JP2013203576A - High-purity attaining method for liquefied carbonic acid - Google Patents

High-purity attaining method for liquefied carbonic acid Download PDF

Info

Publication number
JP2013203576A
JP2013203576A JP2012073548A JP2012073548A JP2013203576A JP 2013203576 A JP2013203576 A JP 2013203576A JP 2012073548 A JP2012073548 A JP 2012073548A JP 2012073548 A JP2012073548 A JP 2012073548A JP 2013203576 A JP2013203576 A JP 2013203576A
Authority
JP
Japan
Prior art keywords
liquefied
carbonic acid
carbon dioxide
gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012073548A
Other languages
Japanese (ja)
Other versions
JP5799871B2 (en
Inventor
Hideto Kurokawa
英人 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2012073548A priority Critical patent/JP5799871B2/en
Publication of JP2013203576A publication Critical patent/JP2013203576A/en
Application granted granted Critical
Publication of JP5799871B2 publication Critical patent/JP5799871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-purity attaining method for liquefied carbonic acid that can manufacture liquefied carbonic acid of high purity at a low cost.SOLUTION: There is provided a high-purity attaining method for liquefied carbonic acid characterized in that liquefied carbonic acid is put in a pressure holding vessel, the liquefied carbonic acid in the vessel is placed under a liquid phase condition such that the temperature of the liquefied carbonic acid and the pressure of a vapor phase are on the boiling line of carbon dioxide or its vicinity, and impurity components dissolved in the liquefied carbonic acid are vaporized to lower the impurity concentration in the liquefied carbonic acid. Here, Nis sufficiently removed from the carbonic acid, so the liquefied carbonic acid of high purity can be obtained even when air is used as an oxygen source when oxidizing Co, Hor the like, in coarse carbon dioxide gas.

Description

本発明は、液化炭酸中から一酸化炭素などの不純物成分を除去して高純度化する方法に関するものであり、特に炭化水素ガスを水蒸気改質して水素を製造するプロセスで副生する炭酸ガスを液化した液化炭酸の高純度化に好適な方法に関する。   TECHNICAL FIELD The present invention relates to a method for removing impurities components such as carbon monoxide from liquefied carbon dioxide to achieve high purity, and in particular, carbon dioxide gas by-produced in a process for producing hydrogen by steam reforming a hydrocarbon gas. The present invention relates to a method suitable for the purification of liquefied carbonic acid obtained by liquefying

炭化水素ガスを水蒸気改質して水素を製造するプロセスで副生する炭酸ガスを液化して回収するシステムが特許文献1に記載されている。この特許文献1では、炭酸ガスを加圧した後、冷却して液化して気液混相流とし、これを気液分離槽に導入してメタン、CO、O、N等のガス成分を分離した後、タンクに導入して回収する。 Patent Document 1 discloses a system for liquefying and recovering carbon dioxide gas by-produced in a process for producing hydrogen by steam reforming a hydrocarbon gas. In Patent Document 1, after pressurizing carbon dioxide gas, it is cooled and liquefied to form a gas-liquid mixed phase flow, which is introduced into a gas-liquid separation tank, and gas components such as methane, CO, O 2 , and N 2 are introduced. After separation, it is introduced into a tank and collected.

特許文献2には、高純度液化炭酸を製造する方法として、アンモニア製造プラントなどからの粗製炭酸ガスを酸化触媒充填塔に通し、Oを添加してCO及びHをCO及びHOに酸化した後、脱臭及び脱湿処理し、次いで液化する方法が記載されている。 In Patent Document 2, as a method for producing high-purity liquefied carbon dioxide, crude carbon dioxide gas from an ammonia production plant or the like is passed through an oxidation catalyst packed tower, and O 2 is added to convert CO and H 2 into CO 2 and H 2 O. A method of deodorizing and dehumidifying after oxidation to liquefaction and then liquefying is described.

特開2011−116604JP2011-116604A 特開平11−209117JP-A-11-209117

本発明者の研究の結果、上記特許文献1の水素製造システムで回収される液化炭酸中にはCOが数百ppm、条件によっては千数百ppm程度含まれていることが認められた。かかる液化炭酸は、利用分野が限られたものとなる。   As a result of the inventor's research, it was confirmed that the liquefied carbonic acid recovered by the hydrogen production system of Patent Document 1 contains several hundred ppm of CO, and several thousand ppm depending on conditions. Such liquefied carbonic acid has a limited field of use.

特許文献2では、粗製ガス中のCO及びHをOによって酸化処理した後COを液化しているので、液化炭酸中のCO濃度は低くなると見られるが、酸化処理のためにOを用いているため、Oコストが嵩むことになる。また、液化炭酸中のCO及びH濃度は低くなるものの、粗製ガス由来のN等の不純物成分濃度は低くならない。 In Patent Document 2, since the CO and H 2 in the crude gas is liquefied CO 2 was treated oxidized by O 2, CO concentration in the liquefied carbon is expected to be lower but, O 2 for oxidation Therefore, the O 2 cost increases. Although CO and H 2 concentration in the liquefied carbon decreases, the impurity concentrations of components such as N 2 from crude gases does not become low.

なお、特許文献2において、CO及びHの酸化のために空気を用い、酸素コストを低下させることも考えられるが、このように空気を用いると、液化炭酸中のN濃度が増加する。 In Patent Document 2, it is conceivable to reduce the cost of oxygen by using air for the oxidation of CO and H 2. However, when air is used in this way, the concentration of N 2 in liquefied carbon dioxide increases.

本発明は、このような従来技術の問題点を解決し、高純度の液化炭酸を低コストにて製造することができる液化炭酸の高純度化方法を提供することを目的とする。   An object of the present invention is to solve such problems of the prior art and to provide a method for increasing the purity of liquefied carbon dioxide that can produce high-purity liquefied carbonate at a low cost.

本発明の液化炭酸の高純度化方法は、液化炭酸を容器内に収容し、該容器内の液化炭酸の温度と気相の圧力を、二酸化炭素の沸騰線上又はその近傍の液相条件とし、該液化炭酸中に気液分離時に過剰に溶解した不純物成分を優先的に気化させて液化炭酸中の不純物濃度を低下させることを特徴とするものである。   The method for purifying liquefied carbonic acid according to the present invention contains liquefied carbonic acid in a container, and the temperature of the liquefied carbonic acid in the container and the pressure of the gas phase are liquid phase conditions on or near the boiling line of carbon dioxide, The impurity component excessively dissolved in the liquefied carbonic acid during gas-liquid separation is preferentially vaporized to reduce the impurity concentration in the liquefied carbonic acid.

本発明では、前記容器に前記気相の圧力を調節する圧力調節弁を設けておき、該容器内の液化炭酸の温度を所定温度に維持し、該圧力調節弁によって容器内の気相の圧力を該所定温度における沸騰線上の圧力P以上かつP+0.3MPa以下の圧力に維持して液化炭酸中の不純物成分を気化させることが好ましい。   In the present invention, the container is provided with a pressure control valve for adjusting the pressure of the gas phase, the temperature of the liquefied carbonic acid in the container is maintained at a predetermined temperature, and the pressure of the gas phase in the container is controlled by the pressure control valve. Is preferably maintained at a pressure P not lower than the pressure on the boiling line at the predetermined temperature and not higher than P + 0.3 MPa to vaporize impurity components in the liquefied carbonic acid.

前記容器に導入される液化炭酸としては、炭酸ガス液化装置の気液分離槽からの液化炭酸が好ましい。   As the liquefied carbonic acid introduced into the container, liquefied carbonic acid from a gas-liquid separation tank of a carbon dioxide liquefier is preferable.

この場合、前記容器を複数設置しておき、前記気液分離槽からの液化炭酸を一部の容器に導入し、該一部の容器内で液化炭酸から不純物成分を気化させて除去する工程と、該一部の容器にて液化炭酸から不純物成分を気化させて濃度を低減している間に他の容器に該気液分離槽からの液化炭酸を導入する工程とを実行することが好ましい。   In this case, a step of installing a plurality of the containers, introducing liquefied carbon dioxide from the gas-liquid separation tank into a part of the containers, and evaporating and removing impurity components from the liquefied carbonic acid in the part of the containers; It is preferable to execute the step of introducing the liquefied carbon dioxide from the gas-liquid separation tank into another container while the impurity component is vaporized from the liquefied carbon dioxide in the partial container to reduce the concentration.

本発明の液化炭酸の高純度化方法では、容器に収容した液化炭酸の温度と圧力を二酸化炭素の沸騰線上又はその近傍の液相条件とすることにより、気液分離時に過剰に溶解した液化炭酸中の不純物成分が優先的に気化して液化炭酸中の濃度が低減し、高純度の液化炭酸が得られる。   In the method for purifying liquefied carbonic acid according to the present invention, the temperature and pressure of the liquefied carbonic acid contained in the container is set to a liquid phase condition on or near the boiling line of carbon dioxide, so that the liquefied carbonic acid dissolved excessively during gas-liquid separation. Impurity components therein are preferentially vaporized and the concentration in the liquefied carbonic acid is reduced, so that high-purity liquefied carbonic acid is obtained.

本発明では、液化炭酸中からNが十分に除去されるので、粗製炭酸ガス中のCO、H等を酸化する場合に酸素源として空気を用いても高純度の液化炭酸を得ることができる。この場合、酸素コストが不要となる。 In the present invention, since N 2 is sufficiently removed from the liquefied carbon dioxide, high purity liquefied carbon dioxide can be obtained even when air is used as an oxygen source when oxidizing CO, H 2, etc. in the crude carbon dioxide gas. it can. In this case, the oxygen cost becomes unnecessary.

本発明では、容器内の液化炭酸の温度及び圧力を所定条件にするという比較的簡易な方法によって十分に高純度の液化炭酸を得ることができ、設備コストも低くて済む。   In the present invention, sufficiently high purity liquefied carbonic acid can be obtained by a relatively simple method in which the temperature and pressure of liquefied carbonic acid in the container are set to predetermined conditions, and the equipment cost can be reduced.

本発明では、容器内の液化炭酸の温度と圧力の制御を行う場合、温度を一定としておき、圧力を調節して容器内の液化炭酸を沸騰線近傍の気相条件におくことが、操作が簡便であり好ましい。   In the present invention, when controlling the temperature and pressure of the liquefied carbonic acid in the container, the operation is carried out by keeping the temperature constant and adjusting the pressure so that the liquefied carbonic acid in the container is in a gas phase condition near the boiling line. Simple and preferable.

本発明では、炭酸ガス液化装置の気液分離槽からの液化炭酸を一部の容器に導入し、該一部の容器内で液化炭酸から不純物成分を気化させて除去する工程と、該一部の容器にて液化炭酸から不純物成分を気化させて濃度を低減している間に他の容器に液化装置からの液化炭酸を導入する工程とを実行することにより、炭酸ガス液化装置からの液化炭酸を連続して高純度化処理することができる。   In the present invention, the step of introducing liquefied carbon dioxide from the gas-liquid separation tank of the carbon dioxide gas liquefier into a part of the container and evaporating and removing the impurity component from the liquefied carbon dioxide in the part of the container, The process of introducing the liquefied carbon dioxide from the liquefier into the other container while the concentration is reduced by vaporizing impurity components from the liquefied carbon dioxide in the container of Can be continuously purified.

二酸化炭素の状態図である。It is a phase diagram of carbon dioxide. 液化炭酸回収システムのフロー図である。It is a flow figure of a liquefied carbonic acid recovery system.

以下、本発明について詳細に説明する。   The present invention will be described in detail below.

本発明では、液化炭酸を容器内に収容し、該容器内の液化炭酸の温度と気相の圧力を、二酸化炭素の沸騰線上又はその近傍の液相条件とし、気液分離時に該液化炭酸中に過剰に溶解した不純物成分を優先的に気化させ、液化炭酸中の濃度を低下させる。   In the present invention, liquefied carbon dioxide is contained in a container, and the temperature of the liquefied carbon dioxide and the pressure of the gas phase in the container are set to liquid phase conditions on or near the boiling line of carbon dioxide. The impurity component excessively dissolved in is preferentially vaporized, and the concentration in the liquefied carbonic acid is lowered.

本発明では、図1に示す二酸化炭素の状態図において、容器内の液化炭酸を所定温度Tに保った状態で、容器内の気液圧力を、当該温度Tにおける沸騰線上の圧力(P)以上かつそれよりもごくわずか(ΔP)だけ高い圧力(P+ΔP)以下とし、液化炭酸中の不純物成分を気化させるのが好ましい。このときの温度Tは−40〜0℃特に−25〜−20℃の範囲から選択された温度とすることが好ましい。   In the present invention, in the state diagram of carbon dioxide shown in FIG. 1, in the state where the liquefied carbonic acid in the container is kept at a predetermined temperature T, the gas-liquid pressure in the container is equal to or higher than the pressure (P) on the boiling line at the temperature T. In addition, it is preferable to set the pressure (P + ΔP) to be slightly higher (ΔP) or lower than that to vaporize the impurity component in the liquefied carbonic acid. The temperature T at this time is preferably set to a temperature selected from the range of −40 to 0 ° C., particularly −25 to −20 ° C.

容器内の温度は、実質的に一定となるように容器に設けた温度調節手段(例えば冷却手段)によって制御されてもよく、上記の範囲内の2点の温度T,T(T<T)の間となるように該温度調節手段によって制御されてもよい。具体的には、上記温度Tよりも低温の液化炭酸を容器内に導入し、容器内の液化炭酸の温度を徐々に上昇させ、T以上T以下の範囲に維持する。そして、温度Tにおける沸騰線上の圧力Pと、温度Tにおける沸騰線上の圧力PとΔPとに基づき、容器内の気相の圧力が二酸化炭素の沸騰線上又はその近傍の液相条件となるようにする。 The temperature in the container may be controlled by temperature adjusting means (for example, cooling means) provided in the container so as to be substantially constant, and two temperatures T 1 and T 2 (T 1 ) within the above range. It may be controlled by the temperature adjusting means so as to be between <T 2 ). Specifically, the low temperature of liquefied carbon than the temperature T 1 of introduced into the container, and gradually increase the temperature of the liquefied carbon dioxide in the container is maintained in the range of above T 1 T 2 less. Then, the pressure P 1 of boiling line at a temperature T 1, based on the pressure P 2 and ΔP boiling line at a temperature T 2, the pressure of the gas phase in the vessel of the boiling line or near the carbon dioxide liquid phase conditions To be.

上記のΔPは0.3MPa特に0.1MPaとすることが好ましい。   The ΔP is preferably 0.3 MPa, particularly 0.1 MPa.

容器内の圧力を所定圧に制御するには、開弁設定圧力に達すると開弁する圧力調節弁(背圧弁)を容器に設けるのが好ましいが、圧力センサによって容器内の圧力を検知し、この検出圧に応じてガス放出弁を閉弁する圧力制御機構を設けてもよい。   In order to control the pressure in the container to a predetermined pressure, it is preferable to provide the container with a pressure control valve (back pressure valve) that opens when the valve opening set pressure is reached, but the pressure sensor detects the pressure in the container, A pressure control mechanism for closing the gas release valve according to the detected pressure may be provided.

不純物の気化と同時におこる液化炭酸の気化速度を低減するために、容器が円筒形の場合、容器内の液面の直径D(m)と容器内の液化炭酸の高さH(m)との比D/Hは0.1〜1特に0.1〜0.3程度であることが好ましい。   In order to reduce the vaporization rate of liquefied carbonic acid that occurs at the same time as vaporization of impurities, when the container is cylindrical, the diameter D (m) of the liquid level in the container and the height H (m) of liquefied carbonic acid in the container The ratio D / H is preferably about 0.1 to about 0.1 to 0.3.

気液分離槽容積が数L〜数十Lの場合、少なくとも5分以上、好ましくは30分以上上記条件に保つことにより、気液分離時に過剰に溶解した容器内の液化炭酸中の不純物の大部分(例えば90%程度)が気化して除去される。最適な保持時間は、容器サイズや不純物の種類や濃度によって異なるため、適宜設計時に最適化が必要である。沸騰線上又はその近傍の温度および圧力条件では液化炭酸も一部気化するが、液化炭酸中に過剰に溶解した不純物は短時間で気化することにより平衡溶解濃度に近づくため、不純物濃度が低減される。なお、容器に対し超音波振動を与えたり撹拌するなどの不純物成分気化促進手段を設けてもよいが、通常はこのような気化促進手段を設けることなく、不純物成分が速やかに気化して濃度が低減される。   When the volume of the gas-liquid separation tank is several liters to several tens of liters, a large amount of impurities in the liquefied carbon dioxide in the container excessively dissolved during gas-liquid separation is maintained by maintaining the above conditions for at least 5 minutes or more, preferably 30 minutes or more. A part (for example, about 90%) is vaporized and removed. Since the optimum holding time varies depending on the container size, the type and concentration of impurities, it is necessary to appropriately optimize at the time of designing. Liquefied carbon dioxide is also partially vaporized under the temperature and pressure conditions at or near the boiling line, but impurities that are excessively dissolved in the liquefied carbon dioxide are vaporized in a short time to approach the equilibrium dissolution concentration, thus reducing the impurity concentration. . It should be noted that an impurity component vaporization accelerating means such as applying ultrasonic vibration to the container or stirring may be provided, but usually the impurity component is rapidly vaporized and the concentration is increased without providing such a vaporization accelerating means. Reduced.

この不純物成分としては、CO、O、N、Hのほか、メタンなどの炭化水素ガスなどが例示されるが、これに限定されない。 Examples of the impurity component include CO, O 2 , N 2 , H 2 , and hydrocarbon gas such as methane, but are not limited thereto.

本発明は、水素製造装置、水素分離型改質器、アンモニア製造装置など、CO濃度の高いガスを生成する装置からのCO含有ガスを液化させ高純度液化炭酸を回収する場合に用いるのに好適である。 The present invention is used when a high-purity liquefied carbon dioxide is recovered by liquefying a CO 2 -containing gas from a device that generates a gas having a high CO 2 concentration, such as a hydrogen production device, a hydrogen separation reformer, or an ammonia production device. It is suitable for.

次に、都市ガス等の炭化水素ガスを水蒸気改質する水素製造装置のオフガスから本発明方法に従って高純度液化炭酸を回収するシステムの一例について図2を参照して説明する。   Next, an example of a system for recovering high-purity liquefied carbonic acid from off-gas of a hydrogen production apparatus that steam-reforms hydrocarbon gas such as city gas according to the method of the present invention will be described with reference to FIG.

水素製造装置1からのCO、CO、H、未反応炭化水素ガス等を含有したオフガスがPt、RuなどのCO選択酸化触媒を備えた一酸化炭素選択酸化器2に導入され、添加された空気中の酸素によってCOが選択的に酸化されCOとなる。 Off-gas containing CO 2 , CO, H 2 , unreacted hydrocarbon gas, etc. from the hydrogen production apparatus 1 is introduced and added to a carbon monoxide selective oxidizer 2 equipped with a CO selective oxidation catalyst such as Pt and Ru. The oxygen in the air is selectively oxidized to CO 2 .

一酸化炭素選択酸化器2からのガスは水分吸着塔3に導入され、ゼオライト、活性炭等の水分吸着剤によって水分が除去される。なお、オフガスに含まれている微量の水分除去に関しては、水分吸着塔に限らず、コールドトラップなどを用いてもよい。水分吸着塔3からのガスは、圧縮機4で圧縮された後、冷却器5にて冷媒と熱交換して冷却され、二酸化炭素が液化する。冷却器5からの気液混相流体は、気液分離槽6に導入されて気液分離処理される。分離されたガス成分中には、CO、炭化水素ガスなどの可燃性成分が存在するので、ライン7によって水素製造装置1に供給し、バーナの燃料ガスの一部として使用してもよい。なお、この気液分離槽6内の圧力を制御するために圧力調節弁(背圧弁)7Aが設けられている。   The gas from the carbon monoxide selective oxidizer 2 is introduced into the moisture adsorption tower 3, and moisture is removed by a moisture adsorbent such as zeolite or activated carbon. For removing a small amount of water contained in the off-gas, not only the water adsorption tower but also a cold trap or the like may be used. After the gas from the moisture adsorption tower 3 is compressed by the compressor 4, it is cooled by exchanging heat with the refrigerant in the cooler 5, and the carbon dioxide is liquefied. The gas-liquid mixed phase fluid from the cooler 5 is introduced into the gas-liquid separation tank 6 and subjected to gas-liquid separation processing. In the separated gas components, there are combustible components such as CO and hydrocarbon gas, so they may be supplied to the hydrogen production apparatus 1 through the line 7 and used as part of the burner fuel gas. A pressure control valve (back pressure valve) 7A is provided to control the pressure in the gas-liquid separation tank 6.

気液分離槽6でガス成分の多くが分離された液化炭酸は、バルブ8Aを開とすることにより前記容器としての第1の回収槽9Aに導入される。このとき、バルブ8B,11A,11Bは閉とされている。第1の回収槽9Aに所定量の液化炭酸が導入されたならば、バルブ8Aを閉、バルブ8Bを開とし、気液分離槽6からの液化炭酸を第2の回収槽9Bに導入する。   The liquefied carbon dioxide from which most of the gas components have been separated in the gas-liquid separation tank 6 is introduced into the first recovery tank 9A as the container by opening the valve 8A. At this time, the valves 8B, 11A, and 11B are closed. When a predetermined amount of liquefied carbon dioxide is introduced into the first recovery tank 9A, the valve 8A is closed and the valve 8B is opened, and the liquefied carbon dioxide from the gas-liquid separation tank 6 is introduced into the second recovery tank 9B.

各回収槽9A,9Bの上部には圧力調節弁(背圧弁)10A,10Bが設けられており、回収槽9A,9B内の圧力を制御するように構成されている。この実施の形態では、圧力調節弁10A,10Bは、槽9A,9B内の圧力が設定圧力よりも高くなると開となり、槽9A,9B内の圧力を該設定圧力以下に保つためのものである。この圧力調節弁10A,10Bを通過した気化ガスは、未反応のOを含んでいるので、ガス返送ライン10を介して一酸化炭素選択酸化器2に供給して一酸化炭素の酸化反応に使用してもよい。 Pressure control valves (back pressure valves) 10A and 10B are provided above the recovery tanks 9A and 9B, respectively, and configured to control the pressure in the recovery tanks 9A and 9B. In this embodiment, the pressure control valves 10A and 10B are opened when the pressure in the tanks 9A and 9B becomes higher than the set pressure, and keep the pressure in the tanks 9A and 9B below the set pressure. . Since the vaporized gas that has passed through the pressure control valves 10A and 10B contains unreacted O 2 , the vaporized gas is supplied to the carbon monoxide selective oxidizer 2 via the gas return line 10 to perform an oxidation reaction of carbon monoxide. May be used.

図示は省略するが、回収槽9A,9Bには冷却管が設けられており、回収槽内の液化炭酸の温度を調節するように冷媒が該冷却管に通液される。回収槽9A、9Bの温度は−40〜0℃特に−25〜−20℃の範囲から選択された温度とすることが好ましいが、気液分離槽温度Tと同じ温度にすることが最も好ましい。   Although not shown, the recovery tanks 9A and 9B are provided with cooling pipes, and refrigerant is passed through the cooling pipes so as to adjust the temperature of the liquefied carbon dioxide in the recovery tanks. The temperature of the recovery tanks 9A and 9B is preferably a temperature selected from the range of −40 to 0 ° C., particularly −25 to −20 ° C., but most preferably the same temperature as the gas-liquid separation tank temperature T.

回収槽9Aに液化炭酸を導入し、バルブ8Aを閉とした後、所定時間回収槽9A内の圧力を二酸化炭素の沸騰線上又はその近傍の液相条件とすることにより、回収槽9A内の液化炭酸から不純物成分が優先的に気化して除去される。そこでこの所定時間経過後、バルブ11Aを開とし、高純度液化炭酸を取り出す。その後、回収槽9Aに気液分離槽6から液化炭酸を導入し、同様に液化炭酸の高純度化処理を行う。   After introducing liquefied carbon dioxide into the recovery tank 9A and closing the valve 8A, the pressure in the recovery tank 9A is set to a liquid phase condition on or near the boiling line of carbon dioxide for a predetermined time, thereby liquefying in the recovery tank 9A. Impurity components are preferentially vaporized and removed from the carbonic acid. Therefore, after this predetermined time has elapsed, the valve 11A is opened, and the high purity liquefied carbonic acid is taken out. Thereafter, liquefied carbonic acid is introduced into the recovery tank 9A from the gas-liquid separation tank 6, and the liquefied carbonic acid is highly purified.

第1の回収槽9Aにて液化炭酸の高純度化処理を行っている間に、第2の回収槽9Bに気液分離槽6から液化炭酸を導入し、上記と同様にして液化炭酸の高純度化処理(不純物成分の気化)を行い、その後、バルブ11Bを開として高純度液化炭酸を取り出す。   While the purification process of the liquefied carbonic acid is being performed in the first recovery tank 9A, the liquefied carbonic acid is introduced into the second recovery tank 9B from the gas-liquid separation tank 6, and the liquefied carbonic acid is increased in the same manner as described above. A purification treatment (vaporization of impurity components) is performed, and then the valve 11B is opened to take out high purity liquefied carbonic acid.

このように、回収槽9A,9Bに液化炭酸を交互に導入して高純度化処理することにより、気液分離槽6からの液化炭酸を連続的に処理することができる。なお、回収槽を3槽以上設けてもよい。   Thus, the liquefied carbon dioxide from the gas-liquid separation tank 6 can be continuously processed by alternately introducing the liquefied carbon dioxide into the recovery tanks 9A and 9B and performing the purification process. Note that three or more recovery tanks may be provided.

上記の水素製造装置1がメタンを水蒸気改質し、PSA方式にてHを分離するものである場合の運転条件の一例を挙げると次の通りである。 An example of operating conditions in the case where the hydrogen production apparatus 1 described above reforms methane with steam and separates H 2 by the PSA method is as follows.

水素製造装置1からの最大2.0%のCOを含むCOリッチなオフガスに対し、一酸化炭素選択酸化器2にて最大2.0%、すなわちすべてのCOを酸化させるのに必要な酸素(1.0%)の2倍の酸素、を含む空気を最大10%添加し、100〜200℃の範囲でPt、Ru、Rhなどを含むCO選択酸化触媒を用いてCO酸化を行う。CO選択酸化後のガスを、圧縮機3にて最大10MPaの圧力で圧縮し、その後冷却器5にて−40℃〜0℃、好ましくは−25℃〜−20℃に冷却して炭酸を液化させる。この気液混相流体を気液分離槽6において気液分離する。なお、−25℃〜−20℃は工業的に広く使用されている炭酸ガス液化条件である。 The CO 2 rich off-gas containing up to 2.0% CO from the hydrogen production apparatus 1 is up to 2.0%, that is, oxygen necessary for oxidizing all CO in the carbon monoxide selective oxidizer 2. CO is oxidized using a CO selective oxidation catalyst containing Pt, Ru, Rh, etc. in the range of 100 to 200 ° C. by adding up to 10% of air containing (1.0%) twice as much oxygen. The gas after selective CO oxidation is compressed at a maximum pressure of 10 MPa in the compressor 3 and then cooled to −40 ° C. to 0 ° C., preferably −25 ° C. to −20 ° C. in the cooler 5 to liquefy the carbonic acid. Let This gas-liquid mixed phase fluid is gas-liquid separated in the gas-liquid separation tank 6. Note that −25 ° C. to −20 ° C. is a carbon dioxide liquefaction condition widely used industrially.

気液分離槽6内では、所定の圧力、温度における平衡条件で気液分離が行われ、ガス相には微量のCOと、例えばメタン、CO、H、N、HなどのCO以外のガスが含まれることになる。このときCO以外の液化されない成分により、気液分離槽6内の圧力が上昇するが、圧力調節弁7Aを介して放出する。この放出する気体にCOやCHなどの未燃ガスが含まれる場合は、水素製造装置1の加熱用バーナの燃料として再利用する。 In the gas-liquid separation tank 6, gas-liquid separation is performed under equilibrium conditions at a predetermined pressure and temperature, and the gas phase contains a small amount of CO 2 , for example, CO such as methane, CO, H 2 , N 2 , H 2. Gas other than 2 will be included. At this time, the pressure in the gas-liquid separation tank 6 rises due to components other than CO 2 that are not liquefied, but is released through the pressure control valve 7A. When the released gas contains unburned gas such as CO or CH 4 , it is reused as fuel for the heating burner of the hydrogen production apparatus 1.

この気液分離槽6で気液分離された液化炭酸にはCO以外の微量のガスが溶解している。この液化炭酸を回収槽9A又は9Bに導入し、槽内部の圧力を気液分離時の圧力(5〜15MPa、好ましくは7〜10MPa)から少なくとも5分以上、好ましくは30分以上かけて徐々に所定温度における沸騰線上の圧力P以上かつP+0.3MPa以下の圧力まで低下させ、その後、圧力調節弁10A,10Bの設定圧を二酸化炭素の沸騰線上又はその近傍の液相条件とした状態にて5分以上、好ましくは30分以上保持する。なお、このとき液化炭酸から一部の液化炭酸と、不純物であるO及びN等が優先的に気化して気相に放出されるため、回収槽内の圧力は上昇してくるが、圧力調節弁10A,10Bの設定圧力以上になると、回収槽9A,9B内のガスが圧力調節弁10A,10Bを通ってライン10に放出されるので、回収槽9A,9B内の圧力はこの設定圧力に保たれ、液化炭酸からの不純物成分の低減が進行する。その後、回収槽9A又は9B内から高純度液化炭酸を取り出す。 A small amount of gas other than CO 2 is dissolved in the liquefied carbonic acid separated in the gas-liquid separation tank 6. This liquefied carbonic acid is introduced into the recovery tank 9A or 9B, and the pressure inside the tank is gradually increased from the pressure at the time of gas-liquid separation (5 to 15 MPa, preferably 7 to 10 MPa) for at least 5 minutes, preferably 30 minutes or more. The pressure is reduced to a pressure not lower than P on the boiling line and not higher than P + 0.3 MPa at a predetermined temperature, and then set to 5 at a liquid phase condition on or near the boiling line of carbon dioxide. Hold for at least 30 minutes, preferably at least 30 minutes. At this time, part of the liquefied carbon dioxide and impurities such as O 2 and N 2 are preferentially vaporized and released into the gas phase, so that the pressure in the recovery tank rises. When the pressure is higher than the set pressure of the pressure control valves 10A and 10B, the gas in the recovery tanks 9A and 9B is discharged to the line 10 through the pressure control valves 10A and 10B, so the pressure in the recovery tanks 9A and 9B is set to this setting. Maintaining the pressure, the reduction of impurity components from the liquefied carbonic acid proceeds. Thereafter, high-purity liquefied carbonic acid is taken out from the collection tank 9A or 9B.

なお、回収槽9A,9Bにおける不純物成分の気化処理時間は、予め実験的に求めておいてもよく、回収槽9A,9B内のガスの組成分析を行い、Nガス濃度が基準濃度以下となったときに不純物成分気化工程を終了させるようにしてもよい。 The vaporization time of the impurity components in the recovery tanks 9A and 9B may be obtained experimentally in advance, and the composition analysis of the gas in the recovery tanks 9A and 9B is performed, and the N 2 gas concentration is below the reference concentration. When this happens, the impurity component vaporization step may be terminated.

液化炭酸の高純度化処理の具体的な例を次に挙げる。   A specific example of the purification process of liquefied carbonic acid is given below.

CO濃度が70%以上、CO濃度が2%以下を含む混合ガスを、空気によるCO選択酸化の後に圧縮液化を行い、気液分離によってCO回収を行う場合、COの回収効率を向上させるため、気液分離槽の背圧弁圧力を5〜15MPa、好ましくは7〜10MPaに設定して行うことが好ましい。例えば−20℃で気液分離を行う場合、気液分離槽圧力は、液化されず液化炭酸にも溶解できないCO以外のガスと、所定の温度圧力におけるCO平衡分圧によって運転中に通常5MPa以上に上昇する。液化炭酸を回収槽に分離し、背圧弁の圧力を徐々に降下させて所定圧力に保持する場合、例えば−20℃では該所定圧力を2.0MPa(絶対圧)以上2.3MPa(絶対圧)以下の範囲、好ましくは2.0MPa(絶対圧)以上2.1MPa(絶対圧)以下の範囲で制御するのが好ましい。なお、窒素及び酸素低減のための温度圧力保持時間は、適切な時間より短すぎると窒素及び酸素低減が不十分になる。逆に長すぎると、余計にCOが気化してしまう。また、この適切な処理時間は、回収槽の容積、断面積などによって左右される。そのため、事前に背圧弁から放出されるガス組成をガスクロマトグラフ等を用いて分析し、この分析結果に基づいて処理時間を設定するのが好ましい。 Improved CO 2 recovery efficiency when CO 2 concentration is compressed and liquefied after selective CO oxidation with air and CO 2 recovery is performed by gas-liquid separation. Therefore, it is preferable to set the back pressure valve pressure of the gas-liquid separation tank to 5 to 15 MPa, preferably 7 to 10 MPa. For example, when performing gas-liquid separation at −20 ° C., the gas-liquid separation tank pressure is usually set during operation by a gas other than CO 2 that cannot be liquefied and dissolved in liquefied carbon dioxide, and a CO 2 equilibrium partial pressure at a predetermined temperature and pressure. It rises to 5 MPa or more. When the liquefied carbonic acid is separated into a recovery tank, and the pressure of the back pressure valve is gradually lowered and maintained at a predetermined pressure, for example, at −20 ° C., the predetermined pressure is 2.0 MPa (absolute pressure) or more and 2.3 MPa (absolute pressure). It is preferable to control in the following range, preferably in the range of 2.0 MPa (absolute pressure) to 2.1 MPa (absolute pressure). Note that if the temperature and pressure holding time for reducing nitrogen and oxygen is too short for an appropriate time, the reduction of nitrogen and oxygen becomes insufficient. On the other hand, if it is too long, CO 2 will be vaporized excessively. In addition, the appropriate processing time depends on the volume of the collection tank, the cross-sectional area, and the like. Therefore, it is preferable to analyze the gas composition released from the back pressure valve in advance using a gas chromatograph or the like and set the treatment time based on the analysis result.

1 水素製造装置
2 一酸化炭素選択酸化器
3 水分吸着塔
4 圧縮機
5 冷却器
6 気液分離槽
9A,9B 回収槽(容器)
10A,10B 圧力調節弁
DESCRIPTION OF SYMBOLS 1 Hydrogen production apparatus 2 Carbon monoxide selective oxidizer 3 Moisture adsorption tower 4 Compressor 5 Cooler 6 Gas-liquid separation tank 9A, 9B Collection tank (container)
10A, 10B Pressure control valve

Claims (7)

液化炭酸を容器内に収容し、該容器内の液化炭酸の温度と気相の圧力を、二酸化炭素の沸騰線上又はその近傍の液相条件とし、該液化炭酸中に溶解した不純物成分を気化させて液化炭酸中の不純物濃度を低下させることを特徴とする液化炭酸の高純度化方法。   The liquefied carbon dioxide is contained in a container, the temperature of the liquefied carbon dioxide and the pressure of the gas phase in the container are set to liquid phase conditions on or near the boiling line of carbon dioxide, and the impurity components dissolved in the liquefied carbon dioxide are vaporized. A method for increasing the purity of liquefied carbonic acid, which comprises reducing the concentration of impurities in the liquefied carbonic acid. 請求項1において、前記容器に前記気相の圧力を調節する圧力調節弁を設けておき、該容器内の液化炭酸の温度を所定温度に維持し、
該圧力調節弁によって容器内の気相の圧力を該所定温度における沸騰線の圧力P以上かつP+0.3MPa以下の圧力に維持して液化炭酸中の不純物成分を気化させることを特徴とする液化炭酸の高純度化方法。
In claim 1, a pressure control valve for adjusting the pressure of the gas phase is provided in the container, the temperature of the liquefied carbonic acid in the container is maintained at a predetermined temperature,
A liquefied carbon dioxide characterized by vaporizing an impurity component in the liquefied carbon dioxide by maintaining the pressure of the gas phase in the container at a pressure P not lower than the boiling line pressure P and not higher than P + 0.3 MPa at the predetermined temperature by the pressure control valve. High purity method.
請求項1又は2において、前記容器に導入される液化炭酸は、炭酸ガス液化装置の気液分離槽からの液化炭酸であることを特徴とする液化炭酸の高純度化方法。   3. The method for purifying liquefied carbon dioxide according to claim 1, wherein the liquefied carbon dioxide introduced into the container is liquefied carbon dioxide from a gas-liquid separation tank of a carbon dioxide liquefier. 請求項3において、前記容器を複数設置しておき、
前記気液分離槽からの液化炭酸を一部の容器に導入し、該一部の容器内で液化炭酸から不純物成分を気化させて不純物濃度を低下させる工程と、
該一部の容器にて液化炭酸から不純物成分を気化させて不純物濃度を低下させている間に他の容器に該気液分離槽からの液化炭酸を導入する工程と
を実行することを特徴とする液化炭酸の高純度化方法。
In claim 3, a plurality of the containers are installed,
Introducing the liquefied carbonic acid from the gas-liquid separation tank into a part of the container, evaporating the impurity component from the liquefied carbonic acid in the part of the container, and reducing the impurity concentration;
And a step of introducing the liquefied carbon dioxide from the gas-liquid separation tank into another container while the impurity concentration is lowered by vaporizing the impurity component from the liquefied carbon dioxide in the partial container. To purify liquid carbon dioxide.
請求項1ないし4のいずれか1項において、液化炭酸に溶解している不純物ガスが炭化水素、CO、H、N、及びHの少なくとも1種であることを特徴とする液化炭酸の高純度化方法。 5. The liquefied carbonic acid according to claim 1, wherein the impurity gas dissolved in the liquefied carbonic acid is at least one of hydrocarbon, CO, H 2 , N 2 , and H 2 . High purity method. 請求項1ないし5のいずれか1項において、CO濃度が70%以上、CO濃度が2%以下である混合ガスを、空気によるCO選択酸化の後に圧縮液化を行い、気液分離によってCO回収を行う際の液化炭酸を高純度化する方法であることを特徴とする液化炭酸の高純度化方法。 The mixed gas having a CO 2 concentration of 70% or more and a CO concentration of 2% or less is compressed and liquefied after selective CO oxidation by air, and CO 2 is separated by gas-liquid separation. A method for purifying liquefied carbonic acid, which is a method for purifying liquefied carbonic acid at the time of recovery. 請求項1ないし6のいずれか1項において、高純度化される液化炭酸は、水素製造装置からの液化炭酸であることを特徴とする液化炭酸の高純度化方法。   7. The method for purifying liquefied carbonic acid according to any one of claims 1 to 6, wherein the liquefied carbonic acid to be purified is liquefied carbonic acid from a hydrogen production apparatus.
JP2012073548A 2012-03-28 2012-03-28 Method for purification of liquefied carbonic acid Active JP5799871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073548A JP5799871B2 (en) 2012-03-28 2012-03-28 Method for purification of liquefied carbonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073548A JP5799871B2 (en) 2012-03-28 2012-03-28 Method for purification of liquefied carbonic acid

Publications (2)

Publication Number Publication Date
JP2013203576A true JP2013203576A (en) 2013-10-07
JP5799871B2 JP5799871B2 (en) 2015-10-28

Family

ID=49523080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073548A Active JP5799871B2 (en) 2012-03-28 2012-03-28 Method for purification of liquefied carbonic acid

Country Status (1)

Country Link
JP (1) JP5799871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219171A1 (en) 2013-09-30 2015-04-02 Toyota Boshoku Kabushiki Kaisha VEHICLE SEAT
KR102064612B1 (en) * 2019-03-20 2020-01-09 유진화학(주) Method and Apparatus for Controlling Moisture Contents in CO2 Refining Process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850994A (en) * 1971-10-30 1973-07-18
JPS5711809A (en) * 1980-06-26 1982-01-21 Ube Ind Ltd Method and apparatus for preparation of high purity liquefied carbon dioxide gas
JPS6086016A (en) * 1983-05-31 1985-05-15 Ishikawajima Harima Heavy Ind Co Ltd Purification of liquefied carbonic acid
JPH01313301A (en) * 1988-05-04 1989-12-18 Boc Group Inc:The Continuous production of hydrogen and carbon dioxide
JPH04359785A (en) * 1991-06-05 1992-12-14 Mitsubishi Heavy Ind Ltd Device for collecting liquid carbon dioxide
JPH11209117A (en) * 1998-01-27 1999-08-03 Ube Ind Ltd Refining method and refining device for coarse gaseous carbon dioxide for production of liquefied carbonic acid
JP2001261320A (en) * 2000-03-21 2001-09-26 Nippon Sanso Corp Method and device for supplying purified liquefied carbon dioxide and method and device for cleaning with dry ice snow
JP2004035346A (en) * 2002-07-04 2004-02-05 Kobe Steel Ltd Method for manufacturing superhigh- purity liquefied carbon dioxide and system therefor
JP2004250240A (en) * 2003-02-18 2004-09-09 Mitsubishi Chemicals Corp Manufacturing method and manufacturing apparatus for liquefied carbon dioxide
JP2006347842A (en) * 2005-06-20 2006-12-28 Showa Tansan Co Ltd Refining/packing device for ultrahigh purity liquefied carbon dioxide
JP2011132103A (en) * 2009-12-25 2011-07-07 Tokyo Gas Co Ltd Hybrid hydrogen production system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850994A (en) * 1971-10-30 1973-07-18
JPS5711809A (en) * 1980-06-26 1982-01-21 Ube Ind Ltd Method and apparatus for preparation of high purity liquefied carbon dioxide gas
JPS6086016A (en) * 1983-05-31 1985-05-15 Ishikawajima Harima Heavy Ind Co Ltd Purification of liquefied carbonic acid
JPH01313301A (en) * 1988-05-04 1989-12-18 Boc Group Inc:The Continuous production of hydrogen and carbon dioxide
JPH04359785A (en) * 1991-06-05 1992-12-14 Mitsubishi Heavy Ind Ltd Device for collecting liquid carbon dioxide
JPH11209117A (en) * 1998-01-27 1999-08-03 Ube Ind Ltd Refining method and refining device for coarse gaseous carbon dioxide for production of liquefied carbonic acid
JP2001261320A (en) * 2000-03-21 2001-09-26 Nippon Sanso Corp Method and device for supplying purified liquefied carbon dioxide and method and device for cleaning with dry ice snow
JP2004035346A (en) * 2002-07-04 2004-02-05 Kobe Steel Ltd Method for manufacturing superhigh- purity liquefied carbon dioxide and system therefor
JP2004250240A (en) * 2003-02-18 2004-09-09 Mitsubishi Chemicals Corp Manufacturing method and manufacturing apparatus for liquefied carbon dioxide
JP2006347842A (en) * 2005-06-20 2006-12-28 Showa Tansan Co Ltd Refining/packing device for ultrahigh purity liquefied carbon dioxide
JP2011132103A (en) * 2009-12-25 2011-07-07 Tokyo Gas Co Ltd Hybrid hydrogen production system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219171A1 (en) 2013-09-30 2015-04-02 Toyota Boshoku Kabushiki Kaisha VEHICLE SEAT
DE102014219171B4 (en) 2013-09-30 2022-05-19 Toyota Boshoku Kabushiki Kaisha VEHICLE SEAT
KR102064612B1 (en) * 2019-03-20 2020-01-09 유진화학(주) Method and Apparatus for Controlling Moisture Contents in CO2 Refining Process

Also Published As

Publication number Publication date
JP5799871B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
CA2709586C (en) Process for the production of carbon dioxide utilizing a co-purge pressure swing adsorption unit
US7871457B2 (en) Carbon dioxide production method
ES2658961T3 (en) Procedures for the recovery of high purity hydrogen and high purity carbon dioxide
US8746009B2 (en) Production of hydrogen from a reforming gas and simultaneous capture of CO2 co-product
JP5134532B2 (en) Hydrogen production system and off-gas flow rate control method in the system
JP2003081605A (en) Hydrogen producing method accompanying recovery of liquefied co2
JP6566639B2 (en) Method for operating hydrogen production apparatus and hydrogen production apparatus
US20180238618A1 (en) Production of helium from a gas stream containing hydrogen
KR20230029630A (en) How to produce hydrogen
JP2008247636A (en) Method and device for hydrogen production and carbon dioxide recovery
JP2008247632A (en) Method and device for hydrogen production and carbon dioxide recovery
JP5846641B2 (en) Helium gas purification method and purification apparatus
JP2014034493A (en) Purifying method and purifying apparatus of an argon gas
JP5799871B2 (en) Method for purification of liquefied carbonic acid
TWI549740B (en) Purifying method and purifying apparatus for argon gas
JP5683390B2 (en) Helium gas purification method and purification apparatus
JP5108520B2 (en) Nitrogen oxide purification method and nitrogen oxide purification apparatus
JP4839114B2 (en) Liquefied carbon dioxide purification equipment
TWI478761B (en) Purifying method and purifying apparatus for argon gas
JP2008290927A (en) Method and apparatus for refining hydrogen by using organic hydride
KR101909291B1 (en) Purifying method and purifying apparatus for argon gas
JP2020066585A (en) Synthesis equipment and synthesis method of organic matter
KR100659355B1 (en) Manufacturing Method and Apparatus of High Purity Carbon Dioxide
JP6553273B1 (en) Hydrogen production equipment
JP2012189254A (en) Separation and refinement process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5799871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250