JP2013193933A - Porous silicon particle, porous silicon composite particle, and methods for producing these particles - Google Patents

Porous silicon particle, porous silicon composite particle, and methods for producing these particles Download PDF

Info

Publication number
JP2013193933A
JP2013193933A JP2012064017A JP2012064017A JP2013193933A JP 2013193933 A JP2013193933 A JP 2013193933A JP 2012064017 A JP2012064017 A JP 2012064017A JP 2012064017 A JP2012064017 A JP 2012064017A JP 2013193933 A JP2013193933 A JP 2013193933A
Authority
JP
Japan
Prior art keywords
silicon
particles
fine particles
particle
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012064017A
Other languages
Japanese (ja)
Other versions
JP5830419B2 (en
Inventor
Koichi Yoshida
浩一 吉田
Haruhiko Segawa
春彦 瀬川
Toshio Tani
俊夫 谷
Takeshi Nishimura
健 西村
Hidemi Kato
秀実 加藤
Takeshi Wada
武 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tohoku Techno Arch Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tohoku Techno Arch Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2012064017A priority Critical patent/JP5830419B2/en
Priority to CN201380010929.6A priority patent/CN104125927B/en
Priority to KR1020147019867A priority patent/KR101625779B1/en
Priority to PCT/JP2013/057780 priority patent/WO2013141230A1/en
Priority to TW102110069A priority patent/TWI601690B/en
Publication of JP2013193933A publication Critical patent/JP2013193933A/en
Application granted granted Critical
Publication of JP5830419B2 publication Critical patent/JP5830419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B21/00Unidirectional solidification of eutectic materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide porous silicon particles and porous silicon composite particles which are suitable, for example, for cathode materials for lithium ion batteries which materialize a high capacity and good cycle characteristics.SOLUTION: In a porous silicon particle 1, a plurality of fine silicon particles 3 are conjugated to form continuous voids. The average x of the particle diameters or support diameters of the fine silicon particles is 2 nm to 2 μm, the standard deviation σ of the particle diameters or support diameters of the fine silicon particles is 1-500 nm, and the ratio (σ/x) between the average x and the standard deviation σ is 0.01-0.5 in the porous silicon particle. A porous silicon composite particle has continuous voids formed by the conjugation of a plurality of fine silicon particles and a plurality of silicon compound particles and is provided with similar characteristics.

Description

本発明は、リチウムイオン電池用の負極などに用いられる多孔質シリコン粒子に関する。本発明に係る多孔質シリコン粒子は、キャパシタ、リチウムイオン・キャパシタ、太陽電池用シリコン半導体に用いることができる。   The present invention relates to porous silicon particles used for negative electrodes for lithium ion batteries and the like. The porous silicon particles according to the present invention can be used for capacitors, lithium ion capacitors, and silicon semiconductors for solar cells.

従来、負極活物質として天然黒鉛、人造黒鉛、無定形炭素、メソフェーズ炭素等の各種炭素系材料やチタン酸リチウム、スズ合金等を用いたリチウムイオン電池が実用化されている。また、負極活物質と、カーボンブラック等の導電助剤と、樹脂の結着剤とを混練してスラリーを調製し、銅箔上に塗布・乾燥して、負極を形成することが行われている。   Conventionally, lithium ion batteries using various carbon materials such as natural graphite, artificial graphite, amorphous carbon, and mesophase carbon, lithium titanate, tin alloy and the like as a negative electrode active material have been put into practical use. Also, a negative electrode is formed by kneading a negative electrode active material, a conductive aid such as carbon black, and a resin binder to prepare a slurry, and applying and drying on a copper foil. Yes.

一方、高容量化を目指し、リチウム化合物として理論容量の大きな金属や合金、特にシリコンおよびその合金を負極活物質として用いるリチウムイオン電池用の負極が開発されている。しかし、リチウムイオンを吸蔵したシリコンは、吸蔵前のシリコンに対して約4倍まで体積が膨張するため、シリコンを負極活物質として用いた負極は、充放電サイクル時に膨張と収縮を繰り返す。そのため、負極活物質の剥離などが発生し、従来の炭素系活物質からなる負極と比較して、寿命が極めて短いという問題があった。   On the other hand, negative electrodes for lithium ion batteries using metals and alloys having a large theoretical capacity as lithium compounds, particularly silicon and alloys thereof as negative electrode active materials, have been developed with the aim of increasing the capacity. However, since the volume of silicon that occludes lithium ions expands to about 4 times that of silicon before occlusion, a negative electrode using silicon as a negative electrode active material repeats expansion and contraction during a charge / discharge cycle. For this reason, the negative electrode active material is peeled off, and there is a problem that the lifetime is extremely short compared to a negative electrode made of a conventional carbon-based active material.

シリコンを使用した負極の従来の製造方法としては、シリコンを機械的に数マイクロメートルサイズに粉砕し、それに導電性材料を塗布することでリチウム電池用負極材料して使用する技術(例えば、特許文献1を参照)が知られている。
他に、シリコンを使用した負極の従来の製造方法としては、シリコン基板に陽極酸化を施してスリットなどの溝を形成する方法、リボン状のバルク金属中に微細なシリコンを晶出させる方法(例えば、特許文献2を参照)などがある。
他に、導電性基板上にポリスチレンやPMMAなどの高分子の粒子を堆積し、これにリチウムと合金化する金属を鍍金により施した後、高分子の粒子を取り除くことにより金属の多孔体(多孔質体)を作製する技術(例えば、特許文献3を参照)も知られている。
更に、本発明の中間工程物であるSi中間合金に相当するものを、リチウム電池用負極材料として使用する技術(例えば、特許文献4、5を参照)が知られている。
また、これを熱処理してリチウム電池用負極材料して使用する技術(例えば、特許文献6を参照)が知られている。
また、この技術に関連して、急冷凝固技術を応用して作製したSiと元素MのSi合金から、元素Mを酸またはアルカリによって完全に溶出除去する技術(例えば、特許文献7を参照)が知られている。
更に、メタリック・シリコンをフッ酸、硝酸でエッチングする技術(例えば、特許文献8、9)も知られている。
As a conventional manufacturing method of a negative electrode using silicon, a technique of using silicon as a negative electrode material for a lithium battery by mechanically pulverizing silicon to a size of several micrometers and applying a conductive material thereto (for example, patent document) 1) is known.
In addition, as a conventional manufacturing method of a negative electrode using silicon, a method of forming a groove such as a slit by anodizing a silicon substrate, a method of crystallizing fine silicon in a ribbon-shaped bulk metal (for example, , See Patent Document 2).
In addition, polymer particles such as polystyrene and PMMA are deposited on a conductive substrate, a metal alloying with lithium is plated on the conductive substrate, and then the polymer particles are removed to remove a porous metal (porous) A technique (see, for example, Patent Document 3) for producing a material is also known.
Furthermore, a technique (for example, see Patent Documents 4 and 5) in which a material corresponding to a Si intermediate alloy which is an intermediate product of the present invention is used as a negative electrode material for a lithium battery is known.
In addition, a technique (for example, see Patent Document 6) in which this is heat-treated and used as a negative electrode material for a lithium battery is known.
Further, in connection with this technique, there is a technique (see, for example, Patent Document 7) in which element M is completely eluted and removed with an acid or alkali from a Si alloy of element M and Si produced by applying a rapid solidification technique. Are known.
Further, a technique for etching metallic silicon with hydrofluoric acid or nitric acid (for example, Patent Documents 8 and 9) is also known.

特許4172443号公報Japanese Patent No. 4172443 特開2008−135364号公報JP 2008-135364 A 特開2006−260886号公報JP 2006-260886 A 特開2000−149937号公報JP 2000-149937 A 特開2004−362895号公報JP 2004-362895 A 特開2009−032644号公報JP 2009-032644 A 特許第3827642号公報Japanese Patent No. 3827642 米国出願公開第2006/0251561号明細書US Application Publication No. 2006/0251561 米国出願公開第2009/0186267号明細書US Application Publication No. 2009/0186267

しかしながら、特許文献1の技術は、単結晶シリコンを粉砕して得られる数マイクロメーター・サイズの単結晶で、シリコンの原子が層状あるいは3次元網目構造を有している板もしくは粉末を負極用活物質として使用するものである。更に、導電性を付与させる為に、シリコン化合物(硅素炭化物、硅素シアン化物、硅素窒化物、硅素酸化物、硅素ホウ化物、硅素ホウ酸化物、硅素ホウ窒化物、硅素オキシナイトライド、硅素アルカリ金属合金、硅素アルカリ土類金属合金、硅素遷移金属合金からなる硅素化合物群のうちの一種以上)を使用するものである。しかし、シリコンは、充放電時の体積変化が大きいため、特許文献1に記載の負極活物質は、充放電時に、負極活物質の微粉化と負極活物質の剥離、負極の亀裂の発生、負極活物質間の導電性の低下などが発生して容量が低下する。それゆえ、サイクル特性が悪く、二次電池の寿命が短いという問題点があった。特に、負極材料としての実用化が期待されているシリコンは、充放電時の体積変化が大きいため、割れが発生しやすく、充放電サイクル特性が悪いという問題点があった。   However, the technique of Patent Document 1 is a single crystal having a size of several micrometers obtained by pulverizing single crystal silicon, and a plate or powder in which silicon atoms have a layered or three-dimensional network structure is used for the negative electrode. It is used as a substance. Furthermore, in order to impart conductivity, silicon compounds (silicon carbide, silicon cyanide, silicon nitride, silicon oxide, silicon boride, silicon borate, silicon boronitride, silicon oxynitride, silicon alkali metal) One or more of a silicon compound group consisting of an alloy, a silicon alkaline earth metal alloy, and a silicon transition metal alloy). However, since silicon has a large volume change at the time of charging / discharging, the negative electrode active material described in Patent Document 1 is finely pulverized negative electrode active material, peeling of the negative electrode active material, generation of cracks in the negative electrode, A decrease in electrical conductivity between the active materials occurs and the capacity decreases. Therefore, there are problems that the cycle characteristics are poor and the life of the secondary battery is short. In particular, silicon, which is expected to be put to practical use as a negative electrode material, has a problem that cracking easily occurs and charge / discharge cycle characteristics are poor because the volume change during charge / discharge is large.

また、特許文献2の技術は、負極活物質と導電助剤と結着剤とのスラリーを塗布・乾燥して、負極を形成する。このような従来の負極は、負極活物質と集電体とを導電性の低い樹脂の結着剤で結着しており、樹脂の使用量は内部抵抗が大きくならないように最小限に抑える必要があり、結合力が弱い。シリコンは、充放電時の体積変化が大きいため、特許文献2の技術では、負極活物質は、充放電時に、負極活物質の微粉化と負極活物質の剥離、負極の亀裂の発生、負極活物質間の導電性の低下などが発生して容量が低下する。それゆえ、サイクル特性が悪く、二次電池の寿命が短いという問題点があった。   Moreover, the technique of patent document 2 applies and dries the slurry of a negative electrode active material, a conductive support agent, and a binder, and forms a negative electrode. In such a conventional negative electrode, the negative electrode active material and the current collector are bound with a binder of a resin having low conductivity, and the amount of resin used must be minimized so that the internal resistance does not increase. There is a weak binding force. Since silicon has a large volume change at the time of charging / discharging, in the technique of Patent Document 2, the negative electrode active material is pulverized from the negative electrode active material and peeled off from the negative electrode active material, generation of cracks in the negative electrode, A decrease in conductivity between substances occurs, resulting in a decrease in capacity. Therefore, there are problems that the cycle characteristics are poor and the life of the secondary battery is short.

また、特許文献3の技術は、導電性基板上にポリスチレンやPMMAなどの高分子の粒子を堆積し、これにリチウムと合金化する金属を鍍金により施した後、高分子の粒子を取り除くことにより金属の多孔体(多孔質体)を作製することができる。しかし、Siのポーラス体を作製する上では、ポリスチレンやPMMAなどの高分子の粒子にSiをめっきすることは極めて困難であり、工業的に適応できないという問題点があった。   In the technique of Patent Document 3, polymer particles such as polystyrene and PMMA are deposited on a conductive substrate, a metal alloying with lithium is applied thereto by plating, and then the polymer particles are removed. A metal porous body (porous body) can be produced. However, in producing a Si porous body, it is extremely difficult to plate Si on polymer particles such as polystyrene and PMMA, and there is a problem that it cannot be applied industrially.

また、特許文献4の技術は、合金粒子を構成する原料の溶融物を凝固速度が100℃/秒以上となるように冷却して凝固させて、Si相粒とこれを少なくとも部分的に包囲するSi含有固溶体又は金属間化合物の相とを含む合金を形成する工程、を含むことを特徴とする、非水電解質二次電池用負極材料の製造する方法である。しかし、この方法ではLiが反応する上で、包括するSi含有固溶体内を拡散移動することが必要であり反応性に乏しく、更に充放電に寄与できるSiの含有量が少ないという点から実用化には至っていない。   Further, the technique of Patent Document 4 cools and solidifies the raw material melt constituting the alloy particles so that the solidification rate is 100 ° C./second or more, and at least partially surrounds the Si phase grains. Forming a negative electrode material for a non-aqueous electrolyte secondary battery, comprising: forming an alloy containing a Si-containing solid solution or an intermetallic compound phase. However, in this method, when Li reacts, it is necessary to diffuse and move through the included Si-containing solid solution, the reactivity is poor, and further, the practical application from the point that the content of Si that can contribute to charge and discharge is small. Has not reached.

また、特許文献5の技術は、ケイ素(ケイ素の含有率は、22質量%以上60質量%以下)と、銅,ニッケルおよびコバルトのいずれか1種または2種以上の金属元素とを含有するケイ素合金粉末により構成されている。これを単ロール法またはアトマイズ法により合成することで、リチウムイオンなどの吸蔵・放出による体積変化に基づく微粉化を抑制するものである。しかし、この方法ではLiが反応する上で、包括するSi含有固溶体内を拡散移動することが必要であり反応性に乏しく、更に充放電に寄与できるSiの含有量が少ないという点から実用化には至っていない。   In addition, the technique of Patent Document 5 discloses silicon containing silicon (the silicon content is 22% by mass or more and 60% by mass or less) and one or more metal elements of copper, nickel, and cobalt. It is composed of alloy powder. By synthesizing this by a single roll method or an atomizing method, pulverization based on volume change due to occlusion / release of lithium ions or the like is suppressed. However, in this method, when Li reacts, it is necessary to diffuse and move through the included Si-containing solid solution, the reactivity is poor, and further, the practical application from the point that the content of Si that can contribute to charge and discharge is small. Has not reached.

また、特許文献6の技術は、Siと、Co、Ni、Ag、Sn、Al、Fe、Zr、Cr、Cu、P、Bi、V、Mn、Nb、Mo、Inおよび希土類元素から選択される1種または2種以上の元素とを含む合金溶湯を急冷し、Si基アモルファス合金を得る工程と、得られたSi基アモルファス合金を熱処理する工程を含む。Si基アモルファス合金を熱処理することにより、数十nm〜300nm程度の微細な結晶性のSi核を析出させるものである。しかし、この方法ではLiが反応する上で、包括するSi含有固溶体内を拡散移動することが必要であり反応性に乏しく、更に充放電に寄与できるSiの含有量が少ないという点から実用化には至っていない。   The technique of Patent Document 6 is selected from Si, Co, Ni, Ag, Sn, Al, Fe, Zr, Cr, Cu, P, Bi, V, Mn, Nb, Mo, In, and rare earth elements. It includes a step of rapidly cooling a molten alloy containing one or more elements and obtaining a Si-based amorphous alloy and a step of heat-treating the obtained Si-based amorphous alloy. By heat-treating the Si-based amorphous alloy, fine crystalline Si nuclei of about several tens of nm to 300 nm are precipitated. However, in this method, when Li reacts, it is necessary to diffuse and move through the included Si-containing solid solution, the reactivity is poor, and further, the practical application from the point that the content of Si that can contribute to charge and discharge is small. Has not reached.

また、特許文献7の技術は、非晶質リボンや微粉末などを製造する際に適応するものであり、冷却速度は専ら10K/秒以上で凝固させるものである。一般的な合金の凝固においては、1次デンドライトが成長しながら2次デンドライトが成長する樹枝状結晶をとる。特殊な合金系(Cu−Mg系、Ni−Ti系など)では、10K/秒以上で非晶質金属を形成させることができるが、その他の系(例えばSi−Ni系)では冷却速度は専ら10K/秒以上で凝固させても非晶質金属を得ることができず、結晶相が形成される。この結晶相が形成される場合の結晶のサイズは、冷却速度(R:K/秒)とデンドライト・アーム・スペーシング(DAS:μm)の関係に順ずる。
DAS=A×R (一般に、A:40〜100、B:−0.3〜−0.4)
そのために、結晶相を有する場合、例えばA:60、B:−0.35の場合に、R:10K/秒でDASは1μmとなる。結晶相もこのサイズに準ずるもので、10nmなどの微細な結晶相を得ることはできない。これらの理由から、Si−Ni系などの材料では、この急冷凝固技術単独で微細な結晶相からなる多孔質を得ることができない。
The technique of Patent Document 7 is applied when producing an amorphous ribbon or fine powder, and solidifies at a cooling rate of 10 4 K / second or more. In the solidification of a general alloy, dendrites in which secondary dendrite grows while primary dendrite grows are taken. A special alloy system (Cu-Mg system, Ni-Ti system, etc.) can form an amorphous metal at 10 4 K / second or more, but other systems (for example, Si-Ni system) have a cooling rate. Even when solidified at a rate of 10 4 K / sec or more, an amorphous metal cannot be obtained and a crystalline phase is formed. The size of the crystal when this crystal phase is formed follows the relationship between the cooling rate (R: K / sec) and the dendrite arm spacing (DAS: μm).
DAS = A × R B (generally A: 40 to 100, B: −0.3 to −0.4)
Therefore, in the case of having a crystal phase, for example, when A: 60 and B: −0.35, DAS becomes 1 μm at R: 10 4 K / sec. The crystal phase is equivalent to this size, and a fine crystal phase of 10 nm or the like cannot be obtained. For these reasons, it is not possible to obtain a porous material composed of a fine crystalline phase with this rapid solidification technique alone with materials such as Si—Ni.

また、特許文献8、9の技術は、金属シリコンをフッ酸や硝酸を用いてエッチングして表面に微細な空孔を作成するものである。しかし、BET比表面積が140〜400m/gと充放電の応答性の観点からSi負極用活物質としては不十分である問題点があった。また、エッチングにより形成された空孔が均一分散しておらず、粒子表面から中心まで空孔が均一に存在しない。そのため、充放電時の体積膨張収縮に伴い、粒子内部で微粉化が進み、寿命が短いという問題点があった。 In the techniques of Patent Documents 8 and 9, metal silicon is etched using hydrofluoric acid or nitric acid to create fine holes on the surface. However, there is a problem that the BET specific surface area is 140 to 400 m 2 / g, which is insufficient as an active material for a Si negative electrode from the viewpoint of charge / discharge responsiveness. Further, the holes formed by etching are not uniformly dispersed, and the holes are not uniformly present from the particle surface to the center. Therefore, with the volume expansion and contraction during charging / discharging, there has been a problem that pulverization progresses inside the particles and the life is short.

本発明は、前述した問題点に鑑みてなされたもので、その目的とすることは、高容量と良好なサイクル特性を実現するリチウムイオン電池用の負極材料などに好適な多孔質シリコン粒子を得ることである。   The present invention has been made in view of the above-described problems, and the object of the present invention is to obtain porous silicon particles suitable for a negative electrode material for a lithium ion battery that achieves high capacity and good cycle characteristics. That is.

本発明者は、上記目的を達成するために鋭意検討した結果、シリコン合金のスピノーダル分解(シリコン合金からの溶湯内でのシリコンの析出)と、脱成分腐食(dealloying)により、微細な多孔質なシリコンが得られることを見出した。シリコン合金からの溶湯内でのシリコンの析出は、高温の溶融金属中で行うため、脱成分腐食(dealloying)により得た多孔質シリコン粒子の表層部と内部とで一次粒子径に大きな分布が生じにくい。これは溶融金属を溶媒とした拡散であり、シリコン合金中の除去される原子は溶媒原子と置換するや溶媒中の対流等により直ちに拡散界面から排出され、拡散界面は常に所定の組成の溶融金属が存在することで一定の濃度勾配が存在する。その為に、シリコン合金内の拡散は一定の速度で進むことから、スピノーダル分解に寄与するシリコン原子を一定速度で供給できることからシリコン微粒径のサイズは一定となる。
さらに、上記製法により得られた多孔質シリコン微粒子では、空隙率に大きな分布が発生しにくい。一方、例えば、酸によるエッチングでは、粒子内部は脱成分元素の濃度拡散に制約が生じるため、粒子表層部の気孔率は大きくなり、粒子内部の気孔率は小さくなる。条件によっては、粒子中心部に気孔のないSiの芯が残留し、Liとの反応時に微粉化が生じ、サイクル特性が劣る。本発明は、この知見に基づきなされたものである。
As a result of intensive studies to achieve the above object, the present inventor has found that a fine porous material is formed by spinodal decomposition of silicon alloy (precipitation of silicon in the molten metal from the silicon alloy) and dealloying (dealloying). It has been found that silicon can be obtained. Since silicon is deposited in the molten metal from the silicon alloy in a high-temperature molten metal, a large distribution occurs in the primary particle size between the surface layer and the inside of the porous silicon particles obtained by dealloying. Hateful. This is diffusion using a molten metal as a solvent, and atoms to be removed in the silicon alloy are immediately discharged from the diffusion interface by substitution with solvent atoms or convection in the solvent, and the diffusion interface is always a molten metal having a predetermined composition. A certain concentration gradient exists due to the presence of. Therefore, since the diffusion in the silicon alloy proceeds at a constant rate, silicon atoms contributing to spinodal decomposition can be supplied at a constant rate, so that the size of the silicon fine particle size is constant.
Furthermore, in the porous silicon fine particles obtained by the above production method, a large distribution is hardly generated in the porosity. On the other hand, for example, in etching with an acid, the concentration inside the particle is restricted in the diffusion of decomponent elements, so the porosity of the particle surface layer portion increases and the porosity inside the particle decreases. Depending on conditions, a Si core having no pores remains in the center of the particle, and pulverization occurs during reaction with Li, resulting in poor cycle characteristics. The present invention has been made based on this finding.

すなわち、以下の発明を提供するものである。
(1)複数のシリコン微粒子が接合して連続的な空隙を有する多孔質シリコン粒子であって、前記シリコン微粒子の形状が、球状または多角柱状であり、前記シリコン微粒子の粒径、支柱径または支柱辺の平均xが2nm〜2μmであり、前記シリコン微粒子の粒径、支柱径または支柱辺の標準偏差σが1〜500nmであり、前記平均xと前記標準偏差σとの比(σ/x)が0.01〜0.5であることを特徴とする多孔質シリコン粒子。
(2)前記シリコン微粒子の形状が、扁平な球状、円柱状または多角柱状を有し、平均最長径または最長辺aと平均最短径または最短辺bとの比(a/b)が1.1〜50であることを特徴とする(1)に記載の多孔質シリコン粒子。
(3)前記多孔質シリコン粒子の平均粒径が0.1μm〜1000μmであり、前記多孔質シリコン粒子の平均空隙率が15〜93%であり、前記多孔質シリコン粒子の半径方向で50%以上の表面近傍領域での前記シリコン微粒子の平均粒径Dsと、前記多孔質シリコン粒子の半径方向で50%以内の粒子内部領域での前記シリコン微粒子の平均粒径Diの比であるDs/Diが、0.5〜1.5であり、前記多孔質シリコン粒子の半径方向で50%以上の表面近傍領域での空隙率Xsと、前記多孔質シリコン粒子の半径方向で50%以内の粒子内部領域での空隙率Xiの比であるXs/Xiが、0.5〜1.5であり、酸素を除く元素の比率でシリコンを80原子%以上含むことを特徴とする(1)または(2)に記載の多孔質シリコン粒子。
(4)前記多孔質シリコン粒子を、半径方向で90%以上の表面近傍領域Sと、半径方向で90%以下の粒子内部領域Iとに分け、前記表面近傍領域Sを構成する前記シリコン微粒子の平均粒径をEsとし、前記粒子内部領域Iを構成する前記シリコン微粒子の平均粒径をEiとするとき、Es/Eiが0.01〜1.0であることを特徴とする(1)〜(3)のいずれかに記載の多孔質シリコン粒子。
(5)前記シリコン微粒子が、酸素を除く元素の比率でシリコンを80原子%以上含むことを特徴とする中実なシリコン微粒子であることを特徴とする(1)〜(4)のいずれかに記載の多孔質シリコン粒子。
(6)前記シリコン微粒子間の接合部の面積が、前記シリコン微粒子の表面積の30%以下であることを特徴とする(1)〜(5)のいずれかに記載の多孔質シリコン粒子。
(7)前記シリコン微粒子と、隣接する前記シリコン微粒子の接合部において、前記接合部の厚みまたは直径が、隣接する前記シリコン微粒子のより大きいほうのシリコン微粒子の直径の80%以下であり、前記接合部が、結晶性シリコンまたはシリコン酸化物で構成されていることを特徴とする(1)〜(6)のいずれかに記載の多孔質シリコン粒子。
(8)複数の前記シリコン微粒子が配向しており、複数の前記シリコン微粒子の長軸の方向が、いずれもある方向の±30°以内にあることを特徴とする(2)に記載の多孔質シリコン粒子。
(9)複数のシリコン微粒子と、複数のシリコン化合物粒子が接合して、連続的な空隙を有する多孔質シリコン複合体粒子であって、前記シリコン化合物粒子は、シリコンと、As、Ba、Ca、Ce、Co、Cr、Cu、Er、Fe、Gd、Hf、Lu、Mg、Mn、Mo、Nb、Nd、Ni、Os、Pr、Pt、Pu、Re、Rh、Ru、Sc、Sm、Sr、Ta、Te、Th、Ti、Tm、U、V、W、Y、Yb、Zrからなる群より選ばれた一つ以上の複合体元素との化合物を含み、前記シリコン微粒子の粒径、支柱径または支柱辺の平均xが2nm〜2μmであり、前記シリコン微粒子の粒径、支柱径または支柱辺の標準偏差σが1〜500nmであり、前記平均xと前記標準偏差σとの比(σ/x)が0.01〜0.5であることを特徴とする多孔質シリコン複合体粒子。
(10)前記シリコン微粒子の形状が、扁平な球状、円柱状または多角柱状を有し、平均最長径または最長辺aと平均最短径または最短辺bとの比(a/b)が1.1〜50であることを特徴とする(9)に記載の多孔質シリコン複合体粒子。
(11)前記多孔質シリコン複合体粒子の平均粒径が、0.1μm〜1000μmであることを特徴とする(9)または(10)に記載の多孔質シリコン複合体粒子。
(12)前記シリコン微粒子が、酸素を除く元素の比率でシリコンを80原子%以上含む中実なシリコン微粒子であることを特徴とする(9)〜(11)のいずれかに記載の多孔質シリコン複合体粒子。
(13)前記シリコン化合物粒子の平均粒径が50nm〜50μmであり、前記シリコン化合物粒子が、酸素を除く元素の比率で、50〜90原子%のシリコンを含むことを特徴とする中実なシリコン化合物の粒子であることを特徴とする(9)〜(12)のいずれかに記載の多孔質シリコン複合体粒子。
(14)前記多孔質シリコン複合体粒子の半径方向で50%以上の表面近傍領域の前記シリコン微粒子の平均粒径Dsと、前記多孔質シリコン複合体粒子の半径方向で50%以内の粒子内部領域の前記シリコン微粒子の平均粒径Diの比であるDs/Diが、0.5〜1.5であることを特徴とする(9)〜(13)のいずれかに記載の多孔質シリコン複合体粒子。
(15)前記多孔質シリコン複合体粒子の半径方向で50%以上の表面近傍領域の空隙率Xsと、前記多孔質シリコン複合体粒子の半径方向で50%以内の粒子内部領域の空隙率Xiの比であるXs/Xiが、0.5〜1.5であることを特徴とする(9)〜(14)のいずれかに記載の多孔質シリコン複合体粒子。
(16)前記多孔質シリコン複合体粒子を、半径方向で90%以上の表面近傍領域Sと、半径方向で90%以下の粒子内部領域Iとに分け、前記表面近傍領域Sを構成する前記シリコン微粒子の平均粒径をEsとし、前記粒子内部領域Iを構成する前記シリコン微粒子の平均粒径をEiとするとき、Es/Eiが0.01〜1.0であることを特徴とする(9)〜(15)のいずれかに記載の多孔質シリコン複合体粒子。
(17)前記シリコン微粒子と、隣接する前記シリコン微粒子の接合部において、前記接合部の厚みまたは半径が、隣接する前記シリコン微粒子のより大きいほうのシリコン微粒子の半径の80%以下であり、前記接合部が、結晶性シリコンまたはシリコン酸化物で構成されていることを特徴とする(9)〜(16)のいずれかに記載の多孔質シリコン複合体粒子。
(18)複数の前記シリコン微粒子が配向しており、複数の前記シリコン微粒子の長軸の方向が、いずれもある方向の±30°以内にあることを特徴とする(10)に記載の多孔質シリコン複合体粒子。
That is, the following invention is provided.
(1) Porous silicon particles in which a plurality of silicon fine particles are joined to form a continuous void, and the shape of the silicon fine particles is spherical or polygonal, and the particle size, column diameter or column of the silicon particles The average x of the side is 2 nm to 2 μm, the particle size of the silicon fine particles, the column diameter or the standard deviation σ of the column side is 1 to 500 nm, and the ratio of the average x to the standard deviation σ (σ / x) Porous silicon particles characterized in that is 0.01 to 0.5.
(2) The shape of the silicon fine particles has a flat spherical shape, a cylindrical shape, or a polygonal column shape, and a ratio (a / b) of an average longest diameter or longest side a to an average shortest diameter or shortest side b is 1.1. The porous silicon particles according to (1), which are ˜50.
(3) The average particle diameter of the porous silicon particles is 0.1 μm to 1000 μm, the average porosity of the porous silicon particles is 15 to 93%, and is 50% or more in the radial direction of the porous silicon particles. Ds / Di, which is a ratio of the average particle diameter Ds of the silicon fine particles in the region near the surface of the silicon particle and the average particle diameter Di of the silicon fine particles in the particle inner region within 50% in the radial direction of the porous silicon particles 0.5 to 1.5, and the porosity Xs in the region near the surface of 50% or more in the radial direction of the porous silicon particles, and the particle internal region within 50% in the radial direction of the porous silicon particles Xs / Xi, which is the ratio of the porosity Xi in the region, is 0.5 to 1.5 and contains 80 atomic% or more of silicon in the ratio of elements excluding oxygen (1) or (2) Porous silicon grains described in Child.
(4) The porous silicon particles are divided into a surface vicinity region S of 90% or more in the radial direction and a particle inner region I of 90% or less in the radial direction, and the silicon fine particles constituting the surface vicinity region S When the average particle diameter is Es and the average particle diameter of the silicon fine particles constituting the particle internal region I is Ei, Es / Ei is 0.01 to 1.0 (1) to The porous silicon particle according to any one of (3).
(5) In any one of (1) to (4), the silicon fine particles are solid silicon fine particles characterized by containing 80 atomic% or more of silicon in an element ratio excluding oxygen. The porous silicon particles described.
(6) The porous silicon particle according to any one of (1) to (5), wherein the area of the joint between the silicon particles is 30% or less of the surface area of the silicon particles.
(7) In the junction between the silicon fine particles and the adjacent silicon fine particles, the thickness or diameter of the joint is 80% or less of the diameter of the larger silicon fine particles of the adjacent silicon fine particles, The porous silicon particles according to any one of (1) to (6), wherein the part is composed of crystalline silicon or silicon oxide.
(8) The porous material according to (2), wherein the plurality of silicon fine particles are oriented, and the major axis directions of the plurality of silicon fine particles are all within ± 30 ° of a certain direction. Silicon particles.
(9) Porous silicon composite particles in which a plurality of silicon fine particles and a plurality of silicon compound particles are joined to form a continuous void, and the silicon compound particles include silicon, As, Ba, Ca, Ce, Co, Cr, Cu, Er, Fe, Gd, Hf, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, Pr, Pt, Pu, Re, Rh, Ru, Sc, Sm, Sr, Containing a compound with one or more complex elements selected from the group consisting of Ta, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zr, Alternatively, the average x of the column side is 2 nm to 2 μm, the particle size of the silicon fine particles, the column diameter or the standard deviation σ of the column side is 1 to 500 nm, and the ratio of the average x to the standard deviation σ (σ / x) is 0.01 to 0.5. Porous silicon composite particles characterized.
(10) The shape of the silicon fine particles has a flat spherical shape, a cylindrical shape, or a polygonal column shape, and a ratio (a / b) of an average longest diameter or longest side a to an average shortest diameter or shortest side b is 1.1. The porous silicon composite particles according to (9), which are ˜50.
(11) The porous silicon composite particles according to (9) or (10), wherein an average particle diameter of the porous silicon composite particles is 0.1 μm to 1000 μm.
(12) The porous silicon according to any one of (9) to (11), wherein the silicon fine particles are solid silicon fine particles containing 80 atomic% or more of silicon in a ratio of an element excluding oxygen. Composite particles.
(13) Solid silicon, wherein the silicon compound particles have an average particle diameter of 50 nm to 50 μm, and the silicon compound particles contain 50 to 90 atomic% of silicon in a ratio of elements excluding oxygen. The porous silicon composite particles according to any one of (9) to (12), wherein the porous silicon composite particles are compound particles.
(14) The average particle diameter Ds of the silicon fine particles in the surface vicinity region of 50% or more in the radial direction of the porous silicon composite particles, and the particle internal region of 50% or less in the radial direction of the porous silicon composite particles The porous silicon composite according to any one of (9) to (13), wherein Ds / Di, which is the ratio of the average particle diameter Di of the silicon fine particles, is 0.5 to 1.5 particle.
(15) The porosity Xs of the surface vicinity region of 50% or more in the radial direction of the porous silicon composite particles and the porosity Xi of the particle internal region within 50% in the radial direction of the porous silicon composite particles. The porous silicon composite particle according to any one of (9) to (14), wherein the ratio Xs / Xi is 0.5 to 1.5.
(16) The silicon constituting the surface vicinity region S by dividing the porous silicon composite particles into a surface vicinity region S of 90% or more in the radial direction and a particle inner region I of 90% or less in the radial direction. Es / Ei is 0.01 to 1.0, where Es is the average particle size of the fine particles, and Ei is the average particle size of the silicon fine particles constituting the particle internal region I (9). The porous silicon composite particles according to any one of (1) to (15).
(17) In the junction between the silicon fine particles and the adjacent silicon fine particles, the thickness or radius of the joint is 80% or less of the radius of the larger silicon fine particles of the adjacent silicon fine particles. The porous silicon composite particle according to any one of (9) to (16), wherein the part is made of crystalline silicon or silicon oxide.
(18) The porous material according to (10), wherein the plurality of silicon fine particles are oriented, and the major axis directions of the plurality of silicon fine particles are all within ± 30 ° of a certain direction. Silicon composite particles.

本発明により、高容量と良好なサイクル特性を実現するリチウムイオン電池用の負極材料などに好適な多孔質シリコン粒子を得ることができる。   According to the present invention, porous silicon particles suitable for a negative electrode material for a lithium ion battery that achieves a high capacity and good cycle characteristics can be obtained.

(a)本発明にかかる多孔質シリコン粒子1を示す図、(b)多孔質シリコン粒子1の表面近傍領域Sと粒子内部領域Iを示す図。(A) The figure which shows the porous silicon particle 1 concerning this invention, (b) The figure which shows the surface vicinity area | region S and the particle | grain internal area | region I of the porous silicon particle 1. FIG. (a)〜(c)多孔質シリコン粒子1の製造方法の概略を示す図。(A)-(c) The figure which shows the outline of the manufacturing method of the porous silicon particle 1. FIG. 本発明に係るリボン状シリコン中間合金の製造工程を説明する図。The figure explaining the manufacturing process of the ribbon-shaped silicon intermediate alloy which concerns on this invention. 本発明に係るリボン状シリコン中間合金の溶湯元素への浸漬工程を説明する図。The figure explaining the immersion process to the molten metal element of the ribbon-shaped silicon intermediate alloy which concerns on this invention. (a)本発明に係るガスアトマイズ装置31を示す図、(b)本発明にかかる回転円盤アトマイズ装置41を示す図。(A) The figure which shows the gas atomizer 31 which concerns on this invention, (b) The figure which shows the rotary disk atomizer 41 concerning this invention. (a)〜(c)塊状シリコン中間合金の製造工程を説明する図。The figure explaining the manufacturing process of (a)-(c) lump silicon intermediate alloy. (a)、(b)本発明にかかる溶湯浸漬装置を示す図。(A), (b) The figure which shows the molten metal immersion apparatus concerning this invention. (a)本発明にかかる多孔質シリコン複合体粒子101を示す図、(b)多孔質シリコン複合体粒子101の表面近傍領域Sと粒子内部領域Iを示す図。(A) The figure which shows the porous silicon composite particle 101 concerning this invention, (b) The figure which shows the surface vicinity area | region S and the particle | grain internal area | region I of the porous silicon composite particle 101. FIG. (a)〜(c)多孔質シリコン複合体粒子101の第1の製造方法の概略を示す図。(A)-(c) The figure which shows the outline of the 1st manufacturing method of the porous silicon composite particle 101. FIG. (a)〜(c)多孔質シリコン複合体粒子101の第2の製造方法の概略を示す図。(A)-(c) The figure which shows the outline of the 2nd manufacturing method of the porous silicon composite particle 101. FIG. 実施例1−12に係る多孔質シリコン粒子の内部のSEM写真。The SEM photograph inside the porous silicon particle which concerns on Example 1-12. 比較例1−1に係る多孔質シリコン粒子のSEM写真。The SEM photograph of the porous silicon particle which concerns on the comparative example 1-1. 実施例1−12に係る多孔質シリコン粒子のX線回折格子像。The X-ray diffraction grating image of the porous silicon particle which concerns on Example 1-12. 実施例2−1に係る多孔質シリコン複合体粒子の表面のSEM写真。The SEM photograph of the surface of the porous silicon composite particle concerning Example 2-1. 実施例2−1に係る多孔質シリコン複合体粒子内部の断面のSEM写真。The SEM photograph of the cross section inside the porous silicon composite particle which concerns on Example 2-1. 実施例2−1に係る多孔質シリコン複合体粒子の表面のSEM写真。The SEM photograph of the surface of the porous silicon composite particle concerning Example 2-1. 実施例2−1に係る多孔質シリコン複合体粒子のシリコン微粒子のX線回折格子像。The X-ray-diffraction-grating image of the silicon fine particle of the porous silicon composite particle which concerns on Example 2-1. 実施例3−7に係る多孔質シリコン粒子のSEM写真。The SEM photograph of the porous silicon particle which concerns on Example 3-7. 実施例3−7に係る多孔質シリコン粒子を構成するシリコン微粒子のTEM写真。7 is a TEM photograph of silicon fine particles constituting the porous silicon particles according to Example 3-7. 実施例3−7に係る多孔質シリコン粒子を形成するシリコン微粒子の粒度分布Particle size distribution of silicon fine particles forming porous silicon particles according to Example 3-7 実施例3−8に係る多孔質シリコン粒子を構成するシリコン微粒子のTEM写真、制限視野電子線回折像(左上)TEM photograph, restricted-field electron diffraction image (upper left) of silicon fine particles constituting porous silicon particles according to Example 3-8 実施例1−15の工程(b)における溶湯金属への浸漬後のシリコン微粒子と第2相とを示す断面SEM写真。The cross-sectional SEM photograph which shows the silicon microparticles and the 2nd phase after being immersed in the molten metal in the process (b) of Example 1-15. 実施例2−15の工程(c)の後、第2相を除去した後の多孔質シリコン粒子表面のシリコン微粒子を示すSEM写真。The SEM photograph which shows the silicon fine particle of the porous silicon particle surface after removing the 2nd phase after the process (c) of Example 2-15. 比較例2−4の多孔質シリコン粒子の表面のSEM写真。The SEM photograph of the surface of the porous silicon particle of Comparative Example 2-4. 実施例3−1の多孔質シリコン粒子のSEM写真。The SEM photograph of the porous silicon particle of Example 3-1. 実施例3−2の多孔質シリコン粒子のSEM写真。The SEM photograph of the porous silicon particle of Example 3-2. 比較例3−3の多孔質シリコン粒子のSEM写真。The SEM photograph of the porous silicon particle of Comparative Example 3-3. (a)実施例1−15の中間合金のミクロ組織の写真、(b)同じく拡大図。(A) Photograph of microstructure of intermediate alloy of Example 1-15, (b) Similarly enlarged view.

[多孔質シリコン粒子]
(多孔質シリコン粒子の構成)
本発明に係る多孔質シリコン粒子1を、図1を参照して説明する。多孔質シリコン粒子1は、複数のシリコン微粒子3が接合して連続的な空隙を有する多孔質シリコン粒子であって、シリコン微粒子3の形状が、球状、円柱状または多角柱状であることが好ましく、シリコン微粒子3の粒径、支柱径または支柱辺の平均xが2nm〜2μmであり、シリコン微粒子3の粒径、支柱径または支柱辺の標準偏差σが1〜500nmであり、平均xと標準偏差σとの比(σ/x)が0.01〜0.5である。平均xと標準偏差σとの比(いわゆる変動係数)が所定の範囲内であるため、シリコン微粒子3の大きさは均一である。
[Porous silicon particles]
(Configuration of porous silicon particles)
A porous silicon particle 1 according to the present invention will be described with reference to FIG. The porous silicon particles 1 are porous silicon particles having a continuous void formed by joining a plurality of silicon fine particles 3, and the shape of the silicon fine particles 3 is preferably spherical, cylindrical, or polygonal, The average particle size x of the silicon microparticles 3 and the column diameter or column side x is 2 nm to 2 μm, the particle size of the silicon particles 3, the column diameter or column side standard deviation σ is 1 to 500 nm, and the average x and standard deviation The ratio (σ / x) to σ is 0.01 to 0.5. Since the ratio between the average x and the standard deviation σ (so-called variation coefficient) is within a predetermined range, the size of the silicon fine particles 3 is uniform.

シリコン微粒子3の形状が、扁平な球状、円柱状または多角柱状を有し、シリコン微粒子3の平均最長径または最長辺aと平均最短径または最短辺bとの比(a/b)が1.1〜50である。シリコン微粒子3は適度に扁平な形状を有しているため、多孔質シリコン粒子1をリチウムイオン2次電池の負極活物質に用いる場合、充放電時にシリコン微粒子3が膨張収縮をするときに、空隙を埋めるように膨張するため、負極にクラックを生じにくいという効果がある。なお、1.1を下回る場合には、等方性に膨張収縮が発生することにより負極にクラックが発生しやすくなる。また、50を上回る場合、例えばファイバー状に成長した場合には、一方向へ膨張収縮が集中することにより負極にクラックが発生しやすくなる。   The shape of the silicon fine particles 3 has a flat spherical shape, cylindrical shape, or polygonal column shape, and the ratio (a / b) of the average longest diameter or longest side a of the silicon fine particles 3 to the average shortest diameter or shortest side b is 1. 1-50. Since the silicon fine particles 3 have a moderately flat shape, when the porous silicon particles 1 are used as a negative electrode active material of a lithium ion secondary battery, voids are generated when the silicon fine particles 3 expand and contract during charge / discharge. Therefore, the negative electrode is less likely to be cracked. In addition, when it is less than 1.1, cracks are likely to occur in the negative electrode due to isotropic expansion and contraction. Further, when it exceeds 50, for example, when it grows in a fiber shape, cracks are likely to occur in the negative electrode due to concentration of expansion and contraction in one direction.

また、多孔質シリコン粒子1は、連続した空隙を有する三次元網目構造を有し、シリコン微粒子3が接合してなり、平均粒径が0.1μm〜1000μmで、平均空隙率が15〜93%である。また、多孔質シリコン粒子1は、酸素を除いた元素の比率でシリコンを80原子%以上含み、残りは後述する中間合金元素、溶湯元素、その他の不可避な不純物が含まれている中実な粒子であることを特徴とする。   The porous silicon particles 1 have a three-dimensional network structure having continuous voids, and are formed by bonding silicon fine particles 3, with an average particle size of 0.1 μm to 1000 μm and an average porosity of 15 to 93%. It is. The porous silicon particles 1 contain 80 atomic% or more of silicon in a ratio of elements excluding oxygen, and the rest are solid particles containing intermediate alloy elements, molten metal elements, and other inevitable impurities described later. It is characterized by being.

なお、このシリコン微粒子の表面に20nm以下の酸化物層が形成されていても特性上問題ない。
更に、シリコン微粒子の表面の酸化物層(酸化膜)は、塩酸等で第2相を除去した後に0.0001〜0.1Nの硝酸に浸漬することで形成することが出来る。もしくは、第2相を減圧蒸留で除去した後に、0.00000001〜0.02MPaの酸素分圧下で保持することでも形成することができる。
Note that there is no problem in characteristics even if an oxide layer of 20 nm or less is formed on the surface of the silicon fine particles.
Furthermore, the oxide layer (oxide film) on the surface of the silicon fine particles can be formed by immersing in 0.0001 to 0.1 N nitric acid after removing the second phase with hydrochloric acid or the like. Or it can also form by hold | maintaining under the oxygen partial pressure of 0.00000001-0.02 MPa, after removing a 2nd phase by vacuum distillation.

また、図1(b)に示すように、多孔質シリコン粒子1を、半径方向で50%以上の表面近傍領域Sと、半径方向で50%以下の粒子内部領域Iとに分け、多孔質シリコン粒子の表面近傍領域を構成するシリコン微粒子の平均粒径をDsとし、多孔質シリコン粒子の粒子内部領域を構成するシリコン微粒子の平均粒径をDiとするとき、Ds/Diが0.5〜1.5である。
また、中間合金の結晶粒(図28)が工程(b)から工程(c)を経て変化していく中で、この中間合金の結晶粒に相当するサイズの多孔質シリコン粒子(粉砕等を施すことで微粉化させていないもの)に於いて半径方向で90%以上の表面近傍領域Sと、半径方向で90%以下の粒子内部領域Iとに分け、多孔質シリコン粒子の表面近傍領域を構成するシリコン微粒子の平均粒径をEsとし、多孔質シリコン粒子の粒子内部領域を構成するシリコン微粒子の平均粒径をEiとするとき、Es/Eiが0.01〜1.0である。
Further, as shown in FIG. 1 (b), the porous silicon particles 1 are divided into a surface vicinity region S of 50% or more in the radial direction and a particle inner region I of 50% or less in the radial direction. When the average particle size of the silicon fine particles constituting the region near the surface of the particle is Ds and the average particle size of the silicon fine particles constituting the particle internal region of the porous silicon particle is Di, Ds / Di is 0.5 to 1. .5.
In addition, while the crystal grains of the intermediate alloy (FIG. 28) are changed from step (b) through step (c), porous silicon particles having a size corresponding to the crystal grains of the intermediate alloy (pulverization or the like is performed). The surface vicinity region S of 90% or more in the radial direction and the particle inner region I of 90% or less in the radial direction are formed to constitute the surface vicinity region of the porous silicon particles. Es / Ei is 0.01 to 1.0, where Es is the average particle size of the silicon fine particles to be taken and Es is the average particle size of the silicon fine particles constituting the particle internal region of the porous silicon particles.

また、多孔質シリコン粒子において、表面近傍領域Sの空隙率Xsと、粒子内部領域Iの空隙率Xiの比であるXs/Xiが0.5〜1.5である。
つまり、本発明にかかる多孔質シリコン粒子は、表面近傍領域と粒子内部領域とで、同様の細孔構造を有しており、粒子全体がほぼ均一な細孔構造を有する。
Further, in the porous silicon particles, Xs / Xi, which is the ratio of the porosity Xs of the near-surface region S and the porosity Xi of the particle internal region I, is 0.5 to 1.5.
That is, the porous silicon particle according to the present invention has a similar pore structure in the region near the surface and the region inside the particle, and the entire particle has a substantially uniform pore structure.

多孔質シリコン粒子1を構成するシリコン微粒子3は、平均粒径または平均支柱径が2nm〜2μm、結晶性を有する単結晶であり、酸素を除く元素の比率でシリコンを80原子%以上含む中実な粒子であることを特徴とする。また、シリコン微粒子3は、シリコン合金・シリコンを含有する金属間化合物を含んでも良い。なお、ほぼ球形の微粒子が独立して存在していれば、粒径を測定することができるが、略多角柱状となっている場合には、長軸と垂直な断面での柱の直径もしくは一辺に対応する平均支柱径または平均支柱辺を評価に用いる。   The silicon fine particles 3 constituting the porous silicon particles 1 are single crystals having an average particle diameter or average column diameter of 2 nm to 2 μm and crystallinity, and a solid containing 80 atomic% or more of silicon in a ratio of elements excluding oxygen. It is a characteristic particle. Further, the silicon fine particles 3 may include a silicon alloy / intermetallic compound containing silicon. The particle diameter can be measured if substantially spherical fine particles exist independently, but in the case of a substantially polygonal column shape, the diameter or one side of the column in a cross section perpendicular to the major axis. The average column diameter or average column side corresponding to is used for evaluation.

本発明での三次元網目構造は、スピノーダル分解過程で生じる共連続構造やスポンジ構造のような、空孔が互いに連接している構造を意味する。多孔質シリコン粒子が有する空孔は、空孔径が0.1〜300nm程度である。   The three-dimensional network structure in the present invention means a structure in which pores are connected to each other, such as a co-continuous structure or a sponge structure generated in the spinodal decomposition process. The pores of the porous silicon particles have a pore diameter of about 0.1 to 300 nm.

シリコン微粒子3の平均粒径、平均支柱径、平均支柱辺は、2nm〜2μmであり、好ましくは10〜500nm、より好ましくは、15〜100nmである。また、多孔質シリコン粒子1の平均空隙率は、15〜93%であり、好ましくは30〜80%であり、より好ましくは40〜70%である。   The average particle diameter, average column diameter, and average column side of the silicon fine particles 3 are 2 nm to 2 μm, preferably 10 to 500 nm, and more preferably 15 to 100 nm. Moreover, the average porosity of the porous silicon particle 1 is 15 to 93%, preferably 30 to 80%, and more preferably 40 to 70%.

また、シリコン微粒子3どうしは、局所的に接合しており、シリコン微粒子3の接合部の面積が、前記シリコン微粒子の表面積の30%以下である。つまり、シリコン微粒子3が独立して存在すると仮定して求められた表面積に比べて、多孔質シリコン粒子1の表面積は70%以上である。更に比表面積は、1から100m/gとなる。 The silicon fine particles 3 are locally bonded to each other, and the area of the bonded portion of the silicon fine particles 3 is 30% or less of the surface area of the silicon fine particles. That is, the surface area of the porous silicon particles 1 is 70% or more as compared with the surface area obtained on the assumption that the silicon fine particles 3 exist independently. Furthermore, the specific surface area is 1 to 100 m 2 / g.

本発明に係る多孔質シリコン粒子は通常は凝集して存在しているので、微粒子の平均粒径は、ここでは一次粒子の平均粒径を指す。粒径の計測は、電子顕微鏡(SEM)の画像情報と動的光散乱光度計(DLS)の体積基準メディアン径を併用する。平均粒径は、SEM画像によりあらかじめ粒子形状を確認し、画像解析ソフトウェア(例えば、旭化成エンジニアリング製「A像くん」(登録商標))で粒径を求めたり、粒子を溶媒に分散してDLS(例えば、大塚電子製DLS−8000)により測定したりすることが可能である。DLS測定時に粒子が十分に分散しており、凝集していなければ、SEMとDLSでほぼ同じ測定結果が得られる。
また、多孔質シリコン粒子を構成するシリコン微粒子は、互いに接合しているため、主に表面走査型電子顕微鏡や透過型電子顕微鏡を用いて平均粒径を求める。
また、平均支柱径とは、アスペクト比が5以上の棒状(柱状)のシリコン粒子において、その柱の直径を支柱径と定義する。この支柱径の平均値を平均支柱径とする。この支柱径は、おもに粒子のSEM観察を行って求める。
Since the porous silicon particles according to the present invention are usually present in an aggregated state, the average particle size of the fine particles here refers to the average particle size of the primary particles. The particle diameter is measured by using image information of an electron microscope (SEM) and a volume-based median diameter of a dynamic light scattering photometer (DLS). For the average particle size, the particle shape is confirmed in advance using an SEM image, the particle size is obtained using image analysis software (for example, “A Image-kun” (registered trademark) manufactured by Asahi Kasei Engineering), or DLS ( For example, it can be measured by Otsuka Electronics DLS-8000). If the particles are sufficiently dispersed and not agglomerated at the time of DLS measurement, almost the same measurement results can be obtained with SEM and DLS.
Further, since the silicon fine particles constituting the porous silicon particles are bonded to each other, the average particle diameter is obtained mainly using a surface scanning electron microscope or a transmission electron microscope.
The average column diameter is defined as the column diameter of rod-shaped (columnar) silicon particles having an aspect ratio of 5 or more. Let the average value of this support | pillar diameter be an average support | pillar diameter. This strut diameter is obtained mainly by SEM observation of particles.

シリコン微粒子の平均最長径、平均最短径は透過型電子顕微鏡を用いて画像処理することから求める。
まず、シリコン粒子をメノウ乳鉢で粉砕したものをメタノール液にて希釈し、これをカーボン被膜付きグリッド・メッシュ(φ3mm)に滴下・乾燥させたものをTEM観察した。但し、粒子が重なっているものは評価対象から除いた。
なお、このTEM観察結果と高解像度SEM観察結果とでシリコン微粒子のサイズに変化が無いことを確認している。
また、扁平な球状粒子の平均粒径は楕円状の粒子の面積を円近似し、そこから得られた粒径の直径を円相当径として求め、さらに統計的に平均値・標準偏差を算出した。
より具体的には、TEM観察にてシリコン微粒子の長径及び短径を測定し、これらの各々の平均値を平均最長径、平均最短径とした。また、この各々の長径及び短径から円相当直径を算出し、この平均値及び標準偏差を計算し、微粒子の平均粒径及び標準偏差とした。
The average longest diameter and average shortest diameter of the silicon fine particles are obtained from image processing using a transmission electron microscope.
First, silicon particles pulverized in an agate mortar were diluted with a methanol solution, and this was dropped and dried on a carbon mesh-coated grid mesh (φ3 mm), and TEM observation was performed. However, those with overlapping particles were excluded from the evaluation target.
It is confirmed that there is no change in the size of the silicon fine particles between the TEM observation result and the high resolution SEM observation result.
In addition, the average particle size of the flat spherical particles was obtained by approximating the area of the elliptical particles as a circle, and obtaining the diameter of the particle size obtained from the circle as an equivalent circle diameter, and further calculating the average value and standard deviation statistically. .
More specifically, the major axis and minor axis of the silicon fine particles were measured by TEM observation, and the average values of these were taken as the average longest diameter and the average shortest diameter. In addition, the equivalent circle diameter was calculated from each major axis and minor axis, and the average value and standard deviation were calculated as the average particle diameter and standard deviation of the fine particles.

平均空隙率は、粒子中の空隙の割合をいう。サブミクロン以下の細孔は窒素ガス吸着法によっても測定が可能であるが、細孔サイズが広範囲に渡る場合には、電子顕微鏡観察や、水銀圧入法(JIS R 1655「ファインセラミックスの水銀圧入法による成形体気孔径分布測定方法」、空隙内へ水銀を侵入させた際の圧力と水銀体積の関係から導出)、気体吸着法(JIS Z 8830:2001 気体吸着による粉体(固体)の比表面積測定方法)等により測定が可能である。   The average porosity refers to the proportion of voids in the particles. Submicron or smaller pores can be measured by nitrogen gas adsorption, but when the pore size is in a wide range, electron microscope observation or mercury intrusion method (JIS R 1655 “fine ceramics mercury intrusion method” Method for measuring pore size distribution of compact by using "Derived from the relationship between pressure and mercury volume when mercury enters the void", Gas adsorption method (JIS Z 8830: 2001) Specific surface area of powder (solid) by gas adsorption Measurement is possible by measuring method).

本発明に係る多孔質シリコン粒子1は、Si中間合金のSi濃度やその中間合金製造時の冷却速度により0.1μm〜1000μmの平均粒径となる。なお、Si濃度を低くする、もしくは冷却速度を早くすることで粒径は小さくなる。負極用活物質として使用する上では、その平均粒径が0.1〜50μmであることが好ましく、より好ましくは1〜30μm、更に5〜20μmであることが好ましい。その為に、多孔質シリコン粒子が小さい場合には凝集体または造粒体として使用される。また、多孔質シリコン粒子が大きい場合には、この多孔質シリコン粒子を粗に粉砕して使用しても何ら問題は無い。   The porous silicon particles 1 according to the present invention have an average particle size of 0.1 μm to 1000 μm depending on the Si concentration of the Si intermediate alloy and the cooling rate at the time of manufacturing the intermediate alloy. Note that the particle size is reduced by decreasing the Si concentration or increasing the cooling rate. When used as the negative electrode active material, the average particle diameter is preferably 0.1 to 50 μm, more preferably 1 to 30 μm, and further preferably 5 to 20 μm. Therefore, when the porous silicon particles are small, they are used as aggregates or granulated bodies. Further, when the porous silicon particles are large, there is no problem even if the porous silicon particles are roughly pulverized and used.

シリコン微粒子3と、隣接するシリコン微粒子3の接合部(連結部)において、前記接合部の厚みまたは直径が、隣接するシリコン微粒子3のより大きいほうのシリコン微粒子3の直径の80%以下であり、接合部が、結晶性シリコンまたはシリコン酸化物で構成されている。接合部または連結部の厚みも、シリコン微粒子をTEMで観察することで求めた。
この連結厚さ比率は、まず、接合した二つのシリコン微粒子の連結部の厚さまたは直径を測定し、この二つのシリコン微粒子のうちのより大きい方のシリコン微粒子の直径と比較する。この比較を、複数のシリコン微粒子の連結部において行い、その平均が80%以下となる。
At the junction (connecting portion) between the silicon fine particles 3 and the adjacent silicon fine particles 3, the thickness or diameter of the joint is 80% or less of the diameter of the larger silicon fine particles 3 of the adjacent silicon fine particles 3. The junction is made of crystalline silicon or silicon oxide. The thickness of the bonded portion or the connecting portion was also determined by observing the silicon fine particles with a TEM.
In this connection thickness ratio, first, the thickness or diameter of the connection part of two bonded silicon fine particles is measured, and compared with the diameter of the larger one of the two silicon fine particles. This comparison is performed at a connecting portion of a plurality of silicon fine particles, and the average is 80% or less.

複数のシリコン微粒子3が配向しており、複数のシリコン微粒子3の長軸の方向が、いずれもある方向の±30°以内にある。   The plurality of silicon fine particles 3 are oriented, and the major axis directions of the plurality of silicon fine particles 3 are all within ± 30 ° of a certain direction.

(多孔質シリコン粒子の製造方法の概略)
図2を用いて、多孔質シリコン粒子1の製造方法の概略を説明する。
まず、工程(a)では、図2(a)に示すように、シリコンと、中間合金元素を、加熱・溶融させ、シリコン中間合金7を作製する。
その後、工程(b)では、シリコン中間合金7を溶湯元素の溶湯に浸漬させる。この際、図2(b)に示すように、シリコン中間合金7の中間合金元素が、溶湯中に溶出するなどして、主に溶湯元素からなる第2相9を形成し、シリコンのみがシリコン微粒子3として析出または晶出する。第2相9は、中間合金元素と溶湯元素の合金であるか、中間合金元素と置換した溶湯元素で構成される。これらのシリコン微粒子3は、互いに接合し、三次元網目構造を形成する。
その後、工程(c)では、図2(c)に示すように、酸やアルカリなどを用いた脱成分腐食などの方法により、第2相を除去すると、シリコン微粒子3が接合した多孔質シリコン粒子1が得られる。
(Outline of production method of porous silicon particles)
The outline of the manufacturing method of the porous silicon particle 1 is demonstrated using FIG.
First, in the step (a), as shown in FIG. 2A, silicon and an intermediate alloy element are heated and melted to produce a silicon intermediate alloy 7.
Thereafter, in the step (b), the silicon intermediate alloy 7 is immersed in the molten metal element. At this time, as shown in FIG. 2B, the intermediate alloy element of the silicon intermediate alloy 7 is eluted into the molten metal to form the second phase 9 mainly composed of the molten element, and only silicon is silicon. Precipitates or crystallizes as fine particles 3. The second phase 9 is an alloy of an intermediate alloy element and a molten metal element, or is composed of a molten metal element substituted for the intermediate alloy element. These silicon fine particles 3 are bonded to each other to form a three-dimensional network structure.
Thereafter, in step (c), as shown in FIG. 2 (c), when the second phase is removed by a method such as decomponent corrosion using acid or alkali, porous silicon particles joined with silicon fine particles 3 are bonded. 1 is obtained.

各工程での現象を説明する。まず、工程(a)では、シリコンと中間合金元素(X)を溶融、凝固すると、シリコンと中間合金元素の合金であるシリコン中間合金7が形成される。   The phenomenon in each process will be described. First, in step (a), when silicon and intermediate alloy element (X) are melted and solidified, silicon intermediate alloy 7 which is an alloy of silicon and intermediate alloy element is formed.

その後、工程(b)では、このシリコン中間合金を表1に規定される溶湯元素(Y)浴に浸漬させると、溶湯元素(Y)がシリコン中間合金中に拡散しながら浸透し、シリコン中間合金中の中間合金元素(X)は溶湯元素(Y)と合金層を第2相として形成する。もしくは、合金中の中間合金元素(X)が溶湯元素(Y)の金属浴中に溶出し、溶湯元素(Y)が新たな第2相を形成する。この反応の中で、シリコン中間合金中に含まれていたシリコン原子が取り残される。その結果、このシリコン原子が、拡散した状態からナノサイズで凝集する際に、シリコン原子のネットワークができ、三次元網目構造が形成される。また、大きな粒径を形成する条件では明瞭なファセット成長した粒子が得られる。
更に、3次元透過型電子顕微鏡(例えば日本電子製JEM−2100)による3次元観察により隣接するシリコン微粒子との接合状態が立体的に判明し、その接合している数から配位数が決定できる。この配位数が2から6を取ることも特徴として挙げられる。
この工程(b)に於いてはシリコン微粒子の接合部を含めて表面には酸化物が存在しても何ら問題はない。
Thereafter, in step (b), when this silicon intermediate alloy is immersed in the molten element (Y) bath specified in Table 1, the molten element (Y) penetrates into the silicon intermediate alloy while diffusing, and the silicon intermediate alloy The intermediate alloy element (X) therein forms the alloy layer as a second phase with the molten metal element (Y). Alternatively, the intermediate alloy element (X) in the alloy is eluted in the metal bath of the molten element (Y), and the molten element (Y) forms a new second phase. In this reaction, silicon atoms contained in the silicon intermediate alloy are left behind. As a result, when the silicon atoms are aggregated in a nano size from the diffused state, a network of silicon atoms is formed, and a three-dimensional network structure is formed. In addition, clear facet-grown particles can be obtained under conditions for forming a large particle size.
Furthermore, a three-dimensional observation by a three-dimensional transmission electron microscope (for example, JEM-2100 manufactured by JEOL) reveals the bonding state with adjacent silicon fine particles in three dimensions, and the coordination number can be determined from the number of bonding. . Another characteristic is that the coordination number is 2 to 6.
In this step (b), there is no problem even if an oxide is present on the surface including the bonded portion of silicon fine particles.

なお、中間合金に於いて合金でないシリコン初晶は、浸漬工程(b)ではシリコン微粒子の析出に大きく影響を及ぼし、シリコン微粒子の生成核として働く。その為に、この初晶を核として大きな粒径を有するシリコン微粒子を製造することが出来る。また、100nm以下のシリコン微粒子を製造する上では、このシリコン初晶が存在しない組成もしくは非平衡凝固を採用することが好ましい。   In addition, the silicon primary crystal which is not an alloy in the intermediate alloy greatly affects the precipitation of silicon fine particles in the dipping step (b), and acts as a production nucleus of silicon fine particles. For this reason, silicon fine particles having a large particle diameter with this primary crystal as a nucleus can be produced. In producing silicon fine particles of 100 nm or less, it is preferable to employ a composition in which this silicon primary crystal does not exist or non-equilibrium solidification.

以上の工程より、中間合金元素(X)と溶湯元素(Y)には、以下の条件が必要となる。
・条件1:シリコンの融点より、溶湯元素(Y)の融点が50K以上低いこと。
仮に溶湯元素(Y)の融点とシリコンの融点が近いと、シリコン合金を溶湯元素の溶湯に浸漬する際、シリコンが溶湯中に溶解してしまうため、条件1が必要である。
・条件2:シリコンと中間合金元素を凝固させた際にSi初晶が発生しないこと。
シリコンと中間合金元素(X)の合金を形成する際に、シリコン濃度が増加する場合に過共晶領域になると粗大なシリコン初晶が形成される。このシリコン結晶は浸漬工程中での、シリコン原子の拡散・再凝集が生じず、三次元網目構造を形成しない。
・条件3:溶湯元素へのシリコンの溶解度が5原子%よりも低いこと。
中間合金元素(X)と溶湯元素(Y)が第2相を形成する際、シリコンを第2相に含まないようにする必要があるためである。
・条件4:中間合金元素と溶湯元素とが2相に分離しないこと。
中間合金元素(X)と溶湯元素(Y)が2相に分離してしまう場合、シリコン合金より中間合金元素が分離されず、シリコン原子の拡散・再凝集が生じない。さらには、酸による処理を行っても、シリコン粒子中に中間合金元素が残ってしまう。
From the above process, the following conditions are required for the intermediate alloy element (X) and the molten metal element (Y).
Condition 1: The melting point of the molten element (Y) is lower than the melting point of silicon by 50K or more.
If the melting point of the molten element (Y) and the melting point of silicon are close, when the silicon alloy is immersed in the molten molten element, silicon is dissolved in the molten metal, so condition 1 is necessary.
Condition 2: Si primary crystals do not occur when silicon and intermediate alloy elements are solidified.
When an alloy of silicon and intermediate alloy element (X) is formed, a coarse silicon primary crystal is formed when the hypereutectic region is reached when the silicon concentration increases. This silicon crystal does not cause diffusion or re-aggregation of silicon atoms during the dipping process, and does not form a three-dimensional network structure.
Condition 3: The solubility of silicon in the molten metal element is lower than 5 atomic%.
This is because when the intermediate alloy element (X) and the molten metal element (Y) form the second phase, it is necessary not to include silicon in the second phase.
Condition 4: The intermediate alloy element and the molten metal element do not separate into two phases.
When the intermediate alloy element (X) and the molten metal element (Y) are separated into two phases, the intermediate alloy element is not separated from the silicon alloy, and the silicon atoms do not diffuse and re-aggregate. Furthermore, even if the treatment with an acid is performed, the intermediate alloy element remains in the silicon particles.

以上の条件1〜4を考慮すると、多孔質シリコン粒子を製造するために使用可能な中間合金元素と、溶湯元素の組み合わせは、以下のようになる。また、シリコンの割合が全体の10原子%以上であり、中間合金元素に対応する下記表1中のSi最大含有量の中で最も高い値以下である。   Considering the above conditions 1 to 4, the combinations of the intermediate alloy element and the molten metal element that can be used for producing the porous silicon particles are as follows. Moreover, the ratio of silicon is 10 atomic% or more of the whole, and is below the highest value among the maximum Si contents in Table 1 below corresponding to the intermediate alloy elements.

中間合金元素としてCoを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜77原子%であり、得られた多孔質シリコン粒子の平均空隙率は15〜84%である。   When Co is used as the intermediate alloy element, the Si content is 10 to 77 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 15 to 84%. is there.

中間合金元素としてCrを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜82原子%であり、得られた多孔質シリコン粒子の平均空隙率は12〜85%である。   When Cr is used as the intermediate alloy element, the Si content is 10 to 82 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 12 to 85%. is there.

中間合金元素としてCuを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜30原子%であり、得られた多孔質シリコン粒子の平均空隙率は47〜85%である。   When Cu is used as the intermediate alloy element, the Si content is 10 to 30 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 47 to 85%. is there.

中間合金元素としてFeを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜67原子%であり、得られた多孔質シリコン粒子の平均空隙率は15〜85%である。   When Fe is used as the intermediate alloy element, the Si content is 10 to 67 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 15 to 85%. is there.

中間合金元素としてMgを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜50原子%であり、得られた多孔質シリコン粒子の平均空隙率は42〜92%である。   When Mg is used as the intermediate alloy element, the Si content is 10 to 50 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 42 to 92%. is there.

中間合金元素としてMnを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜67原子%であり、得られた多孔質シリコン粒子の平均空隙率は15〜85%である。   When Mn is used as the intermediate alloy element, the Si content is 10 to 67 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 15 to 85%. is there.

中間合金元素としてMoを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜98原子%であり、得られた多孔質シリコン粒子の平均空隙率は15〜88%である。   When Mo is used as the intermediate alloy element, the Si content is 10 to 98 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 15 to 88%. is there.

中間合金元素としてNiを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜55原子%であり、得られた多孔質シリコン粒子の平均空隙率は15〜85%である。   When Ni is used as the intermediate alloy element, the Si content is 10 to 55 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 15 to 85%. is there.

中間合金元素としてPを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜50原子%であり、得られた多孔質シリコン粒子の平均空隙率は48〜93%である。   When P is used as the intermediate alloy element, the Si content is 10 to 50 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 48 to 93%. is there.

中間合金元素としてTiを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜82原子%であり、得られた多孔質シリコン粒子の平均空隙率は15〜89%である。   When Ti is used as the intermediate alloy element, the Si content is 10 to 82 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 15 to 89%. is there.

中間合金元素としてZrを用いる場合は、Siと中間合金元素の和に対してSiの含有量は10〜90原子%であり、得られた多孔質シリコン粒子の平均空隙率は15〜92%である。   When Zr is used as the intermediate alloy element, the Si content is 10 to 90 atomic% with respect to the sum of Si and the intermediate alloy element, and the average porosity of the obtained porous silicon particles is 15 to 92%. is there.

なお、中間合金元素として、挙げられた元素を二つ以上使用することもできるが、その場合は溶湯元素としては、これらの中間合金元素のいずれにも対応する溶湯元素を使用する。   Two or more of the listed elements can be used as the intermediate alloy element. In that case, as the molten element, a molten element corresponding to any of these intermediate alloy elements is used.

(多孔質シリコン粒子の製造方法)
本発明に係る多孔質シリコン粒子の製造方法について説明する。
まず、シリコンと、表1に記載のAs,Ba,Ca,Ce,Co,Cr,Cu,Er,Fe,Gd,Hf,Lu,Mg,Mn,Mo,Nb,Nd,Ni,P,Pd,Pr,Pt,Pu,Re,Rh,Ru,Sc,Sm,Sr,Ta,Te,Th,Ti,Tm,U,V,W,Y,Yb,Zrからなる群より選ばれた一つ以上の中間合金元素を、シリコンの割合が全体の10〜98原子%、好ましくは15〜50原子%になるように配合した混合物を真空炉や非酸化性雰囲気炉などで加熱し、溶解する。その後、例えば、双ロール鋳造機での薄板連続鋳造や、図3に示すような単ロール鋳造機11などを用いて、溶融したシリコン合金13を、るつぼ15より滴下し、回転する鋼製ロール17に接しながら凝固させ線状またはリボン状のシリコン中間合金19を製造する。なお、線状の母合金は、直接紡糸法で製造してもよい。または、シリコン中間合金を、線状やリボン状とは異なり、一定の長さを持つ箔片状としてもよい。
(Method for producing porous silicon particles)
A method for producing porous silicon particles according to the present invention will be described.
First, as shown in Table 1, As, Ba, Ca, Ce, Co, Cr, Cu, Er, Fe, Gd, Hf, Lu, Mg, Mn, Mo, Nb, Nd, Ni, P, Pd, One or more selected from the group consisting of Pr, Pt, Pu, Re, Rh, Ru, Sc, Sm, Sr, Ta, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zr A mixture in which the intermediate alloy element is blended so that the ratio of silicon is 10 to 98 atomic%, preferably 15 to 50 atomic%, is heated and melted in a vacuum furnace or a non-oxidizing atmosphere furnace. Thereafter, the molten silicon alloy 13 is dropped from the crucible 15 using, for example, thin plate continuous casting in a twin roll casting machine or a single roll casting machine 11 as shown in FIG. The silicon intermediate alloy 19 in a linear or ribbon shape is produced by solidification while in contact with the substrate. The linear mother alloy may be manufactured by a direct spinning method. Alternatively, the silicon intermediate alloy may be in the form of a foil piece having a certain length, unlike a linear shape or a ribbon shape.

線状またはリボン状のシリコン中間合金19の厚さは0.1μm〜2mmであることが好ましく、より好ましくは0.1〜500μmであり、更に0.1〜50μmであることが好ましい。シリコン中間合金の凝固時の冷却速度は0.1K/s以上、好ましくは100K/s以上、より好ましくは400K/s以上である。これは凝固初期に生成する初晶の粒径を小さくすることで次工程での熱処理時間を短縮することに寄与するものである。また、この初晶の粒径が小さくなることで多孔質シリコン粒子の粒径も比例して小さくなる。なお、シリコン合金(中間合金)の厚みが2mm以上に厚くなると、Si含有量が高い為に靭性に乏しく割れ・断線等が発生することから好ましくない。   The thickness of the linear or ribbon-like silicon intermediate alloy 19 is preferably 0.1 μm to 2 mm, more preferably 0.1 to 500 μm, and further preferably 0.1 to 50 μm. The cooling rate during solidification of the silicon intermediate alloy is 0.1 K / s or more, preferably 100 K / s or more, more preferably 400 K / s or more. This contributes to shortening the heat treatment time in the next step by reducing the grain size of the primary crystal formed in the initial stage of solidification. Further, the particle diameter of the porous silicon particles is reduced proportionally by reducing the particle diameter of the primary crystal. If the thickness of the silicon alloy (intermediate alloy) is 2 mm or more, it is not preferable because the Si content is high and the toughness is poor and cracks and disconnections occur.

次に、シリコン中間合金を、使用した中間合金元素に対応する表1に記載のAg、Al、Au、Be、Bi、Cd、Ga、In、Pb、Sb、Sn、Tl、Znから選択された溶湯元素の溶湯に浸漬させ、シリコンのスピノーダル分解(シリコン微粒子の析出)と中間合金元素と溶湯元素の合金である第2相もしくは中間合金元素と置換した前記溶湯元素で構成される第2相を形成させる。この浸漬工程で初めてSi微粒子が形成される。浸漬工程は、例えば、図4に示すような溶湯装置21を用い、リボン状シリコン中間合金19を、溶湯元素の溶湯23に浸漬する。その後、シンクロール25やサポートロール27を介して巻き取られる。溶湯23は、溶湯元素の液相線温度より10K以上高い温度に加熱してある。溶湯23への浸漬は、溶湯温度にもよるが、5秒以上10000秒以下であることが好ましい。10000秒以上浸漬を施すと粗大なSi粒が生成するためである。また、長時間の浸漬により多孔質体粒子の表面のシリコン微粒子のみが異常に成長する。そして、これを非酸化性雰囲気下で冷却する。なお、後述のとおり、溶湯23内に酸素が含まれない方が好ましい。   Next, the silicon intermediate alloy was selected from Ag, Al, Au, Be, Bi, Cd, Ga, In, Pb, Sb, Sn, Tl, Zn listed in Table 1 corresponding to the intermediate alloy element used. A second phase composed of the molten metal element substituted by the spinodal decomposition of silicon (precipitation of silicon fine particles) and the second phase which is an alloy of the intermediate alloy element and the molten alloy element or the intermediate alloy element is immersed in the molten metal element. Let it form. Si fine particles are formed for the first time in this dipping process. In the dipping process, for example, a molten metal device 21 as shown in FIG. 4 is used, and the ribbon-shaped silicon intermediate alloy 19 is dipped in the molten metal 23 of the molten metal element. Thereafter, the film is wound up via the sink roll 25 and the support roll 27. The molten metal 23 is heated to a temperature higher than the liquidus temperature of the molten element by 10K or more. Although immersion in the molten metal 23 depends on the molten metal temperature, it is preferably 5 seconds or more and 10,000 seconds or less. This is because coarse Si grains are produced when the immersion is performed for 10,000 seconds or more. Further, only the silicon fine particles on the surface of the porous particles grow abnormally by the long immersion. Then, it is cooled in a non-oxidizing atmosphere. As described later, it is preferable that oxygen is not contained in the molten metal 23.

その後、中間合金元素と溶湯元素の合金である第2相もしくは中間合金元素と置換した前記溶湯元素で構成される第2相を、酸、アルカリ、有機溶剤の少なくとも1つで溶解して除去する工程もしくは前記第2相を昇温減圧してその第2相のみを蒸発除去する工程により除去する。第2相が除去されることで、多孔質シリコン粒子が得られる。なお、酸としては、中間合金元素と溶湯元素を溶解させ、シリコンを溶解しない酸であればよく、硝酸、塩酸、硫酸などが挙げられる。   Thereafter, the second phase which is an alloy of the intermediate alloy element and the molten metal element or the second phase composed of the molten metal element replaced with the intermediate alloy element is dissolved and removed with at least one of an acid, an alkali and an organic solvent. The step or the second phase is heated and decompressed to remove only the second phase by evaporation. By removing the second phase, porous silicon particles are obtained. The acid may be any acid that dissolves the intermediate alloy element and the molten metal element and does not dissolve silicon, and examples thereof include nitric acid, hydrochloric acid, and sulfuric acid.

酸、アルカリ、有機溶剤などで溶解する、もしくは昇温減圧蒸留することで第2相を除去した後は、微粒子で構成される多孔質シリコン粒子が得られる。酸、アルカリ、有機溶剤などで溶解した場合には、洗浄・乾燥を行う。シリコン中間合金のシリコン濃度や、シリコン中間合金製造時の冷却速度により0.1μm〜1000μmの粒径となる。なお、シリコン濃度を低くする、もしくは冷却速度を早くすることで粒径は小さくなる。負極用活物質として使用する上では、その平均粒径が0.1〜50μmであることが好ましく、より好ましくは1〜30μm、更に5〜20μmであることが好ましい。その為に、多孔質シリコン粒子が小さい場合には、導電性を有する粘結剤を用いて凝集体または造粒体を作製し、スラリー状にして集電体に塗布して使用される。また、多孔質シリコン粒子が大きい場合には、この多孔質シリコン粒子を乳鉢等で粗に粉砕して使用しても何ら問題は無い。微粒子同士は局所的に接合しているので、簡便に破砕することが出来る。   After the second phase is removed by dissolution with an acid, alkali, organic solvent, or the like, or distillation at elevated temperature and reduced pressure, porous silicon particles composed of fine particles are obtained. If dissolved with acid, alkali, organic solvent, etc., wash and dry. Depending on the silicon concentration of the silicon intermediate alloy and the cooling rate during the production of the silicon intermediate alloy, the particle size becomes 0.1 μm to 1000 μm. Note that the particle size is reduced by lowering the silicon concentration or increasing the cooling rate. When used as the negative electrode active material, the average particle diameter is preferably 0.1 to 50 μm, more preferably 1 to 30 μm, and further preferably 5 to 20 μm. Therefore, when the porous silicon particles are small, an aggregate or a granulated body is prepared using a conductive binder, and is used after being formed into a slurry and applied to a current collector. Further, when the porous silicon particles are large, there is no problem even if the porous silicon particles are roughly pulverized with a mortar or the like. Since the fine particles are locally joined, they can be easily crushed.

(多孔質シリコン粒子の製造方法の他の例)
多孔質シリコン複合体粒子1の製造方法の他の例として、線状やリボン状シリコン中間合金19に代えて、粉末状、粒状、塊状のシリコン中間合金を用いても良い。
まず、シリコンと、表1に記載のAs,Ba,Ca,Ce,Co,Cr,Cu,Er,Fe,Gd,Hf,Lu,Mg,Mn,Mo,Nb,Nd,Ni,P,Pd,Pr,Pt,Pu,Re,Rh,Ru,Sc,Sm,Sr,Ta,Te,Th,Ti,Tm,U,V,W,Y,Yb,Zrからなる群より選ばれた一つ以上の中間合金元素を、シリコンの割合が全体の10〜98原子%、好ましくは15〜50原子%になるように配合した混合物を真空炉や非酸化性雰囲気炉などで加熱し、溶解する。その後、図5に示すようなアトマイズ法で粒・粉状のシリコン中間合金を製造する方法や、図6に示すインゴット製造法で塊状の鋳塊を得て、更に機械的な粉砕を行う方法で粒状シリコン中間合金を製造する。
(Another example of a method for producing porous silicon particles)
As another example of the method for producing the porous silicon composite particles 1, a powdery, granular, or massive silicon intermediate alloy may be used instead of the linear or ribbon-like silicon intermediate alloy 19.
First, as shown in Table 1, As, Ba, Ca, Ce, Co, Cr, Cu, Er, Fe, Gd, Hf, Lu, Mg, Mn, Mo, Nb, Nd, Ni, P, Pd, One or more selected from the group consisting of Pr, Pt, Pu, Re, Rh, Ru, Sc, Sm, Sr, Ta, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zr A mixture in which the intermediate alloy element is blended so that the ratio of silicon is 10 to 98 atomic%, preferably 15 to 50 atomic%, is heated and melted in a vacuum furnace or a non-oxidizing atmosphere furnace. Thereafter, a method of producing a grain / powder silicon intermediate alloy by the atomizing method as shown in FIG. 5 or a method of obtaining a massive ingot by the ingot producing method shown in FIG. A granular silicon intermediate alloy is produced.

図5(a)は、ガスアトマイズ法により粉末状シリコン中間合金39を製造可能なガスアトマイズ装置31を示す。るつぼ33中には、誘導加熱などにより溶解したシリコンと中間合金元素のシリコン合金13があり、このシリコン合金をノズル35から滴下すると同時に、ガス噴射機37からの不活性ガスのジェット流を吹き付けて、シリコン合金13の溶湯を粉砕して、液滴として凝固させて粉末状シリコン中間合金39を形成する。   FIG. 5A shows a gas atomizing apparatus 31 that can produce a powdered silicon intermediate alloy 39 by a gas atomizing method. In the crucible 33, there is silicon melted by induction heating or the like and the silicon alloy 13 of the intermediate alloy element. The silicon alloy is dropped from the nozzle 35 and at the same time, a jet stream of inert gas from the gas injector 37 is blown. Then, the molten silicon alloy 13 is pulverized and solidified as droplets to form a powdery silicon intermediate alloy 39.

図5(b)は、回転円盤アトマイズ法により粉末状シリコン中間合金51を製造可能な回転円盤アトマイズ装置41を示す。るつぼ43中には、溶解したシリコンと中間合金元素のシリコン合金13があり、このシリコン合金をノズル45から滴下させ、シリコン合金13の溶湯を高速で回転する回転円盤49上に落下させて、接線方向に剪断力を加えて破砕して粉末状シリコン中間合金51を形成する。   FIG. 5B shows a rotating disk atomizing device 41 that can manufacture the powdered silicon intermediate alloy 51 by the rotating disk atomizing method. In the crucible 43, there is dissolved silicon and the silicon alloy 13 of the intermediate alloy element. This silicon alloy is dropped from the nozzle 45, and the molten metal of the silicon alloy 13 is dropped on the rotating disk 49 that rotates at high speed, thereby tangentially. A powdery silicon intermediate alloy 51 is formed by applying a shearing force in the direction and crushing.

図6は、インゴット製造法により塊状シリコン中間合金57を形成する工程を説明する図である。まず、シリコン合金13の溶湯をるつぼ53から鋳型55に入れる。その後、鋳型55内でシリコン合金13が冷却され、固まった後に鋳型55を除去して塊状シリコン中間合金57が得られる。必要に応じて塊状シリコン中間合金57を粉砕して、粒状シリコン中間合金が得られる。   FIG. 6 is a diagram illustrating a process of forming the massive silicon intermediate alloy 57 by the ingot manufacturing method. First, the molten silicon alloy 13 is put into the mold 55 from the crucible 53. Thereafter, the silicon alloy 13 is cooled in the mold 55 and solidified, and then the mold 55 is removed to obtain a bulk silicon intermediate alloy 57. If necessary, the bulk silicon intermediate alloy 57 is crushed to obtain a granular silicon intermediate alloy.

粒状シリコン中間合金の厚さは10μm〜50mmであることが好ましく、より好ましくは0.1〜10mmであり、更に1〜5mmであることが好ましい。シリコン合金の凝固時の冷却速度は0.1K/s以上である。なお、シリコン中間合金の厚みが50mm以上に厚くなると、熱処理時間が長くなることから多孔質シリコン粒子の粒径が成長し、粗大化することから好ましくない。その場合は、このシリコン中間合金に機械式粉砕を施し、50mm以下にすることで対応できる。   The thickness of the granular silicon intermediate alloy is preferably 10 μm to 50 mm, more preferably 0.1 to 10 mm, and further preferably 1 to 5 mm. The cooling rate during solidification of the silicon alloy is 0.1 K / s or more. If the thickness of the silicon intermediate alloy is increased to 50 mm or more, the heat treatment time becomes longer, which is not preferable because the particle diameter of the porous silicon particles grows and becomes coarse. In that case, this silicon intermediate alloy can be dealt with by mechanically grinding it to 50 mm or less.

次に、シリコン中間合金を、使用した中間合金元素に対応する表1に記載のAg、Al、Au、Be、Bi、Cd、Ga、In、Pb、Sb、Sn、Tl、Znから選択された溶湯元素の溶湯に浸漬させ、シリコンのスピノーダル分解と中間合金元素と溶湯元素の合金である第2相を形成させる。なお、この溶湯中の酸素は予め100ppm以下、好ましくは10ppm以下、更に好ましくは2ppm以下に低減しておくことが望ましい。これは溶湯中の溶存酸素とシリコンが反応してシリカを形成し、これを核としてシリコンがファセット状に成長し、粗大化する為である。その対策として、木炭・黒鉛などの固体還元材や非酸化性ガスにより還元することができるし、また酸素との親和力が強い元素を予め添加することでも良い。この浸漬工程で初めてシリコン微粒子が形成される。   Next, the silicon intermediate alloy was selected from Ag, Al, Au, Be, Bi, Cd, Ga, In, Pb, Sb, Sn, Tl, Zn listed in Table 1 corresponding to the intermediate alloy element used. It is immersed in the molten metal element to form a spinodal decomposition of silicon and a second phase which is an alloy of the intermediate alloy element and the molten element element. The oxygen in the molten metal is desirably reduced in advance to 100 ppm or less, preferably 10 ppm or less, more preferably 2 ppm or less. This is because dissolved oxygen in the molten metal reacts with silicon to form silica, and with this as a nucleus, silicon grows in a facet shape and becomes coarse. As a countermeasure, it can be reduced by a solid reducing material such as charcoal / graphite or a non-oxidizing gas, or an element having a strong affinity for oxygen may be added in advance. Silicon particles are formed for the first time in this dipping process.

浸漬工程は、図7(a)に示すような溶湯浸漬装置61を用い、粒状シリコン中間合金63を浸漬用籠65に入れ、溶湯元素の溶湯69に浸漬する。その際に、図7(a)に示すように、押し付けシリンダー67を上下させて、シリコン中間合金もしくは溶湯へ機械式の振動を与えることや、超音波による振動を付与させること、図7(b)に示す機械式撹拌機81を用いた機械攪拌、ガス吹き込みプラグ83を用いたガスインジェクションや電磁力を用いて溶湯を攪拌することで、短時間に反応を進めることができる。その後、非酸化性雰囲気下に引き上げられて冷却される。溶湯69または79は、溶湯元素の液相線温度より10K以上高い温度に加熱してある。溶湯への浸漬は、溶湯温度にもよるが、5秒以上10000秒以下であることが好ましい。10000秒以上浸漬を施すと粗大Si粒が生成するためである。また、長時間の浸漬により多孔質体粒子の表面のシリコン微粒子のみが異常に成長する。   In the dipping process, a molten silicon immersion device 61 as shown in FIG. 7A is used, and the granular silicon intermediate alloy 63 is placed in a dipping basin 65 and immersed in a molten metal 69 of a molten element. At that time, as shown in FIG. 7A, the pressing cylinder 67 is moved up and down to give mechanical vibration to the silicon intermediate alloy or molten metal, or to give vibration by ultrasonic waves, as shown in FIG. The reaction can be advanced in a short time by stirring the molten metal using mechanical stirring using the mechanical stirrer 81 and gas injection using the gas blowing plug 83 or electromagnetic force. Then, it is pulled up in a non-oxidizing atmosphere and cooled. The molten metal 69 or 79 is heated to a temperature higher than the liquidus temperature of the molten element by 10K or more. The immersion in the molten metal depends on the molten metal temperature, but is preferably 5 seconds or longer and 10,000 seconds or shorter. This is because coarse Si grains are produced when immersion is performed for 10,000 seconds or more. Further, only the silicon fine particles on the surface of the porous particles grow abnormally by the long immersion.

その後、前述の製造方法と同様に、第2相を除去し、多孔質シリコン粒子を得る。   Thereafter, the second phase is removed to obtain porous silicon particles in the same manner as in the production method described above.

(多孔質シリコン粒子の効果)
本発明によれば、従来にない3次元網目状構造を有する多孔質シリコン粒子を得ることができる。
(Effect of porous silicon particles)
According to the present invention, porous silicon particles having an unprecedented three-dimensional network structure can be obtained.

本発明によれば、粒子の全体がほぼ均一な細孔構造を有する多孔質シリコン粒子を得ることができる。これは、溶湯内でのシリコン中間合金からのシリコン微粒子の析出は、高温の溶湯金属中で行うため、粒子内部まで溶湯金属が浸透するためである。   According to the present invention, porous silicon particles having a substantially uniform pore structure can be obtained. This is because precipitation of silicon fine particles from the silicon intermediate alloy in the molten metal is performed in the molten metal at a high temperature, so that the molten metal penetrates into the particles.

本発明に係る多孔質シリコン粒子は、リチウムイオン電池の負極活物質として使用すれば、高容量で長寿命の負極を得ることができる。   When the porous silicon particles according to the present invention are used as a negative electrode active material of a lithium ion battery, a negative electrode having a high capacity and a long life can be obtained.

[多孔質シリコン複合体粒子]
(多孔質シリコン複合体粒子の構成)
本発明に係る多孔質シリコン複合体粒子を、図8を参照して説明する。図8(a)に示すように、本発明に係る多孔質シリコン複合体粒子101は、シリコン微粒子103とシリコン化合物粒子105が接合してなり、多孔質シリコン複合体粒子101の平均粒径が0.1μm〜1000μmであり、多孔質シリコン複合体粒子101の平均空隙率が15〜93%であり、連続した空隙からなる三次元網目構造を有する。
[Porous silicon composite particles]
(Configuration of porous silicon composite particles)
The porous silicon composite particles according to the present invention will be described with reference to FIG. As shown in FIG. 8A, the porous silicon composite particles 101 according to the present invention are formed by bonding silicon fine particles 103 and silicon compound particles 105, and the average particle size of the porous silicon composite particles 101 is zero. The average porosity of the porous silicon composite particles 101 is 15 to 93%, and it has a three-dimensional network structure composed of continuous voids.

本発明での三次元網目構造は、スピノーダル分解過程で生じる共連続構造やスポンジ構造のような、空孔が互いに連接している構造を意味する。多孔質シリコン複合体粒子が有する空孔は、空孔径が0.1〜300nm程度である。   The three-dimensional network structure in the present invention means a structure in which pores are connected to each other, such as a co-continuous structure or a sponge structure generated in the spinodal decomposition process. The pores of the porous silicon composite particles have a pore diameter of about 0.1 to 300 nm.

多孔質シリコン複合体粒子101において、半径方向で50%以上の表面近傍領域の空隙率Xsと、半径方向で50%以内の粒子内部領域の空隙率Xiの比であるXs/Xiが、0.5〜1.5である。   In the porous silicon composite particle 101, Xs / Xi, which is the ratio of the porosity Xs of the region near the surface of 50% or more in the radial direction and the porosity Xi of the particle internal region within 50% in the radial direction, is 0.00. 5 to 1.5.

つまり、本発明にかかる多孔質シリコン複合体粒子は、表面近傍領域と粒子内部領域とで、同様の細孔構造を有しており、粒子全体がほぼ均一な細孔構造を有する。
空隙率Xsは、多孔質シリコン複合体粒子101の表面をSEM観察して求めることができ、空隙率Xiは、多孔質シリコン複合体粒子101の断面の粒子内部領域に該当する箇所をSEM観察して求めることができる。
That is, the porous silicon composite particles according to the present invention have the same pore structure in the surface vicinity region and the particle internal region, and the whole particle has a substantially uniform pore structure.
The porosity Xs can be obtained by SEM observation of the surface of the porous silicon composite particle 101, and the porosity Xi is obtained by observing a portion corresponding to the particle internal region in the cross section of the porous silicon composite particle 101 by SEM. Can be obtained.

また、中間合金の結晶粒(図28)が工程(b)から工程(c)を経て変化していく中で、この中間合金の結晶粒に相当するサイズの多孔質シリコン粒子(粉砕等を施すことで微粉化させていないもの)において、多孔質シリコン複合体粒子101を、半径方向で90%以上の表面近傍領域Sと、半径方向で90%以下の粒子内部領域Iとに分け、表面近傍領域Sを構成するシリコン微粒子103の平均粒径をEsとし、粒子内部領域Iを構成するシリコン微粒子103の平均粒径をEiとするとき、Es/Eiが0.01〜1.0であることが好ましい。   In addition, while the crystal grains of the intermediate alloy (FIG. 28) are changed from step (b) through step (c), porous silicon particles having a size corresponding to the crystal grains of the intermediate alloy (pulverization or the like is performed). The porous silicon composite particles 101 are divided into a surface vicinity region S of 90% or more in the radial direction and a particle inner region I of 90% or less in the radial direction, and the vicinity of the surface. When the average particle size of the silicon fine particles 103 constituting the region S is Es and the average particle size of the silicon fine particles 103 constituting the particle internal region I is Ei, Es / Ei is 0.01 to 1.0. Is preferred.

シリコン微粒子103は、平均粒径または平均支柱の1辺が2nm〜2μmであり、好ましくは10〜500nm、より好ましくは、20〜300nmである。また、平均空隙率は、15〜93%であり、好ましくは50〜80%であり、より好ましくは60〜70%である。そして、一つ一つのシリコン微粒子103の結晶構造は、結晶性を有する単結晶である。また、シリコン微粒子103は、酸素を除く元素の比率でシリコンを80原子%以上含み、残りは後述する中間合金元素、溶湯元素、その他の不可避な不純物が含まれる中実な微粒子である。   The silicon fine particles 103 have an average particle diameter or one side of the average support of 2 nm to 2 μm, preferably 10 to 500 nm, more preferably 20 to 300 nm. Moreover, an average porosity is 15 to 93%, Preferably it is 50 to 80%, More preferably, it is 60 to 70%. The crystal structure of each silicon fine particle 103 is a single crystal having crystallinity. The silicon fine particles 103 contain 80 atomic% or more of silicon in a ratio of elements excluding oxygen, and the remainder are solid fine particles containing an intermediate alloy element, a molten metal element, and other inevitable impurities described later.

シリコン微粒子103の形状が、球状または多角柱状であり、シリコン微粒子103の粒径、支柱径または支柱辺の平均xが2nm〜2μmであり、シリコン微粒子103の粒径、支柱径または支柱辺の標準偏差σが1〜500nmであり、平均xと標準偏差σとの比(σ/x)が0.01〜0.5である。   The shape of the silicon fine particles 103 is spherical or polygonal, the particle size of the silicon fine particles 103, the average diameter x of the support pillars or the side of the support pillars is 2 nm to 2 μm, The deviation σ is 1 to 500 nm, and the ratio (σ / x) between the average x and the standard deviation σ is 0.01 to 0.5.

また、シリコン微粒子103の形状が、扁平な球状、円柱状または多角柱状を有し、平均最長径または最長辺aと平均最短径または最短辺bとの比(a/b)が1.1〜50である。   The shape of the silicon fine particles 103 has a flat spherical shape, cylindrical shape, or polygonal column shape, and the ratio (a / b) of the average longest diameter or longest side a to the average shortest diameter or shortest side b is 1.1 to 1.1. 50.

また、図8(b)に示すように、多孔質シリコン複合体粒子101を、半径方向で50%以上の表面近傍領域Sと、半径方向で50%以下の粒子内部領域Iとに分け、多孔質シリコン複合体粒子の表面近傍領域を構成するシリコン微粒子の平均粒径をDsとし、多孔質シリコン複合体粒子の粒子内部領域を構成するシリコン微粒子の平均粒径をDiとするとき、Ds/Diが0.5〜1.5である。
平均粒径Dsは、多孔質シリコン複合体粒子1の表面をSEM観察して求めることができ、平均粒径Diは、多孔質シリコン複合体粒子1の粒子内部領域に該当する箇所の断面をSEM観察して求めることができる。
Further, as shown in FIG. 8 (b), the porous silicon composite particles 101 are divided into a surface vicinity region S of 50% or more in the radial direction and a particle inner region I of 50% or less in the radial direction. Ds / Di, where Ds is the average particle size of the silicon fine particles constituting the region near the surface of the porous silicon composite particles, and Di is the average particle size of the silicon fine particles constituting the particle internal region of the porous silicon composite particles Is 0.5 to 1.5.
The average particle diameter Ds can be obtained by observing the surface of the porous silicon composite particle 1 with an SEM, and the average particle diameter Di is obtained by SEM of a cross section of a portion corresponding to the particle internal region of the porous silicon composite particle 1. It can be obtained by observation.

シリコン化合物粒子105は、平均粒径が50nm〜50μmであり、好ましくは100nm〜20μm、より好ましくは、200nm〜10μmである。また、組成的には、As、Ba、Ca、Ce、Co、Cr、Cu、Er、Fe、Gd、Hf、Lu、Mg、Mn、Mo、Nb、Nd、Ni、Os、Pr、Pt、Pu、Re、Rh、Ru、Sc、Sm、Sr、Ta、Te、Th、Ti、Tm、U、V、W、Y、Yb、Zrからなる群より選ばれた一つ以上の複合体元素と、50〜75原子%のシリコンと後述する中間合金元素、溶湯元素、その他の不可避な不純物から構成されている中実な結晶性を有する粒子である。また、通常は、シリコン化合物粒子105は、シリコン微粒子103よりも大きい。   The silicon compound particles 105 have an average particle size of 50 nm to 50 μm, preferably 100 nm to 20 μm, and more preferably 200 nm to 10 μm. In terms of composition, As, Ba, Ca, Ce, Co, Cr, Cu, Er, Fe, Gd, Hf, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, Pr, Pt, Pu One or more complex elements selected from the group consisting of: Re, Rh, Ru, Sc, Sm, Sr, Ta, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zr; It is a particle having solid crystallinity composed of 50 to 75 atomic% of silicon and an intermediate alloy element, a molten metal element, and other inevitable impurities described later. In general, the silicon compound particles 105 are larger than the silicon fine particles 103.

また多孔質シリコン複合体粒子101の表面、すなわちシリコン微粒子103またはシリコン化合物粒子105には、厚さ20nm以下、またはそれぞれのシリコン微粒子103またはシリコン化合物粒子105の粒径比で10%以下の酸化物層が形成されていても特性上問題はない。
多孔質シリコン複合体粒子101の表面の酸化物層は、第2相を除去した後に0.0001〜0.1Nの硝酸に浸漬することで形成することが出来る。もしくは、第2相を除去した後に、0.00000001〜0.02MPaの酸素分圧下で保持することでも形成することができる。このシリコンなどの酸化物層が形成されると、多孔質シリコン複合体粒子101は、大気中でも極めて安定になり、グローブボックス等の中で取り扱われる必要がなくなる。
Further, the surface of the porous silicon composite particle 101, that is, the silicon fine particle 103 or the silicon compound particle 105 has an oxide having a thickness of 20 nm or less or a particle size ratio of each silicon fine particle 103 or silicon compound particle 105 of 10% or less. Even if the layer is formed, there is no problem in characteristics.
The oxide layer on the surface of the porous silicon composite particles 101 can be formed by immersing in 0.0001 to 0.1 N nitric acid after removing the second phase. Or after removing a 2nd phase, it can also form by hold | maintaining under the oxygen partial pressure of 0.00000001-0.02 MPa. When the oxide layer such as silicon is formed, the porous silicon composite particles 101 become extremely stable in the air and do not need to be handled in a glove box or the like.

本発明に係る多孔質シリコン複合体粒子は通常は凝集して存在しているので、粒子の平均粒径は、ここでは一次粒子の平均粒径を指す。粒径の計測は、電子顕微鏡(SEM)の画像情報と動的光散乱光度計(DLS)の体積基準メディアン径を併用する。平均粒径は、SEM画像によりあらかじめ粒子形状を確認し、画像解析ソフトウェア(例えば、旭化成エンジニアリング製「A像くん」(登録商標))で粒径を求めたり、粒子を溶媒に分散してDLS(例えば、大塚電子製DLS−8000)により測定したりすることが可能である。DLS測定時に粒子が十分に分散しており、凝集していなければ、SEMとDLSでほぼ同じ測定結果が得られる。
また、多孔質シリコン複合体粒子を構成するシリコン微粒子とシリコン化合物粒子は、互いに接合しているため、主に表面走査型電子顕微鏡や透過型電子顕微鏡を用いて平均粒径を求める。
また、平均支柱径とは、アスペクト比が5以上の棒状(柱状)のシリコン粒子において、その柱の直径を支柱径と定義する。この支柱径の平均値を平均支柱径とする。この支柱径は、おもに粒子のSEM観察を行って求める。
Since the porous silicon composite particles according to the present invention are usually present in an aggregated state, the average particle size of the particles herein refers to the average particle size of the primary particles. The particle diameter is measured by using image information of an electron microscope (SEM) and a volume-based median diameter of a dynamic light scattering photometer (DLS). For the average particle size, the particle shape is confirmed in advance using an SEM image, the particle size is obtained using image analysis software (for example, “A Image-kun” (registered trademark) manufactured by Asahi Kasei Engineering), or DLS ( For example, it can be measured by Otsuka Electronics DLS-8000). If the particles are sufficiently dispersed and not agglomerated at the time of DLS measurement, almost the same measurement results can be obtained with SEM and DLS.
Further, since the silicon fine particles and the silicon compound particles constituting the porous silicon composite particles are bonded to each other, the average particle diameter is obtained mainly using a surface scanning electron microscope or a transmission electron microscope.
The average column diameter is defined as the column diameter of rod-shaped (columnar) silicon particles having an aspect ratio of 5 or more. Let the average value of this support | pillar diameter be an average support | pillar diameter. This strut diameter is obtained mainly by SEM observation of particles.

平均空隙率は、粒子中の空隙の割合をいう。サブミクロン以下の細孔は窒素ガス吸着法によっても測定可能であるが、細孔サイズが広範囲に渡る場合には、電子顕微鏡観察や、水銀圧入法(JIS R 1655「ファインセラミックスの水銀圧入法による成形体気孔径分布測定方法」、空隙内へ水銀を侵入させた際の圧力と水銀体積の関係から導出)、等により測定が可能である。また、BET比表面積は、窒素ガス吸着法によって測定可能である。   The average porosity refers to the proportion of voids in the particles. Submicron or smaller pores can be measured by nitrogen gas adsorption, but when the pore size is wide, observation with an electron microscope or mercury porosimetry (JIS R 1655 “fine ceramics by mercury porosimetry) It is possible to measure by, for example, “a method for measuring the pore size distribution of a molded body”, derived from the relationship between pressure and mercury volume when mercury enters the void). The BET specific surface area can be measured by a nitrogen gas adsorption method.

本発明に係る多孔質シリコン複合体粒子101は、Si中間合金のSi濃度やその中間合金製造時の冷却速度により0.1μm〜1000μmの粒径となる。なお、Si濃度を低くする、もしくは冷却速度を早くすることで粒径は小さくなる。負極用活物質として使用する上では、その平均粒径が0.1〜50μmであることが好ましく、より好ましくは1〜30μm、更に5〜20μmであることが好ましい。その為に、多孔質シリコン複合体粒子が小さい場合には凝集体または造粒体として使用される。また、多孔質シリコン複合体粒子が大きい場合には、この多孔質シリコン複合体粒子を粗に粉砕して使用しても何ら問題は無い。   The porous silicon composite particles 101 according to the present invention have a particle size of 0.1 μm to 1000 μm depending on the Si concentration of the Si intermediate alloy and the cooling rate when manufacturing the intermediate alloy. Note that the particle size is reduced by decreasing the Si concentration or increasing the cooling rate. When used as the negative electrode active material, the average particle diameter is preferably 0.1 to 50 μm, more preferably 1 to 30 μm, and further preferably 5 to 20 μm. For this reason, when the porous silicon composite particles are small, they are used as aggregates or granules. Further, when the porous silicon composite particles are large, there is no problem even if the porous silicon composite particles are roughly pulverized and used.

シリコン微粒子103と、隣接するシリコン微粒子103の接合部において、接合部の厚みまたは直径が、隣接するシリコン微粒子103のより大きいほうのシリコン微粒子103の直径の80%以下であり、接合部が、結晶性シリコンまたはシリコン酸化物で構成されている。   At the joint between the silicon fine particles 103 and the adjacent silicon fine particles 103, the thickness or diameter of the joint is 80% or less of the diameter of the larger silicon fine particles 103 of the adjacent silicon fine particles 103. Made of conductive silicon or silicon oxide.

複数のシリコン微粒子103が配向しており、複数のシリコン微粒子103の長軸の方向が、いずれもある方向の±30°以内にある。
測定は、例えば図22、23のようなSEM画像をもとに行い、成長方向の角度の平均値に対するずれの大きさにより前記配向角度を規定した。
The plurality of silicon fine particles 103 are oriented, and the major axis directions of the plurality of silicon fine particles 103 are all within ± 30 ° of a certain direction.
The measurement was performed based on, for example, SEM images as shown in FIGS. 22 and 23, and the orientation angle was defined by the magnitude of the deviation from the average value of the angle in the growth direction.

(多孔質シリコン複合体粒子の第1の製造方法の概略)
図9を用いて、多孔質シリコン複合体粒子101の製造方法の概略を説明する。
まず、図9(a)に示すように、シリコンと、中間合金元素と複合体元素とを、加熱・溶融させ、シリコン中間合金107を作製する。この際、シリコンと複合体元素と中間合金元素を溶融、凝固すると、シリコンと複合体元素と中間合金元素の中間合金107及び、シリコンと複合体元素からなるシリコン化合物粒子が形成される。
(Outline of first production method of porous silicon composite particles)
An outline of a method for producing the porous silicon composite particles 101 will be described with reference to FIG.
First, as shown in FIG. 9A, silicon, an intermediate alloy element, and a composite element are heated and melted to produce a silicon intermediate alloy 107. At this time, when silicon, the composite element, and the intermediate alloy element are melted and solidified, an intermediate alloy 107 of silicon, the composite element, and the intermediate alloy element, and silicon compound particles composed of silicon and the composite element are formed.

その後、シリコン中間合金107を溶湯元素の溶湯に浸漬させる。シリコン中間合金107を溶融金属浴中に浸漬させると、溶湯元素がシリコン中間合金107中に浸透する。この際、中間合金元素は溶湯元素と合金固相を形成しながら、更に溶湯元素が浸透してくることで液相を形成する。この液相領域内にシリコン原子と複合体元素が残される。このシリコン原子や複合体元素が、拡散した状態から凝集する際に、シリコン微粒子103が析出し、シリコン原子と複合体元素の合金のネットワークができ、三次元網目構造が形成される。つまり、図9(b)に示すように、シリコン中間合金107の中間合金元素が、溶湯中に溶出するなどして、第2相109を形成し、シリコンがシリコン微粒子103として析出する。第2相109は、中間合金元素と溶湯元素の合金であるか、中間合金元素と置換した溶湯元素で構成される。また、シリコン化合物粒子105は、溶湯元素の溶湯には影響されずにそのまま残る。これらのシリコン微粒子103、シリコン化合粒粒子105は、互いに接合し、三次元網目構造を形成する。   Thereafter, the silicon intermediate alloy 107 is immersed in the molten metal. When the silicon intermediate alloy 107 is immersed in the molten metal bath, the molten metal element penetrates into the silicon intermediate alloy 107. At this time, the intermediate alloy element forms an alloy solid phase with the molten element, and further forms a liquid phase when the molten element permeates. Silicon atoms and complex elements are left in the liquid phase region. When the silicon atoms and the composite element are aggregated from the diffused state, the silicon fine particles 103 are precipitated, and an alloy network of silicon atoms and the composite element is formed, and a three-dimensional network structure is formed. That is, as shown in FIG. 9B, the intermediate alloy element of the silicon intermediate alloy 107 is eluted into the molten metal to form the second phase 109 and silicon is precipitated as silicon fine particles 103. The second phase 109 is an alloy of an intermediate alloy element and a molten element, or is composed of a molten element substituted for the intermediate alloy element. Further, the silicon compound particles 105 remain as they are without being influenced by the molten metal. These silicon fine particles 103 and silicon compound particles 105 are bonded to each other to form a three-dimensional network structure.

なお、溶融金属浴への浸漬工程では、シリコン単独のシリコン初晶や、シリコンと複合体元素との化合物は、溶湯元素が浸透してきても、シリコン原子や複合体元素の再凝集を起こさず、シリコン初晶や複合体元素の化合物がそのまま残る。その為に、シリコン中間合金107の作製時の冷却速度を高めて、これらの粒径制御をすることが好ましい。   In the immersion process in the molten metal bath, the silicon primary crystal of silicon alone or the compound of silicon and the complex element does not cause reaggregation of the silicon atom or complex element even if the molten metal penetrates, The silicon primary crystal and the compound of the complex element remain as they are. For this purpose, it is preferable to control the particle size by increasing the cooling rate during the production of the silicon intermediate alloy 107.

その後、図9(c)に示すように、酸やアルカリなどを用いた脱成分腐食などの方法により、第2相109を除去すると、シリコン微粒子103とシリコン化合物粒子105が接合した多孔質シリコン複合体粒子1が得られる。   Thereafter, as shown in FIG. 9C, when the second phase 109 is removed by a method such as decomponent corrosion using acid or alkali, the porous silicon composite in which the silicon fine particles 103 and the silicon compound particles 105 are joined. Body particles 1 are obtained.

以上の工程より、中間合金元素と複合体元素と溶湯元素には、以下の条件が必要となる。
・条件1:シリコンの融点より、溶湯元素の融点が50K以上低いこと。
仮に溶湯元素の融点とシリコンの融点が近いと、シリコン中間合金を溶湯元素の溶湯に浸漬する際、シリコンが溶湯中に溶解してしまうため、条件1が必要である。
・条件2:シリコンと中間合金元素を凝固させた際にSi初晶が発生しないこと。
シリコンと中間合金元素の合金を形成する際に、シリコン濃度が増加する場合に過共晶領域になると粗大なシリコン初晶が形成される。このシリコン初晶は浸漬工程中での、シリコン原子の拡散・再凝集が生じず、三次元網目構造を形成しない。
・条件3:溶湯元素へのシリコンの溶解度が5原子%よりも低いこと。
中間合金元素と溶湯元素が第2相を形成する際、シリコンを第2相に含まないようにする必要があるためである。
・条件4:中間合金元素と溶湯元素とが2相に分離しないこと。
中間合金元素と溶湯元素が2相に分離してしまう場合、シリコン中間合金より中間合金元素が分離されず、シリコン原子の拡散・再凝集が生じない。さらには、酸による処理を行っても、シリコン粒子中に中間合金元素が残ってしまう。
From the above steps, the following conditions are required for the intermediate alloy element, the composite element, and the molten element.
Condition 1: The melting point of the molten element is lower than the melting point of silicon by 50K or more.
If the melting point of the molten element and the melting point of silicon are close, when the silicon intermediate alloy is immersed in the molten molten element, silicon is dissolved in the molten metal, so condition 1 is necessary.
Condition 2: Si primary crystals do not occur when silicon and intermediate alloy elements are solidified.
When forming an alloy of silicon and an intermediate alloy element, when the silicon concentration increases, a coarse silicon primary crystal is formed in the hypereutectic region. This silicon primary crystal does not cause diffusion or re-aggregation of silicon atoms during the dipping process, and does not form a three-dimensional network structure.
Condition 3: The solubility of silicon in the molten metal element is lower than 5 atomic%.
This is because when the intermediate alloy element and the molten metal element form the second phase, it is necessary to prevent silicon from being included in the second phase.
Condition 4: The intermediate alloy element and the molten metal element do not separate into two phases.
When the intermediate alloy element and the molten metal element are separated into two phases, the intermediate alloy element is not separated from the silicon intermediate alloy, and silicon atoms do not diffuse and reaggregate. Furthermore, even if the treatment with an acid is performed, the intermediate alloy element remains in the silicon particles.

・条件5:シリコンと複合体元素とが、2相に分離しないこと。
シリコンと複合体元素が2相に分離しやすい場合、最終的にシリコンと複合体元素の合金からなるシリコン化合物粒子が得られない。
・条件6:溶湯元素に対応する中間合金元素は、選択可能な元素に複合体元素を含まないこと。
複合体元素が、中間合金元素として選択可能な元素であり、前述のような中間合金元素の特徴を備える場合、溶湯元素と複合体元素が第2相を形成し、酸による処理を行う際に複合体元素が除去されてしまう。
Condition 5: Silicon and complex elements do not separate into two phases.
In the case where silicon and the composite element are easily separated into two phases, finally, silicon compound particles composed of an alloy of silicon and the composite element cannot be obtained.
Condition 6: The intermediate alloy element corresponding to the molten metal element does not include a complex element in the selectable elements.
When the composite element is an element that can be selected as an intermediate alloy element and has the characteristics of the intermediate alloy element as described above, when the molten metal element and the composite element form the second phase and the treatment with the acid is performed The complex element is removed.

以上の条件1〜6を考慮すると、多孔質シリコン複合体を製造するために使用可能な中間合金元素と、複合体元素と、溶湯元素の組み合わせ及び得られた多孔質シリコン複合体の空隙率は、以下のようになる。また、複合体元素の割合がシリコンの1〜33原子%である。さらに、シリコンの割合は、シリコンと中間合金元素と前記複合体元素の和に対して10原子%以上であり、中間合金元素に対応する下記表2中のSi最大含有量の値(複数の中間合金元素を含む場合は、それぞれの中間合金元素に対応する表2中のSi最大含有量を、中間合金元素の割合に応じて案分した値)以下である。また、中間合金元素が複数含まれる場合には、それぞれの中間合金元素に共通して使用可能な複合体元素と溶湯元素を用いる。   Considering the above conditions 1 to 6, the intermediate alloy element that can be used for producing the porous silicon composite, the composite element, the combination of the molten metal element, and the porosity of the obtained porous silicon composite are: It becomes as follows. Further, the ratio of the composite element is 1 to 33 atomic% of silicon. Furthermore, the ratio of silicon is 10 atomic% or more with respect to the sum of silicon, the intermediate alloy element, and the complex element, and the value of the maximum Si content in Table 2 below corresponding to the intermediate alloy element (a plurality of intermediate elements) In the case where the alloy element is included, the maximum Si content in Table 2 corresponding to each intermediate alloy element is a value that is prorated according to the ratio of the intermediate alloy element) or less. When a plurality of intermediate alloy elements are included, a composite element and a molten element that can be used in common with each intermediate alloy element are used.

シリコン中間合金107を形成する工程において、シリコン(X原子%)と中間合金元素(Y原子%)と1つ以上の複合体元素(Z、Z、Z、・・・・原子%)が、以下の式を満足する組成を有するシリコン中間合金を作製することが好ましい。なお、[Si最大含有量]は、中間合金元素に対応する前記表2中のSi最大含有量の値であり、中間合金元素が複数ある場合は、各中間合金元素のSi最大含有量を各中間合金元素の割合で案分した値である。また、中間合金元素が複数ある倍は、Y原子%は、複数の中間合金元素の割合の和である。
10≦X<[Si最大含有量] (1)
10≦a÷(a+Y)×100≦[Si最大含有量] (2)
但し、a=X−1.5×(Z+Z+Z、・・・・)
In the step of forming the silicon intermediate alloy 107, silicon (X atomic%), an intermediate alloy element (Y atomic%), and one or more complex elements (Z 1 , Z 2 , Z 3 ,... Atomic%) However, it is preferable to produce a silicon intermediate alloy having a composition satisfying the following formula. [Si maximum content] is the value of the maximum Si content in Table 2 corresponding to the intermediate alloy element. When there are a plurality of intermediate alloy elements, the maximum Si content of each intermediate alloy element is It is a value prorated according to the ratio of the intermediate alloy element. In addition, when there are a plurality of intermediate alloy elements, Y atom% is the sum of the ratios of the plurality of intermediate alloy elements.
10 ≦ X <[maximum Si content] (1)
10 ≦ a ÷ (a + Y) × 100 ≦ [maximum Si content] (2)
However, a = X−1.5 × (Z 1 + Z 2 + Z 3 ,...)

(多孔質シリコン複合体粒子の第1の製造方法)
本発明に係る多孔質シリコン複合体粒子の製造方法について説明する。なお、以下では、多孔質シリコン粒子の製造方法で使用する装置を用いて説明し、各中間合金には同じ符号を付しているが、多孔質シリコン複合体粒子を製造するための中間合金は、複合体元素を含む点で、多孔質シリコン粒子を製造するための中間合金と異なる。
(First production method of porous silicon composite particles)
A method for producing porous silicon composite particles according to the present invention will be described. In the following, description will be made using an apparatus used in the method for producing porous silicon particles, and each intermediate alloy is denoted by the same reference numeral, but the intermediate alloy for producing porous silicon composite particles is This is different from the intermediate alloy for producing porous silicon particles in that it contains a composite element.

まず、シリコンと、表2に記載のCo,Cr,Cu,Fe,Mg,Mn,Mo,Ni,P,Ti,Zrからなる群より選ばれた1以上の中間合金元素と、中間合金元素に対応する表2に記載の一つ以上の複合体元素を用い、シリコン、中間合金元素、複合体元素を配合した混合物を真空炉などで加熱し、溶解する。この際、シリコンと中間合金元素の合金と、シリコンと複合体元素の化合物が形成される。
その後、例えば、図3に示すような単ロール鋳造機11などを用いて、溶融したシリコン合金13を、るつぼ15より滴下し、回転する鋼製ロール17に接しながら凝固させリボン状シリコン中間合金19もしくは線状シリコン中間合金を製造する。シリコン中間合金の凝固時の冷却速度は10K/s以上、好ましくは100K/s以上、より好ましくは200K/s以上である。この冷却速度の高速化は、ミクロ組織的に凝固初期に生成するシリコン化合物粒子を小さくすることに寄与するものである。シリコン化合物粒子の大きさを細かくすることは、次工程での熱処理時間を短縮することに寄与するものである。リボン状シリコン中間合金19もしくは線状のシリコン中間合金の厚さは0.1μm〜2mmであり、好ましくは0.1〜500μmであり、更に0.1〜50μmであることが好ましい。または、シリコン中間合金を、線状やリボン状とは異なり、一定の長さを持つ箔片状としてもよい。また、中間合金のミクロ組織の平均サイズは、0.1μm〜1mmが望ましく、好ましくは0.1〜500μmであり、更に0.1〜300μmであることが好ましい。これは、工程(b)で溶融金属浴へ浸漬させた場合に結晶粒界を浴元素が優先的に拡散し、その後粒界内拡散することによる。
First, silicon, one or more intermediate alloy elements selected from the group consisting of Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Ti, and Zr described in Table 2, and intermediate alloy elements Using a corresponding one or more composite elements shown in Table 2, a mixture containing silicon, intermediate alloy elements, and composite elements is heated and melted in a vacuum furnace or the like. At this time, an alloy of silicon and an intermediate alloy element and a compound of silicon and a complex element are formed.
Thereafter, for example, using a single roll casting machine 11 as shown in FIG. 3, the molten silicon alloy 13 is dropped from the crucible 15 and solidified while in contact with the rotating steel roll 17 to form a ribbon-like silicon intermediate alloy 19. Alternatively, a linear silicon intermediate alloy is manufactured. The cooling rate during solidification of the silicon intermediate alloy is 10 K / s or more, preferably 100 K / s or more, more preferably 200 K / s or more. This increase in the cooling rate contributes to reducing the size of silicon compound particles generated in the initial stage of solidification microscopically. Making the size of the silicon compound particles fine contributes to shortening the heat treatment time in the next step. The thickness of the ribbon-like silicon intermediate alloy 19 or the linear silicon intermediate alloy is 0.1 μm to 2 mm, preferably 0.1 to 500 μm, and more preferably 0.1 to 50 μm. Alternatively, the silicon intermediate alloy may be in the form of a foil piece having a certain length, unlike a linear shape or a ribbon shape. Moreover, the average size of the microstructure of the intermediate alloy is desirably 0.1 μm to 1 mm, preferably 0.1 to 500 μm, and more preferably 0.1 to 300 μm. This is because the bath element preferentially diffuses in the crystal grain boundary when it is immersed in the molten metal bath in the step (b), and then diffuses in the grain boundary.

次に、シリコン中間合金を、表2に記載の中間合金元素に対応するAg、Al、Au、Be、Bi、Cd、Ga、In、Pb、Sb、Sn、Tl、Znの少なくとも1つ以上から選択された溶湯元素の金属浴に浸漬させ、Siをスピノーダル分解させ、中間合金元素と溶湯元素の合金である第2相もしくは中間合金元素と置換した前記溶湯元素で構成される第2相を形成させる。浸漬工程は、例えば、図4に示すような溶湯浸漬装置21を用い、リボン状シリコン中間合金19もしくは線状シリコン中間合金を、溶湯元素の溶湯23に浸漬する。その後、シンクロール25やサポートロール27を介して巻き取られる。溶湯23は、溶湯元素の液相線温度より10K以上高い温度に加熱してある。溶湯23への浸漬は、溶湯温度にもよるが、5秒以上10000秒以下であることが好ましい。10000秒以上浸漬を施すと粗大Si粒が生成するためである。また、長時間の浸漬により多孔質体粒子の表面のシリコン微粒子のみが異常に成長する。浸漬後のリボン状シリコン中間合金19を非酸化性雰囲気下で冷却し、シリコン微粒子103、シリコン化合物粒子105、第2相109の複合体を得る。   Next, the silicon intermediate alloy is made of at least one of Ag, Al, Au, Be, Bi, Cd, Ga, In, Pb, Sb, Sn, Tl, and Zn corresponding to the intermediate alloy elements described in Table 2. Submerged in a metal bath of a selected molten metal element, Si is spinodal decomposed to form a second phase that is an alloy of the intermediate alloy element and the molten element or a second phase composed of the molten element replaced with the intermediate alloy element Let In the dipping process, for example, a ribbon-like silicon intermediate alloy 19 or a linear silicon intermediate alloy is dipped in a molten metal 23 of a molten element using a molten metal immersion device 21 as shown in FIG. Thereafter, the film is wound up via the sink roll 25 and the support roll 27. The molten metal 23 is heated to a temperature higher than the liquidus temperature of the molten element by 10K or more. Although immersion in the molten metal 23 depends on the molten metal temperature, it is preferably 5 seconds or more and 10,000 seconds or less. This is because coarse Si grains are produced when immersion is performed for 10,000 seconds or more. Further, only the silicon fine particles on the surface of the porous particles grow abnormally by the long immersion. The ribbon-like silicon intermediate alloy 19 after the immersion is cooled in a non-oxidizing atmosphere to obtain a composite of the silicon fine particles 103, the silicon compound particles 105, and the second phase 109.

その後、中間合金元素と溶湯元素の合金である第2相109もしくは中間合金元素と置換した前記溶湯元素で構成される第2相109を、酸、アルカリ、有機溶剤の少なくとも1つ以上で溶解してその第2相109のみを取り除き洗浄・乾燥する。酸としては、中間合金元素と溶湯元素を溶解させ、シリコンを溶解しない酸であればよく、硝酸、塩酸、硫酸などが挙げられる。もしくはこの第2相109を昇温減圧してその第2相のみを蒸発除去することで除去する。   Thereafter, the second phase 109, which is an alloy of the intermediate alloy element and the molten element, or the second phase 109 composed of the molten element replaced with the intermediate alloy element is dissolved in at least one of an acid, an alkali, and an organic solvent. Then, only the second phase 109 is removed and washed and dried. The acid may be any acid that dissolves the intermediate alloy element and the molten metal element and does not dissolve silicon, and examples thereof include nitric acid, hydrochloric acid, and sulfuric acid. Alternatively, the second phase 109 is heated and decompressed to remove only the second phase by evaporation.

なお、第2相109を除去した後は、多孔質シリコン複合体粒子101の粗大な凝集体が得られるので、ボールミルなどで粉砕し、凝集体の平均粒径が0.1μm〜20μmになるようにする。   In addition, after removing the second phase 109, a coarse aggregate of the porous silicon composite particles 101 is obtained, so that the average particle size of the aggregate is 0.1 μm to 20 μm by pulverizing with a ball mill or the like. To.

(多孔質シリコン複合体粒子101の第1の製造方法の他の例)
多孔質シリコン複合体粒子101の第1の製造方法の他の例として、線状やリボン状シリコン中間合金19に代えて、粉末状、粒状、塊状のシリコン中間合金を用いても良い。
まず、シリコンと、表2に記載のCo,Cr,Cu,Fe,Mg,Mn,Mo,Ni,P,Ti,Zrからなる群より選ばれた1以上の中間合金元素と、中間合金元素に対応する表2に記載の1つ以上の複合体元素を用い、シリコン、中間合金元素、複合体元素を配合した混合物を真空炉などで加熱し、溶解する。
その後、図5(a)、(b)に示すようなアトマイズ法で略球状の粒・粉状のシリコン中間合金を製造する方法や、図6に示すインゴット製造法で塊状の鋳塊を得て、必要に応じて更に機械的な粉砕を行う方法で粉末状、粒状または塊状のシリコン中間合金を製造する。
(Another example of the first manufacturing method of the porous silicon composite particles 101)
As another example of the first method for producing the porous silicon composite particles 101, a silicon intermediate alloy in the form of a powder, a particle, or a lump may be used in place of the linear or ribbon-like silicon intermediate alloy 19.
First, silicon, one or more intermediate alloy elements selected from the group consisting of Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Ti, and Zr described in Table 2, and intermediate alloy elements Using a corresponding one or more complex elements shown in Table 2, a mixture containing silicon, intermediate alloy elements, and complex elements is heated and melted in a vacuum furnace or the like.
Thereafter, a massive ingot is obtained by a method of producing a substantially spherical particle / powdered silicon intermediate alloy by an atomizing method as shown in FIGS. 5A and 5B or by an ingot producing method shown in FIG. If necessary, a powdery, granular or massive silicon intermediate alloy is produced by a mechanical pulverization method.

図5(a)は、ガスアトマイズ法により粉末状シリコン中間合金39を製造可能なガスアトマイズ装置31を示す。るつぼ33中には、誘導加熱などにより溶解したシリコンと中間合金元素と複合体元素のシリコン合金13があり、このシリコン合金13をノズル35から滴下すると同時に、不活性ガスや空気などの噴出ガス36が供給されたガス噴射機37からのガスジェット流38を吹き付けて、シリコン合金13の溶湯を粉砕して、液滴として凝固させて粉末状シリコン中間合金39を形成する。   FIG. 5A shows a gas atomizing apparatus 31 that can produce a powdered silicon intermediate alloy 39 by a gas atomizing method. In the crucible 33, there is a silicon alloy 13 of silicon, an intermediate alloy element, and a composite element dissolved by induction heating or the like. The silicon alloy 13 is dropped from the nozzle 35 and at the same time, a jet gas 36 such as an inert gas or air is ejected. The gas jet flow 38 from the gas injector 37 supplied with is sprayed, the molten metal of the silicon alloy 13 is crushed and solidified as droplets to form a powdered silicon intermediate alloy 39.

図5(b)は、回転円盤アトマイズ法により粉末状シリコン中間合金51を製造可能な回転円盤アトマイズ装置41を示す。るつぼ43中には、溶解したシリコンと中間合金元素と複合体元素のシリコン合金13があり、このシリコン合金をノズル45から滴下させ、シリコン合金13の溶湯を高速で回転する回転円盤49上に落下させて、接線方向に剪断力を加えて破砕して粉末状シリコン中間合金51を形成する。   FIG. 5B shows a rotating disk atomizing device 41 that can manufacture the powdered silicon intermediate alloy 51 by the rotating disk atomizing method. In the crucible 43, there is a silicon alloy 13 of dissolved silicon, intermediate alloy element, and complex element. This silicon alloy is dropped from the nozzle 45, and the molten silicon alloy 13 is dropped onto a rotating disk 49 that rotates at high speed. Then, a shearing force is applied in the tangential direction to crush and form a powdery silicon intermediate alloy 51.

図6は、インゴット製造法により塊状シリコン中間合金57を形成する工程を説明する図である。まず、シリコン合金13の溶湯をるつぼ53から鋳型55に入れる。その後、鋳型55内でシリコン合金13が冷却され、固まった後に鋳型55を除去して塊状シリコン中間合金57が得られる。塊状シリコン中間合金57をそのまま用いても良いし、または必要に応じて粉砕して、粒状シリコン中間合金として用いても良い。   FIG. 6 is a diagram illustrating a process of forming the massive silicon intermediate alloy 57 by the ingot manufacturing method. First, the molten silicon alloy 13 is put into the mold 55 from the crucible 53. Thereafter, the silicon alloy 13 is cooled in the mold 55 and solidified, and then the mold 55 is removed to obtain a bulk silicon intermediate alloy 57. The bulk silicon intermediate alloy 57 may be used as it is, or may be pulverized as necessary and used as a granular silicon intermediate alloy.

粉末状、粒状または塊状のシリコン中間合金の粒径は10μm〜50mmであることが好ましく、より好ましくは0.1〜10mmであり、更に1〜5mmであることが好ましい。シリコン合金の凝固時の冷却速度は0.1K/s以上である。なお、シリコン中間合金の厚みが50mm以上に厚くなると、熱処理時間が長くなることから多孔質シリコン複合体粒子の粒径が成長し、粗大化することから好ましくない。その場合は、このシリコン中間合金に機械式粉砕を施し、厚みを50mm以下にすることで対応できる。
このシリコンと前記中間合金元素もしくは前記複合体元素からなる中間合金の結晶粒径は1000μm以下であることか望ましく、より好ましくは500μm以下であり、更に50μm以下であることが好ましい。結晶粒径が1000μm以上となると、工程(b)での溶湯元素の粒界拡散が優先的に進み、粒内拡散が停滞することで均質な反応が出来ない。
The particle size of the powdered, granular or massive silicon intermediate alloy is preferably 10 μm to 50 mm, more preferably 0.1 to 10 mm, and further preferably 1 to 5 mm. The cooling rate during solidification of the silicon alloy is 0.1 K / s or more. If the thickness of the silicon intermediate alloy is increased to 50 mm or more, the heat treatment time becomes longer, which is not preferable because the particle diameter of the porous silicon composite particles grows and becomes coarse. In that case, the silicon intermediate alloy can be mechanically pulverized to reduce the thickness to 50 mm or less.
The crystal grain size of the intermediate alloy composed of silicon and the intermediate alloy element or the complex element is desirably 1000 μm or less, more preferably 500 μm or less, and further preferably 50 μm or less. When the crystal grain size is 1000 μm or more, the grain boundary diffusion of the molten element in the step (b) proceeds preferentially, and the intragranular diffusion stagnate, so that a homogeneous reaction cannot be performed.

次に、シリコン中間合金を、使用した中間合金元素に対応する表2に記載の溶湯元素の溶湯に浸漬させ、シリコンのスピノーダル分解と中間合金元素と溶湯元素の合金である第2相を形成させる。なお、この溶湯中の酸素は予め100ppm以下、好ましくは10ppm以下、更に好ましくは2ppm以下に低減しておくことが望ましい。これは溶湯中の溶存酸素とシリコンが反応してシリカを形成し、これを核としてシリコンがファセット状に成長し、粗大化する為である。その対策として、木炭・黒鉛などの固体還元材や非酸化性ガスにより還元することができるし、また酸素との親和力が強い元素を予め添加することでも良い。この浸漬工程で初めてシリコン微粒子が形成される。   Next, the silicon intermediate alloy is immersed in the molten metal element shown in Table 2 corresponding to the used intermediate alloy element to form a spinodal decomposition of silicon and a second phase that is an alloy of the intermediate alloy element and the molten element. . The oxygen in the molten metal is desirably reduced in advance to 100 ppm or less, preferably 10 ppm or less, more preferably 2 ppm or less. This is because dissolved oxygen in the molten metal reacts with silicon to form silica, and with this as a nucleus, silicon grows in a facet shape and becomes coarse. As a countermeasure, it can be reduced by a solid reducing material such as charcoal / graphite or a non-oxidizing gas, or an element having a strong affinity for oxygen may be added in advance. Silicon particles are formed for the first time in this dipping process.

浸漬工程は、図7(a)に示すような溶湯浸漬装置61を用い、粒状シリコン中間合金63を浸漬用籠65に入れ、溶湯元素の溶湯69に浸漬する。その際に、図7(a)に示すように、押し付けシリンダー67を上下させて、シリコン中間合金もしくは溶湯へ機械式の振動を与えることや、超音波による振動を付与させること、図7(b)に示す機械式撹拌機81を用いた機械攪拌、ガス吹き込みプラグ83を用いたガスインジェクションや電磁力を用いて溶湯を攪拌することで、短時間に反応を進めることができる。その後、非酸化性雰囲気下に引き上げられて冷却される。溶湯69または79は、溶湯元素の液相線温度より10K以上高い温度に加熱してある。溶湯への浸漬は、溶湯温度にもよるが、5秒以上10000秒以下であることが好ましい。10000秒以上浸漬を施すと粗大Si粒が生成するためである。また、長時間の浸漬により多孔質体粒子の表面のシリコン微粒子のみが異常に成長する。なお、シリコン中間合金の前述の粉末状、粒状、塊状という形状は、アスペクト比の小さい形状(アスペクト比5以下)のシリコン中間合金を、大きさにより、粉末、粒、塊と呼んでいるだけで、厳密に定義するわけではない。また、粒状シリコン中間合金63,73,93については、前述の粉末状、粒状、塊状シリコン中間合金を代表して粒状シリコン中間合金と表記している。   In the dipping process, a molten silicon immersion device 61 as shown in FIG. 7A is used, and the granular silicon intermediate alloy 63 is placed in a dipping basin 65 and immersed in a molten metal 69 of a molten element. At that time, as shown in FIG. 7A, the pressing cylinder 67 is moved up and down to give mechanical vibration to the silicon intermediate alloy or molten metal, or to give vibration by ultrasonic waves, as shown in FIG. The reaction can be advanced in a short time by stirring the molten metal using mechanical stirring using the mechanical stirrer 81 and gas injection using the gas blowing plug 83 or electromagnetic force. Then, it is pulled up in a non-oxidizing atmosphere and cooled. The molten metal 69 or 79 is heated to a temperature higher than the liquidus temperature of the molten element by 10K or more. The immersion in the molten metal depends on the molten metal temperature, but is preferably 5 seconds or longer and 10,000 seconds or shorter. This is because coarse Si grains are produced when immersion is performed for 10,000 seconds or more. Further, only the silicon fine particles on the surface of the porous particles grow abnormally by the long immersion. The above-mentioned powdery, granular, and lump shapes of silicon intermediate alloys are simply called silicon powders, particles, and lumps with a small aspect ratio (aspect ratio of 5 or less) depending on the size. It is not strictly defined. Further, the granular silicon intermediate alloys 63, 73, and 93 are represented as granular silicon intermediate alloys on behalf of the aforementioned powdery, granular, and massive silicon intermediate alloys.

その後、前述の製造方法と同様に、第2相を除去し、多孔質シリコン複合体粒子を得る。   Thereafter, in the same manner as in the production method described above, the second phase is removed to obtain porous silicon composite particles.

(多孔質シリコン複合体粒子の第2の製造方法)
本発明に係る多孔質シリコン複合体粒子の第2の製造方法について説明する。第2の製造方法では、図10(a)に示すように、シリコンと中間合金元素からなるシリコン中間合金111を形成する。その後、溶湯元素に複合体元素を加えた溶湯に浸漬させることで、図10(b)に示すように、シリコン微粒子103とシリコン化合物粒子105と第2相109を形成する。その後、図10(c)に示すように、第2相109を除去して多孔質シリコン複合体粒子101を得る。
(Second production method of porous silicon composite particles)
A second method for producing porous silicon composite particles according to the present invention will be described. In the second manufacturing method, as shown in FIG. 10A, a silicon intermediate alloy 111 made of silicon and an intermediate alloy element is formed. Thereafter, the silicon fine particles 103, the silicon compound particles 105, and the second phase 109 are formed as shown in FIG. 10B by immersing in a molten metal obtained by adding a complex element to the molten metal element. Thereafter, as shown in FIG. 10C, the second phase 109 is removed to obtain porous silicon composite particles 101.

以下、第2の製造方法を具体的に説明する。
まず、シリコンの粉末と、表2に記載のCo,Cr,Cu,Fe,Mg,Mn,Mo,Ni,P,Ti,Zrからなる群より選ばれた1以上の中間合金元素の粉末とを、シリコン(X原子%)、中間合金元素(Y原子%)を式(3)を満足するように溶解する。
X÷(X+Y)×100≦[Si最大含有量] (3)
Hereinafter, the second manufacturing method will be specifically described.
First, silicon powder and one or more intermediate alloy element powders selected from the group consisting of Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Ti, and Zr listed in Table 2 are used. Silicon (X atomic%) and intermediate alloy element (Y atomic%) are dissolved so as to satisfy the formula (3).
X ÷ (X + Y) × 100 ≦ [maximum Si content] (3)

その後、第1の製造方法と同様に、図3に示すような単ロール鋳造機11などを用いて、シリコンと中間合金元素の合金である、リボン状シリコン中間合金19もしくは線状シリコン中間合金を製造する。もしくは、図5(a)、(b)に示すようなアトマイズ法によって粉末状シリコン中間合金を製造する。また、図6に示すようにシリコン中間合金をインゴット鋳造し、これを機械的に粉砕して粒状にしてもよい。   Thereafter, similarly to the first manufacturing method, a ribbon-like silicon intermediate alloy 19 or a linear silicon intermediate alloy, which is an alloy of silicon and an intermediate alloy element, is used by using a single roll casting machine 11 as shown in FIG. To manufacture. Alternatively, a powdery silicon intermediate alloy is manufactured by an atomizing method as shown in FIGS. Further, as shown in FIG. 6, a silicon intermediate alloy may be cast into an ingot, which may be mechanically pulverized into a granular shape.

次に、シリコン中間合金を、表2に記載の中間合金元素に対応するAg、Al、Au、Be、Bi、Cd、Ga、In、Pb、Sb、Sn、Tl、Znの少なくとも1つ以上の溶湯元素に、表2に記載の中間合金元素に対応する一つ以上の複合体元素を各々10原子%以下、合計で20原子%以下添加し作製された合金浴へ浸漬させ、Siのスピノーダル分解と、Siと複合体元素との化合物の形成と、中間合金元素と溶湯元素の合金である第2相及び/または中間合金元素と置換した前記溶湯元素で構成される第2相を形成させる。浸漬工程は、図4に示すような溶湯浸漬装置21を用い、リボン状シリコン中間合金19もしくは線状シリコン中間合金を、溶湯元素の溶湯23に浸漬するか、図7に示すような溶湯浸漬装置または溶湯処理装置を用い、粒状シリコン中間合金を、溶湯元素の溶湯に浸漬する。溶湯23は、溶湯元素の液相線温度より10K以上高い温度に加熱してある。溶湯23への浸漬は、溶湯温度にもよるが、5秒以上10000秒以下であることが好ましい。10000秒以上浸漬を施すと粗大Si粒が生成するためである。また、長時間の浸漬により多孔質体粒子の表面のシリコン微粒子のみが異常に成長する。これを非酸化性雰囲気下で冷却し、シリコン微粒子103、シリコン化合物粒子105、第2相109の複合体を得る。   Next, the silicon intermediate alloy is made of at least one of Ag, Al, Au, Be, Bi, Cd, Ga, In, Pb, Sb, Sn, Tl, and Zn corresponding to the intermediate alloy elements described in Table 2. One or more complex elements corresponding to the intermediate alloy elements listed in Table 2 are added to the molten metal element in an amount of 10 atomic% or less, and a total of 20 atomic% or less, respectively. And forming a compound of Si and a composite element, and forming a second phase that is an alloy of an intermediate alloy element and a molten metal element and / or a second phase composed of the molten metal element replaced with the intermediate alloy element. The dipping process uses a molten metal dipping device 21 as shown in FIG. 4 to immerse the ribbon-like silicon intermediate alloy 19 or the linear silicon intermediate alloy in the molten metal 23 of the molten element, or as shown in FIG. Alternatively, the molten silicon processing apparatus is used to immerse the granular silicon intermediate alloy in the molten metal element. The molten metal 23 is heated to a temperature higher than the liquidus temperature of the molten element by 10K or more. Although immersion in the molten metal 23 depends on the molten metal temperature, it is preferably 5 seconds or more and 10,000 seconds or less. This is because coarse Si grains are produced when immersion is performed for 10,000 seconds or more. Further, only the silicon fine particles on the surface of the porous particles grow abnormally by the long immersion. This is cooled in a non-oxidizing atmosphere to obtain a composite of silicon fine particles 103, silicon compound particles 105, and second phase 109.

なお、このシリコン中間合金を、中間合金元素に対応する表2に記載の溶湯元素の浴に浸漬させた後に、中間合金元素に対応する表2に記載の溶湯元素に、中間合金元素に対応する表2に記載の複合体元素からなる群より選ばれた一つ以上の複合体元素を各10原子%以下、合計20原子%以下添加し作製された合金浴に浸漬させてもよい。   In addition, after immersing this silicon intermediate alloy in the bath of the molten element shown in Table 2 corresponding to the intermediate alloy element, the molten element shown in Table 2 corresponding to the intermediate alloy element corresponds to the intermediate alloy element. One or more complex elements selected from the group consisting of the complex elements shown in Table 2 may be added to each of 10 atomic% or less and a total of 20 atomic% or less to be immersed in an alloy bath.

なお、工程(b)で表3に示すように溶融金属浴の金属固有の優先成長方位が支配要因となり、シリコン微粒子の配向を制御することができる。更に、工程(c)で第2相を除去してもシリコン微粒子の配向を維持できる。その為に、溶融金属浴を選択することでシリコン微粒子の配向を制御できる。
なお理由は不明であるが、成長方位としては<1010>がより好ましい。
Note that, as shown in Table 3 in step (b), the preferential growth orientation inherent to the metal in the molten metal bath becomes the dominant factor, and the orientation of the silicon fine particles can be controlled. Further, the orientation of the silicon fine particles can be maintained even if the second phase is removed in the step (c). Therefore, the orientation of silicon fine particles can be controlled by selecting a molten metal bath.
Although the reason is unknown, <1010> is more preferable as the growth direction.

図22は、後述する実施例1−15の工程(b)における溶湯金属への浸漬後のシリコン微粒子と第2相とを示す断面SEM写真である。黒く見える領域がビスマスを含む第2相であり、白く見える箇所がシリコン微粒子である。シリコン微粒子が、図内右上方向に沿って並んでいることが分かる。これは、第2相を形成する際に、ビスマスの成長しやすい結晶方位である<1010>に沿って、シリコン微粒子が形成されたためである。   FIG. 22 is a cross-sectional SEM photograph showing the silicon fine particles and the second phase after immersion in the molten metal in step (b) of Example 1-15 described later. The region that appears black is the second phase containing bismuth, and the portion that appears white is the silicon fine particles. It can be seen that the silicon fine particles are aligned along the upper right direction in the figure. This is because when forming the second phase, silicon fine particles are formed along <1010>, which is a crystal orientation in which bismuth is likely to grow.

図23は、後述する実施例2−15の工程(c)の後、第2相を除去した後の多孔質シリコン粒子表面のシリコン微粒子を示すSEM写真である。扁平な円柱状のシリコン微粒子が図内左上方向に沿って並んでいることが分かる。   FIG. 23 is a SEM photograph showing silicon fine particles on the surface of the porous silicon particles after the second phase is removed after the step (c) of Example 2-15 described later. It can be seen that the flat cylindrical silicon particles are arranged along the upper left direction in the figure.

その後、前述の第1の製造方法と同様に第2相109のみを除去して、多孔質シリコン複合体粒子101を得る。   Thereafter, only the second phase 109 is removed in the same manner as in the first manufacturing method described above to obtain porous silicon composite particles 101.

(多孔質シリコン複合体粒子の効果)
本発明によれば、従来にない3次元網目状構造を有する多孔質シリコン複合体粒子を得ることができる。
(Effect of porous silicon composite particles)
According to the present invention, porous silicon composite particles having an unprecedented three-dimensional network structure can be obtained.

本発明によれば、粒子の全体がほぼ均一な細孔構造を有する多孔質シリコン複合体粒子を得ることができる。これは、溶湯内でのシリコン中間合金からのシリコン微粒子の析出は、高温の溶湯金属中で行うため、粒子内部まで溶湯金属が浸透するためである。   According to the present invention, it is possible to obtain porous silicon composite particles having a substantially uniform pore structure as a whole. This is because precipitation of silicon fine particles from the silicon intermediate alloy in the molten metal is performed in the molten metal at a high temperature, so that the molten metal penetrates into the particles.

本発明に係る多孔質シリコン複合体粒子は、リチウムイオン電池の負極活物質として使用すれば、高容量で長寿命の負極を得ることができる。特に、複合体元素は、シリコンに比べてリチウムを吸蔵しにくい元素であるため、リチウムイオンの吸蔵時に複合体元素は膨張し難いため、シリコンの膨張が抑制され、より長寿命の負極を得ることができる。また、シリコンと複合体元素との化合物であるシリコン化合物粒子は、シリコンに比べて導電性が高いため、本発明に係る多孔質シリコン複合体粒子は、通常のシリコン粒子に比べて急速な充放電に対応できる。   When the porous silicon composite particles according to the present invention are used as a negative electrode active material of a lithium ion battery, a negative electrode having a high capacity and a long life can be obtained. In particular, since the complex element is an element that does not absorb lithium as much as silicon, the complex element is difficult to expand during storage of lithium ions, so that expansion of silicon is suppressed and a longer-life negative electrode is obtained. Can do. In addition, since silicon compound particles, which are compounds of silicon and a composite element, have higher conductivity than silicon, the porous silicon composite particles according to the present invention are more rapidly charged / discharged than normal silicon particles. It can correspond to.

以下、本発明について実施例および比較例を用いて具体的に説明する。実施例1−1〜1−16が、シリコン多孔質粒子に関する実施例であり、実施例2−1〜2−16が、複合体元素を含む多孔質シリコン複合体粒子に関する実施例である。
[実施例1]
(実施例1−1)
Si:Co=55:45(原子%)の割合でシリコン(塊状、純度:95.0%以上)とコバルトを配合し、これを真空炉中にて1480℃で溶解した。その後、単ロール鋳造機を用いて冷却速度:800K/sで急冷し板厚200μmのシリコン合金製リボンを作製した。これを940℃のスズ溶湯に1分浸漬させた後に、直ちにアルゴンガスにて急冷した。この処理により、Siと、Co−SnまたはSnからなる第2相の2相複合体が得られた。この2相複合体を硝酸20%水溶液中に5分浸漬させ、多孔質シリコン粒子を得た。
Hereinafter, the present invention will be specifically described using examples and comparative examples. Examples 1-1 to 1-16 are examples relating to silicon porous particles, and Examples 2-1 to 2-16 are examples relating to porous silicon composite particles containing a composite element.
[Example 1]
(Example 1-1)
Silicon (lumpy, purity: 95.0% or more) and cobalt were blended at a ratio of Si: Co = 55: 45 (atomic%), and dissolved in a vacuum furnace at 1480 ° C. Thereafter, the ribbon was rapidly cooled using a single roll casting machine at a cooling rate of 800 K / s to produce a silicon alloy ribbon having a thickness of 200 μm. This was immersed in molten tin at 940 ° C. for 1 minute, and then immediately quenched with argon gas. By this treatment, a two-phase composite composed of Si and Co—Sn or Sn was obtained. This two-phase composite was immersed in a 20% nitric acid aqueous solution for 5 minutes to obtain porous silicon particles.

(実施例1−2〜1−11)
各実施例、比較例の製造条件を、表4にまとめた。実施例1−2〜1−11は、表4に示す中間合金元素、各元素の配合比率、などの製造条件にて、他は実施例1−1の方法と同様にして多孔質シリコン複合体を得た。
(Examples 1-2 to 1-11)
The production conditions for each example and comparative example are summarized in Table 4. In Examples 1-2 to 1-11, porous silicon composites were produced in the same manner as in Example 1-1 except that the production conditions such as the intermediate alloy elements shown in Table 4 and the blending ratio of each element were used. Got.

(実施例1−12)
Si:Mg=12:88(原子%)の割合でシリコン(塊状、純度:95.0%以上)とマグネシウムを配合し、これを真空炉中にて1090℃で溶解した。その後、鋳型内で冷却し、5mm角の大きさのシリコン合金製インゴットを作製した。これを470℃の鉛溶湯に1分浸漬させた後に、直ちにアルゴンガスにて急冷した。この処理によりSiと、Mg−PbまたはPbからなる第2相の2相複合体が得られた。この2相複合体を硝酸20%水溶液中に5分浸漬させ、多孔質シリコン粒子を得た。
(Example 1-12)
Silicon (bulk, purity: 95.0% or more) and magnesium were blended at a ratio of Si: Mg = 12: 88 (atomic%) and dissolved at 1090 ° C. in a vacuum furnace. Then, it cooled in the casting_mold | template and produced the ingot made from a silicon alloy of a magnitude | size of 5 square mm. This was immersed in a molten lead at 470 ° C. for 1 minute and then immediately cooled with argon gas. By this treatment, a two-phase composite composed of Si and Mg—Pb or Pb was obtained. This two-phase composite was immersed in a 20% nitric acid aqueous solution for 5 minutes to obtain porous silicon particles.

(実施例1−13〜1−16)
実施例1−13〜1−16は、表4に示す中間合金元素、各元素の配合比率、などの製造条件にて、他は実施例1−12の方法と同様にして多孔質シリコン複合体を得た。
(Examples 1-13 to 1-16)
Examples 1-13 to 1-16 are porous silicon composites in the same manner as in Example 1-12, except for the production conditions such as the intermediate alloy elements shown in Table 4 and the blending ratio of each element. Got.

(比較例1−1)
Si:Mg=55:45(原子%)の割合でシリコン粉末とマグネシウム粉末を配合し、これをアルゴン雰囲気中にて1087℃で溶解した。その後、双ロール鋳造機を用いて冷却速度:200K/sで板厚1mmのシリコン合金製テープを作製した。これを890℃のビスマス溶湯に1分浸漬させた後に、直ちにアルゴンガスにて急冷した。この複合体を硝酸20%水溶液中に5分浸漬させた。
(Comparative Example 1-1)
Silicon powder and magnesium powder were blended at a ratio of Si: Mg = 55: 45 (atomic%) and dissolved at 1087 ° C. in an argon atmosphere. Thereafter, a silicon alloy tape having a thickness of 1 mm was produced at a cooling rate of 200 K / s using a twin roll casting machine. This was immersed in molten bismuth at 890 ° C. for 1 minute and then immediately cooled with argon gas. This composite was immersed in a 20% nitric acid aqueous solution for 5 minutes.

(比較例1−2)
平均粒径5μmのシリコン粒子(SIE23PB、高純度化学研究所製)を、20wt%のフッ化水素水と、25wt%の硝酸を混合した混酸を用いてエッチング処理を行い、ろ過して多孔質シリコン粒子を得た。
(Comparative Example 1-2)
Silicon particles with an average particle size of 5 μm (SIE23PB, manufactured by High Purity Chemical Research Laboratory) are etched using a mixed acid in which 20 wt% hydrogen fluoride water and 25 wt% nitric acid are mixed, and filtered to obtain porous silicon. Particles were obtained.

(比較例1−3)
平均粒径5μmのシリコン粒子(SIE23PB、高純度化学研究所製)を用いた。
(Comparative Example 1-3)
Silicon particles having an average particle diameter of 5 μm (SIE23PB, manufactured by High Purity Chemical Laboratory) were used.

[評価]
評価結果を表5にまとめた。なお、実施例1−13から1−16は、シリコン粒子が大きいことから、乳鉢で粉砕して小さくした粒子を用いて特性評価を行った。例えば、実施例1−13の多孔質シリコン粒子の粒子径の130⇒33は、平均粒子径130μmであった多孔質シリコン粒子を粉砕して平均粒子径33μmの多孔質シリコン粒子を得たということを意味する。
[Evaluation]
The evaluation results are summarized in Table 5. In Examples 1-13 to 1-16, since the silicon particles were large, the characteristics were evaluated using particles that were pulverized and reduced in a mortar. For example, the particle size 130⇒33 of the porous silicon particles of Example 1-13 was obtained by pulverizing the porous silicon particles having an average particle size of 130 μm to obtain porous silicon particles having an average particle size of 33 μm. Means.

表5に示すとおり、各実施例は、シリコン微粒子の平均粒径xが2nm〜2μmにあり、シリコン微粒子の粒径の標準偏差σが1〜500nmであり、平均xと標準偏差σとの比(σ/x)が0.01〜0.5である。また、各実施例において、平均最長径aと平均最短径bとの比(a/b)が1.1〜50である。さらに、シリコン微粒子と、隣接するシリコン微粒子の連結部の厚さと、隣接するシリコン微粒子のより大きいほうのシリコン微粒子の直径との比率(連結厚さ比率)は、80%以下である。
各実施例においては、脱成分腐食(dealloying、デアロイング)を利用した製造方法により、請求項1に記載の各要件を満たす多孔質シリコン粒子を作製したため、各実施例での50サイクル後容量維持率は高く、サイクル特性は良好であった。シリコン微粒子の粒径が均一であるため、充放電時の活物質の膨張・収縮時に粒径不均一部位への応力集中が無くなることで、サイクル特性が大幅に向上したものと推測される。
各実施例は、比較例1−1〜1−3よりも、50サイクル後容量維持率が高く、充放電の繰り返しによる放電容量の低下の割合が小さいので、電池としての寿命が長いことが予想される。
また、各実施例においては、負極活物質が、連続的な空隙を有する多孔質シリコン粒子であるため、充放電時のLiとSiの合金化・脱合金化による膨張・収縮の体積変化が生じても、シリコン粒子の割れや微粉化を生じず、放電容量維持率が高い。
As shown in Table 5, in each example, the average particle diameter x of the silicon fine particles is 2 nm to 2 μm, the standard deviation σ of the particle diameter of the silicon fine particles is 1 to 500 nm, and the ratio between the average x and the standard deviation σ. (Σ / x) is 0.01 to 0.5. Moreover, in each Example, ratio (a / b) of the average longest diameter a and the average shortest diameter b is 1.1-50. Furthermore, the ratio (connection thickness ratio) between the silicon fine particles, the thickness of the connecting portion of the adjacent silicon fine particles, and the diameter of the larger silicon fine particle of the adjacent silicon fine particles is 80% or less.
In each example, the porous silicon particles satisfying the requirements described in claim 1 were produced by a manufacturing method using dealloying (dealloying), so that the capacity retention rate after 50 cycles in each example. Was high and the cycle characteristics were good. Since the silicon fine particles have a uniform particle size, it is presumed that the cycle characteristics are greatly improved by eliminating stress concentration on the non-uniform particle size portion during expansion / contraction of the active material during charge / discharge.
Each example has a higher capacity retention rate after 50 cycles than Comparative Examples 1-1 to 1-3, and the rate of decrease in discharge capacity due to repeated charge / discharge is small, so the lifetime as a battery is expected to be long. Is done.
In each example, since the negative electrode active material is porous silicon particles having continuous voids, volume change of expansion / contraction occurs due to alloying / dealloying of Li and Si during charge / discharge. However, the silicon particles are not cracked or pulverized, and the discharge capacity retention rate is high.

更に詳細に比較すると、
比較例1−1では、中間合金作製時に初晶として純Siが晶出し、更に凝固末期に共晶組織(SiとMgSi)が生成した。この初晶Siは10μm程度と粗大なものであった。これは、ビスマス溶湯へ浸漬させても微細化せず逆に粗大化し、エッチング工程を経てもそのままの形で残存した。その為に、Liの侵入・放出を繰返す際に、粗大SiをはじめとするSi単体が充放電=LiとSiの合金化・脱合金化による膨張・収縮の体積変化に追従できずに、割れや崩壊を起こし、集電パスや電極機能が失われた割合が多くなり、電池の寿命が短くなったと考えられる。
In more detail,
In Comparative Example 1-1, pure Si crystallized as an initial crystal when the intermediate alloy was produced, and a eutectic structure (Si and Mg 2 Si) was formed at the end of solidification. The primary crystal Si was as coarse as about 10 μm. Even if this was immersed in molten bismuth, it was not refined but was coarsened, and remained as it was even after the etching process. Therefore, when repeating the intrusion / release of Li, Si alone, including coarse Si, is unable to follow the volume change of expansion / contraction due to charge / discharge = Li / Si alloying / dealloying. It is thought that the rate at which the current collection path and electrode function were lost increased and the battery life was shortened.

比較例1−2では、フッ酸や硝酸によるエッチングにより細孔構造を形成したため、粒子中心部に細孔が形成されない箇所が形成された。この芯の部分が、充放電による体積変化に追従できず、サイクル特性が悪いと考えられる。   In Comparative Example 1-2, since the pore structure was formed by etching with hydrofluoric acid or nitric acid, a portion where pores were not formed was formed at the center of the particle. This core portion cannot follow the volume change due to charging / discharging and is considered to have poor cycle characteristics.

比較例1−3では、細孔構造を持たない単なるシリコン粒子であるため、充放電による体積変化に追従できず、サイクル特性が悪いと考えられる。   In Comparative Example 1-3, since it is a mere silicon particle having no pore structure, it cannot follow the volume change due to charge / discharge, and the cycle characteristics are considered to be poor.

(粒子形状の評価)
多孔質シリコン粒子の粒子形状の観察を、走査透過型電子顕微鏡(日本電子製、JEM 3100FEF)を用いて行った。図11に、実施例1−12に係る粒子のSEM写真を示し、図12に、比較例1−1に係る粒子のSEM写真を示す。図11には、粒径20nm〜100nmのシリコン微粒子が互いに接合して多数集まり、多孔質シリコン粒子を形成していることが観察される。一方、図12では、厚さ5μm程度の壁状の構造が観察される。
(Evaluation of particle shape)
The particle shape of the porous silicon particles was observed using a scanning transmission electron microscope (manufactured by JEOL, JEM 3100FEF). FIG. 11 shows an SEM photograph of the particles according to Example 1-12, and FIG. 12 shows an SEM photograph of the particles according to Comparative Example 1-1. In FIG. 11, it is observed that a large number of silicon fine particles having a particle diameter of 20 nm to 100 nm are joined together to form porous silicon particles. On the other hand, in FIG. 12, a wall-like structure having a thickness of about 5 μm is observed.

シリコン微粒子の平均粒径は、電子顕微鏡(SEM)の画像情報により測定した。また、多孔質シリコン粒子を、半径方向で50%以上の表面近傍領域と、半径方向で50%以内の粒子内部領域に分け、それぞれの平均粒径DsとDiの比を計算した。Ds/Diの値は、実施例においては、いずれも0.5〜1.5の間であったが、エッチング法により得た比較例1−2においては、粒子内部領域に比べて、表面近傍領域の微粒子の平均粒径が小さく、Ds/Diの値が小さくなった。   The average particle diameter of the silicon fine particles was measured by image information of an electron microscope (SEM). Further, the porous silicon particles were divided into a region near the surface of 50% or more in the radial direction and a particle internal region within 50% in the radial direction, and the ratio of the respective average particle diameters Ds and Di was calculated. The values of Ds / Di were all in the range of 0.5 to 1.5 in the examples, but in Comparative Example 1-2 obtained by the etching method, in the vicinity of the surface as compared with the particle inner region. The average particle size of the fine particles in the region was small, and the value of Ds / Di was small.

シリコン微粒子と、多孔質シリコン粒子のSi濃度はICP発光分光分析計により測定した。何れも、シリコンを80原子%以上含む。   The Si concentration of the silicon fine particles and the porous silicon particles was measured with an ICP emission spectrophotometer. All contain 80 atomic% or more of silicon.

多孔質シリコン粒子の平均空隙率は、水銀圧入法(JIS R 1655)により15mLセルを用いて測定した。   The average porosity of the porous silicon particles was measured by a mercury intrusion method (JIS R 1655) using a 15 mL cell.

また、多孔質シリコン粒子を、半径方向で50%以上の表面近傍領域と、半径方向で50%以内の粒子内部領域に分け、それぞれの平均空隙率であるXsとXiをSEMの画像情報により測定し、XsとXiの比を計算した。実施例においてはXs/Xiの値は、0.5〜1.5の間にあるが、エッチング法により得た比較例1−2においては、粒子内部領域に比べて、表面近傍領域の細孔構造が発達しているため、Xs/Xiが大きくなった。   In addition, the porous silicon particles are divided into a region near the surface of 50% or more in the radial direction and a particle internal region within 50% in the radial direction, and the average porosity Xs and Xi are measured by SEM image information. And the ratio of Xs to Xi was calculated. In the examples, the value of Xs / Xi is between 0.5 and 1.5, but in Comparative Example 1-2 obtained by the etching method, the pores in the region near the surface compared to the particle internal region. Xs / Xi increased due to the development of the structure.

また、図13は、実施例1−12にかかる多孔質シリコン粒子を構成するシリコン微粒子を測定したX線回折格子像である。シリコンの結晶由来の回折が観察され、点の回折が得られていることから、シリコン微粒子が単結晶シリコンから構成されていることが分かる。   FIG. 13 is an X-ray diffraction grating image obtained by measuring silicon fine particles constituting the porous silicon particles according to Example 1-12. Diffraction derived from silicon crystals is observed, and point diffraction is obtained, which indicates that the silicon fine particles are composed of single crystal silicon.

(粒子を負極に用いた際のサイクル特性の評価)
(i)負極スラリーの調製
実施例や比較例に係る粒子40質量部とアセチレンブラック(電気化学工業株式会社製)45質量部の比率でミキサーに投入した。さらに結着剤としてスチレンブタジエンラバー(SBR)40質量%のエマルジョン(日本ゼオン(株)製、BM400B)を固形分換算で5質量部、スラリーの粘度を調整する増粘剤としてカルボキシメチルセルロースナトリウム(ダイセル化学工業(株)製)1質量%溶液を固形分換算で10質量部の割合で混合してスラリーを作製した。
(ii)負極の作製
調製したスラリーを自動塗工装置を用いて、厚さ10μmの集電体用電解銅箔(古河電気工業(株)製、NC−WS)上に10μmの厚みで塗布し、70℃で乾燥させた後、プレスによる調厚工程を経て、リチウムイオン電池用負極を製造した。
(iii)特性評価
リチウムイオン電池用負極をφ20mmに切り抜き、対極と参照極に金属Liを用い、1mol/LのLiPFを含むエチレンカーボネートとジエチルカーボネートの混合溶液からなる電解液を注液し、電気化学試験セルを構成した。なお、電気化学試験セルの組み立ては、露点−60℃以下のグローブボックス内で行った。充放電特性の評価は、初回の放電容量及び50サイクルの充電・放電後の放電容量を測定し、放電容量の維持率を算出することによって行った。放電容量は、リチウムの吸蔵・放出に有効な活物質Siの総重量を基準として算出した。まず、25℃環境下において、電流値を0.1Cの定電流条件で充電を行い、電圧値が0.02V(参照極Li/Li+の酸化還元電位を0V基準とする、以下同じ)まで低下した時点で充電を停止した。次いで、電流値0.1Cの条件で、参照極に対する電圧が1.5Vとなるまで放電を行い、0.1C初期放電容量を測定した。なお、0.1Cとは、10時間で満充電できる電流値である。次いで、0.1Cでの充放電速度で上記充放電を50サイクル繰り返した。初期放電容量に対する、充放電を50サイクル繰り返したときの放電容量の割合を百分率で求め、50サイクル後放電容量維持率とした。
(Evaluation of cycle characteristics when particles are used for negative electrode)
(I) Preparation of Negative Electrode Slurry A mixer was charged at a ratio of 40 parts by mass of particles according to Examples and Comparative Examples and 45 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.). Furthermore, 5 mass parts of a styrene butadiene rubber (SBR) 40 mass% emulsion (manufactured by Nippon Zeon Co., Ltd., BM400B) as a binder, and carboxymethyl cellulose sodium (Daicel) as a thickener to adjust the viscosity of the slurry A slurry was prepared by mixing a 1% by mass solution of Chemical Industry Co., Ltd. at a ratio of 10 parts by mass in terms of solid content.
(Ii) Production of negative electrode Using the automatic coating apparatus, the prepared slurry was applied to a 10 μm thick electrolytic copper foil for current collector (manufactured by Furukawa Electric Co., Ltd., NC-WS) with a thickness of 10 μm. After drying at 70 ° C., a negative electrode for a lithium ion battery was manufactured through a thickness adjustment step using a press.
(Iii) Characteristic evaluation A negative electrode for a lithium ion battery is cut out to φ20 mm, a metal Li is used for a counter electrode and a reference electrode, and an electrolytic solution composed of a mixed solution of ethylene carbonate and diethyl carbonate containing 1 mol / L LiPF 6 is injected, An electrochemical test cell was constructed. The electrochemical test cell was assembled in a glove box having a dew point of −60 ° C. or lower. The charge / discharge characteristics were evaluated by measuring the initial discharge capacity and the discharge capacity after 50 cycles of charge / discharge, and calculating the discharge capacity retention rate. The discharge capacity was calculated based on the total weight of the active material Si effective for occlusion / release of lithium. First, in a 25 ° C. environment, charging is performed under a constant current condition of 0.1 C, and the voltage value is reduced to 0.02 V (the reference electrode Li / Li + oxidation-reduction potential is based on 0 V, the same applies hereinafter). At that point, charging was stopped. Next, discharging was performed under a condition of a current value of 0.1 C until the voltage with respect to the reference electrode became 1.5 V, and a 0.1 C initial discharge capacity was measured. In addition, 0.1 C is a current value that can be fully charged in 10 hours. Next, the above charge / discharge cycle was repeated 50 cycles at a charge / discharge rate of 0.1C. The ratio of the discharge capacity when charging / discharging was repeated 50 cycles with respect to the initial discharge capacity was obtained as a percentage, and the discharge capacity retention rate after 50 cycles was determined.

[実施例2]
以下、複合体元素を含む多孔質シリコン複合体粒子に関する実施例2について説明する。
(実施例2−1)
Si:Fe:Mg=25:5:70(原子%)の割合でシリコン粉末(塊状 純度95.0%以上)と鉄粉末(粒状:2mm、純度:99.999%以上)とマグネシウム粉末(粉末 純度:98.0%以上)を配合し、これをアルゴン雰囲気中にて1120℃で溶解した。その後、単ロール鋳造機を用いて冷却速度:800K/sで急冷し板厚40μmのシリコン合金製リボンを作製した(工程(a))。これを500℃のビスマス溶湯に1分浸漬させた後に、直ちにアルゴンガスにて急冷した。この処理により、シリコン微粒子と、Si−Fe合金からなるシリコン化合物粒子と、Mg−Bi合金またはBiからなる第2相の複合体が得られた(工程(b))。この複合体を硝酸20%水溶液中に5分浸漬させ、多孔質シリコン複合体粒子を得た(工程(c))。
[Example 2]
Hereinafter, Example 2 regarding the porous silicon composite particles containing the composite element will be described.
(Example 2-1)
Silicon powder (granular purity: 95.0% or more), iron powder (granular: 2 mm, purity: 99.999% or more) and magnesium powder (powder) at a ratio of Si: Fe: Mg = 25: 5: 70 (atomic%) (Purity: 98.0% or more) was added and dissolved at 1120 ° C. in an argon atmosphere. Thereafter, the ribbon was rapidly cooled using a single roll casting machine at a cooling rate of 800 K / s to produce a silicon alloy ribbon having a thickness of 40 μm (step (a)). This was immersed in a molten bismuth at 500 ° C. for 1 minute, and immediately quenched with argon gas. By this treatment, a second phase composite made of silicon fine particles, silicon compound particles made of Si—Fe alloy, and Mg—Bi alloy or Bi was obtained (step (b)). This composite was immersed in a 20% nitric acid aqueous solution for 5 minutes to obtain porous silicon composite particles (step (c)).

(実施例2−2〜2−8、2−10、2−11)
各実施例、比較例の製造条件を、表6にまとめた。実施例2−2〜2−8、2−10、2−11は、表6に示す中間合金元素、複合体元素、各元素の配合比率、などの製造条件にて、他は実施例2−1の方法と同様にして多孔質シリコン複合体を得た。なお、実施例2−4においては、連続したリボン状のシリコン合金を形成できず、1〜2cmで切れてしまったため、箔片状のシリコン合金となった。実施例2−5の線状シリコン中間合金でのφ100μmとは、線状の中間合金の直径が100μmであることを意味する。実施例2−8でも同様である。
(Examples 2-2 to 2-8, 2-10, 2-11)
The production conditions for each example and comparative example are summarized in Table 6. Examples 2-2 to 2-8, 2-10, and 2-11 are the production conditions such as intermediate alloy elements, composite elements, and blending ratios of the respective elements shown in Table 6; In the same manner as in method 1, a porous silicon composite was obtained. In Example 2-4, a continuous ribbon-shaped silicon alloy could not be formed and was cut at 1 to 2 cm, so that a foil piece-shaped silicon alloy was obtained. In the linear silicon intermediate alloy of Example 2-5, φ100 μm means that the diameter of the linear intermediate alloy is 100 μm. The same applies to Example 2-8.

(実施例2−9)
Si:V:P=40:1:59(原子%)の割合でシリコン粉末とバナジウム粉末とリン粉末を配合し、これをアルゴン雰囲気中にて1439℃で溶解した。その後、ガスアトマイズ装置を用いて冷却速度:800K/sで急冷し平均粒径40μmの粒状のシリコン合金を作製した(工程(a))。これを750℃のカドミウム溶湯に1分浸漬させた後に、直ちにアルゴンガスにて急冷した。この処理により、シリコン微粒子と、SiとVの合金からなるシリコン化合物粒子と、P−Cd合金またはCdからなる第2相の複合体が得られた(工程(b))。この複合体を硝酸20%水溶液中に5分浸漬させ、多孔質シリコン複合体粒子を得た(工程(c))。また、粒状中間合金でのφ40μmとは、粒状中間合金の平均粒径が40μmであることを意味する。
(Example 2-9)
Silicon powder, vanadium powder, and phosphorus powder were blended at a ratio of Si: V: P = 40: 1: 59 (atomic%) and dissolved at 1439 ° C. in an argon atmosphere. Thereafter, a gas atomizer was used to rapidly cool at a cooling rate of 800 K / s to produce a granular silicon alloy having an average particle size of 40 μm (step (a)). This was immersed in molten cadmium at 750 ° C. for 1 minute, and immediately quenched with argon gas. By this treatment, silicon fine particles, silicon compound particles made of an alloy of Si and V, and a second phase composite made of a P—Cd alloy or Cd were obtained (step (b)). This composite was immersed in a 20% nitric acid aqueous solution for 5 minutes to obtain porous silicon composite particles (step (c)). In addition, φ40 μm in the granular intermediate alloy means that the average particle diameter of the granular intermediate alloy is 40 μm.

(実施例2−12)
Si:Mg=31:69(原子%)の割合でシリコンとマグネシウムを配合し、これをアルゴン雰囲気中にて溶解した。その後、鋳型内で冷却し、5mm角の大きさのシリコン合金製インゴットを作製した。これを1原子%のヒ素を含むビスマス溶湯に1分浸漬させた後に、直ちにアルゴンガスにて急冷した。この処理により、シリコン微粒子と、Si−As合金からなるシリコン化合物粒子と、Mg−Bi合金またはBiからなる第2相の複合体が得られた。この複合体を硝酸20%水溶液中に50分浸漬させ、多孔質シリコン複合体粒子を得た。
(Example 2-12)
Silicon and magnesium were blended at a ratio of Si: Mg = 31: 69 (atomic%) and dissolved in an argon atmosphere. Then, it cooled in the casting_mold | template and produced the ingot made from a silicon alloy of a magnitude | size of 5 square mm. This was immersed in a molten bismuth containing 1 atomic% arsenic for 1 minute, and then immediately cooled with argon gas. By this treatment, silicon fine particles, silicon compound particles made of Si—As alloy, and a second phase composite made of Mg—Bi alloy or Bi were obtained. This composite was immersed in a 20% nitric acid aqueous solution for 50 minutes to obtain porous silicon composite particles.

(実施例2−13〜2−16)
実施例2−13〜2−16は、表6に示す中間合金元素、各元素の配合比率、などの製造条件にて、他は実施例2−12の方法と同様にして多孔質シリコン複合体粒子を得た。なお、実施例2−13,2−15,2−16は、水冷式ブロックを用いて冷却速度を高めている。
(Examples 2-13 to 2-16)
In Examples 2-13 to 2-16, porous silicon composites were produced in the same manner as in Example 2-12 except that the production conditions such as the intermediate alloy elements shown in Table 6 and the blending ratio of each element were used. Particles were obtained. In Examples 2-13, 2-15, and 2-16, the cooling rate was increased using a water-cooled block.

(比較例2−1)
Si:Fe:Mg=55:1:44(原子%)の割合でシリコン粉末と鉄粉末とマグネシウム粉末を配合し、これを真空炉中にて1195℃で溶解した。その後、銅ブロックを用いて鋳造し、冷却速度:1K/sで5mm角のシリコン合金製ブロックを作製した。これを930℃のビスマス溶湯に200分浸漬させた後に、直ちにアルゴンガスにて急冷した。この2相複合体を硝酸20%水溶液中に50分浸漬させた。本比較例は、式(2)のa÷(a+Y)×100≦[Si最大含有量]を満足しない。
(比較例2−2)
Si:Fe:Mg=25:11:64(原子%)の割合でシリコン粉末と鉄粉末とマグネシウム粉末を配合し、これを真空炉中にて1105℃で溶解した。その後、銅ブロックを用いて鋳造し、冷却速度:1K/sで5mm角のシリコン合金製ブロックを作製した。これを410℃のビスマス溶湯に10分浸漬させた後に、直ちにアルゴンガスにて急冷した。この2相複合体を硝酸20%水溶液中に50分浸漬させた。本比較例は、式(2)の10≦a÷(a+Y)×100を満足しない。
(比較例2−3)
Si:Mg=24:76(原子%)の割合でシリコン粉末とマグネシウム粉末を配合し、これを真空炉中にて1095℃で溶解した。その後、水冷銅ブロックを用いて鋳造し、冷却速度:800K/sで300μmのシリコン合金製リボンを作製した。これを895℃のビスマス85原子%とニッケル15原子%の合金浴に250分浸漬させた後に、直ちにアルゴンガスにて急冷した。この2相複合体を硝酸20%水溶液中に50分浸漬させた。本比較例は、合金浴中の単独の複合体元素の濃度が10原子%を超えている。
(Comparative Example 2-1)
Silicon powder, iron powder, and magnesium powder were blended at a ratio of Si: Fe: Mg = 55: 1: 44 (atomic%), and melted at 1195 ° C. in a vacuum furnace. Then, it cast using the copper block, and produced the 5 mm square silicon alloy block at the cooling rate: 1 K / s. This was immersed in a molten bismuth at 930 ° C. for 200 minutes, and then immediately cooled with argon gas. This two-phase composite was immersed in a 20% nitric acid aqueous solution for 50 minutes. This comparative example does not satisfy a ÷ (a + Y) × 100 ≦ [maximum Si content] in formula (2).
(Comparative Example 2-2)
Silicon powder, iron powder, and magnesium powder were blended at a ratio of Si: Fe: Mg = 25: 11: 64 (atomic%), and dissolved at 1105 ° C. in a vacuum furnace. Then, it cast using the copper block, and produced the 5 mm square silicon alloy block at the cooling rate: 1 K / s. This was immersed in 410 ° C. molten bismuth for 10 minutes and immediately quenched with argon gas. This two-phase composite was immersed in a 20% nitric acid aqueous solution for 50 minutes. This comparative example does not satisfy 10 ≦ a ÷ (a + Y) × 100 of Expression (2).
(Comparative Example 2-3)
Silicon powder and magnesium powder were blended at a ratio of Si: Mg = 24: 76 (atomic%) and dissolved at 1095 ° C. in a vacuum furnace. Thereafter, casting was performed using a water-cooled copper block, and a 300 μm silicon alloy ribbon was produced at a cooling rate of 800 K / s. This was immersed in an alloy bath of 85 atomic% bismuth and 15 atomic% nickel at 895 ° C. for 250 minutes, and immediately quenched with argon gas. This two-phase composite was immersed in a 20% nitric acid aqueous solution for 50 minutes. In this comparative example, the concentration of the single complex element in the alloy bath exceeds 10 atomic%.

(比較例2−4)
Si:Fe=90:10(原子%)の割合でシリコン粉末と鉄粉末を配合し、これを真空炉中にて1390℃で溶解した。その後、単ロール鋳造機を用いて冷却速度:110K/sで急冷しシリコン合金製箔片を作製した。これをフッ硝酸に10分浸漬させた後に、水洗した。
(比較例2−5)
Si:Fe=66:34(原子%)の割合でシリコン粉末と鉄粉末を配合し、これを真空炉中にて1250℃で溶解した。その後、ガスアトマイズ装置で急冷凝固を行い、FeSi金属間化合物を作製した。これを篩に掛けて粒径分布1〜10μmの粒子を回収した。この粒子と平均粒径5μmのシリコン粒子(SIE23PB、高純度化学研究所製)を2:1で混合し、結着剤としてスチレンブタジエンラバー(SBR)を用いて造粒した。
(Comparative Example 2-4)
Silicon powder and iron powder were blended at a ratio of Si: Fe = 90: 10 (atomic%) and melted at 1390 ° C. in a vacuum furnace. Then, it cooled rapidly with the cooling rate: 110 K / s using the single roll casting machine, and produced the foil piece made from a silicon alloy. This was immersed in hydrofluoric acid for 10 minutes and then washed with water.
(Comparative Example 2-5)
Silicon powder and iron powder were blended at a ratio of Si: Fe = 66: 34 (atomic%) and melted at 1250 ° C. in a vacuum furnace. Thereafter, rapid solidification was performed with a gas atomizer to produce an FeSi 2 intermetallic compound. This was sieved to recover particles having a particle size distribution of 1 to 10 μm. These particles and silicon particles having an average particle size of 5 μm (SIE23PB, manufactured by High Purity Chemical Laboratory) were mixed at a ratio of 2: 1 and granulated using styrene butadiene rubber (SBR) as a binder.

[評価]
評価結果を表7にまとめた。なお、実施例2−13から2−16、比較例2−3は、シリコン粒子が大きいことから、乳鉢で粉砕して小さくした粒子を用いて特性評価を行った。例えば、実施例2−13の多孔質シリコン複合体粒子の平均粒径の130⇒33は、平均粒径130μmであった多孔質シリコン複合体粒子を粉砕して平均粒径33μmの多孔質シリコン複合体粒子を得たということを意味する。
[Evaluation]
The evaluation results are summarized in Table 7. Since Examples 2-13 to 2-16 and Comparative Example 2-3 have large silicon particles, the characteristics were evaluated using particles that were pulverized and reduced in a mortar. For example, the average particle size 130⇒33 of the porous silicon composite particles of Example 2-13 is obtained by pulverizing the porous silicon composite particles having an average particle size of 130 μm to obtain a porous silicon composite having an average particle size of 33 μm. It means that body particles were obtained.

表7に示すとおり、各実施例は、シリコン微粒子の平均粒径xが2nm〜2μmにあり、シリコン微粒子の粒径の標準偏差σが1〜500nmであり、平均xと標準偏差σとの比(σ/x)が0.01〜0.5である。また、各実施例において、平均最長径aと平均最短径bとの比(a/b)が1.1〜50である。さらに、シリコン微粒子と、隣接するシリコン微粒子の連結部の厚さと、隣接するシリコン微粒子のより大きいほうのシリコン微粒子の直径の比率(連結厚さ比率)は、80%以下である。
各実施例においては、脱成分腐食(dealloying、デアロイング)を利用した製造方法により、請求項9に記載の各要件を満たす多孔質シリコン複合体粒子を作製したため、各実施例での50サイクル後容量維持率は高く、サイクル特性は良好であった。シリコン微粒子の粒径が均一であるため、充放電時の活物質の膨張・収縮時に粒径不均一部位への応力集中が無くなることで、サイクル特性が大幅に向上したものと推測される。
各実施例は、各比較例よりも、50サイクル後容量維持率が高く、充放電の繰り返しによる放電容量の低下の割合が小さいので、電池の寿命が長いことが予想される。
また、各実施例においては、負極活物質が、連続的な空隙を有する多孔質シリコン複合体粒子であるため、充放電時のLiとSiの合金化・脱合金化による膨張・収縮の体積変化が生じても、シリコン複合体粒子の割れや微粉化を生じず、放電容量維持率が高い。
As shown in Table 7, in each example, the average particle diameter x of the silicon fine particles is 2 nm to 2 μm, the standard deviation σ of the particle diameter of the silicon fine particles is 1 to 500 nm, and the ratio between the average x and the standard deviation σ. (Σ / x) is 0.01 to 0.5. Moreover, in each Example, ratio (a / b) of the average longest diameter a and the average shortest diameter b is 1.1-50. Further, the ratio of the diameter of the silicon fine particles and the connecting portion of the adjacent silicon fine particles to the diameter of the larger silicon fine particle of the adjacent silicon fine particles (connection thickness ratio) is 80% or less.
In each example, the porous silicon composite particles satisfying the respective requirements according to claim 9 were produced by a manufacturing method using dealloying (dealloying), and therefore the capacity after 50 cycles in each example. The retention rate was high and the cycle characteristics were good. Since the silicon fine particles have a uniform particle size, it is presumed that the cycle characteristics are greatly improved by eliminating stress concentration on the non-uniform particle size portion during expansion / contraction of the active material during charge / discharge.
Each example has a capacity retention rate after 50 cycles higher than each comparative example, and the rate of decrease in discharge capacity due to repeated charge and discharge is small, so the battery life is expected to be long.
In each example, since the negative electrode active material is porous silicon composite particles having continuous voids, volume change of expansion / contraction due to alloying / dealloying of Li and Si during charge / discharge Even if this occurs, the silicon composite particles are not cracked or pulverized, and the discharge capacity retention rate is high.

更に詳細に比較すると比較例2−1では、中間合金作製時に初晶として純Siが晶出し、更に凝固末期に共晶組織(SiとMgSi)が生成した。この初晶Siは10μm程度と粗大なものであった。これは、ビスマス溶湯へ浸漬させても微細化せず、エッチング工程を経てもそのままの形で残存した。その為に、Liの侵入・放出を繰返す際に、粗大SiをはじめとするSi単体が充放電=LiとSiの合金化・脱合金化による膨張・収縮の体積変化に追従できずに、割れや崩壊を起こり、集電パスや電極機能が失われた割合が多くなり、電池の寿命が短くなったと考えられる。 When compared in more detail, in Comparative Example 2-1, pure Si crystallized as an initial crystal when the intermediate alloy was produced, and a eutectic structure (Si and Mg 2 Si) was generated at the end of solidification. The primary crystal Si was as coarse as about 10 μm. Even if it was immersed in molten bismuth, it did not become finer and remained as it was even after the etching process. Therefore, when repeating the intrusion / release of Li, Si alone, including coarse Si, is unable to follow the volume change of expansion / contraction due to charge / discharge = Li / Si alloying / dealloying. It is thought that the rate at which the current collection path and electrode function were lost increased and the battery life was shortened.

比較例2−2では、シリコンに比べて複合体元素である鉄の量が多く、ほとんどのシリコンがシリサイドを形成してしまったため、放電容量が小さかった。   In Comparative Example 2-2, the amount of iron, which is a complex element, was larger than that of silicon, and most of the silicon formed silicide, so the discharge capacity was small.

比較例2−3では、浸漬した溶湯に添加した複合体元素であるNiの量が多く、ほとんどのシリコンがシリサイドを形成してしまったため、放電容量が小さかった。   In Comparative Example 2-3, the amount of Ni as a complex element added to the immersed molten metal was large, and most of the silicon had formed silicide, so the discharge capacity was small.

図24は、比較例2−4の多孔質シリコン粒子の表面のSEM写真である。粒径1〜2μmの粒子が多く観察される。
比較例2−4では、フッ酸や硝酸によるエッチングにより細孔構造を形成したため、粒子中心部に細孔が形成されない箇所が形成された。この芯の部分が、充放電による体積変化に追従できず、サイクル特性が悪いと考えられる。
FIG. 24 is a SEM photograph of the surface of the porous silicon particles of Comparative Example 2-4. Many particles having a particle diameter of 1 to 2 μm are observed.
In Comparative Example 2-4, since the pore structure was formed by etching with hydrofluoric acid or nitric acid, a portion where no pore was formed was formed at the center of the particle. This core portion cannot follow the volume change due to charging / discharging and is considered to have poor cycle characteristics.

比較例2−5では、細孔構造を持たない単なる粒子であるため、充放電による体積変化に追従できず、サイクル特性が悪いと考えられる。   In Comparative Example 2-5, since it is a mere particle having no pore structure, it cannot follow the volume change due to charging / discharging and is considered to have poor cycle characteristics.

(粒子形状の評価)
多孔質シリコン複合体粒子の粒子形状の観察を、走査透過型電子顕微鏡(日本電子製、JEM 3100FEF)を用いて行った。図14に、実施例2−1に係る粒子の表面のSEM写真を示し、図15に、実施例2−1に係る粒子内部の断面のSEM写真を示し、図16に、実施例2−1に係る粒子の表面のSEM写真を示す。図14、図15には、粒径20nm〜50nmのシリコン微粒子が互いに接合して多数集まり、多孔質シリコン複合体粒子を形成していることが観察される。また、図14と図15で、空隙率やシリコン微粒子の粒径に大きな差がないことが観察される。図16には、大きなシリサイドの粒子に、小さなシリコン粒子が接合している様子が観察される。
(Evaluation of particle shape)
The observation of the particle shape of the porous silicon composite particles was performed using a scanning transmission electron microscope (manufactured by JEOL Ltd., JEM 3100FEF). FIG. 14 shows an SEM photograph of the surface of the particle according to Example 2-1, FIG. 15 shows an SEM photograph of a cross section inside the particle according to Example 2-1, and FIG. The SEM photograph of the surface of the particle which concerns on is shown. In FIGS. 14 and 15, it is observed that a large number of silicon fine particles having a particle diameter of 20 nm to 50 nm are joined together to form porous silicon composite particles. Moreover, it is observed in FIG. 14 and FIG. 15 that there is no big difference in the porosity and the particle size of the silicon fine particles. In FIG. 16, it is observed that small silicon particles are bonded to large silicide particles.

図17は、シリコン複合体粒子を構成するシリコン微粒子のX線回折格子像である。シリコンの結晶由来のスポットが観察され、シリコン微粒子が単結晶である事がわかる。   FIG. 17 is an X-ray diffraction grating image of silicon fine particles constituting the silicon composite particles. A spot derived from a crystal of silicon is observed, and it can be seen that the silicon fine particle is a single crystal.

シリコン微粒子とシリコン化合物粒子の平均粒径は、電子顕微鏡(SEM)の画像情報により測定した。多孔質シリコン複合体粒子を、半径方向で50%以上の表面近傍領域と、半径方向で50%以内の粒子内部領域に分け、それぞれのSEM写真から、それぞれの平均粒径DsとDiを求め、これらの比を計算した。Ds/Diの値は、実施例においては、いずれも0.5〜1.5の間であったが、エッチング法により得た比較例2−4においては、粒子内部領域に比べて、表面近傍領域の微粒子の平均粒径が小さく、Ds/Diの値が小さくなった。多孔質シリコン複合体粒子の平均粒径は、前述の、SEMの観察とDLSを併用する方法を用いた。   The average particle size of the silicon fine particles and the silicon compound particles was measured by image information of an electron microscope (SEM). The porous silicon composite particles are divided into a surface vicinity region of 50% or more in the radial direction and a particle internal region of 50% or less in the radial direction, and the respective average particle diameters Ds and Di are obtained from the respective SEM photographs, These ratios were calculated. The values of Ds / Di were all in the range of 0.5 to 1.5 in the examples, but in Comparative Example 2-4 obtained by the etching method, near the surface compared to the particle inner region. The average particle size of the fine particles in the region was small, and the value of Ds / Di was small. For the average particle diameter of the porous silicon composite particles, the above-described method using SEM observation and DLS was used.

シリコン微粒子のSi濃度と、多孔質シリコン複合体粒子のSiと複合体元素の濃度などはICP発光分光分析計により測定した。何れの実施例においても、シリコン微粒子はシリコンを80原子%以上含む。   The Si concentration of silicon fine particles, the concentration of Si and complex elements in the porous silicon composite particles, and the like were measured with an ICP emission spectrometer. In any embodiment, the silicon fine particles contain 80 atomic% or more of silicon.

多孔質シリコン複合体粒子の平均空隙率は、水銀圧入法(JIS R 1655)により15mLセルを用いて測定した。   The average porosity of the porous silicon composite particles was measured by a mercury intrusion method (JIS R 1655) using a 15 mL cell.

また、多孔質シリコン複合体粒子を、半径方向で50%以上の表面近傍領域と、半径方向で50%以内の粒子内部領域に分け、それぞれの領域内の任意の箇所を表面走査型電子顕微鏡で観察し、それぞれの平均空隙率であるXsとXiを求め、XsとXiの比を計算した。実施例においてはXs/Xiの値は、0.5〜1.5の間にあるが、エッチング法により得た比較例2−4においては、粒子内部領域に比べて、表面近傍領域の細孔構造が発達しているため、Xs/Xiが大きくなった。   Further, the porous silicon composite particles are divided into a surface vicinity region of 50% or more in the radial direction and a particle internal region of 50% or less in the radial direction, and an arbitrary portion in each region is analyzed with a surface scanning electron microscope. Observed, Xs and Xi were obtained as the average porosity, and the ratio of Xs and Xi was calculated. In the examples, the value of Xs / Xi is between 0.5 and 1.5. However, in Comparative Example 2-4 obtained by the etching method, the pores in the region near the surface compared to the region inside the particle Xs / Xi increased due to the development of the structure.

(粒子を負極に用いた際のサイクル特性の評価)
放電容量は、シリサイドと、リチウムの吸蔵・放出に有効な活物質Siの総重量を基準として算出する以外は、実施例1と同様にしてサイクル特性を評価した。
(Evaluation of cycle characteristics when particles are used for negative electrode)
The cycle characteristics were evaluated in the same manner as in Example 1 except that the discharge capacity was calculated based on the total weight of silicide and active material Si effective for lithium insertion / release.

[実施例3]
(実施例3−1)
実施例1と同様のプロセスを用いて工程(a)から(c)の各種条件を変更して、シリコン合金微粒子の粒径、形状、分布を変化させた。特に、工程(b)での浸漬温度、時間を変更した。また、比較例として、工程(b)の溶融金属浴に機械攪拌(攪拌エネルギー)や振動(振幅:1mm×60Hz)を与えた。それらの条件を表8に示す。また、この製法で得られた多孔質シリコン粒子及びシリコン微粒子を、実施例1と同様に評価を行った結果を表9に示す。
[Example 3]
(Example 3-1)
Using the same process as in Example 1, the conditions of steps (a) to (c) were changed to change the particle diameter, shape, and distribution of the silicon alloy fine particles. In particular, the immersion temperature and time in the step (b) were changed. As a comparative example, mechanical stirring (stirring energy) and vibration (amplitude: 1 mm × 60 Hz) were applied to the molten metal bath in step (b). These conditions are shown in Table 8. Table 9 shows the results of evaluating the porous silicon particles and silicon fine particles obtained by this production method in the same manner as in Example 1.

各比較例では50サイクル後容量維持率が80%を下回っているのに対して各実施例では50サイクル後容量維持率は80%を上回っている。   In each comparative example, the capacity retention rate after 50 cycles is less than 80%, while in each embodiment, the capacity retention rate after 50 cycles is more than 80%.

各実施例は、シリコン微粒子の平均粒径xが2nm〜2μmにあり、シリコン微粒子の粒径の標準偏差σが1〜500nmであり、平均xと標準偏差σとの比(σ/x)が0.01〜0.5である。また、各実施例において、平均最長径aと平均最短径bとの比(a/b)が1.1〜50である。さらに、シリコン微粒子と、隣接するシリコン微粒子の連結部の厚さと、隣接するシリコン微粒子のより大きいほうのシリコン微粒子の直径との比率(連結厚さ比率)は、80%以下である。   In each example, the average particle diameter x of the silicon fine particles is 2 nm to 2 μm, the standard deviation σ of the particle diameter of the silicon fine particles is 1 to 500 nm, and the ratio (σ / x) between the average x and the standard deviation σ is 0.01 to 0.5. Moreover, in each Example, ratio (a / b) of the average longest diameter a and the average shortest diameter b is 1.1-50. Furthermore, the ratio (connection thickness ratio) between the silicon fine particles, the thickness of the connecting portion of the adjacent silicon fine particles, and the diameter of the larger silicon fine particle of the adjacent silicon fine particles is 80% or less.

図18は、実施例3-7に係る多孔質シリコン粒子のSEM写真である。直径30nm程度のシリコン微粒子が多数集まっていることが分かる。   FIG. 18 is a SEM photograph of porous silicon particles according to Example 3-7. It can be seen that a large number of silicon fine particles having a diameter of about 30 nm are gathered.

また、図19は、実施例3−7に係る多孔質シリコン粒子を構成するシリコン微粒子のTEM写真である。シリコン微粒子の平均粒径xが28.6nmで、標準偏差σが5.3nmであり、σ/x=0.19であった。粒径が均一であり、さらにシリコン微粒子間が太い接続で接合していることが分かる。   FIG. 19 is a TEM photograph of silicon fine particles constituting the porous silicon particles according to Example 3-7. The average particle diameter x of the silicon fine particles was 28.6 nm, the standard deviation σ was 5.3 nm, and σ / x = 0.19. It can be seen that the particle diameter is uniform and the silicon fine particles are joined with a thick connection.

図20は、実施例3−7に係る多孔質シリコン粒子を形成するシリコン微粒子の粒度分布である。一つ一つのシリコン微粒子が扁平な球状粒子であり、これらの粒子が接合して形成されているため、分布が正規分布になっていないことが分かる。   FIG. 20 is a particle size distribution of silicon fine particles forming the porous silicon particles according to Example 3-7. Since each silicon fine particle is a flat spherical particle, and these particles are formed by bonding, it can be seen that the distribution is not a normal distribution.

図21は、実施例3−8に係る多孔質シリコン粒子を構成するシリコン微粒子のTEM写真であり、左上はTEMでの観察領域での制限視野電子線回折像である。TEM写真において、一つのシリコン微粒子内に粒界がなく、単結晶であることが分かる。また、制限視野電子線回折像において、シリコンの結晶由来のスポットが観察され、やはりシリコン微粒子が単結晶である事がわかる。また、このシリコン微粒子は、扁平な球状をしており、長軸径が36nmで、短軸径が27nmであった。さらに、複数のシリコン微粒子の平均をとっても、平均最短径aが36nmで、平均最短径bが27nmであり、a/b=1.33であった。   FIG. 21 is a TEM photograph of silicon fine particles constituting the porous silicon particles according to Example 3-8, and the upper left is a limited-field electron diffraction image in the observation region with TEM. In the TEM photograph, it can be seen that there is no grain boundary in one silicon fine particle and it is a single crystal. Further, in the limited-field electron diffraction image, a spot derived from a silicon crystal is observed, and it can be seen that the silicon fine particle is also a single crystal. Further, the silicon fine particles had a flat spherical shape, and the major axis diameter was 36 nm and the minor axis diameter was 27 nm. Furthermore, even if the average of the plurality of silicon fine particles was taken, the average shortest diameter a was 36 nm, the average shortest diameter b was 27 nm, and a / b = 1.33.

図25は、実施例3−1の多孔質シリコン粒子のSEM写真である。多角柱状に成長したシリコン微粒子が多数観察される。平均支柱径xは203.6nmであり、標準偏差σは80.6nmであり、σ/xは0.40であった。   FIG. 25 is a SEM photograph of porous silicon particles of Example 3-1. A large number of silicon fine particles grown in a polygonal column shape are observed. The average strut diameter x was 203.6 nm, the standard deviation σ was 80.6 nm, and σ / x was 0.40.

図26は、実施例3−2の多孔質シリコン粒子のSEM写真である。支柱径20nm程度の柱状に成長したシリコン微粒子が多数観察される。   FIG. 26 is a SEM photograph of the porous silicon particles of Example 3-2. A large number of silicon fine particles grown in a columnar shape with a column diameter of about 20 nm are observed.

図27は、比較例3−3の多孔質シリコン粒子のSEM写真である。大きく成長したシリコン微粒子が多数観察される。平均粒径xは694.0nmであり、標準偏差σは231.7nmであり、σ/xは0.33であった。また、長時間浸漬の為に、シリコン粒子の表面の微粒子の径が大きくその比Es/Eiが1.08となっていた。   FIG. 27 is an SEM photograph of porous silicon particles of Comparative Example 3-3. Many large silicon particles are observed. The average particle size x was 694.0 nm, the standard deviation σ was 231.7 nm, and σ / x was 0.33. Further, because of the long-time immersion, the diameter of the fine particles on the surface of the silicon particles was large, and the ratio Es / Ei was 1.08.

図28は、実施例1−15の中間合金のミクロ組織写真である。   FIG. 28 is a microstructure photograph of the intermediate alloy of Example 1-15.

以上、添付図面を参照しながら、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

本発明にかかる多孔質シリコン複合体粒子は、リチウムイオン電池の負極に用いられるだけでなく、リチウムイオン・キャパシタの負極、太陽電池、発光材料、フィルター用素材としても用いられることができる。   The porous silicon composite particles according to the present invention can be used not only for a negative electrode of a lithium ion battery, but also as a negative electrode of a lithium ion capacitor, a solar battery, a light emitting material, and a filter material.

1………多孔質シリコン粒子
3………シリコン微粒子
S………表面近傍領域
I………粒子内部領域
7………シリコン中間合金
9………第2相
11………単ロール鋳造機
13………シリコン合金
15………るつぼ
17………鋼製ロール
19………リボン状シリコン中間合金
21………溶湯装置
23………溶湯
25………シンクロール
27………サポートロール
31………ガスアトマイズ装置
33………るつぼ
35………ノズル
37………ガスジェット
39………粉末状シリコン中間合金
41………回転円盤アトマイズ装置
43………るつぼ
45………ノズル
47………ガスジェット
49………回転円盤
51………粉末状シリコン合金
53………るつぼ
55………鋳型
57………塊状シリコン中間合金
61………溶湯浸漬装置
63………塊状シリコン中間合金
65………浸漬用籠
67………押付けシリンダー
69………溶湯
71………溶湯浸漬装置
73………塊状シリコン中間合金
75………浸漬用籠
77………押付けシリンダー
79………溶湯
81………機械式撹拌機
83………ガス吹き込みプラグ
101………多孔質シリコン複合体粒子
103………シリコン微粒子
105………シリコン化合物粒子
S………表面近傍領域
I………粒子内部領域
107………シリコン中間合金
109………第2相
111………シリコン中間合金
DESCRIPTION OF SYMBOLS 1 ......... Porous silicon particle 3 ......... Silicon fine particle S ......... Surface vicinity region I ......... Particle internal region 7 ......... Silicon intermediate alloy 9 ......... Second phase 11 ......... Single roll casting machine 13 ......... Silicon alloy 15 ......... Crucible 17 ......... Steel roll 19 ......... Ribbon-like silicon intermediate alloy 21 ......... Melting device 23 ......... Melting metal 25 ......... Sink roll 27 ......... Support roll 31 ......... Gas atomizing device 33 ......... Crucible 35 ......... Nozzle 37 ......... Gas jet 39 ......... Powdered silicon intermediate alloy 41 ......... Rotating disk atomizing device 43 ... …… Crucible 45 ... …… Nozzle 47 ……… Gas jet 49 ……… Rotating disc 51 ……… Powdered silicon alloy 53 ……… Crucible 55 ……… Mold 57 ……… Lumped silicon intermediate alloy 61 ……… Mixing of molten metal 63 ......... Lumped silicon intermediate alloy 65 ......... Immersion bowl 67 ......... Pushing cylinder 69 ......... Melute 71 ......... Mold immersion apparatus 73 ......... Lump silicon intermediate alloy 75 ......... Immersion bowl 77 ... …… Pressing cylinder 79 ……… Melt 81 ……… Mechanical stirrer 83 ……… Gas blowing plug 101 ……… Porous silicon composite particles 103 ……… Silicon fine particles 105 ……… Silicon compound particles S …… ... Surface vicinity region I ...... Particle internal region 107 ......... Silicon intermediate alloy 109 ......... Second phase 111 ......... Silicon intermediate alloy

Claims (18)

複数のシリコン微粒子が接合して連続的な空隙を有する多孔質シリコン粒子であって、
前記シリコン微粒子の粒径、支柱径または支柱辺の平均xが2nm〜2μmであり、
前記シリコン微粒子の粒径、支柱径または支柱辺の標準偏差σが1〜500nmであり、
前記平均xと前記標準偏差σとの比(σ/x)が0.01〜0.5である
ことを特徴とする多孔質シリコン粒子。
Porous silicon particles having a continuous void by joining a plurality of silicon fine particles,
The particle diameter of the silicon fine particles, the column diameter or the average x of the column side is 2 nm to 2 μm,
The silicon fine particles have a particle diameter, strut diameter or strut side standard deviation σ of 1 to 500 nm,
A porous silicon particle having a ratio (σ / x) of the average x to the standard deviation σ of 0.01 to 0.5.
前記シリコン微粒子の形状が、扁平な球状、円柱状または多角柱状を有し、平均最長径または最長辺aと平均最短径または最短辺bとの比(a/b)が1.1〜50であることを特徴とする請求項1に記載の多孔質シリコン粒子。   The silicon fine particles have a flat spherical shape, a cylindrical shape, or a polygonal column shape, and the ratio (a / b) of the average longest diameter or longest side a to the average shortest diameter or shortest side b is 1.1 to 50. The porous silicon particle according to claim 1, wherein the porous silicon particle is present. 前記多孔質シリコン粒子の平均粒径が0.1μm〜1000μmであり、
前記多孔質シリコン粒子の平均空隙率が15〜93%であり、
前記多孔質シリコン粒子の半径方向で50%以上の表面近傍領域での前記シリコン微粒子の平均粒径Dsと、前記多孔質シリコン粒子の半径方向で50%以内の粒子内部領域での前記シリコン微粒子の平均粒径Diの比であるDs/Diが、0.5〜1.5であり、
前記多孔質シリコン粒子の半径方向で50%以上の表面近傍領域での空隙率Xsと、前記多孔質シリコン粒子の半径方向で50%以内の粒子内部領域での空隙率Xiの比であるXs/Xiが、0.5〜1.5であり、
酸素を除く元素の比率でシリコンを80原子%以上含む
ことを特徴とする請求項1または請求項2に記載の多孔質シリコン粒子。
The average particle diameter of the porous silicon particles is 0.1 μm to 1000 μm,
The average porosity of the porous silicon particles is 15 to 93%,
The average particle diameter Ds of the silicon fine particles in the region near the surface of 50% or more in the radial direction of the porous silicon particles, and the silicon fine particles in the particle internal region within 50% in the radial direction of the porous silicon particles. Ds / Di which is the ratio of the average particle diameter Di is 0.5 to 1.5,
The ratio of the porosity Xs in the region near the surface of 50% or more in the radial direction of the porous silicon particles to the porosity Xi in the particle internal region within 50% in the radial direction of the porous silicon particles. Xi is 0.5 to 1.5,
3. The porous silicon particle according to claim 1, wherein silicon is contained at 80 atomic% or more in a ratio of elements excluding oxygen.
前記多孔質シリコン粒子を、半径方向で90%以上の表面近傍領域Sと、半径方向で90%以下の粒子内部領域Iとに分け、前記表面近傍領域Sを構成する前記シリコン微粒子の平均粒径をEsとし、前記粒子内部領域Iを構成する前記シリコン微粒子の平均粒径をEiとするとき、Es/Eiが0.01〜1.0であることを特徴とする請求項1〜3のいずれか1項に記載の多孔質シリコン粒子。   The porous silicon particles are divided into a surface vicinity region S of 90% or more in the radial direction and a particle inner region I of 90% or less in the radial direction, and an average particle diameter of the silicon fine particles constituting the surface vicinity region S The Es / Ei is 0.01 to 1.0, where Es is E and the average particle size of the silicon fine particles constituting the particle internal region I is Ei. 2. Porous silicon particles according to item 1. 前記シリコン微粒子が、酸素を除く元素の比率でシリコンを80原子%以上含むことを特徴とする中実なシリコン微粒子であることを特徴とする請求項1〜4のいずれか1項に記載の多孔質シリコン粒子。   5. The porous material according to claim 1, wherein the silicon fine particles are solid silicon fine particles containing 80 atomic% or more of silicon in a ratio of an element excluding oxygen. Quality silicon particles. 前記シリコン微粒子間の接合部の面積が、前記シリコン微粒子の表面積の30%以下であることを特徴とする請求項1〜5のいずれか1項に記載の多孔質シリコン粒子。   6. The porous silicon particle according to claim 1, wherein an area of a joint portion between the silicon fine particles is 30% or less of a surface area of the silicon fine particles. 前記シリコン微粒子と、隣接する前記シリコン微粒子の接合部において、前記接合部の厚みまたは直径が、隣接する前記シリコン微粒子のより大きいほうのシリコン微粒子の直径の80%以下であり、
前記接合部が、結晶性シリコンまたはシリコン酸化物で構成されていることを特徴とする請求項1〜6のいずれか1項に記載の多孔質シリコン粒子。
In the junction between the silicon fine particles and the adjacent silicon fine particles, the thickness or diameter of the joint is 80% or less of the diameter of the larger silicon fine particles of the adjacent silicon fine particles,
The porous silicon particle according to any one of claims 1 to 6, wherein the bonding portion is made of crystalline silicon or silicon oxide.
複数の前記シリコン微粒子が配向しており、
複数の前記シリコン微粒子の長軸の方向が、いずれもある方向の±30°以内にあることを特徴とする請求項2に記載の多孔質シリコン粒子。
A plurality of the silicon fine particles are oriented,
3. The porous silicon particles according to claim 2, wherein the major axis directions of the plurality of silicon fine particles are all within ± 30 ° of a certain direction.
複数のシリコン微粒子と、複数のシリコン化合物粒子が接合して、連続的な空隙を有する多孔質シリコン複合体粒子であって、
前記シリコン化合物粒子は、シリコンと、As、Ba、Ca、Ce、Co、Cr、Cu、Er、Fe、Gd、Hf、Lu、Mg、Mn、Mo、Nb、Nd、Ni、Os、Pr、Pt、Pu、Re、Rh、Ru、Sc、Sm、Sr、Ta、Te、Th、Ti、Tm、U、V、W、Y、Yb、Zrからなる群より選ばれた一つ以上の複合体元素との化合物を含み、
前記シリコン微粒子の粒径、支柱径または支柱辺の平均xが2nm〜2μmであり、
前記シリコン微粒子の粒径、支柱径または支柱辺の標準偏差σが1〜500nmであり、
前記平均xと前記標準偏差σとの比(σ/x)が0.01〜0.5である
ことを特徴とする多孔質シリコン複合体粒子。
A plurality of silicon fine particles and a plurality of silicon compound particles are joined to form a porous silicon composite particle having continuous voids,
The silicon compound particles include silicon, As, Ba, Ca, Ce, Co, Cr, Cu, Er, Fe, Gd, Hf, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, Pr, and Pt. , Pu, Re, Rh, Ru, Sc, Sm, Sr, Ta, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zr, one or more complex elements And a compound with
The particle diameter of the silicon fine particles, the column diameter or the average x of the column side is 2 nm to 2 μm,
The silicon fine particles have a particle diameter, strut diameter or strut side standard deviation σ of 1 to 500 nm,
The porous silicon composite particle, wherein a ratio (σ / x) between the average x and the standard deviation σ is 0.01 to 0.5.
前記シリコン微粒子の形状が、扁平な球状、円柱状または多角柱状を有し、平均最長径または最長辺aと平均最短径または最短辺bとの比(a/b)が1.1〜50であることを特徴とする請求項9に記載の多孔質シリコン複合体粒子。   The silicon fine particles have a flat spherical shape, a cylindrical shape, or a polygonal column shape, and the ratio (a / b) of the average longest diameter or longest side a to the average shortest diameter or shortest side b is 1.1 to 50. The porous silicon composite particle according to claim 9, wherein the porous silicon composite particle is present. 前記多孔質シリコン複合体粒子の平均粒径が、0.1μm〜1000μmであることを特徴とする請求項9または請求項10に記載の多孔質シリコン複合体粒子。   11. The porous silicon composite particle according to claim 9, wherein an average particle diameter of the porous silicon composite particle is 0.1 μm to 1000 μm. 前記シリコン微粒子が、酸素を除く元素の比率でシリコンを80原子%以上含む中実なシリコン微粒子である
ことを特徴とする請求項9〜11のいずれか1項に記載の多孔質シリコン複合体粒子。
The porous silicon composite particle according to any one of claims 9 to 11, wherein the silicon fine particle is a solid silicon fine particle containing 80 atomic% or more of silicon in a ratio of an element excluding oxygen. .
前記シリコン化合物粒子の平均粒径が50nm〜50μmであり、
前記シリコン化合物粒子が、酸素を除く元素の比率で、50〜90原子%のシリコンを含むことを特徴とする中実なシリコン化合物の粒子である
ことを特徴とする請求項9〜12のいずれか1項に記載の多孔質シリコン複合体粒子。
The silicon compound particles have an average particle size of 50 nm to 50 μm,
13. The solid silicon compound particle according to claim 9, wherein the silicon compound particle contains 50 to 90 atomic% of silicon in a ratio of an element excluding oxygen. 13. 2. The porous silicon composite particle according to item 1.
前記多孔質シリコン複合体粒子の半径方向で50%以上の表面近傍領域の前記シリコン微粒子の平均粒径Dsと、前記多孔質シリコン複合体粒子の半径方向で50%以内の粒子内部領域の前記シリコン微粒子の平均粒径Diの比であるDs/Diが、0.5〜1.5であることを特徴とする請求項9〜13のいずれか1項に記載の多孔質シリコン複合体粒子。   The average particle diameter Ds of the silicon fine particles in the surface vicinity region of 50% or more in the radial direction of the porous silicon composite particles, and the silicon in the particle inner region within 50% in the radial direction of the porous silicon composite particles The porous silicon composite particle according to any one of claims 9 to 13, wherein Ds / Di, which is a ratio of the average particle diameter Di of the fine particles, is 0.5 to 1.5. 前記多孔質シリコン複合体粒子の半径方向で50%以上の表面近傍領域の空隙率Xsと、前記多孔質シリコン複合体粒子の半径方向で50%以内の粒子内部領域の空隙率Xiの比であるXs/Xiが、0.5〜1.5であることを特徴とする請求項9〜14のいずれか1項に記載の多孔質シリコン複合体粒子。   The ratio between the porosity Xs of the surface vicinity region of 50% or more in the radial direction of the porous silicon composite particles and the porosity Xi of the particle internal region within 50% in the radial direction of the porous silicon composite particles. Xs / Xi is 0.5-1.5, The porous silicon composite particle of any one of Claims 9-14 characterized by the above-mentioned. 前記多孔質シリコン複合体粒子を、半径方向で90%以上の表面近傍領域Sと、半径方向で90%以下の粒子内部領域Iとに分け、前記表面近傍領域Sを構成する前記シリコン微粒子の平均粒径をEsとし、前記粒子内部領域Iを構成する前記シリコン微粒子の平均粒径をEiとするとき、Es/Eiが0.01〜1.0であることを特徴とする請求項9〜15のいずれか1項に記載の多孔質シリコン複合体粒子。   The porous silicon composite particles are divided into a surface vicinity region S of 90% or more in the radial direction and a particle inner region I of 90% or less in the radial direction, and the average of the silicon fine particles constituting the surface vicinity region S The Es / Ei is 0.01 to 1.0, where Es is the particle size and Es is the average particle size of the silicon fine particles constituting the particle internal region I. The porous silicon composite particle according to any one of the above. 前記シリコン微粒子と、隣接する前記シリコン微粒子の接合部において、前記接合部の厚みまたは半径が、隣接する前記シリコン微粒子のより大きいほうのシリコン微粒子の半径の80%以下であり、
前記接合部が、結晶性シリコンまたはシリコン酸化物で構成されていることを特徴とする請求項9〜16のいずれか1項に記載の多孔質シリコン複合体粒子。
In the joint between the silicon fine particles and the adjacent silicon fine particles, the thickness or radius of the joint is 80% or less of the radius of the larger silicon fine particles of the adjacent silicon fine particles,
The porous silicon composite particle according to any one of claims 9 to 16, wherein the bonding portion is made of crystalline silicon or silicon oxide.
複数の前記シリコン微粒子が配向しており、
複数の前記シリコン微粒子の長軸の方向が、いずれもある方向の±30°以内にあることを特徴とする請求項10に記載の多孔質シリコン複合体粒子。
A plurality of the silicon fine particles are oriented,
11. The porous silicon composite particle according to claim 10, wherein the major axis directions of the plurality of silicon fine particles are all within ± 30 ° of a certain direction.
JP2012064017A 2012-03-21 2012-03-21 Porous silicon particles, porous silicon composite particles, and production methods thereof Active JP5830419B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012064017A JP5830419B2 (en) 2012-03-21 2012-03-21 Porous silicon particles, porous silicon composite particles, and production methods thereof
CN201380010929.6A CN104125927B (en) 2012-03-21 2013-03-19 Porous silicon particle and Porous silicon complex particles
KR1020147019867A KR101625779B1 (en) 2012-03-21 2013-03-19 Porous silicon particles and porous silicon-composite particles
PCT/JP2013/057780 WO2013141230A1 (en) 2012-03-21 2013-03-19 Porous silicon particles and porous silicon-composite particles
TW102110069A TWI601690B (en) 2012-03-21 2013-03-21 Porous silica particles and magnetic silica composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064017A JP5830419B2 (en) 2012-03-21 2012-03-21 Porous silicon particles, porous silicon composite particles, and production methods thereof

Publications (2)

Publication Number Publication Date
JP2013193933A true JP2013193933A (en) 2013-09-30
JP5830419B2 JP5830419B2 (en) 2015-12-09

Family

ID=49222687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064017A Active JP5830419B2 (en) 2012-03-21 2012-03-21 Porous silicon particles, porous silicon composite particles, and production methods thereof

Country Status (5)

Country Link
JP (1) JP5830419B2 (en)
KR (1) KR101625779B1 (en)
CN (1) CN104125927B (en)
TW (1) TWI601690B (en)
WO (1) WO2013141230A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150061695A (en) * 2013-11-27 2015-06-05 삼성전자주식회사 Anode active materials and lithium secondary battery comprising the same
KR20160069325A (en) * 2014-12-08 2016-06-16 덕산하이메탈(주) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20160081582A (en) * 2014-12-31 2016-07-08 삼성전자주식회사 Composite anode active material, preparing method thereof, anode and lithium secondary battery comprising the same
JPWO2015111187A1 (en) * 2014-01-24 2017-03-23 日産自動車株式会社 Electrical device
WO2018056204A1 (en) * 2016-09-23 2018-03-29 株式会社豊田自動織機 Si particle aggregates and method for producing same
CN108155357A (en) * 2016-12-02 2018-06-12 三星Sdi株式会社 For the active material based on nickel, preparation method and the lithium secondary battery for including the anode comprising it of lithium secondary battery
WO2018168995A1 (en) * 2017-03-16 2018-09-20 国立大学法人山口大学 Electrode provided with alloy layer of magnesium and bismuth, and magnesium secondary battery
JP2019513111A (en) * 2016-07-27 2019-05-23 エプロ ディベロップメント リミテッド Improvement in the production of silicon nanoparticles and their use
WO2020194794A1 (en) * 2019-03-26 2020-10-01 国立大学法人東北大学 Porous amorphous silicon, method for producing porous amorphous silicon, and secondary battery
US11552294B2 (en) 2016-12-02 2023-01-10 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599699B2 (en) * 2014-12-26 2019-10-30 日東電工株式会社 Void structure film bonded through catalytic action and method for producing the same
JP6612563B2 (en) * 2014-12-26 2019-11-27 日東電工株式会社 Silicone porous body and method for producing the same
CN104986768A (en) * 2015-05-18 2015-10-21 中国科学技术大学 Method for synthesizing silicon nanopowder through nitridation, and application thereof
JP6713872B2 (en) 2015-07-31 2020-06-24 日東電工株式会社 Laminated film, laminated film manufacturing method, optical member, image display device, optical member manufacturing method, and image display device manufacturing method
WO2017200046A1 (en) 2016-05-18 2017-11-23 新日鐵住金株式会社 Negative electrode active substance material, negative electrode, and battery
CN110915038B (en) 2017-07-18 2022-09-16 日本制铁株式会社 Negative electrode active material, negative electrode, and battery
CN107623121B (en) * 2017-10-18 2019-12-27 山东大学 Metal-coated porous silicon composite electrode material and preparation method thereof
CN108039467B (en) * 2017-12-05 2020-06-05 桂林电器科学研究院有限公司 Spongy silicon powder, preparation method thereof and lithium ion battery applying spongy silicon powder
CN108039485B (en) * 2017-12-05 2019-03-15 桂林电器科学研究院有限公司 Foam-like silicon powder is with preparation method and using its lithium ion battery
WO2020149404A1 (en) 2019-01-17 2020-07-23 日本製鉄株式会社 Negative electrode active material, negative electrode, and battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144825A (en) * 1992-09-21 1994-05-24 Isuzu Motors Ltd Production of thermoelectric element
JPH06191820A (en) * 1992-12-28 1994-07-12 Tonen Corp Production of silicon thin plate
JPH1111925A (en) * 1997-06-25 1999-01-19 Sumitomo Metal Ind Ltd Production of polycrystalline silicon and zinc oxide
JP2005263536A (en) * 2004-03-17 2005-09-29 Denki Kagaku Kogyo Kk Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component
WO2008032619A1 (en) * 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle and method for producing the same
JP2010501970A (en) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
WO2011008980A1 (en) * 2009-07-15 2011-01-20 Applied Nanotech, Inc. Applying optical energy to nanoparticles to produce a specified nanostructure
WO2011056847A2 (en) * 2009-11-03 2011-05-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
WO2012036265A1 (en) * 2010-09-17 2012-03-22 古河電気工業株式会社 Porous silicon particles and complex porous silicon particles, and method for producing both
JP2012082126A (en) * 2010-09-17 2012-04-26 Furukawa Electric Co Ltd:The Complex porous silicon particle and method for manufacturing the same
JP2012082125A (en) * 2010-09-17 2012-04-26 Furukawa Electric Co Ltd:The Porous silicon particle and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096493C (en) * 1997-09-29 2002-12-18 中国科学技术大学 Powder porasil and its hydrothermal preparation method
US20030010064A1 (en) * 2000-12-05 2003-01-16 Kazuya Kuwahara Method of producing optical fiber
CN100452493C (en) * 2003-01-06 2009-01-14 三星Sdi株式会社 Nagative active material for recharge lithium battery, its manufacturing method and recharge lithium battery
US7479351B2 (en) * 2003-10-09 2009-01-20 Samsung Sdi Co., Ltd. Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
EP1888459A4 (en) * 2005-05-09 2010-12-29 Vesta Res Ltd Silicon nanosponge particles
CN101188281A (en) * 2006-11-16 2008-05-28 吴乃立 Cathode active material for lithium ion secondary battery, its making method and lithium ion secondary battery including this cathode active material
GB201014706D0 (en) * 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
KR101920942B1 (en) * 2010-09-17 2018-11-21 후루카와 덴키 고교 가부시키가이샤 Porous silicon particles and complex porous silicon particles, and method for producing both

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144825A (en) * 1992-09-21 1994-05-24 Isuzu Motors Ltd Production of thermoelectric element
JPH06191820A (en) * 1992-12-28 1994-07-12 Tonen Corp Production of silicon thin plate
JPH1111925A (en) * 1997-06-25 1999-01-19 Sumitomo Metal Ind Ltd Production of polycrystalline silicon and zinc oxide
JP2005263536A (en) * 2004-03-17 2005-09-29 Denki Kagaku Kogyo Kk Silicon particle superlattice, method for manufacturing the same, silicon particle superlattice structure using the same, light emitting element and electronic component
JP2010501970A (en) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
WO2008032619A1 (en) * 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle and method for producing the same
WO2011008980A1 (en) * 2009-07-15 2011-01-20 Applied Nanotech, Inc. Applying optical energy to nanoparticles to produce a specified nanostructure
WO2011056847A2 (en) * 2009-11-03 2011-05-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
WO2012036265A1 (en) * 2010-09-17 2012-03-22 古河電気工業株式会社 Porous silicon particles and complex porous silicon particles, and method for producing both
JP2012082126A (en) * 2010-09-17 2012-04-26 Furukawa Electric Co Ltd:The Complex porous silicon particle and method for manufacturing the same
JP2012082125A (en) * 2010-09-17 2012-04-26 Furukawa Electric Co Ltd:The Porous silicon particle and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102219702B1 (en) * 2013-11-27 2021-02-25 삼성전자주식회사 Anode active materials and lithium secondary battery comprising the same
KR20150061695A (en) * 2013-11-27 2015-06-05 삼성전자주식회사 Anode active materials and lithium secondary battery comprising the same
JPWO2015111187A1 (en) * 2014-01-24 2017-03-23 日産自動車株式会社 Electrical device
KR101722960B1 (en) * 2014-12-08 2017-04-04 덕산하이메탈(주) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20160069325A (en) * 2014-12-08 2016-06-16 덕산하이메탈(주) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR102356936B1 (en) * 2014-12-31 2022-02-03 삼성전자주식회사 Composite anode active material, preparing method thereof, anode and lithium secondary battery comprising the same
KR20160081582A (en) * 2014-12-31 2016-07-08 삼성전자주식회사 Composite anode active material, preparing method thereof, anode and lithium secondary battery comprising the same
JP2019513111A (en) * 2016-07-27 2019-05-23 エプロ ディベロップメント リミテッド Improvement in the production of silicon nanoparticles and their use
JP7149996B2 (en) 2016-07-27 2022-10-07 エプロ ディベロップメント リミテッド Improvements in the manufacture and use of silicon nanoparticles
JP2021035903A (en) * 2016-07-27 2021-03-04 エプロ ディベロップメント リミテッド Improvements in production of silicon nano-particles and uses thereof
WO2018056204A1 (en) * 2016-09-23 2018-03-29 株式会社豊田自動織機 Si particle aggregates and method for producing same
JPWO2018056204A1 (en) * 2016-09-23 2019-07-25 株式会社豊田自動織機 Si particle bonded body and method for producing the same
CN108155357A (en) * 2016-12-02 2018-06-12 三星Sdi株式会社 For the active material based on nickel, preparation method and the lithium secondary battery for including the anode comprising it of lithium secondary battery
US11552294B2 (en) 2016-12-02 2023-01-10 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
WO2018168995A1 (en) * 2017-03-16 2018-09-20 国立大学法人山口大学 Electrode provided with alloy layer of magnesium and bismuth, and magnesium secondary battery
JPWO2018168995A1 (en) * 2017-03-16 2020-01-23 国立大学法人山口大学 Electrode having magnesium and bismuth alloy layer and magnesium secondary battery
JPWO2020194794A1 (en) * 2019-03-26 2021-04-08 国立大学法人東北大学 Porous amorphous silicon, manufacturing method of porous amorphous silicon and secondary battery
WO2020194794A1 (en) * 2019-03-26 2020-10-01 国立大学法人東北大学 Porous amorphous silicon, method for producing porous amorphous silicon, and secondary battery

Also Published As

Publication number Publication date
KR20140103175A (en) 2014-08-25
TW201343549A (en) 2013-11-01
CN104125927B (en) 2016-05-25
KR101625779B1 (en) 2016-05-30
JP5830419B2 (en) 2015-12-09
WO2013141230A1 (en) 2013-09-26
TWI601690B (en) 2017-10-11
CN104125927A (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5830419B2 (en) Porous silicon particles, porous silicon composite particles, and production methods thereof
US8980428B2 (en) Porous silicon particles and complex porous silicon particles, and method for producing both
JP5877025B2 (en) Porous silicon composite particles and method for producing the same
JP5598861B2 (en) Porous silicon particles and method for producing the same
JP5889086B2 (en) Porous silicon particles and method for producing the same
WO2012036265A1 (en) Porous silicon particles and complex porous silicon particles, and method for producing both
JP5621753B2 (en) Anode material for lithium ion battery
JP3562398B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
WO2013115223A1 (en) Si-BASED-ALLOY ANODE MATERIAL
JP6625646B2 (en) Powders, electrodes and batteries containing such powders
KR20080032037A (en) Alloy for negative electrode of lithium secondary battery
JP2020053399A (en) Powder, and electrode and battery including such powder
JP2004296412A (en) Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
WO2015041063A1 (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
JP6211961B2 (en) Negative electrode materials for electricity storage devices
TWI635645B (en) Si-based eutectic alloy for negative electrode active material of power storage device and method for producing same
JP6896261B2 (en) Porous amorphous silicon, manufacturing method of porous amorphous silicon and secondary battery
US20160181601A1 (en) Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP4069710B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2014053132A (en) Negative electrode material for lithium ion battery
Kawaura et al. Scalable Synthesis of Porous Silicon by Acid Etching of Atomized Al–Si Alloy Powder for Lithium-Ion Batteries
JPH0969362A (en) Secondary battery and power source using it
JP2008066025A (en) Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacturing method
JP2015060640A (en) Alloy-graphite composite particle and method for producing the same
JP2005050800A (en) Secondary battery and power source using secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R151 Written notification of patent or utility model registration

Ref document number: 5830419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250