにより、アシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)の核生成サイトが多くなるため、これら組織の生成をさらに促進させることができる。上記未再結晶領域における圧下率が低すぎると、アシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)を十分に確保することができない。一方、高すぎると、高圧下率に起因する礎石フェライトの生成により強度が低下するおそれがある。   In the present invention, the rolling reduction in the unrecrystallized region at the time of finish rolling is preferably limited to 40 to 80%. As described above, by controlling the rolling reduction in the non-recrystallized region, the number of nucleation sites for acicular ferrite and granular bainite increases, so that the formation of these structures is further promoted. Can be. If the rolling reduction in the non-recrystallized region is too low, it is not possible to sufficiently secure the acidic ferrite and the granular bainite. On the other hand, if it is too high, the strength may be reduced due to the formation of cornerstone ferrite due to the high-pressure reduction.

上記粗圧延後仕上げ圧延前のバーの厚さ中心部の結晶粒サイズは150μm以下、好ましくは100μm以下、より好ましくは80μm以下とすることができる。上記粗圧延後仕上げ圧延前のバーの厚さ中心部の結晶粒サイズは、粗圧延条件などにより制御することができる。上記のように、上記粗圧延後仕上げ圧延前のバーの結晶粒サイズを制御する場合、オーステナイト結晶粒の微細化により、最終微細組織が微細化するため低温衝撃靭性が向上する利点をさらに有することができる。   The crystal grain size at the center of the thickness of the bar before the rough rolling and before the finish rolling can be 150 μm or less, preferably 100 μm or less, more preferably 80 μm or less. The crystal grain size at the center of the thickness of the bar before the rough rolling after the rough rolling can be controlled by rough rolling conditions and the like. As described above, when the grain size of the bar before the rough rolling and before the finish rolling is controlled, the advantage that the low-temperature impact toughness is further improved because the final microstructure is refined by the refinement of the austenite crystal grains. Can be.

上記仕上げ圧延時の圧下比は、スラブの厚さ(mm)/仕上げ圧延後の鋼板の厚さ(mm)の比が3.5以上、好ましくは4以上になるように設定することができる。上記のように圧下比を制御する場合、粗圧延及び仕上げ圧延時の圧下量を増加させることにより、最終微細組織の微細化を通じた降伏強度/引張強度の上昇、低温靭性の向上、及び厚さ中心部の粒度減少を通じた中心部の靭性の向上という利点をさらに有することができる。仕上げ圧延後に、鋼板は50mm以上の厚さを有することができ、好ましくは50〜100mmの厚さを有することができる。   The rolling reduction at the time of the finish rolling can be set so that the ratio of the thickness (mm) of the slab / the thickness (mm) of the steel sheet after the finish rolling becomes 3.5 or more, preferably 4 or more. When controlling the reduction ratio as described above, increasing the reduction amount during rough rolling and finish rolling increases the yield strength / tensile strength through refinement of the final microstructure, improves low-temperature toughness, and increases the thickness. It may further have the advantage of improving the toughness of the center through a reduction in the grain size of the center. After finish rolling, the steel sheet can have a thickness of 50 mm or more, preferably 50-100 mm.

〔冷却〕
仕上げ圧延後の鋼板を500℃以下に冷却する。冷却終了温度が500℃を超えると、微細組織が適切に形成されず十分な降伏強度、例えば、460MPa以上の降伏強度を確保することが難しくなる可能性がある。また、上記冷却終了温度が400℃を超えると、アシキュラーフェライト(AF)とグラニュラーベイナイト(GB)の生成量が減少してオート焼戻し(auto tempering)の効果により強度が低下するおそれがある。したがって、好ましい冷却終了温度は400℃以下である。
〔cooling〕
The steel sheet after finish rolling is cooled to 500 ° C. or less. When the cooling end temperature exceeds 500 ° C., a fine structure is not appropriately formed, and it may be difficult to secure a sufficient yield strength, for example, a yield strength of 460 MPa or more. On the other hand, if the cooling end temperature exceeds 400 ° C., the amount of generated acicular ferrite (AF) and granular bainite (GB) may decrease, and the strength may decrease due to the effect of auto tempering. Therefore, the preferable cooling end temperature is 400 ° C. or lower.

上記鋼板の冷却は2℃/s以上の中心部冷却速度で行うことができる。鋼板の中心部冷却速度が2℃/s未満の場合には、微細組織が適切に形成されず十分な降伏強度、例えば、460MPa以上の降伏強度を確保することが難しくなることがある。また、上記鋼板の冷却は、3〜300℃/sの平均冷却速度で行うことができる。   The cooling of the steel sheet can be performed at a central part cooling rate of 2 ° C./s or more. If the cooling rate at the center of the steel sheet is less than 2 ° C./s, it may be difficult to secure a sufficient yield strength, for example, a yield strength of 460 MPa or more, because a microstructure is not appropriately formed. The cooling of the steel sheet can be performed at an average cooling rate of 3 to 300 ° C./s.

以下、実施例を通じて本発明をより具体的に説明する。但し、かかる実施例の記載は、本発明の実施を例示するためのものであって、かかる実施例の記載によって本発明が制限されるものではない。本発明の権利範囲は、特許請求の範囲に記載された事項とそれから合理的に類推される事項によって決定されるためである。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the description of the examples is for illustrating the implementation of the present invention, and the present invention is not limited by the descriptions of the examples. This is because the scope of rights of the present invention is determined by the matters described in the claims and matters reasonably inferred therefrom.

下記表1の組成を有する厚さ400mmの鋼スラブを1045℃の温度で再加熱した後、1020℃の温度で粗圧延を開始してバーを製造した。粗圧延時の累積圧下率は52%に同一に適用した。上記粗圧延されたバーの厚さは192mm、下記表2に示すように粗圧延後仕上げ圧延前の中心粒サイズは66〜82μmであった。上記粗圧延時の最後の3passの圧下率は7.9〜14.1%、圧延時の変形速度は1.22〜1.68/sの範囲内であった。上記粗圧延後、下記表2に示す仕上げ圧延温度とAr3温度の差の温度でパス当たり4.2〜5.6%の圧下率及び50%の累積圧下率で仕上げ圧延を行い、下記表3の厚さを有する鋼板を得た後、中心部冷却速度3.8〜5.0℃/secで241〜378℃以下の温度に冷却した。以上のように製造された鋼板に対する微細組織、降伏強度、Kca値(脆性亀裂伝播抵抗性係数)、CTOD値(脆性亀裂開始抵抗性係数)を調査し、その結果を下記表3及び表4に示した。下記表3の表面特性は、Cu/Niの添加比により発生する赤熱脆性(Hot shortness)による表面部のスタークラックが発生するか否かを測定したものである。また、下記表4のKca値は鋼板に対してESSO試験(test)を行って評価した値であり、CTOD値はFCAW(1.0kJ/mm)の溶接を行い、溶接熱影響部に対して組織分析及びCTOD評価を行った結果である。   A 400 mm thick steel slab having the composition shown in Table 1 below was reheated at a temperature of 1045 ° C., and then rough rolling was started at a temperature of 1020 ° C. to produce a bar. The cumulative rolling reduction at the time of rough rolling was applied equally to 52%. The thickness of the rough-rolled bar was 192 mm, and as shown in Table 2 below, the center grain size before rough rolling after rough rolling was 66 to 82 μm. The rolling reduction in the last 3 passes during the rough rolling was 7.9 to 14.1%, and the deformation rate during the rolling was within a range from 1.22 to 1.68 / s. After the above rough rolling, finish rolling was performed at a rolling difference of 4.2 to 5.6% and a cumulative rolling reduction of 50% per pass at a temperature between the finish rolling temperature and the Ar3 temperature shown in Table 2 below. After obtaining a steel plate having a thickness of 2.8-5.0 ° C., the central portion was cooled to a temperature of 241-378 ° C. or lower at a cooling rate of 3.8-5.0 ° C./sec. The microstructure, yield strength, Kca value (brittle crack propagation resistance coefficient), and CTOD value (brittle crack initiation resistance coefficient) of the steel plate manufactured as described above were investigated, and the results are shown in Tables 3 and 4 below. Indicated. The surface characteristics shown in Table 3 below are measured to determine whether or not star cracks occur on the surface due to hot shortness caused by the addition ratio of Cu / Ni. The Kca value in Table 4 below is a value evaluated by performing an ESSO test (test) on a steel sheet. It is a result of performing a tissue analysis and CTOD evaluation.

Figure 0006648270
Figure 0006648270

Figure 0006648270
Figure 0006648270

Figure 0006648270
Figure 0006648270

Figure 0006648270
Figure 0006648270

表1〜表4に示すように、比較例1の場合は、本発明で提示する仕上げ圧延時の仕上げ圧延温度−Ar3の温度差を60℃以上に制御されたものであって、高い温度で圧延が施されて中心部まで十分な圧下が加わらず、高い温度で冷却が開始したため、表面部に20%以上のフェライトが生成されなかったことから、−10℃で測定されたKca値が一般の造船用鋼材に要求される6000を超えていないことが分かる。   As shown in Tables 1 to 4, in the case of Comparative Example 1, the temperature difference of the finish rolling temperature-Ar3 at the time of finish rolling presented in the present invention was controlled to 60 ° C or more, and at a high temperature. Since rolling was performed and sufficient reduction was not applied to the center and cooling started at a high temperature, no ferrite of 20% or more was formed on the surface. Therefore, the Kca value measured at −10 ° C. It does not exceed 6000 required for steel materials for shipbuilding.

比較例2の場合は、Cの含有量が本発明のCの含有量の上限よりも高い値を有するものであって、粗圧延時の中心部に多量の粗大な上部ベイナイト(upper bainite)が生成されたことから、−10℃で測定されたKca値が6000以下の値を有し、溶接熱影響部にも多くの島状マルテンサイト(MA)の組織が生成されて、CTOD値が0.25mm以下の値を有することが分かる。   In the case of Comparative Example 2, the C content has a value higher than the upper limit of the C content of the present invention, and a large amount of coarse upper bainite (upper bainite) is present at the center during rough rolling. As a result, the Kca value measured at −10 ° C. has a value of 6000 or less, a large number of island-like martensite (MA) structures are generated in the weld heat-affected zone, and the CTOD value is 0. It can be seen that it has a value of 0.25 mm or less.

比較例3の場合は、Siの含有量が本発明のSiの含有量の上限よりも高い値を有するものであって、Siが多量添加されることによって、溶接熱影響部に多量のMA組織が生成されて、CTOD値が0.25mm以下の値を有することが分かる。   In the case of Comparative Example 3, the content of Si has a value higher than the upper limit of the content of Si of the present invention. Is generated, and it can be seen that the CTOD value has a value of 0.25 mm or less.

比較例4の場合は、Mnの含有量が本発明のMnの含有量の上限よりも高い値を有するものであって、高い硬化能が原因で中心部に多量の上部ベイナイトが生成されて、Kca値も−10℃で6000以下の値を有することが確認できる。また、高いCeq値に起因する溶接熱影響部のMA相の量が少ないにもかかわらず、CTOD値が0.25以下であることが分かる。   In the case of Comparative Example 4, the content of Mn has a value higher than the upper limit of the content of Mn of the present invention, and a large amount of upper bainite is generated in the center due to the high curing ability, It can be confirmed that the Kca value also has a value of 6000 or less at -10 ° C. Also, it can be seen that the CTOD value is 0.25 or less despite the small amount of the MA phase in the weld heat affected zone caused by the high Ceq value.

比較例5の場合は、Niの含有量が本発明のNiの含有量の上限よりも高い値を有するものであって、高い硬化能が原因で多量の上部ベイナイトが中心部に生成され、これにより、Kca値も−10℃で6000以下の値を有することが分かる。しかし、高いNiの含有量により、CTOD値には優れていることが確認できる。   In the case of Comparative Example 5, the Ni content had a value higher than the upper limit of the Ni content of the present invention, and a large amount of upper bainite was generated in the center due to the high hardening ability. As a result, it is understood that the Kca value also has a value of 6000 or less at −10 ° C. However, it can be confirmed that the CTOD value is excellent due to the high Ni content.

比較例6の場合は、Nb、Tiの含有量が本発明のNb、Tiの含有量の上限よりも高い値を有するものであって、他の条件がすべて本発明で提示する条件を満たしているにもかかわらず、高いTi、Nbが原因で溶接熱影響部に多量のMA組織が生成され、CTOD値が0.25mm以下の値を有することが分かる。   In the case of Comparative Example 6, the content of Nb and Ti has a value higher than the upper limit of the content of Nb and Ti of the present invention, and all other conditions satisfy the conditions presented in the present invention. Despite this, it can be seen that a large amount of MA structure is generated in the heat affected zone due to high Ti and Nb, and the CTOD value has a value of 0.25 mm or less.

発明例7の場合は、本発明の好ましい一側面で提示するCu/Niの比を超える成分を有するものであって、他の物性が非常に優れているにもかかわらず、表面にスタークラックが発生し、表面品質に異常があることが分かる。   In the case of Inventive Example 7, the composition has a component exceeding the Cu / Ni ratio presented in a preferred aspect of the present invention, and star cracks are formed on the surface despite other excellent physical properties. It can be seen that there is an abnormality in the surface quality.

比較例7の場合は、C、Mnの含有量が本発明のC、Mnの含有量の下限よりも低い値を有するものであって、低い硬化能が原因で中心部におけるAF+GBの分率が非常に低く、多量のポリゴナルフェライト及び10%以上のパーライト組織を有し、これにより、Kca値が−10℃で6000以下の値を有することが分かる。   In the case of Comparative Example 7, the content of C and Mn had a value lower than the lower limit of the content of C and Mn of the present invention. It is very low and has a large amount of polygonal ferrite and a pearlite structure of 10% or more, which indicates that the Kca value has a value of 6000 or less at −10 ° C.

これに対し、本発明の成分範囲及び製造範囲を満たす発明例1〜6の場合には、中心部の微細組織のAF+GBが70%以上を有し、中心部の上部ベイナイトの分率が20%以下であり、中心部の上部ベイナイトの15°以上の高境界角を有する有効結晶粒の円相当直径が15μm以下であり、溶接熱影響部のMAの相分率が5%未満であることが分かる。   On the other hand, in the case of Inventive Examples 1 to 6 which satisfy the component range and the production range of the present invention, AF + GB of the microstructure in the center portion is 70% or more, and the fraction of upper bainite in the center portion is 20%. The upper bainite in the center has an equivalent grain diameter of 15 μm or less of the effective crystal grains having a high boundary angle of 15 ° or more, and the phase fraction of MA in the weld heat affected zone is less than 5%. I understand.

発明例1〜6は、降伏強度460MPa以上、Kca値が−10℃で6000以上の値を満たし、CTOD値も0.25mm以上の優れた値を示すことが分かる。   Inventive Examples 1 to 6 show that the yield strength is 460 MPa or more, the Kca value satisfies the value of 6000 or more at −10 ° C., and the CTOD value is 0.25 mm or more.

以上、実施例を参照して説明したが、当該技術分野の熟練した当業者は、下記特許請求の範囲に記載された本発明の思想及び領域から逸脱しない範囲内で、本発明を多様に修正及び変更することができることを理解できる。


As described above with reference to the embodiments, those skilled in the art can variously modify the present invention without departing from the spirit and scope of the present invention described in the following claims. And that it can be changed.


Claims (12)

重量%で、C:0.05〜0.09%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.04%、Ti:0.005〜0.04%、Cu:0.1〜0.8%、Si:0.05〜0.3%、Al:0.005〜0.05%、P:100ppm以下、S:40ppm以下、残りFe及びその他の不可避不純物からなり、中心部の微細組織が、面積%で、70%以上のアシキュラーフェライト(acicular ferrite)とグラニュラーベイナイト(granular bainite)の混合相、20%以下の上部ベイナイト(upper bainite)、及び残りのフェライト、パーライト、島状マルテンサイト(MA)からなる群より選択される1種以上からなり、前記上部ベイナイトのEBSD方法で測定された15°以上の高境界角を有する有効結晶粒の円相当直径が15μm(マイクロメートル)以下であり、表面直下2mm以下の領域における表面部の微細組織が、面積%で、20%以上のフェライト、及び残りのベイナイト、マルテンサイトのうち1種以上からなり、且つ、溶接時に形成される溶接熱影響部が、面積%で、5%以下の島状マルテンサイトを含み、
厚さが50mm以上であり、前記溶接時の溶接入熱量は0.5〜10kJ/mmであり、前記溶接時の溶接方法は、FCAW(Flux Cored Arc Welding)またはSAW(Submerged Arc Welding)であることを特徴とする脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材。
By weight%, C: 0.05 to 0.09%, Mn: 1.5 to 2.2%, Ni: 0.3 to 1.2%, Nb: 0.005 to 0.04%, Ti: 0.005 to 0.04%, Cu: 0.1 to 0.8%, Si: 0.05 to 0.3%, Al: 0.005 to 0.05%, P: 100 ppm or less, S: 40 ppm Hereinafter, the remaining microstructure of the central part is composed of 70% or more in area% of a mixed phase of an acicular ferrite and a granular bainite, and an upper part of 20% or less. An EBSD method of the upper bainite, comprising at least one selected from the group consisting of upper bainite and the remaining ferrite, pearlite, and island martensite (MA). The measured equivalent crystal diameter of the effective crystal grain having a high boundary angle of 15 ° or more is 15 μm (micrometer) or less, and the fine structure of the surface portion in a region 2 mm or less immediately below the surface is 20% or more in area%. ferrite, and the rest of bainite, consists of one or more of martensite, and the weld heat affected zone which is formed during welding, in area%, see containing 5% or less of the island martensite,
The thickness is 50 mm or more, the welding heat input during the welding is 0.5 to 10 kJ / mm, and the welding method during the welding is FCAW (Flux Cored Arc Welding) or SAW (Submerged Arc Welding). A high-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance at a welded part.
前記CuとNiの含有量は、Cu/Niの重量比が0.8以下であることを特徴とする請求項1に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材。   The Cu / Ni content is excellent in brittle crack propagation resistance and brittle crack initiation resistance of a welded part according to claim 1, wherein the weight ratio of Cu / Ni is 0.8 or less. High strength steel. 前記鋼材は降伏強度が460MPa以上であることを特徴とする請求項1に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材。   The high-strength steel material according to claim 1, wherein the steel material has a yield strength of 460 MPa or more, and is excellent in brittle crack propagation resistance and brittle crack initiation resistance at a welded portion. 前記鋼材は−10℃で測定されたKca値が6000N/mm 1.5 以上であることを特徴とする請求項1に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材。 The brittle crack propagation resistance and brittle crack initiation resistance of the welded part according to claim 1, wherein the steel material has a Kca value measured at -10 ° C of 6000 N / mm 1.5 or more. High strength steel material. 前記鋼材は、鋼材の厚さ方向に鋼材の厚さ1/2t(t:鋼板の厚さ)の位置におけるシャルピー破面遷移温度が−40℃以下であることを特徴とする請求項1に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材。   2. The steel material according to claim 1, wherein a Charpy fracture surface transition temperature at a position of 1/2 t (t: thickness of the steel plate) of the steel material in a thickness direction of the steel material is −40 ° C. or less. 3. High strength steel with excellent brittle crack propagation resistance and brittle crack initiation resistance of welds. 請求項1乃至5のいずれか一項に記載の高強度鋼材を製造する製造方法であって、
重量%で、C:0.05〜0.09%、Mn:1.5〜2.2%、Ni:0.3〜1.2%、Nb:0.005〜0.04%、Ti:0.005〜0.04%、Cu:0.1〜0.8%、Si:0.05〜0.3%、Al:0.005〜0.05%、P:100ppm以下、S:40ppm以下、残りFe及びその他の不可避不純物からなるスラブを1000〜1100℃で再加熱した後、1100〜900℃の温度で粗圧延する段階と、
前記粗圧延されたバー(bar)を、中心部温度を基準に、Ar+60℃〜Ar℃の温度範囲で仕上げ圧延して鋼板を得る段階と、
前記鋼板を500℃以下の温度まで冷却する段階と、を含み、
前記粗圧延の時の最後の3パス(pass)に対しては、変形速度(Strain rate)を2/sec以下で行い、
前記仕上げ圧延された鋼板の厚さが50mm以上であることを特徴とする脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法。
It is a manufacturing method of manufacturing the high-strength steel material according to any one of claims 1 to 5,
By weight%, C: 0.05 to 0.09%, Mn: 1.5 to 2.2%, Ni: 0.3 to 1.2%, Nb: 0.005 to 0.04%, Ti: 0.005 to 0.04%, Cu: 0.1 to 0.8%, Si: 0.05 to 0.3%, Al: 0.005 to 0.05%, P: 100 ppm or less, S: 40 ppm Hereinafter, after reheating the slab comprising the remaining Fe and other unavoidable impurities at 1000 to 1100 ° C, rough rolling at a temperature of 1100 to 900 ° C,
Finishing the rough-rolled bar in a temperature range of Ar 3 + 60 ° C. to Ar 3 ° C. based on the center temperature to obtain a steel sheet;
Look including the the steps of cooling the steel sheet to a temperature below 500 ℃,
For the last three passes at the time of the rough rolling, a deformation rate (Strain rate) is performed at 2 / sec or less,
A method for producing a high-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of a welded part, wherein the thickness of the finish-rolled steel sheet is 50 mm or more .
前記粗圧延の時の最後の3パス(pass)に対しては、パス(pass)当たりの圧下率を5%以上、総累積圧下率を40%以上とすることを特徴とする請求項に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法。 7. The method according to claim 6 , wherein the rolling reduction per pass is 5% or more and the total cumulative rolling reduction is 40% or more for the last three passes during the rough rolling. A method for producing a high-strength steel material excellent in the brittle crack propagation resistance and the brittle crack initiation resistance of a weld as described. 前記粗圧延の後仕上げ圧延前のバーの厚さ中心部の結晶粒サイズは150μm以下であることを特徴とする請求項に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法。 The brittle crack propagation resistance and the brittle crack initiation resistance of the welded part according to claim 6 , wherein the grain size at the center of the thickness of the bar before the finish rolling after the rough rolling is 150 µm or less. Manufacturing method of excellent high strength steel. 前記仕上げ圧延の時の圧下比は、スラブの厚さ(mm)/仕上げ圧延後の鋼板の厚さ(mm)の比が3.5以上であることを特徴とする請求項に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法。 The brittleness according to claim 6 , wherein the reduction ratio at the time of the finish rolling is such that the ratio of the thickness (mm) of the slab / the thickness (mm) of the steel sheet after the finish rolling is 3.5 or more. A method for producing a high-strength steel material having excellent crack propagation resistance and brittle crack initiation resistance at a weld. 前記仕上げ圧延の時の累積圧下率は40%以上に維持し、調質圧延を除いたパス当たりの圧下率は4%以上に維持することを特徴とする請求項に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法。 The brittle crack propagation resistance according to claim 6 , wherein the cumulative rolling reduction during the finish rolling is maintained at 40% or more, and the rolling reduction per pass excluding temper rolling is maintained at 4% or more. A method for producing a high-strength steel material having excellent weldability and brittle crack initiation resistance at a weld. 前記鋼板の冷却は2℃/s以上の中心部冷却速度で行うことを特徴とする請求項に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法。 The manufacturing of a high-strength steel material having excellent brittle crack propagation resistance and brittle crack initiation resistance of a welded part according to claim 6 , wherein the cooling of the steel sheet is performed at a central cooling rate of 2 ° C / s or more. Method. 前記鋼板の冷却は、3〜300℃/sの平均冷却速度で行うことを特徴とする請求項に記載の脆性亀裂伝播抵抗性及び溶接部の脆性亀裂開始抵抗性に優れた高強度鋼材の製造方法。 The high-strength steel material having excellent brittle crack propagation resistance and brittle crack initiation resistance of a weld according to claim 6 , wherein the cooling of the steel sheet is performed at an average cooling rate of 3 to 300 ° C / s. Production method.
JP2018522789A 2015-12-04 2016-12-02 High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same Active JP6648270B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0172689 2015-12-04
KR1020150172689A KR101726082B1 (en) 2015-12-04 2015-12-04 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
PCT/KR2016/014088 WO2017095175A1 (en) 2015-12-04 2016-12-02 High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor

Publications (2)

Publication Number Publication Date
JP2019502018A JP2019502018A (en) 2019-01-24
JP6648270B2 true JP6648270B2 (en) 2020-02-14

Family

ID=58580210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018522789A Active JP6648270B2 (en) 2015-12-04 2016-12-02 High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same

Country Status (6)

Country Link
US (1) US20180363081A1 (en)
EP (1) EP3385401B1 (en)
JP (1) JP6648270B2 (en)
KR (1) KR101726082B1 (en)
CN (1) CN108368587B (en)
WO (1) WO2017095175A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027871B1 (en) * 2017-10-03 2019-10-04 닛폰세이테츠 가부시키가이샤 Steel plate and manufacturing method of steel plate
KR101999015B1 (en) 2017-12-24 2019-07-10 주식회사 포스코 Steel for structure having superior resistibility of brittle crack arrestability and manufacturing method thereof
KR102209561B1 (en) * 2018-11-30 2021-01-28 주식회사 포스코 Ultra thick steel excellent in brittle crack arrestability and manufacturing method for the same
ES2895456T3 (en) 2018-12-11 2022-02-21 Ssab Technology Ab High-strength steel product and manufacturing method thereof
KR102200243B1 (en) * 2018-12-18 2021-01-07 주식회사 포스코 Offshore structural steel weldment for high heat input welding
KR102209547B1 (en) * 2018-12-19 2021-01-28 주식회사 포스코 Ultra thick structural steel having superior brittle crack initiation resistance and method of manufacturing the same
JP7398970B2 (en) * 2019-04-22 2023-12-15 株式会社神戸製鋼所 Thick steel plate and its manufacturing method
KR102255818B1 (en) * 2019-06-24 2021-05-25 주식회사 포스코 High strength steel for a structure having excellent corrosion resistance and manufacturing method for the same
KR102237486B1 (en) * 2019-10-01 2021-04-08 주식회사 포스코 High strength ultra thick steel plate having excellent very low temperature strain aging impact toughness at the center of thickness and method of manufacturing the same
KR102312510B1 (en) * 2019-12-17 2021-10-14 주식회사 포스코 Wire rod for cold head quality steel with excellent resistance to hydrogen delayed fracture, and method for manufacturing thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674454B2 (en) * 1986-08-19 1994-09-21 新日本製鐵株式会社 Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
JP3474661B2 (en) * 1995-01-24 2003-12-08 新日本製鐵株式会社 Sour-resistant steel plate with excellent crack arrestability
JPH10183241A (en) * 1996-12-25 1998-07-14 Nippon Steel Corp Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JP4445161B2 (en) * 2001-06-19 2010-04-07 新日本製鐵株式会社 Manufacturing method of thick steel plate with excellent fatigue strength
KR20090006987A (en) * 2007-07-13 2009-01-16 삼성전자주식회사 Ink jet image forming apparatus
KR100957964B1 (en) * 2007-12-26 2010-05-17 주식회사 포스코 Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
JP5348386B2 (en) * 2008-10-24 2013-11-20 Jfeスチール株式会社 Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
KR20100067509A (en) * 2008-12-11 2010-06-21 주식회사 포스코 Method for producing steel plate for offshore structures having excellent ctod properties in heat affected zone
KR101360737B1 (en) * 2009-12-28 2014-02-07 주식회사 포스코 High strength steel plate having excellent resistance to brittle crack initiation and method for manufacturing the same
KR20120075274A (en) * 2010-12-28 2012-07-06 주식회사 포스코 High strength steel sheet having ultra low temperature toughness and method for manufacturing the same
JP5522084B2 (en) * 2011-02-24 2014-06-18 新日鐵住金株式会社 Thick steel plate manufacturing method
KR20120097160A (en) * 2011-02-24 2012-09-03 현대제철 주식회사 High strength steel plate and method of manufacturing the same
JP5612532B2 (en) * 2011-04-26 2014-10-22 株式会社神戸製鋼所 Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same
CN102154587B (en) * 2011-05-25 2013-08-07 莱芜钢铁集团有限公司 Pipe line steel for high linear energy welding and manufacturing method thereof
CN102851591B (en) * 2011-06-28 2016-01-13 鞍钢股份有限公司 A kind of high-strength and high-ductility low-temperature steel peculiar to vessel and manufacture method thereof
KR101681491B1 (en) * 2011-12-27 2016-12-01 제이에프이 스틸 가부시키가이샤 High strength steel plate having excellent brittle crack arrestability
KR20150112489A (en) * 2014-03-28 2015-10-07 현대제철 주식회사 Steel and method of manufacturing the same
CN104789898A (en) * 2015-05-07 2015-07-22 湖南华菱湘潭钢铁有限公司 Production method of ultrahigh-strength anti-cracking thick steel plate

Also Published As

Publication number Publication date
US20180363081A1 (en) 2018-12-20
JP2019502018A (en) 2019-01-24
EP3385401A1 (en) 2018-10-10
CN108368587B (en) 2020-05-26
EP3385401B1 (en) 2020-02-12
CN108368587A (en) 2018-08-03
KR101726082B1 (en) 2017-04-12
WO2017095175A1 (en) 2017-06-08
EP3385401A4 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6648270B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP6648271B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP6514777B2 (en) Steel material for high strength pressure vessel excellent in low temperature toughness after PWHT and method for manufacturing the same
JP6475837B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP6475836B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP6788589B2 (en) High-strength steel with excellent brittle crack propagation resistance and its manufacturing method
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP6845855B2 (en) Low yield ratio type high strength steel and its manufacturing method
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP2020509168A (en) Surface part NRL-Extra-thick steel material excellent in physical properties for drop test and method for producing the same
JP5526685B2 (en) High heat input welding steel
JP7332697B2 (en) Structural extra-heavy steel with excellent brittle crack initiation resistance and its manufacturing method
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2688312B2 (en) High strength and high toughness steel plate
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
KR102508128B1 (en) Steel plate having excellent low temperature impact toughness of heat affeected zone and manufacturing mehtod for the same
KR101467030B1 (en) Method for manufacturing high strength steel plate
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
KR20150049660A (en) High strength steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6648270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250