JP4868762B2 - High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy - Google Patents

High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy Download PDF

Info

Publication number
JP4868762B2
JP4868762B2 JP2005104705A JP2005104705A JP4868762B2 JP 4868762 B2 JP4868762 B2 JP 4868762B2 JP 2005104705 A JP2005104705 A JP 2005104705A JP 2005104705 A JP2005104705 A JP 2005104705A JP 4868762 B2 JP4868762 B2 JP 4868762B2
Authority
JP
Japan
Prior art keywords
less
toughness
amount
strength
acoustic anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104705A
Other languages
Japanese (ja)
Other versions
JP2006283126A (en
Inventor
弘樹 今村
宏道 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005104705A priority Critical patent/JP4868762B2/en
Priority to KR1020060010366A priority patent/KR100748809B1/en
Priority to CNB2006100683719A priority patent/CN100441725C/en
Publication of JP2006283126A publication Critical patent/JP2006283126A/en
Application granted granted Critical
Publication of JP4868762B2 publication Critical patent/JP4868762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/20Mops
    • A47L13/24Frames for mops; Mop heads
    • A47L13/25Wire frames
    • A47L13/252Wire frames for mops of textile fringes or the like

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、音響異方性の小さい高強度高靭性ベイナイト非調質鋼板に関するものであり、殊に、音響異方性が小さく、且つ靭性に優れた引張強度が570MPa以上の非調質型ベイナイト鋼板に関するものである。   The present invention relates to a high-strength, high-toughness bainite non-tempered steel sheet having a small acoustic anisotropy, and in particular, a non-tempered bainite having a small acoustic anisotropy and excellent tensile strength of 570 MPa or more. It relates to steel plates.

建築構造物や橋梁などの大型構造物用として用いられる鋼板には、高強度であると共に高靭性であることが要求される。また建築用や橋梁用として用いられる場合、鋼板内部に欠陥が存在すると該部分が破壊発生の起点となり易いため、超音波探傷試験によって欠陥部分の有無を調査することが一般的に行われている。しかし探傷方向によって著しく音速が変化すると、超音波探傷試験で溶接欠陥部の正確な位置を検出できないことから、鋼板には、所謂「音響異方性」が小さいことも要求される。   Steel sheets used for large structures such as building structures and bridges are required to have high strength and high toughness. In addition, when used for construction or for bridges, if there is a defect inside the steel plate, this part tends to become the starting point of the occurrence of breakage, so it is generally performed to investigate the presence or absence of the defective part by ultrasonic flaw detection test . However, if the speed of sound changes significantly depending on the flaw detection direction, the exact position of the weld defect portion cannot be detected by the ultrasonic flaw detection test, so the steel sheet is also required to have a small so-called “acoustic anisotropy”.

更には、上記各種特性に加えて、製造コスト低減の観点から、焼入れ焼戻しを行わない所謂非調質であっても、上記特性が十分に確保できることが求められている。   Furthermore, in addition to the above various characteristics, from the viewpoint of reducing manufacturing costs, it is required that the above characteristics can be sufficiently ensured even for so-called non-tempering in which quenching and tempering is not performed.

音響異方性が少なくかつ低降伏比の非調質鋼の製造方法として、例えば特許文献1には、Ar3近傍のγ/α2相域で圧延を行った場合に、加工フェライトが生成し降伏比が著しく上昇するだけでなく、集合組織の生成により音響異方性も大きくなることから、仕上圧延の下限をAr3とすることが示されている。また強度を確保すべくNbを0.003%以上添加して析出硬化を図ることが示されている。しかしこの様にNb量を増加させると、強度は容易に確保できるが音響異方性が大きくなる傾向にある。 As a method for producing a non-heat treated steel with low acoustic anisotropy and low yield ratio, for example, in Patent Document 1, when rolling is performed in the γ / α2 phase region in the vicinity of Ar 3 , processed ferrite is generated and yielded. Not only does the ratio increase remarkably, but also the acoustic anisotropy increases due to the formation of texture, indicating that the lower limit of finish rolling is Ar 3 . Further, it has been shown that Nb is added in an amount of 0.003% or more in order to ensure the strength and precipitation hardening is achieved. However, when the amount of Nb is increased in this way, the strength can be easily secured, but the acoustic anisotropy tends to increase.

特許文献2は「材質ばらつきが少なくかつ音響異方性の小さい高強度鋼材の製造方法」についての技術であり、段落[0035]に「音響異方性を小さくするには、次に示す製造工程が有利に適合する。すなわち、上述した基本組成に成分調整した鋼スラブに熱間圧延などの成形加工を施したのち、まず860℃以上の温度に再加熱して冷却することにより、熱間加工後の冷却過程で形成されたベイナイト組織が再びオーステナイトに変態するため、熱間加工後の冷却過程で形成される変態集合組織は消滅し、続く再加熱後の冷却により、上記したところと同様に均一で、しかも集合組織のないベイナイト組織が形成される。その結果、鋼材の音響異方性は小さくなる」ことが示されている。しかし該方法は、熱間圧延後に熱処理を要するものであり、非調質鋼板に関するものでない。また優れた靭性を併せて確保するには改善が必要であると考えられる。   Patent Document 2 is a technique regarding “a method for producing a high-strength steel material with little material variation and small acoustic anisotropy”. Paragraph [0035] states that “the production process shown below is for reducing acoustic anisotropy”. In other words, after the steel slab adjusted to the basic composition described above is subjected to forming processing such as hot rolling, it is first reheated to a temperature of 860 ° C. or higher and then cooled. Since the bainite structure formed in the subsequent cooling process transforms again to austenite, the transformation texture formed in the cooling process after hot working disappears, and the cooling after the subsequent reheating causes the same as described above. It is shown that a bainite structure that is uniform and has no texture is formed. As a result, the acoustic anisotropy of the steel material is reduced. However, this method requires heat treatment after hot rolling, and is not related to a non-tempered steel sheet. In addition, it is considered that improvement is necessary to ensure excellent toughness.

特許文献3には、圧延のままで鋼板の厚み方向の靭性および音響異方性に優れる引張り強さが590MPa級の溶接用極厚鋼板およびその製造方法が示されており、熱間圧延条件として特に、加熱温度を1050℃〜1250℃とすることで、再結晶細粒化を図り靭性を確保すると共に、950℃以下の温度域における累積圧下率や圧延仕上温度を制御することで音響異方性を小さくすることが示されている。しかし音響異方性と共に、より優れた靭性を確保するには改善が必要であると思われる。   Patent Document 3 discloses a very thick steel plate for welding having a tensile strength of 590 MPa which is excellent in toughness and acoustic anisotropy in the thickness direction of the steel sheet as it is rolled, and a method for producing the same. In particular, by setting the heating temperature to 1050 ° C. to 1250 ° C., recrystallization refinement is ensured and toughness is ensured, and acoustic anisotropy is controlled by controlling the cumulative rolling reduction and rolling finish temperature in a temperature range of 950 ° C. It has been shown to reduce gender. However, along with acoustic anisotropy, it seems necessary to improve to ensure better toughness.

また特許文献4には、音響異方性が小さく溶接性に優れた非調質型低降伏比高張力鋼板の製造方法が示されており、具体的に、オーステナイトの未再結晶域での累積圧下率を60%以下とすると共に、圧延仕上温度を(オーステナイトの未再結晶化温度−80℃)以上とすることによって、JIS Z 3060で規定される横波音速比CSL/CSC[振動方向をL方向(主圧延方向)とC方向(L方向に直角な方向)として得られた横波音速値CSL(m/s)とCSC(m/s)の比]の値を1.02以下にできる旨示されている。また特許文献5には、旧オーステナイト粒の平均アスペクト比(「長径/短径」の比)を1.8以下とすれば、横波音速比が1.02以下といった低音響異方性を達成できる旨示されている。しかしこれらの技術においても、音響異方性と共により優れた靭性を確保するには更なる改善を要するものと考えられる。
特開平01−301819号公報 特開平09−256042号公報(段落[0035]) 特開平11−193445号公報 特開2002−053912号公報 特開2004−300567号公報
Patent Document 4 discloses a method for producing a non-tempered low yield ratio high-tensile steel sheet having low acoustic anisotropy and excellent weldability. Specifically, a cumulative amount of austenite in an unrecrystallized region is shown. The rolling reduction temperature is set to 60% or less and the rolling finishing temperature is set to (the austenite non-recrystallization temperature−80 ° C.) or more, whereby the transverse wave sound velocity ratio C SL / C SC defined by JIS Z 3060 [vibration direction] The ratio of the transverse sound velocity C SL (m / s) and C SC (m / s) obtained as the L direction (main rolling direction) and the C direction (direction perpendicular to the L direction) is 1.02. The following are shown to be possible. Further, in Patent Document 5, if the average aspect ratio (ratio of major axis / minor axis) of prior austenite grains is 1.8 or less, low acoustic anisotropy such as a transverse wave velocity ratio of 1.02 or less can be achieved. It is indicated. However, even in these techniques, it is considered that further improvement is required to ensure better toughness as well as acoustic anisotropy.
Japanese Patent Laid-Open No. 01-301819 Japanese Unexamined Patent Publication No. 09-256042 (paragraph [0035]) Japanese Patent Laid-Open No. 11-193445 JP 2002-053912 A JP 2004-300567 A

本発明は上記事情に鑑みてなされたものであって、その目的は、音響異方性が小さく、靭性に優れた引張強度570MPa以上のベイナイト非調質鋼板を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a bainite non-tempered steel sheet having a small acoustic anisotropy and excellent toughness and a tensile strength of 570 MPa or more.

本発明に係る音響異方性の小さい高強度高靭性ベイナイト非調質鋼板は、
C :0.02〜0.08%(質量%の意味、以下同じ)、
Si:0.05〜0.50%、
Mn:1.0〜2.5%、
P :0.015%以下(0%を含まない)、
S :0.006%以下(0%を含まない)、
Cr:0.50〜1.50%、
Ti:0.005〜0.030%、
N :0.0030〜0.0080%、
固溶Nb:0.005%以下(0%を含む)、
固溶B :0.0006〜0.0021%
を満たし、残部鉄及び不可避不純物からなる鋼板であって、
主圧延方向に平行な板厚断面における旧オーステナイト結晶粒径の平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.8超5.3以下であり、
引張強度が570MPa以上であるところに特徴を有している。
High strength high toughness bainite non-tempered steel sheet with small acoustic anisotropy according to the present invention,
C: 0.02 to 0.08% (meaning mass%, the same applies hereinafter),
Si: 0.05 to 0.50%,
Mn: 1.0 to 2.5%
P: 0.015% or less (excluding 0%),
S: 0.006% or less (excluding 0%),
Cr: 0.50 to 1.50%,
Ti: 0.005 to 0.030%,
N: 0.0030 to 0.0080%,
Solid solution Nb: 0.005% or less (including 0%),
Solid solution B: 0.0006 to 0.0021%
Is a steel plate consisting of the remaining iron and inevitable impurities,
The average aspect ratio of the prior austenite grain size in the sheet thickness section parallel to the main rolling direction (average grain size in the main rolling direction / average grain size in the sheet thickness direction) is more than 1.8 and 5.3 or less,
It is characterized by a tensile strength of 570 MPa or more.

本発明の鋼板には、必要によって、
(a)Cu:0.05〜1.20%、Ni:0.05〜1.20%、及びMo:0.03〜0.50%よりなる群から選択される1種以上、
(b)Ca:0.0005〜0.005%及び/又はREM:0.0003〜0.003%を含有することも有効であり、これら含有される成分に応じて鋼板の特性を更に向上させることができる。
In the steel plate of the present invention, if necessary,
(A) one or more selected from the group consisting of Cu: 0.05 to 1.20%, Ni: 0.05 to 1.20%, and Mo: 0.03 to 0.50%,
(B) It is also effective to contain Ca: 0.0005 to 0.005% and / or REM: 0.0003 to 0.003%, and the characteristics of the steel sheet are further improved according to these contained components. be able to.

本発明のベイナイト非調質鋼板は、高強度かつ高靭性であると共に音響異方性が小さいので、建築構造物や橋梁などの大型構造物用として最適である。   The bainite non-heat-treated steel sheet according to the present invention has high strength and high toughness and low acoustic anisotropy, and is optimal for use in large structures such as building structures and bridges.

本発明者らは、音響異方性が小さく、靭性に優れた引張強度が570MPa以上のベイナイト鋼板を非調質で得るべく鋭意研究を行なったところ、主圧延方向に平行な板厚断面における旧オーステナイト結晶粒径の平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)を制御すると共に成分組成を制御することが重要であることを見出した。   The present inventors conducted extensive research to obtain a bainite steel sheet having low acoustic anisotropy and excellent toughness and a tensile strength of 570 MPa or more by non-tempering. It has been found that it is important to control the average aspect ratio of the austenite grain size (average grain size in the main rolling direction / average grain size in the sheet thickness direction) and the component composition.

図1は、上記アスペクト比と靭性の指標である破面遷移温度(vTrs)との関係を示したものであり、アスペクト比と破面遷移温度はどちらも後述する実施例に示す方法で求めたものである。この図1から、上記アスペクト比を1.8超とすることによって、破面遷移温度(vTrs)が−50℃以下と著しく優れた靭性を確保できることがわかる。上記アスペクト比が2.8以上であるものが、破面遷移温度(vTrs)が−60℃以下とより優れた靭性を確保できるので好ましい。更に好ましくはアスペクト比が4.3以上のものである。   FIG. 1 shows the relationship between the aspect ratio and the fracture surface transition temperature (vTrs), which is an index of toughness. Both the aspect ratio and the fracture surface transition temperature were determined by the method shown in the examples described later. Is. As can be seen from FIG. 1, when the aspect ratio exceeds 1.8, the fracture surface transition temperature (vTrs) is -50 ° C. or less, and extremely excellent toughness can be secured. It is preferable that the aspect ratio is 2.8 or more because the fracture surface transition temperature (vTrs) can be secured to -60 ° C. or lower, which is more excellent toughness. More preferably, the aspect ratio is 4.3 or more.

本発明では、この様に優れた靭性を確保すると共に、低音響異方性を確保すべくアスペクト比の上限を設けて、アスペクト比の制御をすることが重要である。   In the present invention, it is important to control the aspect ratio by providing an upper limit of the aspect ratio so as to ensure such excellent toughness and low acoustic anisotropy.

図2は、上記アスペクト比と音響異方性の関係を示したものであり、アスペクト比と音響異方性(横波音速比CSL/CSC)はどちらも後述する実施例に示す方法で求めたものである。この図2から、横波音速比CSL/CSCを少なくとも1.02またはそれ以下と音響異方性を小さくするには、上記アスペクト比を5.3以下にする必要があることがわかる。上記アスペクト比が4.6以下のものが音響異方性がより小さいので好ましい。音響異方性のより小さいものを得る観点からは、アスペクト比が3.7以下のものが更に好ましい。 FIG. 2 shows the relationship between the aspect ratio and the acoustic anisotropy. Both the aspect ratio and the acoustic anisotropy (transverse wave sound velocity ratio C SL / C SC ) are obtained by the method shown in the examples described later. It is a thing. From FIG. 2, it can be seen that the aspect ratio needs to be 5.3 or less in order to reduce the acoustic anisotropy when the transverse sound velocity ratio C SL / C SC is at least 1.02 or less. Those having an aspect ratio of 4.6 or less are preferred because the acoustic anisotropy is smaller. From the viewpoint of obtaining a smaller acoustic anisotropy, an aspect ratio of 3.7 or less is more preferable.

上記靭性を確保すると共に高強度を確保するには、上記アスペクト比を1.8超に制御すると共に、鋼中の固溶Nb量、更には固溶B量とCr量を制御することが大変有効である。   In order to ensure the above toughness and high strength, it is very difficult to control the above aspect ratio to be over 1.8 and to control the amount of solute Nb, and further the amount of solute B and Cr in steel. It is valid.

図3は、固溶Nb量と破面遷移温度(vTrs)の関係について示したものであり、固溶Nb以外の成分は規定範囲内にあり、固溶Nb量を0〜0.027%の間で変化させた鋼材について、破面遷移温度(vTrs)を測定したものである。この図3から、破面遷移温度(vTrs)が−50℃以下と優れた靭性を確保するには、固溶Nb量を0.005%以下に抑える必要があることがわかる。好ましくは0.004%以下、より好ましくは0.003%以下に抑える。   FIG. 3 shows the relationship between the solid solution Nb amount and the fracture surface transition temperature (vTrs). Components other than the solid solution Nb are within the specified range, and the solid solution Nb amount is 0 to 0.027%. The fracture surface transition temperature (vTrs) was measured for the steel material changed between. From FIG. 3, it can be seen that in order to ensure excellent toughness with a fracture surface transition temperature (vTrs) of −50 ° C. or less, it is necessary to suppress the amount of dissolved Nb to 0.005% or less. Preferably it is 0.004% or less, more preferably 0.003% or less.

またベイナイト組織を安定して強度を確保すると共に、優れた靭性も確保するには、焼入れ性向上効果を有するNbの代わりに、適量の固溶BとCrを含有させる必要がある。   In addition, in order to stably secure the bainite structure and ensure excellent toughness, it is necessary to contain appropriate amounts of solid solution B and Cr instead of Nb having an effect of improving hardenability.

図4は、固溶B量と引張強度(TS)との関係を示したものであり、固溶B以外の成分は規定範囲内であって固溶B量のみ変化させた鋼材について、引張強度を測定し、結果を整理したものである。この図4から、570MPa以上の引張強度を達成させるには、固溶B量を0.0006%以上とする必要がある。固溶B量を増加させて焼入れ性を高めることで、島状マルテンサイト(MA)の生成量を低減してベイナイト組織を十分に確保でき、引張強度を一段と高めることができる。好ましくは固溶B量を0.0008%以上とする。   FIG. 4 shows the relationship between the amount of solute B and the tensile strength (TS). The components other than solute B are within the specified range and only the amount of solute B is changed. Measured and organized the results. From FIG. 4, in order to achieve a tensile strength of 570 MPa or more, it is necessary to make the solid solution B amount 0.0006% or more. By increasing the solid solution B amount and improving the hardenability, the amount of island martensite (MA) produced can be reduced, and a bainite structure can be sufficiently secured, and the tensile strength can be further increased. Preferably, the solid solution B amount is 0.0008% or more.

しかし固溶B量を増加させると靭性の確保が困難となる。図5は、固溶B量と破面遷移温度(vTrs)の関係について示したものであり、固溶B以外の成分は規定範囲内であって固溶B量のみ変化させた鋼材について、破面遷移温度(vTrs)を測定し、結果を整理したものである。この図5から、破面遷移温度(vTrs)が−50℃以下と優れた靭性を確保するには、固溶B量を0.0021%以下に抑える必要がある。好ましくは0.0017%以下、より好ましくは0.0013%以下である。   However, if the amount of solute B is increased, it becomes difficult to ensure toughness. FIG. 5 shows the relationship between the solid solution B amount and the fracture surface transition temperature (vTrs). For the steel materials in which the components other than the solid solution B are within the specified range and only the solid solution B amount is changed. The surface transition temperature (vTrs) is measured, and the results are arranged. From FIG. 5, it is necessary to suppress the solid solution B amount to 0.0021% or less in order to ensure excellent toughness with a fracture surface transition temperature (vTrs) of −50 ° C. or less. Preferably it is 0.0017% or less, More preferably, it is 0.0013% or less.

また強度を確保すべくベイナイト組織を十分に確保し、高降伏強度化と靭性の向上を図るには、Crを添加してベイナイト変態を促進させ、MAの生成量を低減することが有効である。Crのこの様な効果を発揮させるには、Cr量を0.50%以上とする必要がある。好ましくは0.7%以上、より好ましくは0.8%以上である。しかしCrを過剰に含有させると溶接継手部の靭性を劣化させるため、1.50%以下に抑える。好ましくは1.3%以下である。   In order to secure a sufficient bainite structure to ensure strength, to increase the yield strength and toughness, it is effective to add Cr to promote bainite transformation and reduce the amount of MA produced. . In order to exhibit such an effect of Cr, the Cr amount needs to be 0.50% or more. Preferably it is 0.7% or more, More preferably, it is 0.8% or more. However, when Cr is excessively contained, the toughness of the welded joint is deteriorated, so the content is suppressed to 1.50% or less. Preferably it is 1.3% or less.

本発明の鋼板は、ベイナイト鋼板であり、ベイナイトを占積率で90%以上含むものである。好ましくはベイナイトが占積率で95%以上のものである。尚、ベイナイト以外に製造過程で不可避的に形成され得る組織として、フェライトやMAを含む場合があるが、これらは少なければ少ない程好ましく、本発明では10%以下に抑える。好ましくは5%未満、更に好ましくは3%未満である。   The steel plate of the present invention is a bainite steel plate and contains bainite in a space factor of 90% or more. Preferably, bainite has a space factor of 95% or more. In addition to bainite, there are cases where ferrite and MA are included as a structure that can be inevitably formed in the manufacturing process, but these are preferably as small as possible, and in the present invention, they are suppressed to 10% or less. Preferably it is less than 5%, more preferably less than 3%.

本発明は、特に上記アスペクト比の制御と固溶Nb量、固溶B量及びCr量を制御することによって、570MPa以上の高強度域において優れた靭性を確保すると共に、低音響異方性を達成できたものであるが、該作用効果を確実に発揮させるには、その他の成分を下記の通り制御する必要がある。   The present invention secures excellent toughness in a high-strength region of 570 MPa or more and particularly low acoustic anisotropy by controlling the aspect ratio and controlling the amount of solute Nb, the amount of solute B and the amount of Cr. Although it has been achieved, in order to reliably exhibit the effects, it is necessary to control other components as follows.

〈C:0.02〜0.08%〉
Cは、強度(TSとYS)を確保するために重要な元素であり、本発明では少なくとも0.02%含有させる。好ましくは0.025%以上、より好ましくは0.030%以上である。しかしCを過剰に含有させると、熱間圧延後の冷却時にベイナイトが生成せずマルテンサイトが生成し易くなり、所望の靭性が得られ難くなる。またオーステナイト変態時にCが局所的に濃化し易く、MAの生成量が増大し降伏強度を高めることが困難となる。よってC量は0.08%以下とする。好ましくは0.06%以下、より好ましくは0.05%以下である。
<C: 0.02-0.08%>
C is an important element for securing strength (TS and YS), and is contained at least 0.02% in the present invention. Preferably it is 0.025% or more, more preferably 0.030% or more. However, when C is contained excessively, bainite is not generated at the time of cooling after hot rolling, and martensite is easily generated, making it difficult to obtain desired toughness. Further, C is likely to be locally concentrated during the austenite transformation, and the amount of MA produced increases, making it difficult to increase the yield strength. Therefore, the C amount is 0.08% or less. Preferably it is 0.06% or less, More preferably, it is 0.05% or less.

〈Si:0.05〜0.50%〉
Siは、MAの生成量を抑えて降伏強度を高める元素である。また脱酸剤としても有用な元素であり、こうした作用を有効に発揮させるには、0.05%以上含有させる必要がある。好ましくは0.07%以上である。しかしSiを過剰に含有させると靭性が低下するため、その上限を0.50%とする。好ましくは0.40%以下、より好ましくは0.30%以下である。
<Si: 0.05 to 0.50%>
Si is an element that suppresses the amount of MA produced and increases the yield strength. Moreover, it is an element useful also as a deoxidizer, and in order to exhibit such an effect | action effectively, it is necessary to contain 0.05% or more. Preferably it is 0.07% or more. However, when Si is contained excessively, the toughness decreases, so the upper limit is made 0.50%. Preferably it is 0.40% or less, More preferably, it is 0.30% or less.

〈Mn:1.0〜2.5%〉
Mnは、焼入れ性を高めて鋼板の高強度化(高TS化と高YS化)に寄与する元素である。また、ベイナイトを微細化して靭性を高める作用を有する元素でもある。こうした作用を有効に発揮させるには、Mnを1.0%以上含有させる必要がある。好ましくは1.4%以上である。しかしMn量が過剰になると、焼入れ性が高くなり過ぎて靭性を著しく劣化させる。よって本発明では2.5%以下とする。好ましくは2.0%以下である。
<Mn: 1.0 to 2.5%>
Mn is an element that enhances hardenability and contributes to high strength (high TS and high YS) of the steel sheet. Moreover, it is an element which has the effect | action which refines a bainite and raises toughness. In order to exhibit such an action effectively, it is necessary to contain Mn at 1.0% or more. Preferably it is 1.4% or more. However, when the amount of Mn becomes excessive, the hardenability becomes too high and the toughness is remarkably deteriorated. Therefore, in the present invention, it is 2.5% or less. Preferably it is 2.0% or less.

〈P:0.015%以下(0%を含まない)〉
Pは、靭性に悪影響を及ぼす元素であるため極力低減する必要があり、本発明では0.015%以下に抑える。好ましくは0.010%以下である。
<P: 0.015% or less (excluding 0%)>
Since P is an element that adversely affects toughness, it is necessary to reduce it as much as possible. In the present invention, P is suppressed to 0.015% or less. Preferably it is 0.010% or less.

〈S:0.006%以下(0%を含まない)〉
Sは、粗大な硫化物を生成して靭性を劣化させるので、極力低減する必要がある。よって本発明では0.006%以下に抑える。好ましくは0.004%以下である。
<S: 0.006% or less (excluding 0%)>
S generates coarse sulfides and degrades toughness, so it needs to be reduced as much as possible. Therefore, in the present invention, it is limited to 0.006% or less. Preferably it is 0.004% or less.

〈Ti:0.005〜0.030%〉
Tiは、高降伏強度化に寄与する元素である。その結果、鋼板の強度(TSとYS)を高めることができる。また固溶NをTiNとして固定し、固溶B量を増加させて焼入性を向上させ、MAの生成を抑制してベイナイト組織を確保するのに有効な元素でもある。更には旧オーステナイト結晶粒の粗大化を抑えて、靭性の劣化を防ぐ作用も奏する。こうした作用を有効に発揮させるには、0.005%以上含有させる必要がある。好ましくは0.010%以上である。しかし、過剰に含有させると却って靭性の低下を招くため、0.030%以下とする。好ましくは0.020%以下である。
<Ti: 0.005-0.030%>
Ti is an element that contributes to high yield strength. As a result, the strength (TS and YS) of the steel sheet can be increased. It is also an element effective for fixing solid solution N as TiN, increasing the amount of solid solution B to improve hardenability, suppressing the formation of MA, and ensuring a bainite structure. Furthermore, it suppresses the coarsening of the prior austenite crystal grains and also has an effect of preventing toughness deterioration. In order to exhibit such an action effectively, it is necessary to contain 0.005% or more. Preferably it is 0.010% or more. However, if excessively contained, the toughness is reduced, so the content is made 0.030% or less. Preferably it is 0.020% or less.

〈N:0.0030〜0.0080%〉
Nは、AlやTiと化合して窒化物を形成し、組織の微細化による靭性の向上に有効に作用する。こうした作用を有効に発揮させるには0.0030%以上含有させる必要がある。好ましくは0.0040%以上である。但し、Nを過剰に含有させると、溶接継手靭性を劣化させるため、N量は0.0080%以下に抑える。好ましくは0.0070%以下、より好ましくは0.0060%以下である。
<N: 0.0030 to 0.0080%>
N combines with Al and Ti to form nitrides, and effectively acts to improve toughness by refining the structure. In order to exhibit such an action effectively, it is necessary to contain 0.0030% or more. Preferably it is 0.0040% or more. However, if N is excessively contained, the weld joint toughness is deteriorated, so the N content is suppressed to 0.0080% or less. Preferably it is 0.0070% or less, More preferably, it is 0.0060% or less.

本発明で規定する含有元素は上記の通りであり、残部成分は実質的にFeであるが、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物として、0.070%以下のAl等の混入が許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、下記の如く、更に他の元素を積極的に含有させることも可能である。   The contained elements specified in the present invention are as described above, and the remaining component is substantially Fe, but 0.070% or less as an inevitable impurity brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. As a matter of course, it is also possible to positively contain other elements as described below within a range that does not adversely affect the operation of the present invention.

〈Cu:0.05〜1.20%、
Ni:0.05〜1.20%、及び
Mo:0.03〜0.50%
よりなる群から選択される1種以上〉
これらの元素は、いずれも強度確保に有用な元素であり、Cuは、固溶強化および析出強化によって強度(TSとYS)を高めるために有効に作用する元素である。こうした作用を有効に発揮させるには、Cuを0.05%以上含有させることが望ましい。より好ましくは0.10%以上である。しかし過剰に含有させると、熱間加工性を阻害させるため1.20%以下とすることが好ましい。より好ましくは1.0%以下である。
<Cu: 0.05 to 1.20%,
Ni: 0.05 to 1.20%, and Mo: 0.03 to 0.50%
One or more selected from the group consisting of>
All of these elements are elements useful for securing the strength, and Cu is an element that effectively acts to increase the strength (TS and YS) by solid solution strengthening and precipitation strengthening. In order to exhibit such an action effectively, it is desirable to contain 0.05% or more of Cu. More preferably, it is 0.10% or more. However, if excessively contained, the hot workability is inhibited, so the content is preferably made 1.20% or less. More preferably, it is 1.0% or less.

Niは、母材の強度と靭性を同時に向上させる元素である。こうした作用を有効に発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.10%以上である。しかし過剰に含まれると、コストアップにつながるため1.20%以下に抑えることが好ましい。より好ましくは1.0%以下である。   Ni is an element that simultaneously improves the strength and toughness of the base material. In order to exhibit such an action effectively, it is preferable to contain 0.05% or more. More preferably, it is 0.10% or more. However, if it is contained excessively, it leads to cost increase, so it is preferable to keep it to 1.20% or less. More preferably, it is 1.0% or less.

Moは、焼入れ性を高めて、鋼板の強度(TSとYS)を確保するのに有用な元素である。またBと併せて含有させることにより、圧延後の冷却時における焼入れ性が制御されて強度(TS)と靭性のバランスを最適化できる。こうした作用を発揮させるには0.03%以上含有させる必要がある。より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかし過剰に含有させると、靭性を劣化させるため、0.50%以下とするのがよい。より好ましくは0.40%以下である。   Mo is an element useful for enhancing the hardenability and securing the strength (TS and YS) of the steel sheet. Moreover, by containing together with B, the hardenability at the time of cooling after rolling is controlled, and the balance of strength (TS) and toughness can be optimized. In order to exert such an effect, it is necessary to contain 0.03% or more. More preferably, it is 0.05% or more, More preferably, it is 0.10% or more. However, if excessively contained, the toughness is deteriorated, so the content is preferably 0.50% or less. More preferably, it is 0.40% or less.

〈Ca :0.0005〜0.005%、及び/又は
REM:0.0003〜0.003%〉
Caは、SをCaSとして固定すると共に、粒状の非金属介在物として形態を制御することにより、靭性を向上させて、偏析部からの破壊を防止するのに有効である。この様な効果を十分に発揮させるには、Caを0.0005%以上(より好ましくは0.0010%以上)含有させることが好ましいが、過剰に含有させても、これらの効果は飽和するばかりか靭性が却って劣化する。よってCa含有量は、0.005%以下とすることが好ましく、より好ましくは0004%以下である。
<Ca: 0.0005-0.005% and / or REM: 0.0003-0.003%>
Ca is effective in improving the toughness and preventing the breakage from the segregation part by fixing S as CaS and controlling the form as granular non-metallic inclusions. In order to exert such effects sufficiently, Ca is preferably contained in an amount of 0.0005% or more (more preferably 0.0010% or more), but even if it is contained excessively, these effects are only saturated. The toughness deteriorates instead. Therefore, the Ca content is preferably 0.005% or less, and more preferably 0004% or less.

REMも、上記Caと同様に硫化物としてSを固定し、偏析部の靭性を向上させるのに有効に作用する。該効果を発揮させるには、REMを0.0003%以上含有させることが好ましい。より好ましくは0.0010%以上である。しかし過剰に含有させると、過剰な非金属介在物の存在により、靭性を却って劣化させることになる。よって、0.003%以下に抑えることが好ましく、より好ましくは0.0025%以下である。   REM also works effectively to fix S as a sulfide and improve the toughness of the segregation part, similar to Ca. In order to exhibit this effect, it is preferable to contain REM 0.0003% or more. More preferably, it is 0.0010% or more. However, if excessively contained, the toughness is deteriorated due to the presence of excessive nonmetallic inclusions. Therefore, it is preferable to suppress it to 0.003% or less, and more preferably 0.0025% or less.

本発明の鋼板を製造するには、基本的には連鋳法あるいは造塊法により作製されたスラブを用いて、熱間圧延−冷却−熱処理の通常の方法により製造できるが、上記各要件を満足させるには、熱間圧延時の加熱温度を1000〜1200℃、未再結晶域での全圧下量を10%以上50%以下に制御すると共に、熱間仕上圧延温度を850℃以上とし、更に、熱間仕上圧延後の400℃までの冷却を、空冷または加速冷却(3℃/s以上)とすることが推奨される。   In order to manufacture the steel sheet of the present invention, it can basically be manufactured by a normal method of hot rolling-cooling-heat treatment using a slab produced by a continuous casting method or an ingot-making method. In order to satisfy, the heating temperature at the time of hot rolling is 1000 to 1200 ° C., the total reduction amount in the non-recrystallized region is controlled to 10% or more and 50% or less, and the hot finish rolling temperature is 850 ° C. or more, Furthermore, it is recommended that the cooling to 400 ° C. after hot finish rolling is air cooling or accelerated cooling (3 ° C./s or more).

まず熱間圧延時の加熱温度は1000〜1200℃とする。鋼片を1000℃以上に加熱することで、NbとBを固溶させることができ、オーステナイト粒の過剰な微細化を抑制できるため、焼入れ性を高めることができる。その結果、MAの生成を抑えて高降伏強度化を実現できる。より好ましくは1050℃以上に加熱することが望ましい。しかし加熱温度が1150℃を超えると、オーステナイト粒が粗大化して靭性が劣化するため、加熱温度は1200℃以下とする。より好ましくは1100℃以下である。   First, the heating temperature at the time of hot rolling shall be 1000-1200 degreeC. By heating the steel piece to 1000 ° C. or higher, Nb and B can be dissolved, and excessive refinement of the austenite grains can be suppressed, so that the hardenability can be improved. As a result, high yield strength can be achieved by suppressing the generation of MA. More preferably, it is desirable to heat to 1050 ° C. or higher. However, if the heating temperature exceeds 1150 ° C., the austenite grains become coarse and the toughness deteriorates, so the heating temperature is set to 1200 ° C. or less. More preferably, it is 1100 degrees C or less.

γ(オーステナイト)未再結晶域での全圧下量を10%以上50%以下とする。該圧下量を制御することによって、アスペクト比を規定の範囲内とすることができる。該圧下量が10%未満だとアスペクト比が小さすぎるため好ましくない。より好ましくはγ未再結晶域での全圧下量を15%以上とするのがよい。しかし該圧下量が50%を超えると、アスペクト比が大きくなりすぎて音響異方性を高めることになるので好ましくない。より好ましくはγ未再結晶域での全圧下量を40%以下とするのがよい。   The total amount of reduction in the γ (austenite) non-recrystallized region is 10% or more and 50% or less. By controlling the amount of reduction, the aspect ratio can be within a specified range. If the amount of reduction is less than 10%, the aspect ratio is too small, which is not preferable. More preferably, the total reduction amount in the γ non-recrystallized region is 15% or more. However, if the amount of reduction exceeds 50%, the aspect ratio becomes too large and the acoustic anisotropy is increased, which is not preferable. More preferably, the total amount of reduction in the γ non-recrystallized region is 40% or less.

仕上圧延温度(FRT)は850℃以上とするのがよい。該温度以上とすることでアスペクト比の上昇を抑制し、音響異方性を確保できるからである。より好ましくは870℃以上である。一方、仕上圧延温度が高すぎてもγ未再結晶域の加工が不足し、靭性が劣化することから890℃以下で行なうことが好ましい。   The finish rolling temperature (FRT) is preferably 850 ° C. or higher. This is because, by setting the temperature or higher, an increase in aspect ratio can be suppressed and acoustic anisotropy can be secured. More preferably, it is 870 degreeC or more. On the other hand, even if the finish rolling temperature is too high, the processing in the γ non-recrystallized region is insufficient, and the toughness is deteriorated.

熱間圧延後の冷却は、仕上圧延終了温度から400℃までを、空冷または3℃/sec以上で冷却するのがよい。この様に熱間圧延後に空冷または加速冷却することで、オーステナイト変態時におけるCの拡散によるCの濃化を防止してMAの生成を抑制でき、結果として降伏強度を高めることができる。より好ましくは5℃/sec以上、さらに好ましくは7℃/sec以上で冷却するのがよい。該冷却後の焼戻しは不要であり、本発明の鋼板は非調質で得られるものである。   As for cooling after hot rolling, it is preferable to cool from the finish rolling finish temperature to 400 ° C. by air cooling or 3 ° C./sec or more. Thus, by air cooling or accelerated cooling after hot rolling, it is possible to prevent the concentration of C due to the diffusion of C during the austenite transformation, suppress the formation of MA, and as a result, increase the yield strength. More preferably, the cooling is performed at 5 ° C./sec or more, more preferably 7 ° C./sec or more. Tempering after the cooling is unnecessary, and the steel sheet of the present invention is obtained by non-tempering.

本発明の鋼板は、上述の通り高強度かつ高靭性であると共に音響異方性が小さいので、橋梁や建築構造物、造船、海洋構造物の製造に最適である。尚、本発明の鋼板は、板厚10〜100mmと厚鋼板に分類されるものである。   As described above, the steel sheet of the present invention has high strength and high toughness and low acoustic anisotropy, and is optimal for manufacturing bridges, building structures, shipbuilding, and offshore structures. In addition, the steel plate of this invention is classified into plate thickness 10-100mm and a thick steel plate.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

下記表1に示す成分組成の鋼(残部はFeおよび不可避不純物)を通常方法で溶製し、スラブとした後、1000〜1200℃に加熱し、下記表2に示す条件で圧延を行い、400℃まで冷却して鋼板を得た。下記表2に、γ未再結晶域での全圧下量、仕上圧延温度(FRT)、仕上圧延終了後から400℃までの冷却速度、および鋼板の板厚を夫々示す。   Steel having the composition shown in Table 1 below (the balance is Fe and inevitable impurities) is melted by a normal method to form a slab, heated to 1000 to 1200 ° C., rolled under the conditions shown in Table 2 below, and 400 The steel plate was obtained by cooling to ° C. Table 2 below shows the total amount of reduction in the γ non-recrystallized region, the finish rolling temperature (FRT), the cooling rate from the end of finish rolling to 400 ° C., and the thickness of the steel sheet.

得られた鋼板を用いて、金属組織、旧オーステナイト粒径のアスペクト比、固溶Nb量、固溶B量を求めると共に、音響異方性、引張特性(降伏強度,引張強度)、靭性(衝撃特性)を夫々下記要領で評価した。   Using the obtained steel sheet, the metal structure, the aspect ratio of the prior austenite grain size, the amount of solute Nb and the amount of solute B are obtained, as well as acoustic anisotropy, tensile properties (yield strength, tensile strength), and toughness (impact The characteristics were evaluated in the following manner.

[金属組織の観察]
鋼板のt/4(表面から板厚1/4の深さ)位置から試験片を採取し、該試験片をナイタール腐食して光学顕微鏡観察(倍率100倍)を行い、ベイナイト組織の面積率を求め、任意に選択した3視野で同様の観察を行って、ベイナイト組織の面積率の平均値を算出した。また、その他の組織(フェライトやMA等)の面積率を、全組織(100%)から上記ベイナイト組織の面積率を差し引いて求めた。
[Observation of metal structure]
A test piece is taken from the position of t / 4 of the steel sheet (depth from the surface to a thickness of 1/4), the test piece is subjected to nital corrosion and observed with an optical microscope (magnification 100 times), and the area ratio of the bainite structure is determined. The same observation was performed with three fields of view that were determined and selected arbitrarily, and the average value of the area ratio of the bainite structure was calculated. The area ratio of other structures (ferrite, MA, etc.) was determined by subtracting the area ratio of the bainite structure from the total structure (100%).

その結果として下記表2に、ベイナイトが面積率で90%以上占めるものを「B」、ベイナイトが面積率で90%未満であり、第2相としてフェライトが生成しているものを「F+B」と示す。   As a result, in Table 2 below, “B” indicates that bainite occupies 90% or more in area ratio, and “F + B” indicates that bainite is less than 90% in area ratio and ferrite is generated as the second phase. Show.

[旧オーステナイト粒径のアスペクト比の測定]
主圧延方向に平行な板厚断面における旧オーステナイト粒界をナイタール腐食を行って現出させ、光学顕微鏡にて100倍で組織観察し、主圧延方向の平均粒径と板厚方向の平均粒径を測定して、それらの比(主圧延方向の平均粒径/板厚方向の平均粒径)を3視野について求め、その平均を平均アスペクト比とした。
[Measurement of aspect ratio of prior austenite grain size]
The former austenite grain boundaries in the plate thickness section parallel to the main rolling direction are revealed by performing nital corrosion, and the structure is observed 100 times with an optical microscope. The average particle size in the main rolling direction and the average particle size in the plate thickness direction Were measured and the ratio (average particle size in the main rolling direction / average particle size in the plate thickness direction) was determined for three visual fields, and the average was taken as the average aspect ratio.

[固溶Nb量、固溶B量の測定]
抽出残渣法により析出物を残渣として分離抽出し、該析出物を構成するNb量とB量をそれぞれ求め、鋼板のNb量(total Nb量)と鋼板のB量(total B量)から、上記析出物を構成するNb量とB量をそれぞれ差し引いて、固溶Nb量、固溶B量を算出した。
[Measurement of solid solution Nb amount and solid solution B amount]
The precipitate is separated and extracted as a residue by the extraction residue method, and the Nb amount and B amount constituting the precipitate are respectively determined. From the Nb amount (total Nb amount) of the steel plate and the B amount (total B amount) of the steel plate, the above The amount of Nb and the amount of B were calculated by subtracting the amount of Nb and the amount of B constituting the precipitate, respectively.

[引張試験]
各鋼板の板厚t/4位置からJIS Z 22014号試験片を採取して、JIS Z 2241の要領で引張試験を行ない、降伏強度(0.2%耐力:σ0.2)及び引張強度(TS)を測定した。そして降伏強度:450MPa以上かつ引張強度:570以上のものを高強度であると評価した。
[Tensile test]
JIS Z 22014 test specimens were taken from the thickness t / 4 position of each steel plate, and subjected to a tensile test in accordance with JIS Z 2241. Yield strength (0.2% proof stress: σ 0.2 ) and tensile strength (TS) Was measured. Those having a yield strength of 450 MPa or more and a tensile strength of 570 or more were evaluated as having high strength.

[音響異方性の評価]
JIS Z 3060に規定の通り、横波の振動方向を主圧延方向(L方向)に一致させたときの横波音速値CSLと、L方向に垂直な方向(C方向)に一致させたときの横波音速値CSCを測定し、横波音速比CSL/CSCを求めた。そして、該音速比が1.02以下の場合を音響異方性が小さいと評価した。
[Evaluation of acoustic anisotropy]
As specified in JIS Z 3060, the transverse wave sound velocity value C SL when the vibration direction of the transverse wave is matched with the main rolling direction (L direction) and the transverse wave when matched with the direction perpendicular to the L direction (C direction). The sound velocity value C SC was measured, and the shear wave sound velocity ratio C SL / C SC was determined. And when this sound speed ratio was 1.02 or less, it was evaluated that acoustic anisotropy was small.

[衝撃試験(靭性の評価)]
各鋼板の板厚1/4位置からJIS Z 2202の4号試験片を採取して、JIS Z 2242の方法でシャルピー衝撃試験を行い、破面遷移温度(vTrs)を測定した。そして、破面遷移温度(vTrs)が−50℃以下の場合を靭性に優れると評価した。
[Impact test (toughness evaluation)]
A No. 4 test piece of JIS Z 2202 was taken from the position of the thickness ¼ of each steel plate, and a Charpy impact test was performed by the method of JIS Z 2242 to measure the fracture surface transition temperature (vTrs). And it evaluated that the case where a fracture surface transition temperature (vTrs) was -50 degrees C or less was excellent in toughness.

これらの結果を表2に併記する。   These results are also shown in Table 2.

Figure 0004868762
Figure 0004868762

Figure 0004868762
Figure 0004868762

表1、2より次の様に考察できる(尚、下記No.は、表2中の実験No.を示す)。即ち、No.1〜は、本発明で規定する要件を満たしているため、音響異方性が小さく、かつ引張特性と靭性に優れている。 From Tables 1 and 2, it can be considered as follows (note that the following No. indicates the experiment No. in Table 2). That is, no. Since 1-8 satisfy | fills the requirements prescribed | regulated by this invention, acoustic anisotropy is small and it is excellent in the tensile characteristic and toughness.

これに対し、No.11〜19は、本発明で規定する要件を満たしていないため、引張特性、靭性(衝撃特性)、音響異方性の少なくともいずれかに不具合が生じている。即ち、No.11は、本発明で規定する成分組成を満たしているが、推奨される条件で製造を行なわなかったため、アスペクト比が大きくなり音響異方性が大きくなった。またNo.12は、アスペクト比が小さすぎるため、靭性に劣る結果となった。   In contrast, no. Since Nos. 11 to 19 do not satisfy the requirements defined in the present invention, there is a problem in at least one of tensile characteristics, toughness (impact characteristics), and acoustic anisotropy. That is, no. No. 11 satisfies the component composition specified in the present invention, but was not manufactured under the recommended conditions, so that the aspect ratio increased and the acoustic anisotropy increased. No. No. 12 was inferior in toughness because the aspect ratio was too small.

No.13は、C量が多過ぎるため靭性に劣る結果となった。No.14は、Cr量が不足しているため、ベイナイトを占積率で90%以上確保できず、YSが低く、靭性に劣る結果となった。No.15は、固溶Nb量が過剰であるため、アスペクト比が高くなり、音響異方性が高くなると共に靭性も却って劣る結果となった。   No. No. 13 resulted in inferior toughness due to too much C content. No. No. 14 had a Cr content that was insufficient, so that it was not possible to secure bainite in a space factor of 90% or more, resulting in low YS and poor toughness. No. No. 15 had an excessive amount of dissolved Nb, resulting in a high aspect ratio, high acoustic anisotropy and poor toughness.

No.16は、Ti量が不足しているため、ベイナイトを占積率で90%以上確保できず降伏強度が低めとなり、また靭性に劣る結果となった。   No. No. 16 was insufficient in Ti content, so that bainite could not be secured 90% or more in the space factor, yield strength was low, and the toughness was inferior.

No.17は、固溶B量が不足しているため、ベイナイトを占積率で90%以上確保できず、強度を確保できなかった。   No. In No. 17, since the amount of dissolved B was insufficient, bainite could not be secured 90% or more in space factor, and the strength could not be secured.

No.18は、Si量が過剰であるため靭性に劣る結果となった。またNo.19は、固溶B量が過剰であるため靭性に劣る結果となった。   No. No. 18 was inferior in toughness due to the excessive amount of Si. No. No. 19 was inferior in toughness because the amount of solute B was excessive.

アスペクト比と破面遷移温度(vTrs)の関係を示すグラフである。It is a graph which shows the relationship between an aspect-ratio and a fracture surface transition temperature (vTrs). アスペクト比と音響異方性の関係を示すグラフである。It is a graph which shows the relationship between an aspect ratio and acoustic anisotropy. 固溶Nb量と破面遷移温度(vTrs)の関係を示すグラフである。It is a graph which shows the relationship between solid solution Nb amount and a fracture surface transition temperature (vTrs). 固溶B量と引張強度(TS)の関係を示すグラフである。It is a graph which shows the relationship between the amount of solid solution B and tensile strength (TS). 固溶B量と破面遷移温度(vTrs)の関係を示すグラフである。It is a graph which shows the relationship between the amount of solute B, and a fracture surface transition temperature (vTrs).

Claims (3)

C :0.02〜0.08%(質量%の意味、以下同じ)、
Si:0.05〜0.50%、
Mn:1.0〜2.5%、
P :0.015%以下(0%を含まない)、
S :0.006%以下(0%を含まない)、
Cr:0.50〜1.50%、
Ti:0.005〜0.030%、
N :0.0030〜0.0080%、
固溶Nb:0.005%以下(0%を含む)、
固溶B :0.0006〜0.0021%
を満たし、残部鉄及び不可避不純物からなる鋼板であって、
主圧延方向に平行な板厚断面における旧オーステナイト結晶粒径の平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.8超5.3以下であり、
前記鋼板はベイナイトを面積率で90%以上含み、
引張強度が570MPa以上であることを特徴とする音響異方性の小さい高強度高靭性ベイナイト非調質鋼板。
C: 0.02 to 0.08% (meaning mass%, the same applies hereinafter),
Si: 0.05 to 0.50%,
Mn: 1.0 to 2.5%
P: 0.015% or less (excluding 0%),
S: 0.006% or less (excluding 0%),
Cr: 0.50 to 1.50%,
Ti: 0.005 to 0.030%,
N: 0.0030 to 0.0080%,
Solid solution Nb: 0.005% or less (including 0%),
Solid solution B: 0.0006 to 0.0021%
Is a steel plate consisting of the remaining iron and inevitable impurities,
The average aspect ratio of the prior austenite grain size in the sheet thickness section parallel to the main rolling direction (average grain size in the main rolling direction / average grain size in the sheet thickness direction) is more than 1.8 and 5.3 or less,
The steel sheet contains bainite in an area ratio of 90% or more,
A high-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy, characterized by a tensile strength of 570 MPa or more.
更に、他の元素として、
Cu:0.05〜1.20%、
Ni:0.05〜1.20%、及び
Mo:0.03〜0.50%
よりなる群から選択される1種以上を含む請求項1に記載の鋼板。
Furthermore, as other elements,
Cu: 0.05-1.20%,
Ni: 0.05-1.20% and Mo: 0.03-0.50%
The steel plate according to claim 1, comprising at least one selected from the group consisting of:
更に、他の元素として、
Ca :0.0005〜0.005%、及び/又は
REM:0.0003〜0.003%
を含む請求項1または2に記載の鋼板。
Furthermore, as other elements,
Ca: 0.0005 to 0.005% and / or REM: 0.0003 to 0.003%
The steel plate according to claim 1 or 2 containing.
JP2005104705A 2005-03-31 2005-03-31 High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy Expired - Fee Related JP4868762B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005104705A JP4868762B2 (en) 2005-03-31 2005-03-31 High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
KR1020060010366A KR100748809B1 (en) 2005-03-31 2006-02-03 High Strength High Toughness Bainite Non-heat-treated Steel Plate of Low Acoustic Anisotropy
CNB2006100683719A CN100441725C (en) 2005-03-31 2006-03-30 High-strength high-ducility bainite non-quenched and tempered steel plate with small acoustic anisotropism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104705A JP4868762B2 (en) 2005-03-31 2005-03-31 High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy

Publications (2)

Publication Number Publication Date
JP2006283126A JP2006283126A (en) 2006-10-19
JP4868762B2 true JP4868762B2 (en) 2012-02-01

Family

ID=37194769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104705A Expired - Fee Related JP4868762B2 (en) 2005-03-31 2005-03-31 High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy

Country Status (3)

Country Link
JP (1) JP4868762B2 (en)
KR (1) KR100748809B1 (en)
CN (1) CN100441725C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219297A (en) * 2011-04-06 2012-11-12 Kobe Steel Ltd Thick steel plate
CN104711489B (en) * 2015-03-03 2017-03-29 山东钢铁股份有限公司 A kind of effective high-ductility steel of spud leg semifocal chord and its manufacture method
CN109295389B (en) * 2018-11-13 2020-09-01 江西理工大学 Nano bainite steel with rapid phase change and preparation method thereof
JP7099654B1 (en) * 2020-08-31 2022-07-12 日本製鉄株式会社 Steel plate and its manufacturing method
CN112342458B (en) * 2020-09-01 2022-01-11 南京钢铁股份有限公司 Low-yield-ratio stress corrosion cracking resistant high-strength steel and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956042A (en) * 1995-08-11 1997-02-25 Takaoka Electric Mfg Co Ltd Wire lead-in unit of housing for electric machine
JP3812108B2 (en) * 1997-12-12 2006-08-23 住友金属工業株式会社 High-strength steel with excellent center characteristics and method for producing the same
JP3602396B2 (en) * 2000-02-15 2004-12-15 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent weldability
JP3734692B2 (en) * 2000-08-01 2006-01-11 株式会社神戸製鋼所 Non-refining type low yield ratio high tensile strength steel sheet with low acoustic anisotropy and excellent weldability
JP3736320B2 (en) * 2000-09-11 2006-01-18 Jfeスチール株式会社 Abrasion-resistant steel with excellent toughness and delayed fracture resistance and method for producing the same
JP4220871B2 (en) * 2003-03-19 2009-02-04 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof
JP4025263B2 (en) * 2003-07-17 2007-12-19 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy

Also Published As

Publication number Publication date
JP2006283126A (en) 2006-10-19
KR100748809B1 (en) 2007-08-13
KR20060106637A (en) 2006-10-12
CN100441725C (en) 2008-12-10
CN1854325A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP6989606B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method
JP2017115200A (en) H-shaped steel for low temperature and production method therefor
JP2006089789A (en) Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JPWO2014175122A1 (en) H-section steel and its manufacturing method
JP6308151B2 (en) Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP7022822B2 (en) Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method
JP5082475B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JPWO2016060141A1 (en) Steel material for large heat input welding
JP6421638B2 (en) Low-temperature H-section steel and its manufacturing method
JP2005015859A (en) High-strength steel sheet having excellent weldability, method for manufacturing the same, and welded steel structure
JP2007138203A (en) High tensile strength thick steel plate having excellent weldability and its production method
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP2019173054A (en) High strength high ductility steel sheet
JP7410438B2 (en) steel plate
JP5082500B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP4646719B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP2017186594A (en) H-shaped steel for low temperature and manufacturing method therefor
JP2012158791A (en) High-tensile thick steel plate and method for manufacturing the same
JP2010174332A (en) Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4868762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees