JP5621753B2 - Anode material for lithium ion battery - Google Patents

Anode material for lithium ion battery Download PDF

Info

Publication number
JP5621753B2
JP5621753B2 JP2011249620A JP2011249620A JP5621753B2 JP 5621753 B2 JP5621753 B2 JP 5621753B2 JP 2011249620 A JP2011249620 A JP 2011249620A JP 2011249620 A JP2011249620 A JP 2011249620A JP 5621753 B2 JP5621753 B2 JP 5621753B2
Authority
JP
Japan
Prior art keywords
alloy
negative electrode
ion battery
lithium ion
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011249620A
Other languages
Japanese (ja)
Other versions
JP2013105655A (en
Inventor
新谷 尚史
尚史 新谷
美濃輪 武久
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2011249620A priority Critical patent/JP5621753B2/en
Priority to EP12192297.5A priority patent/EP2595223B1/en
Priority to US13/675,256 priority patent/US8697284B2/en
Priority to KR1020120128495A priority patent/KR101884476B1/en
Priority to CA2795792A priority patent/CA2795792C/en
Priority to CN201210548231.7A priority patent/CN103107316B/en
Publication of JP2013105655A publication Critical patent/JP2013105655A/en
Application granted granted Critical
Publication of JP5621753B2 publication Critical patent/JP5621753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用負極材料、特に、大容量用途に供されるリチウムイオン電池に適した負極材に関するものである。   The present invention relates to a negative electrode material for a lithium ion battery, and more particularly to a negative electrode material suitable for a lithium ion battery used for large capacity applications.

従来の鉛蓄電池、Ni−Cd電池、ニッケル水素電池といった二次電池が、水系電解液中で水素の電離反応(H→H++e-)と、プロトンの移動とにより充放電を行っているのに対し、リチウムイオン電池は、有機電解液中におけるリチウムの電離(Li→Li++e-)と、生じたリチウムイオンの移動により充放電動作がなされる。 Rechargeable batteries such as conventional lead-acid batteries, Ni-Cd batteries, and nickel metal hydride batteries are charged and discharged by hydrogen ionization (H → H + + e ) and proton movement in aqueous electrolytes. On the other hand, the lithium ion battery is charged and discharged by ionization of lithium (Li → Li + + e ) in the organic electrolyte and movement of the generated lithium ions.

このようなリチウムイオン電池では、リチウム金属が標準酸化還元電位に対して3Vの電位をもつため、従来の二次電池に比べて高い電圧での放電が可能である。加えて、酸化還元を担うリチウムは軽量であるため、放電電圧の高さと相俟って、従来の二次電池を大きく超える単位質量当たりのエネルギー密度を得ることができる。   In such a lithium ion battery, since lithium metal has a potential of 3 V with respect to the standard oxidation-reduction potential, discharge at a higher voltage than that of a conventional secondary battery is possible. In addition, since lithium responsible for oxidation and reduction is lightweight, it is possible to obtain an energy density per unit mass that greatly exceeds the conventional secondary battery in combination with the high discharge voltage.

このような軽量大容量を特徴とするリチウムイオン電池は、昨今のノートパソコン、携帯電話といった充電池を必要とするモバイル機器の普及に伴い、広く用いられている。更に、近年はその利用分野がパワーツール、ハイブリッド自動車、電気自動車といった、屋外にて大電流の放電を必要とする領域にまで拡大しつつある。   Lithium ion batteries characterized by such light weight and large capacity are widely used with the spread of mobile devices such as notebook computers and mobile phones that require rechargeable batteries. Further, in recent years, the field of use is expanding to areas that require large current discharge outdoors, such as power tools, hybrid vehicles, and electric vehicles.

しかし、電気自動車や電動バイクといった用途を拡充するには走行距離を延ばす必要があるため、更なる高容量化が必要となってくる。現在リチウムイオン電池に使用されている負極材は、黒鉛が主流で、容量は372mAh/gが限界である。そこで、新たな負極材として検討されているのが金属Siや金属Snなどの材料である。例えば、Siについて言えば、理論容量は黒鉛の10倍以上(4200mAh/g)あることから、多くの研究者によって検討が進められてきている。   However, in order to expand applications such as electric vehicles and electric motorcycles, it is necessary to extend the mileage, and thus further increase in capacity is required. The negative electrode material currently used in lithium ion batteries is mainly graphite, and the capacity is limited to 372 mAh / g. Therefore, materials such as metal Si and metal Sn are being studied as new negative electrode materials. For example, with regard to Si, the theoretical capacity is 10 times or more (4200 mAh / g) that of graphite, and thus many researchers have been studying it.

しかしながら、金属Siは充放電時の膨張・収縮が大きいため、微粉化や導電性ネットワークの断絶が起こりサイクル寿命を劣化させている。この対策として、合金化や非晶質化のためにメカニカルアロイングなどの検討が進められている(例えば、特許第4752996号公報(特許文献1),特許第4789032号公報(特許文献2)参照。)が、量産化には至っていない。これは、メカニカルアロイングの構造上、実験室レベルの少量サンプルの試作はできるものの、量産化に不向きなためと考えられる。   However, since metal Si has a large expansion / contraction during charging / discharging, pulverization and disconnection of the conductive network occur to deteriorate the cycle life. As countermeasures, mechanical alloying and the like have been studied for alloying and amorphization (see, for example, Japanese Patent No. 4752996 (Patent Document 1) and Japanese Patent No. 4789032 (Patent Document 2)). However, mass production has not been achieved. This is thought to be because it is not suitable for mass production, although a small sample at the laboratory level can be prototyped due to the structure of mechanical alloying.

特許第4752996号公報Japanese Patent No. 4752996 特許第4789032号公報Japanese Patent No. 4789032

本発明は、以上の従来技術における課題に鑑みてなされたものであり、高容量で、サイクル寿命の長いリチウムイオン電池用負極材を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and an object thereof is to provide a negative electrode material for a lithium ion battery having a high capacity and a long cycle life.

本発明者らは、上記目的を達成するため鋭意検討した結果、Si−Al系合金に対しSiの一部を遷移金属と周期律表第4族、第5族の金属で置換した組成とし、かつこれらの原材料を溶解後に急冷凝固を行うことで、微細なSi合金相の結晶粒の粒界にSi相が網目状に析出した複合合金を得ることができると共に、この複合合金をリチウムイオン電池用負極材として用いることにより、リチウムイオン電池のサイクル寿命が改善することを見出し、本発明を成すに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained a composition in which a part of Si is substituted with a transition metal and a group 4 or group 5 metal in the Si-Al based alloy, In addition, by rapidly solidifying after melting these raw materials, it is possible to obtain a composite alloy in which the Si phase is precipitated in the form of a network at the grain boundaries of the fine Si alloy phase. It has been found that the cycle life of a lithium ion battery can be improved by using it as a negative electrode material for a battery, and the present invention has been achieved.

すなわち、本発明は、下記のリチウムイオン電池用負極材を提供する。
〔1〕
構成元素として、Si,Al,M1(M1はFe、Ni、Co、Mnの中から選ばれる1種以上の金属元素である。),M2(Ti、V、Zr、Nb、Taの中から選ばれる1種以上の金属元素である。)を含有し(但し、Snを含む場合を除く)
前記構成元素の組成が、Si:40〜70at%、Al:1〜25at%、M1:5〜35at%、M2:1〜20at%であり、
微細な結晶粒を構成するSi−Al−M1−M2合金相と、前記結晶粒の粒界に析出して網目状構造を呈するSi相とを有する合金材料からなることを特徴とするリチウムイオン電池用負極材。

前記Si−Al−M1−M2合金のTi含有量が1〜20at%で構成される合金であることを特徴とする〔1〕に記載のリチウムイオン電池用負極材。

前記結晶粒の粒径が1〜500nmであって、該結晶粒間の距離が200nm以下であることを特徴とする〔1〕又は〔2〕に記載のリチウムイオン電池用負極材。

急冷凝固法により製造されてなることを特徴とする〔1〕〜〔〕のいずれかに記載のリチウムイオン電池用負極材。

平均粒径が4μm以下の前記合金材料からなる粒子で構成されることを特徴とする〔1〕〜〔〕のいずれかに記載のリチウムイオン電池用負極材。
That is, this invention provides the following negative electrode material for lithium ion batteries.
[1]
As constituent elements, Si, Al, M1 (M1 is one or more metal elements selected from Fe, Ni, Co, Mn ), M2 ( Ti, V, Zr, Nb, Ta selected Is one or more metal elements) (except for the case where Sn is included) ,
The composition of the constituent elements is Si: 40 to 70 at%, Al: 1 to 25 at%, M1: 5 to 35 at%, M2: 1 to 20 at%,
A lithium-ion battery comprising an alloy material having a Si-Al-M1-M2 alloy phase constituting fine crystal grains and a Si phase precipitated at a grain boundary of the crystal grains and exhibiting a network structure Negative electrode material.
[ 2 ]
The negative electrode material for a lithium ion battery according to [ 1], wherein the Si-Al-M1-M2 alloy is an alloy having a Ti content of 1 to 20 at%.
[ 3 ]
The negative electrode material for a lithium ion battery according to [1] or [2] , wherein the crystal grains have a particle diameter of 1 to 500 nm and a distance between the crystal grains is 200 nm or less.
[ 4 ]
The negative electrode material for a lithium ion battery according to any one of [1] to [ 3 ], which is produced by a rapid solidification method.
[ 5 ]
The negative electrode material for a lithium ion battery according to any one of [1] to [ 4 ], comprising an alloy material having an average particle diameter of 4 μm or less.

本発明のリチウムイオン電池用負極材によれば、構成材料である合金においてSi相を有するので、高容量とすることができ、また、該Si相を網目状構造を呈するように構成しているので、充放電時にSi相が膨張・収縮しても微粉化や導電性ネットワークの断絶が起こらず、サイクル寿命を延ばすことができる。更に、合金におけるSi−Al−M1−M2合金相の結晶粒が純Siとは異なり導電性が高いので、導電化処理や導電材の添加などの必要がなくなり、リチウムイオン電池としての体積当たりのエネルギー密度を高くすることもできる。これにより、本発明のリチウムイオン電池用負極材を用いたリチウムイオン電池を大容量で耐久性が要求される電気自動車の電源として好適なものとすることができる。   According to the negative electrode material for a lithium ion battery of the present invention, since the constituent alloy has the Si phase, the capacity can be increased, and the Si phase is configured to exhibit a network structure. Therefore, even if the Si phase expands / shrinks during charging / discharging, the pulverization and the disconnection of the conductive network do not occur, and the cycle life can be extended. Furthermore, since the crystal grains of the Si—Al—M1-M2 alloy phase in the alloy are high in conductivity unlike pure Si, there is no need for conducting treatment or addition of a conductive material, and the volume per volume as a lithium ion battery is eliminated. The energy density can also be increased. Thereby, the lithium ion battery using the negative electrode material for a lithium ion battery of the present invention can be made suitable as a power source for an electric vehicle requiring a large capacity and durability.

実施例1−2における鋳造品と急冷凝固品の合金断面のEPMA観察によるSi分布を示すマッピング像であり、(a)が鋳造品におけるSi分布、(b)が急冷凝固品におけるSi分布を示す。It is a mapping image which shows Si distribution by EPMA observation of the alloy cross section of the cast product in Example 1-2, and a rapidly solidified product, (a) shows Si distribution in a cast product, (b) shows Si distribution in a rapidly solidified product. . 実施例1−2、比較例1−3で得られた合金材料の組織を示す透過型査型電子顕微鏡像(TEM像)であり、(a)が実施例1−2の組織、(b)が比較例1−3の組織である。It is a transmission type inspection electron microscope image (TEM image) which shows the structure | tissue of the alloy material obtained in Example 1-2 and Comparative Example 1-3, (a) is a structure | tissue of Example 1-2, (b) Is the structure of Comparative Example 1-3. 実施例2における平均粒径に対する質量当たりの放電容量、容量維持率を示すグラフであり、(a)が平均粒径と1サイクル目の放電容量の関係を示し、(b)が平均粒径と容量維持率の関係を示す。It is a graph which shows the discharge capacity per mass with respect to the average particle diameter in Example 2, and a capacity | capacitance maintenance factor, (a) shows the relationship between an average particle diameter and the discharge capacity of the 1st cycle, (b) is an average particle diameter, The relationship between capacity retention rates is shown. 比較例3−1、実施例3−2で得られた急冷凝固品の合金断面のEPMA観察によるSi分布を示すマッピング像であり、(a)が実施例3−2のSi分布、(b)が比較例3−1のSi分布を示す。It is a mapping image which shows Si distribution by EPMA observation of the alloy cross section of the rapidly solidified product obtained by Comparative Example 3-1 and Example 3-2, (a) Si distribution of Example 3-2, (b) Shows the Si distribution of Comparative Example 3-1. 比較例1−3、実施例3−4で得られた急冷凝固品の合金断面のEPMA観察によるSi分布を示すマッピング像であり、(a)が実施例3−4のSi分布、(b)が比較例1−3のSi分布を示す。It is a mapping image which shows Si distribution by EPMA observation of the alloy cross section of the rapidly solidified product obtained in Comparative Example 1-3 and Example 3-4, (a) Si distribution of Example 3-4, (b) Shows the Si distribution of Comparative Example 1-3.

以下に、本発明に係るリチウムイオン電池用負極材の実施形態について説明する。
本発明に係るリチウムイオン電池用負極材は、構成元素として、Si,Al,M1(M1は周期律表第4族、第5族を除く遷移金属の中から選ばれる1種以上の金属元素である。),M2(M2は周期律表第4族、第5族の中から選ばれる1種以上の金属元素である。)を含有し、微細な結晶粒を構成するSi−Al−M1−M2合金相と、前記結晶粒の粒界に析出して網目状構造を呈するSi相とを有する合金材料からなることを特徴とするものである。
Below, embodiment of the negative electrode material for lithium ion batteries which concerns on this invention is described.
The negative electrode material for a lithium ion battery according to the present invention includes, as constituent elements, Si, Al, M1 (M1 is one or more metal elements selected from transition metals excluding Groups 4 and 5 of the periodic table). ), M2 (M2 is one or more metal elements selected from Group 4 and Group 5 of the Periodic Table) and comprises fine crystal grains. It consists of an alloy material which has M2 alloy phase and Si phase which precipitates in the grain boundary of the said crystal grain and exhibits network structure.

ここで、構成元素のうち、Siは、リチウムイオン電池用負極材の主体となる負極活物質である。
本発明のリチウムイオン電池用負極材を構成する合金材料において重要なことは、合金中にSi相が析出していることである。リチウムイオン電池を構成し充放電を行うと、充電時には正極活物質よりリチウムイオンが抜けて負極活物質に取り込まれる。負極活物質が黒鉛の場合は層状構造を有しているためにこの層間に取り込まれる(インターカーレーション LiC6)。これに対し、Si相はリチウムイオンを合金化し取り込むが(Li4.4Si)、既に合金になっているSi−Al−M1−M2相には殆ど取り込まれない。つまり、合金中にSi単体が存在しないと負極として機能しないことになる。
Here, among the constituent elements, Si is a negative electrode active material which is a main component of the negative electrode material for a lithium ion battery.
What is important in the alloy material constituting the negative electrode material for a lithium ion battery of the present invention is that the Si phase is precipitated in the alloy. When a lithium ion battery is configured and charged and discharged, lithium ions are extracted from the positive electrode active material and charged into the negative electrode active material during charging. When the negative electrode active material is graphite, it has a layered structure and is taken in between the layers (intercalation LiC 6 ). In contrast, the Si phase is alloyed and incorporated with lithium ions (Li 4.4 Si), but is hardly incorporated into the already alloyed Si-Al-M1-M2 phase. That is, if there is no Si simple substance in the alloy, it will not function as a negative electrode.

この考え方に基づき、合金組成としてのSi量は40〜70at%が好ましく、50〜70at%がより好ましく、60〜70at%が更に好ましい。Si量が40at%未満では、前述のように合金中にSi単体がほとんど存在しなくなり、負極材として機能しなくなる場合がある。一方、Si量が70at%超では合金中のSi相の網目状構造を維持できず長寿命が実現できなくなるおそれがある。   Based on this concept, the amount of Si as the alloy composition is preferably 40 to 70 at%, more preferably 50 to 70 at%, and still more preferably 60 to 70 at%. If the amount of Si is less than 40 at%, as described above, there is almost no Si simple substance in the alloy, and it may not function as a negative electrode material. On the other hand, if the Si content exceeds 70 at%, the network structure of the Si phase in the alloy cannot be maintained, and there is a possibility that a long life cannot be realized.

また、Alは、Si−Al系合金相を形成し、導電性を確保するための元素である。合金組成としてのAl量は1〜25at%が好ましく、8〜25at%がより好ましい。Al量が1at%未満では、Si−Al系合金相の結晶粒を十分に形成することが困難になり、導電性を確保することが難しい場合がある。一方、Al量が25at%超ではSi相の形成を阻害するおそれがある。   Al is an element for forming a Si—Al-based alloy phase and ensuring conductivity. The amount of Al as the alloy composition is preferably 1 to 25 at%, more preferably 8 to 25 at%. If the Al amount is less than 1 at%, it may be difficult to sufficiently form crystal grains of the Si—Al-based alloy phase, and it may be difficult to ensure conductivity. On the other hand, if the Al content exceeds 25 at%, the formation of the Si phase may be hindered.

金属元素M1は、前述の通り、周期律表第4族、第5族を除く遷移金属の中から選ばれる1種以上の金属元素であり、Sc,Cr,Mn,Fe,Co,Ni,Cu,Y,Mo,Tc,Ru,Rh,Pd,Ag,LaやCeなどのランタノイド元素、W,Re,Os,Ir,Pt,Auなどが例示され、好ましくはFe,Ni,Co,Mnのいずれかである。   As described above, the metal element M1 is one or more metal elements selected from transition metals excluding Groups 4 and 5 of the periodic table, and is Sc, Cr, Mn, Fe, Co, Ni, Cu. , Y, Mo, Tc, Ru, Rh, Pd, Ag, La, Ce and other lanthanoid elements, W, Re, Os, Ir, Pt, Au, etc. are exemplified, and preferably any of Fe, Ni, Co, Mn It is.

合金組成としての金属元素M1の量は、5〜35at%が好ましく、7〜20at%がより好ましい。金属元素M1の量が5at%未満ではSiの偏析を抑制すること(つまりSi相の微細化)が困難になり、リチウムイオン電池の負極材としての充放電サイクルに対する耐久性が劣化する場合がある。一方、金属元素M1の量が35at%超ではSi相の形成を阻害するおそれがある。   The amount of the metal element M1 as the alloy composition is preferably 5 to 35 at%, more preferably 7 to 20 at%. If the amount of the metal element M1 is less than 5 at%, it is difficult to suppress the segregation of Si (that is, miniaturization of the Si phase), and the durability against the charge / discharge cycle as the negative electrode material of the lithium ion battery may be deteriorated. . On the other hand, if the amount of the metal element M1 exceeds 35 at%, the formation of the Si phase may be hindered.

また、金属元素M2は、前述の通り、周期律表第4族、第5族の中から選ばれる1種以上の金属元素であり、Ti、V,Zr,Nb,Hf,Taなどが例示され、好ましくはTi,V,Zr,Nb,Taのいずれかである。   Further, as described above, the metal element M2 is one or more metal elements selected from Group 4 and Group 5 of the periodic table, and examples thereof include Ti, V, Zr, Nb, Hf, and Ta. Preferably, any one of Ti, V, Zr, Nb, and Ta is used.

合金組成としての金属元素M2の量は、1〜20at%が好ましく、10〜20at%がより好ましい。金属元素M2の量が1at%未満ではSiの偏析を抑制すること(つまりSi相の微細化)が困難になり、リチウムイオン電池の負極材としての充放電サイクルに対する耐久性が劣化する場合がある。一方、金属元素M2の量が20at%超ではSi相の形成を阻害するおそれがある。   The amount of the metal element M2 as the alloy composition is preferably 1 to 20 at%, and more preferably 10 to 20 at%. If the amount of the metal element M2 is less than 1 at%, it is difficult to suppress the segregation of Si (that is, miniaturization of the Si phase), and the durability against the charge / discharge cycle as the negative electrode material of the lithium ion battery may be deteriorated. . On the other hand, if the amount of the metal element M2 exceeds 20 at%, the formation of the Si phase may be hindered.

また、合金組成としての金属元素M1及びM2の合計添加量は、15〜40at%が好ましい。合計添加量が15at%未満ではSiの偏析を抑制すること(つまりSi相の微細化)が困難になる場合があり、40at%超ではSi相の形成を阻害するおそれがある。   Further, the total addition amount of the metal elements M1 and M2 as the alloy composition is preferably 15 to 40 at%. If the total addition amount is less than 15 at%, it may be difficult to suppress the segregation of Si (that is, miniaturization of the Si phase), and if it exceeds 40 at%, the formation of the Si phase may be inhibited.

また、前記Si−Al−M1−M2合金のTi含有量が1〜20at%で構成される合金であることが好ましい。これは次の理由による。
すなわち、本発明によるSi−Al−M1−M2合金は、Siを40〜70at%含有しているために、通常の溶解法では鋳造時に余剰のSiが分離析出してSi相を含む大粒子の2相以上の組織となってしまう(図1(a)の鋳造品のEPMA観察結果を参照)。本発明では、これを急冷することにより、微細な2相以上の組織としているが、Si−Al−M1−M2合金に含まれる周期律表第4,5族元素の含有量で組織の粒径が大きく変化する。この粒径は、リチウムイオン電池の負極材としたときのサイクル寿命に大きく影響し、組織の粒径が小さいほど寿命は良好となる。ここで、前記合金組織に対するTiの添加は効果的であり、Ti1〜20at%含有でより微細化が進行する。このメカニズムについては、はっきりと分かっていないが、急冷法と組み合わせることで他の第4,5族元素を含有するよりも微細な組織が得られる(図1(b)のSi−Al−Fe−Ti急冷凝固品と図5(a)のSi−Al−Fe−V急冷凝固品を比較参照)。なお、Ti含有量が1at%未満ではその効果が得られない場合があり、20at%を超えるとSi−Al−M1−M2合金の融点が高くなり過ぎて溶解自体が難しくなるおそれがある。
Moreover, it is preferable that Ti content of the said Si-Al-M1-M2 alloy is an alloy comprised by 1-20 at%. This is due to the following reason.
That is, since the Si-Al-M1-M2 alloy according to the present invention contains 40 to 70 at% of Si, in the normal melting method, excess Si is separated and precipitated during casting, and the large particles containing the Si phase. It becomes a structure of two or more phases (see the EPMA observation result of the cast product in FIG. 1A). In the present invention, this is rapidly cooled to obtain a fine structure of two or more phases. The grain size of the structure is determined by the content of Group 4 and 5 elements in the periodic table contained in the Si-Al-M1-M2 alloy. Changes significantly. This particle size greatly affects the cycle life when a negative electrode material for a lithium ion battery is used, and the life becomes better as the particle size of the structure is smaller. Here, the addition of Ti to the alloy structure is effective, and further refinement progresses when Ti is contained at 1 to 20 at%. Although this mechanism is not clearly understood, a finer structure than that containing other Group 4 and 5 elements can be obtained by combining with the rapid cooling method (Si—Al—Fe— in FIG. 1B). Comparison between Ti rapidly solidified product and Si-Al-Fe-V rapidly solidified product in FIG. 5A). Note that if the Ti content is less than 1 at%, the effect may not be obtained. If the Ti content exceeds 20 at%, the melting point of the Si-Al-M1-M2 alloy becomes too high, and the melting itself may be difficult.

本発明のリチウムイオン電池用負極材を構成する合金材料の組織は、図2に示すように、Si−Al−M1−M2合金相からなる微細な結晶粒の粒界にSi相が析出して網目状構造を呈する。   As shown in FIG. 2, the structure of the alloy material constituting the negative electrode material for a lithium ion battery of the present invention is that the Si phase is precipitated at the grain boundaries of the fine crystal grains composed of the Si—Al—M1-M2 alloy phase. Presents a network structure.

ここで、Si−Al−M1−M2合金相からなる結晶粒の粒径は、1〜500nmが好ましく、50〜300nmがより好ましい。結晶粒の粒径が1nm未満ではリチウムイオン電池の負極材としての充放電サイクルに対する耐久性が劣化する場合がある。一方、結晶粒の粒径が500nm超ではリチウムイオン電池として高容量化が困難となるおそれがある。   Here, the grain size of the crystal grains composed of the Si—Al—M1-M2 alloy phase is preferably 1 to 500 nm, and more preferably 50 to 300 nm. When the grain size of the crystal grains is less than 1 nm, durability against charge / discharge cycles as a negative electrode material of a lithium ion battery may be deteriorated. On the other hand, when the crystal grain size exceeds 500 nm, it may be difficult to increase the capacity of the lithium ion battery.

また、Si相の網目状構造は、Si相が前記結晶粒の粒界に析出することにより実現されており、合金材料の表面においてSi相からなる微細な網目が比較的大きな割合で均一に露出している。   Further, the Si phase network structure is realized by precipitation of the Si phase at the grain boundaries of the crystal grains, and the fine network composed of the Si phase is uniformly exposed at a relatively large ratio on the surface of the alloy material. doing.

また、このSi相からなる網目の幅、すなわち結晶粒間の距離が200nm以下、特に1nm以上200nm以下であることが好ましい。結晶粒間の距離が1nm未満では、リチウムイオン電池として高容量化が困難となる場合がある。一方、結晶粒間の距離が200nm超となると、Si相の領域において充放電時の膨張・収縮が大きくなり、微粉化や集電体との導電パスが起こることによりサイクル寿命が悪化するおそれがある。   Further, the width of the mesh composed of the Si phase, that is, the distance between crystal grains is preferably 200 nm or less, particularly preferably 1 nm or more and 200 nm or less. If the distance between the crystal grains is less than 1 nm, it may be difficult to increase the capacity of the lithium ion battery. On the other hand, when the distance between crystal grains exceeds 200 nm, the expansion / contraction at the time of charging / discharging increases in the Si phase region, and the cycle life may be deteriorated due to pulverization and a conductive path with the current collector. is there.

本発明のリチウムイオン電池用負極材を構成する合金材料の製法としては、急冷凝固法が好ましい。具体的には、構成元素に対応した各種金属材料(単金属もしくは合金)を目的組成にあわせ秤量した後、ルツボなどに仕込み、高周波誘導加熱もしくは抵抗加熱、アーク溶解により溶解後に鋳型に鋳込んで合金インゴットを形成し、つぎに該合金インゴットを再溶解してガスアトマイズ、ディスクアトマイズ、ロール急冷などにより急冷凝固を行い、目的の結晶構造を有する合金材料を得ることができる。溶解方法については特に制約は無いが、本発明の微細な結晶構造を有する二相合金材料を得るためには急冷凝固法により製造することが好ましい。   A rapid solidification method is preferred as a method for producing the alloy material constituting the negative electrode material for a lithium ion battery of the present invention. Specifically, various metal materials (single metal or alloy) corresponding to the constituent elements are weighed according to the target composition, then charged into a crucible, etc., melted by high frequency induction heating or resistance heating, arc melting, and cast into a mold. An alloy ingot is formed, and then the alloy ingot is redissolved and rapidly solidified by gas atomization, disk atomization, roll quenching, or the like to obtain an alloy material having a target crystal structure. Although there is no restriction | limiting in particular about the melting method, In order to obtain the two-phase alloy material which has the fine crystal structure of this invention, manufacturing by a rapid solidification method is preferable.

得られた合金材料は、機械粉砕により粉末化することが好ましい。合金材料を粉末化したものを合金粉末と称する。粉砕方法についても制約は無いが、乳鉢、ロールミル、ハンマーミル、ピンミル、ブラウンミル、ジェットミル、ボールミル、ビーズミル、振動ミル、遊星ミルなどが用いることができる。合金はこれらの粉砕を組み合わせることで平均粒径4μm以下、特に1μm以上4μm以下に粉砕することが好ましい。なお、アトマイズ法のように最初から4μm以下の粒度を得られていれば粉砕の必要は無い。   The obtained alloy material is preferably pulverized by mechanical pulverization. The powdered alloy material is called alloy powder. There is no restriction on the pulverization method, but a mortar, roll mill, hammer mill, pin mill, brown mill, jet mill, ball mill, bead mill, vibration mill, planetary mill and the like can be used. The alloy is preferably pulverized by combining these pulverizations into an average particle size of 4 μm or less, particularly 1 μm or more and 4 μm or less. In addition, if the particle size of 4 micrometers or less is obtained from the beginning like the atomization method, a grinding | pulverization is unnecessary.

合金粉末の平均粒径を4μm以下としたのは、合金粉末をリチウムイオン電池用負極材として使用した場合のSi相の利用率及び寿命特性向上のためである。合金粉末の平均粒径が4μm超となると、合金材料中のSi単体(Si相)は微細な網目状構造となっていることから、合金粉末内部のSi相が充放電に寄与しなくなり、利用率が低下し、その分容量が低くなってしまう。また、合金粉末の平均粒径が4μm超となると、リチウムイオン電池の負極材に用いた場合に充放電による膨張・収縮が大きくなり、微粉化や集電体との導電パスが発生しサイクル寿命が低下してしまう。
また、合金粉末の平均粒径を1μm以上とするのは、材料の取り扱い性を確保するためである。
なお、合金粉末の平均粒径は、粉体の粒径を測定する公知の方法でよく、例えばレーザー回折式粒度分布測定装置により測定するとよい。
The reason why the average particle size of the alloy powder is 4 μm or less is to improve the utilization rate and life characteristics of the Si phase when the alloy powder is used as a negative electrode material for a lithium ion battery. When the average particle size of the alloy powder exceeds 4 μm, since the Si simple substance (Si phase) in the alloy material has a fine network structure, the Si phase inside the alloy powder does not contribute to charging / discharging and is used. The rate decreases and the capacity decreases accordingly. Also, when the average particle size of the alloy powder exceeds 4 μm, the expansion / contraction due to charge / discharge increases when used as a negative electrode material for a lithium ion battery, and the cycle life occurs due to pulverization and a conductive path with the current collector. Will fall.
Moreover, the reason why the average particle size of the alloy powder is 1 μm or more is to ensure the handleability of the material.
The average particle diameter of the alloy powder may be a known method for measuring the particle diameter of the powder, and may be measured by, for example, a laser diffraction particle size distribution measuring apparatus.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
(実施例1−1)
金属Si、Al、Fe、Tiをそれぞれ40at%、25at%、20at%、15at%となるよう秤量し、それらを抵抗加熱炉にて溶解した後、鋳込みにて合金インゴットを作製した。
つぎに、この合金インゴットを石英製のノズルに入れ、液体急冷単ロール装置(真壁技研製)内にセットした後、Arガス雰囲気中において高周波により加熱し、溶解する。ついで、その溶融合金をArガスによりノズルの先端孔から噴出させ、高速で回転するCu製の冷却用ロール(周速:20m/秒)の表面に接触させて急冷凝固させる。凝固した合金は、ロールの回転方向に沿って飛行し、リボン状の急冷薄体となる。
つぎに、得られた急冷薄体をステンレス製乳鉢にて粗粉砕した後、粒径300μm以下に分級し、更にボールミル粉砕にて平均粒径4μmの粉末サンプル(サンプルA)を試作した。
なお、粉末サンプルの平均粒径は、レーザー回折式粒度分布測定装置(SALD−7000、島津製作所製)により測定した。
[Example 1]
(Example 1-1)
Metal Si, Al, Fe, and Ti were weighed so as to be 40 at%, 25 at%, 20 at%, and 15 at%, respectively, dissolved in a resistance heating furnace, and then an alloy ingot was produced by casting.
Next, the alloy ingot is put into a quartz nozzle and set in a liquid quenching single roll apparatus (manufactured by Makabe Giken), and then heated and melted in a Ar gas atmosphere by high frequency. Next, the molten alloy is ejected from the tip hole of the nozzle by Ar gas and brought into contact with the surface of a Cu cooling roll (peripheral speed: 20 m / sec) rotating at high speed to be rapidly solidified. The solidified alloy flies along the rotation direction of the roll and becomes a ribbon-like quenched thin body.
Next, the obtained rapidly cooled thin body was roughly pulverized in a stainless mortar, then classified to a particle size of 300 μm or less, and further, a powder sample (sample A) having an average particle size of 4 μm was produced by ball milling.
In addition, the average particle diameter of the powder sample was measured with a laser diffraction particle size distribution measuring device (SALD-7000, manufactured by Shimadzu Corporation).

(実施例1−2)
実施例1−1において、金属Si、Al、Fe、Tiの組成をそれぞれ60at%、15at%、10at%、15at%とし、それ以外は実施例1−1と同じ条件として、粉末サンプル(サンプルB)を試作した。
ここで、本実施例において、合金インゴットの段階のもの(鋳造品)と急冷薄体の段階のもの(急冷凝固品)の合金断面組織についてEPMA(Electron Probe MicroAnalyser)分析によりSi分布を調査した。図1にその結果を示す。鋳造品ではSiが偏析していたが(図1(a))、急冷凝固によりSiが断面において均一に分布するようになった。
(Example 1-2)
In Example 1-1, the composition of the metals Si, Al, Fe, and Ti was set to 60 at%, 15 at%, 10 at%, and 15 at%, respectively, and the other conditions were the same as in Example 1-1. ).
Here, in this example, the Si distribution was investigated by EPMA (Electron Probe MicroAnalyzer) analysis of the alloy cross-sectional structures of the alloy ingot stage (cast product) and the quenched thin body stage (rapidly solidified product). The result is shown in FIG. In the cast product, Si was segregated (FIG. 1A), but Si was distributed uniformly in the cross section by rapid solidification.

(実施例1−3)
実施例1−1において、金属Si、Al、Fe、Tiの組成をそれぞれ70at%、8at%、7at%、15at%とし、それ以外は実施例1−1と同じ条件として、粉末サンプル(サンプルC)を試作した。
(Example 1-3)
In Example 1-1, the composition of the metals Si, Al, Fe, and Ti was set to 70 at%, 8 at%, 7 at%, and 15 at%, respectively, and the other conditions were the same as in Example 1-1. ).

(比較例1−1)
実施例1−1において、金属Si、Al、Fe、Tiの組成をそれぞれ30at%、35at%、20at%、15at%とし、それ以外は実施例1−1と同じ条件として、粉末サンプル(サンプルD)を試作した。
(Comparative Example 1-1)
In Example 1-1, the composition of metal Si, Al, Fe, and Ti was set to 30 at%, 35 at%, 20 at%, and 15 at%, respectively, and the other conditions were the same as in Example 1-1. ).

(比較例1−2)
実施例1−1において、金属Si、Al、Fe、Tiの組成をそれぞれ80at%、5at%、5at%、10at%とし、それ以外は実施例1−1と同じ条件として、粉末サンプル(サンプルE)を試作した。
(Comparative Example 1-2)
In Example 1-1, the composition of the metal Si, Al, Fe, and Ti was set to 80 at%, 5 at%, 5 at%, and 10 at%, respectively, and the other conditions were the same as in Example 1-1. ).

(比較例1−3)
実施例1−1において、金属Si、Al、Fe、Tiの組成をそれぞれ60at%、25at%、15at%、0at%とし、それ以外は実施例1−1と同じ条件として、Tiの添加効果を確認するための粉末サンプル(サンプルF)を試作した。
(Comparative Example 1-3)
In Example 1-1, the composition of the metals Si, Al, Fe, and Ti was set to 60 at%, 25 at%, 15 at%, and 0 at%, respectively, and the other conditions were the same as in Example 1-1. A powder sample (sample F) for confirmation was produced.

(比較例1−4)
市販のSi粉(和光純薬工業製、商品名:ケイ素粉、平均粒径4μm)を粉末サンプル(サンプルG)として用いた。
(Comparative Example 1-4)
Commercially available Si powder (manufactured by Wako Pure Chemical Industries, trade name: silicon powder, average particle size 4 μm) was used as a powder sample (sample G).

(評価方法及び結果)
(1)充放電試験
以上のようにして得られた粉末サンプルを、それぞれバインダとしてポリイミド(N−メチル−2ピロリドン溶液)と混合し、Cu集電体に塗布、加熱乾燥して、電極材シートを形成した。この電極材シートとともに、対極として金属リチウムを用い、電解液として1mol−LiPF6(EC:DEC=1:1V/V%)を用いて、評価用のCR2032型コイン電池を組み立て、充放電試験を行った。このときの充放電条件は、温度20℃、電圧0〜2Vの範囲で、充電、放電共に0.1Cで行い、充放電サイクルを50回行って1回目と50回目の放電容量(負極材(粉末サンプル)1g当たりのmAh)を測定し、容量維持率((50サイクル目の容量)/(1サイクル目の容量)×100(%))を求めた。
なお、本試験は、本発明のリチウムイオン電池用負極材を評価用リチウム電池(コイン電池)の正極として用いているが、コイン電池(リチウム電池)の充放電サイクルに伴って起きる正極(本発明のリチウムイオン電池用負極材)におけるLiイオンの吸蔵・放出に対する耐久性を簡易的に評価するために行った。
その結果を表1に示す。
(Evaluation method and results)
(1) Charge / Discharge Test Each of the powder samples obtained as described above is mixed with polyimide (N-methyl-2pyrrolidone solution) as a binder, applied to a Cu current collector, heated and dried, and an electrode material sheet. Formed. With this electrode material sheet, using lithium metal as the counter electrode and 1 mol-LiPF 6 (EC: DEC = 1: 1 V / V%) as the electrolyte, a CR2032 coin cell for evaluation was assembled, and a charge / discharge test was conducted. went. The charging / discharging conditions at this time are a temperature of 20 ° C. and a voltage of 0 to 2 V, and both charging and discharging are performed at 0.1 C. The charging and discharging cycles are performed 50 times, and the first and 50th discharge capacities (negative electrode Powder sample) mAh per gram) was measured, and the capacity retention ratio ((capacity at 50th cycle) / (capacity at the first cycle) × 100 (%)) was determined.
In this test, the negative electrode material for a lithium ion battery of the present invention is used as a positive electrode of a lithium battery for evaluation (coin battery), but the positive electrode that occurs with the charge / discharge cycle of the coin battery (lithium battery) (the present invention). In order to simply evaluate the durability against the insertion and extraction of Li ions in the negative electrode material for lithium ion batteries).
The results are shown in Table 1.

表1より、Siが40〜70at%である実施例1−1〜1−3の1サイクル目の放電容量、容量維持率が共に高い。これに対し、Si原子30at%の比較例1−1では容量維持率は高いものの、1サイクル目の放電容量が低かった。また、Si80at%の比較例1−2では1サイクル目の放電容量は高いものの、容量維持率がSi単体(比較例1−4)に次いで低かった。また、実施例1−2の放電維持率が比較例1−3よりも高く、Ti添加の効果が明確に認められた。   From Table 1, both the discharge capacity and capacity retention ratio of the first cycle of Examples 1-1 to 1-3 in which Si is 40 to 70 at% are high. In contrast, in Comparative Example 1-1 where the Si atom was 30 at%, the capacity retention rate was high, but the discharge capacity at the first cycle was low. In Comparative Example 1-2 with Si 80 at%, the discharge capacity at the first cycle was high, but the capacity retention rate was the second lowest after Si alone (Comparative Example 1-4). Moreover, the discharge maintenance factor of Example 1-2 was higher than that of Comparative Example 1-3, and the effect of adding Ti was clearly recognized.

(2)組織観察及び組成分析
つぎに、実施例1−2と比較例1−3の粉末サンプルB,Fについて、透過型走査顕微鏡(TEM)にて構成材料の組織を観察した。図2に、その結果を示す。
実施例1−2(図2(a))では、粒状の灰色部と、灰色部の周りを囲んで網目状につながった白色部とからなる組織が観察された。
比較例1−3(図2(b))では、灰色部のベースの中に粒状の白色部が点在する組織が観察された。
(2) Structure Observation and Composition Analysis Next, regarding the powder samples B and F of Example 1-2 and Comparative Example 1-3, the structure of the constituent material was observed with a transmission scanning microscope (TEM). FIG. 2 shows the result.
In Example 1-2 (FIG. 2A), a structure composed of a granular gray portion and a white portion surrounding the gray portion and connected in a mesh shape was observed.
In Comparative Example 1-3 (FIG. 2B), a structure in which granular white portions were scattered in the gray base was observed.

つぎに、実施例1−2及び比較例1−3の粉末サンプルB,Fの観察組織における灰色部及び白色部の組成について、エネルギー分散型X線分析(EDX)により分析した。表2,表3に、その結果を示す。   Next, the composition of the gray part and the white part in the observation structures of the powder samples B and F of Example 1-2 and Comparative Example 1-3 was analyzed by energy dispersive X-ray analysis (EDX). Tables 2 and 3 show the results.

分析の結果、白色部は実施例1−2(粉末サンプルB),比較例1−3(粉末サンプルF)ともにSi100%であり、灰色部は実施例1−2(粉末サンプルB)ではSi-Al-Fe-Ti、比較例1−3(粉末サンプルF)ではSi-Al-Feの合金組成であった。粉末サンプルB,Fの灰色部のSi量(at%)が原材料組成(表1)より低いのは、合金化に寄与しなかったSiが単相で合金中に析出しているためである。   As a result of the analysis, the white part is 100% Si in both Example 1-2 (powder sample B) and Comparative Example 1-3 (powder sample F), and the gray part is Si-- in Example 1-2 (powder sample B). In Al-Fe-Ti and Comparative Example 1-3 (powder sample F), the alloy composition was Si-Al-Fe. The reason why the Si amount (at%) in the gray portions of the powder samples B and F is lower than the raw material composition (Table 1) is that Si that has not contributed to alloying is precipitated in the alloy in a single phase.

以上の分析結果に基づいて、粉末サンプルB,Fの組織を観察すると、図2に示すように、比較例1−3のTiを添加していない粉末サンプルFのSi分布は、Si−Al−Fe母合金にSi相が粒状に点在しているのに対し(図2(b))、実施例1−2のTiを添加している粉末サンプルBのSi分布はSi−Al−Fe−Ti合金相の結晶粒の粒界にSi相が網目状に存在していることが確認できた(図2(a))。また、実施例1−2の粉末サンプルBにおけるSi−Al−Fe−Ti合金相の結晶粒の粒径は50〜300nm程度であった。また、Si相の網目の幅(Si合金結晶粒間の距離)については比較例1−3では200nmを超えていたのに対して実施例1−2では100nm以下であった。   When the structures of the powder samples B and F are observed based on the above analysis results, as shown in FIG. 2, the Si distribution of the powder sample F to which Ti of Comparative Example 1-3 is not added is Si—Al—. In contrast to the Fe master alloy being interspersed with granular Si phases (FIG. 2B), the Si distribution of the powder sample B to which Ti of Example 1-2 is added is Si—Al—Fe—. It was confirmed that the Si phase was present in a network at the grain boundaries of the Ti alloy phase (FIG. 2 (a)). Moreover, the particle diameter of the crystal grain of the Si-Al-Fe-Ti alloy phase in the powder sample B of Example 1-2 was about 50 to 300 nm. Further, the width of the Si phase network (distance between crystal grains of the Si alloy) exceeded 200 nm in Comparative Example 1-3, but was 100 nm or less in Example 1-2.

[実施例2]
つぎに、実施例1−2で試作した合金材料を用いて、粉砕粒度(粒径)の検討を行った。
詳しくは、まず実施例1−2で急冷薄体を粗粉砕したものについて溶媒としてノルマルヘキサンを用いつつステンレス製ボールミルポット及びステンレス製ボールを使用して粉砕し、粉砕時間を調整することで粉砕粒度をコントロールして、平均粒径1.9,3.5,5.0,11.6μmの粉末サンプルH,I,J,Kを得た。
ついで、得られた粉末サンプルを用いて、実施例1と同様に、評価用のCR2032型コイン電池を組み立て、充放電試験を行った。その結果を図3及び表4に示す。
[Example 2]
Next, the pulverized particle size (particle size) was examined using the alloy material prototyped in Example 1-2.
Specifically, the coarsely pulverized rapidly cooled thin body in Example 1-2 was pulverized using a stainless steel ball mill pot and a stainless steel ball while using normal hexane as a solvent, and the pulverization particle size was adjusted by adjusting the pulverization time. Were controlled to obtain powder samples H, I, J, and K having an average particle diameter of 1.9, 3.5, 5.0, and 11.6 μm.
Next, using the obtained powder sample, a CR2032-type coin battery for evaluation was assembled in the same manner as in Example 1, and a charge / discharge test was performed. The results are shown in FIG.

図3及び表4より、粉末サンプルの平均粒径が小さくなるにつれ、1サイクル目の放電容量及び容量維持率が向上する傾向が認められた。
これは、図2の観察結果からも分かるように、粉末サンプルの粒径が大きくなると粉末サンプル内部のSi相がLiイオンとの反応に寄与しないため、単位質量当たりの放電容量が小さくなったことによるものと考えられる。また、粉末サンプルの粒径が大きいと1粒子当りの膨張が大きくなるため、応力がバインダの結着力を越えてしまい集電体との導電パスが発生し容量維持率が低下したと考えられる。
From FIG. 3 and Table 4, it was recognized that the discharge capacity and capacity retention ratio of the first cycle improved as the average particle size of the powder sample became smaller.
As can be seen from the observation results of FIG. 2, the discharge capacity per unit mass was reduced because the Si phase inside the powder sample did not contribute to the reaction with Li ions when the particle size of the powder sample was increased. It is thought to be due to. In addition, since the expansion per particle increases when the particle size of the powder sample is large, it is considered that the stress exceeds the binding force of the binder, a conductive path with the current collector is generated, and the capacity retention rate is reduced.

[実施例3]
つぎに、Si−Al系合金に、添加する金属元素の検討を行った。
詳しくは、実施例1−2の合金組成(Si60Al15Fe10Ti15)を基準として、下記のように添加金属元素を置換して、実施例2−1の条件で平均粒径1.9μmの粉末サンプルL〜Sを得た。ついで、得られた粉末サンプルを用いて、実施例1と同様に、評価用のCR2032型コイン電池を組み立て、充放電試験を行った。
[Example 3]
Next, metal elements to be added to the Si—Al alloy were examined.
Specifically, based on the alloy composition of Example 1-2 (Si 60 Al 15 Fe 10 Ti 15 ), the additive metal element was substituted as follows, and the average particle size of 1. 9 μm powder samples L to S were obtained. Next, using the obtained powder sample, a CR2032-type coin battery for evaluation was assembled in the same manner as in Example 1, and a charge / discharge test was performed.

(置換1)
下記組成式(1)の金属元素M1について、「無し、Ni,Co,Mn」のいずれかを選択して、粉末サンプルL,M,N,Oを得た。なお、「無し」の場合は、Si60Al25Ti15とした。
Si60Al15M110Ti15 (1)
(Replacement 1)
With respect to the metal element M1 of the following composition formula (1), “None, Ni, Co, Mn” was selected to obtain powder samples L, M, N, and O. In the case of “None”, Si 60 Al 25 Ti 15 was used.
Si 60 Al 15 M1 10 Ti 15 (1)

(置換2)
下記組成式(2)の金属元素M2について、「V,Zr,Nb、Ta」のいずれかを選択して粉末サンプルP,Q,R,Sを得た。
Si60Al15Fe10M215 (2)
(Replacement 2)
With respect to the metal element M2 of the following composition formula (2), any one of “V, Zr, Nb, Ta” was selected to obtain powder samples P, Q, R, and S.
Si 60 Al 15 Fe 10 M2 15 (2)

表5に、その結果を示す。   Table 5 shows the results.

表5より、金属元素M1を含まない(すなわち周期律表第4,5族の金属元素を除く遷移金属を含まない)比較例3−1(粉末サンプルL)は1サイクル目の放電容量が大きいものの、50サイクル後の容量維持率が極端に悪くなることが分かった。これは、図4に示す急冷薄体の段階のもの(急冷凝固品)の断面組織におけるSi分布からもわかるように、Siの偏析が大きいことが原因と考えられる。つまり、図4(a)に示すように遷移金属の金属元素M1(図4(a)ではCo)を含んでいる実施例3−2ではSiの偏析が小さく比較的均一に分布しているのに対し、図4(b)に示すようにその金属元素M1を含んでいない比較例3−1におけるSiの偏析が大きくなり、Si相の部分の結晶が大きくなっていると考えられる。そして、合金中のSi相の結晶粒径が大きいと、その部分の充放電時の膨張・収縮が大きくなり、微粉化や集電体との導電パスが起こることによりサイクル寿命が悪化したと考えられる。   From Table 5, Comparative Example 3-1 (powder sample L) that does not contain the metal element M1 (that is, does not contain a transition metal other than the metal elements of Groups 4 and 5 of the periodic table) has a large discharge capacity at the first cycle. However, it was found that the capacity retention rate after 50 cycles became extremely poor. This is considered to be caused by large segregation of Si, as can be seen from the Si distribution in the cross-sectional structure of the rapidly thinned body stage (quenched and solidified product) shown in FIG. That is, as shown in FIG. 4A, in Example 3-2 containing the transition metal element M1 (Co in FIG. 4A), the segregation of Si is small and relatively uniformly distributed. On the other hand, as shown in FIG. 4B, it is considered that the segregation of Si in Comparative Example 3-1 not including the metal element M1 is large, and the crystal of the Si phase portion is large. And if the crystal grain size of the Si phase in the alloy is large, the expansion / contraction at the time of charging / discharging becomes large, and it is thought that the cycle life deteriorates due to the pulverization and the conduction path with the current collector. It is done.

また、前述した比較例1−3のように、金属元素M2を含まない(すなわち周期律表第4,5族の金属を含まない)ものでも、1サイクル目の放電容量が比較的大きいものの、50サイクル後の容量維持率が悪くなったが、これも図5に示す急冷薄体の段階のもの(急冷凝固品)の断面組織におけるSi分布からもわかるように、Siの偏析が大きいことが原因と考えられる。すなわち、図5(a)に示すように周期律表第4,5族の金属元素M2(図5(a)ではV)を含んでいる実施例3−4ではSiの偏析が小さく比較的均一に分布しているのに対し、図5(b)に示すようにその金属元素M2を含んでいない比較例1−3におけるSiの偏析が大きくなっていることから、金属元素M1を含まない場合と同様にSi相の部分の結晶が大きくなり、それに起因してサイクル寿命が悪化したと考えられる。   In addition, as in Comparative Example 1-3 described above, even though the metal element M2 is not included (that is, the metal of Group 4 or 5 of the periodic table is not included), the discharge capacity at the first cycle is relatively large. The capacity retention rate after 50 cycles deteriorated, but as can be seen from the Si distribution in the cross-sectional structure of the quenched thin body stage (quenched solidified product) shown in FIG. Possible cause. That is, as shown in FIG. 5A, in Example 3-4 containing the metal element M2 of Group 4 and 5 of the periodic table (V in FIG. 5A), Si segregation is small and relatively uniform. In the case where the metal element M1 is not included because the segregation of Si in Comparative Example 1-3 that does not include the metal element M2 is large as shown in FIG. It is thought that the crystal of the Si phase portion becomes large similarly to the above, and the cycle life is deteriorated due to this.

以上のことからSi−Al合金中に少なくとも一種以上の遷移金属(ただし、周期律表第4,5族の金属元素を除く)と周期律表第4,5族の金属元素を同時に含有することで、それらの相乗効果により、Si相の均一化及び微細化が実現できると考えられる。すなわち、本発明の考え方により製造された合金は、微細な結晶粒を構成するSi-Al-M1-M2合金相と、該結晶粒の粒界に網目状に存在する微細なSi相とを有することで、高容量かつ長寿命なリチウムイオン電池用負極材を実現することが可能である。   From the above, the Si-Al alloy contains at least one transition metal (excluding metal elements of Groups 4 and 5 of the periodic table) and metal elements of Groups 4 and 5 of the periodic table at the same time. Thus, it is considered that the homogenization and refinement of the Si phase can be realized by their synergistic effect. That is, the alloy manufactured according to the concept of the present invention has a Si—Al—M1-M2 alloy phase constituting fine crystal grains and a fine Si phase existing in a network form at the grain boundaries of the crystal grains. Thus, it is possible to realize a negative electrode material for a lithium ion battery having a high capacity and a long life.

なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   Although the present invention has been described with the embodiments shown in the drawings, the present invention is not limited to the embodiments shown in the drawings, and other embodiments, additions, modifications, deletions, etc. Can be changed within the range that can be conceived, and any embodiment is included in the scope of the present invention as long as the effects and advantages of the present invention are exhibited.

Claims (5)

構成元素として、Si,Al,M1(M1はFe、Ni、Co、Mnの中から選ばれる1種以上の金属元素である。),M2(Ti、V、Zr、Nb、Taの中から選ばれる1種以上の金属元素である。)を含有し(但し、Snを含む場合を除く)
前記構成元素の組成が、Si:40〜70at%、Al:1〜25at%、M1:5〜35at%、M2:1〜20at%であり、
微細な結晶粒を構成するSi−Al−M1−M2合金相と、前記結晶粒の粒界に析出して網目状構造を呈するSi相とを有する合金材料からなることを特徴とするリチウムイオン電池用負極材。
As constituent elements, Si, Al, M1 (M1 is one or more metal elements selected from Fe, Ni, Co, Mn ), M2 ( Ti, V, Zr, Nb, Ta selected Is one or more metal elements) (except for the case where Sn is included) ,
The composition of the constituent elements is Si: 40 to 70 at%, Al: 1 to 25 at%, M1: 5 to 35 at%, M2: 1 to 20 at%,
A lithium-ion battery comprising an alloy material having a Si-Al-M1-M2 alloy phase constituting fine crystal grains and a Si phase precipitated at a grain boundary of the crystal grains and exhibiting a network structure Negative electrode material.
前記Si−Al−M1−M2合金のTi含有量が1〜20at%で構成される合金であることを特徴とする請求項1に記載のリチウムイオン電池用負極材。 The negative electrode material for a lithium ion battery according to claim 1, wherein the Ti content of the Si-Al-M1-M2 alloy is an alloy composed of 1 to 20 at%. 前記結晶粒の粒径が1〜500nmであって、該結晶粒間の距離が200nm以下であることを特徴とする請求項1又は2に記載のリチウムイオン電池用負極材。 A particle diameter of the crystal grains is 1 to 500 nm, negative electrode material for lithium ion battery according to claim 1 or 2 the distance between the crystal grains is equal to or is 200nm or less. 急冷凝固法により製造されてなることを特徴とする請求項1〜のいずれか1項に記載のリチウムイオン電池用負極材。 The negative electrode material for a lithium ion battery according to any one of claims 1 to 3 , wherein the negative electrode material is manufactured by a rapid solidification method. 平均粒径が4μm以下の前記合金材料からなる粒子で構成されることを特徴とする請求項1〜のいずれか1項に記載のリチウムイオン電池用負極材。 The negative electrode material for a lithium ion battery according to any one of claims 1 to 4, characterized in that the average particle size is composed of particles consisting of the alloy material 4 [mu] m.
JP2011249620A 2011-11-15 2011-11-15 Anode material for lithium ion battery Active JP5621753B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011249620A JP5621753B2 (en) 2011-11-15 2011-11-15 Anode material for lithium ion battery
EP12192297.5A EP2595223B1 (en) 2011-11-15 2012-11-12 Negative electrode material for lithium ion batteries
US13/675,256 US8697284B2 (en) 2011-11-15 2012-11-13 Negative electrode material for lithium ion batteries
KR1020120128495A KR101884476B1 (en) 2011-11-15 2012-11-14 Negative electrode material for lithium ion battery
CA2795792A CA2795792C (en) 2011-11-15 2012-11-14 Negative electrode material for lithium ion batteries
CN201210548231.7A CN103107316B (en) 2011-11-15 2012-11-15 Negative electrode material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249620A JP5621753B2 (en) 2011-11-15 2011-11-15 Anode material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2013105655A JP2013105655A (en) 2013-05-30
JP5621753B2 true JP5621753B2 (en) 2014-11-12

Family

ID=47221154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249620A Active JP5621753B2 (en) 2011-11-15 2011-11-15 Anode material for lithium ion battery

Country Status (6)

Country Link
US (1) US8697284B2 (en)
EP (1) EP2595223B1 (en)
JP (1) JP5621753B2 (en)
KR (1) KR101884476B1 (en)
CN (1) CN103107316B (en)
CA (1) CA2795792C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085190A1 (en) * 2014-11-25 2016-06-02 Iljin Electric Negative active material for secondary battery and secondary battery using the same
WO2016111468A1 (en) * 2015-01-07 2016-07-14 Iljin Electric Negative active material for secondary battery and secondary battery using the same
WO2016208882A1 (en) * 2015-06-22 2016-12-29 Iljin Electric Negative electrode active material for secondary battery and preparing method thereof
KR101734838B1 (en) * 2015-01-07 2017-05-15 일진전기 주식회사 Negative active material for secondary battery and the secondary battery comprising the same
US10892478B2 (en) 2015-06-22 2021-01-12 Iljin Electric Co., Ltd. Negative electrode active material for secondary battery and preparing method thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823033A (en) * 2010-04-01 2012-12-12 三菱化学株式会社 Positive electrode material for lithium secondary battery, method for producing same, positive electrode for lithium secondary battery, and lithium secondary battery
JP5768967B2 (en) * 2011-03-07 2015-08-26 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9373839B2 (en) * 2011-12-13 2016-06-21 Samsung Sdi Co., Ltd. Negative electrode active material and secondary battery including the same
US9306216B2 (en) * 2012-02-01 2016-04-05 Samsung Sdi Co., Ltd. Negative active material, method of preparing the same, negative electrode for lithium secondary battery including negative active material, and lithium secondary battery including negative electrode
MX2015017285A (en) 2013-07-03 2016-04-13 California Inst Of Techn Carbon nanotubes - graphene hybrid structures for separator free silicon - sulfur batteries.
CN103474635B (en) * 2013-09-06 2016-04-13 广东精进能源有限公司 The preparation method of the coated titanium silicon nitride alloy high-capacity cathode material of carbon and application
JP2015056313A (en) * 2013-09-12 2015-03-23 古河電気工業株式会社 Negative electrode active material for secondary battery, negative electrode and secondary battery
WO2015064633A1 (en) 2013-10-30 2015-05-07 古河電気工業株式会社 Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery
US10079387B2 (en) * 2014-02-26 2018-09-18 The Regents Of The University Of California Electrical conductive polymer binder for Si alloy materials
JP6374678B2 (en) * 2014-03-13 2018-08-15 山陽特殊製鋼株式会社 Negative electrode materials for electricity storage devices
DE112015004276T5 (en) * 2014-09-19 2017-06-22 Kabushiki Kaisha Toyota Jidoshokki MSix-CONTAINING SILICONE MATERIAL (M IS AT LEAST ONE ITEM SELECTED FROM GROUP 3 TO 9 ELEMENTS: 1/3 ≤ x ≤ 3) AND METHOD FOR THE MANUFACTURE THEREOF
JP6178350B2 (en) * 2014-11-25 2017-08-09 イルジン エレクトリック カンパニー リミテッド Negative electrode active material for secondary battery and secondary battery using the same
JP6445854B2 (en) * 2014-12-03 2018-12-26 山陽特殊製鋼株式会社 Conductive filler powder
KR102323025B1 (en) * 2015-02-26 2021-11-10 일진전기 주식회사 Negative electrode plate for secondary battery and secondary battery comprising the same
WO2016208883A1 (en) * 2015-06-22 2016-12-29 Iljin Electric Negative electrode active material for secondary battery and secondary battery including the same
KR20160150577A (en) * 2015-06-22 2016-12-30 일진전기 주식회사 Negative active material for secondary battery and a second battery using the same
KR20180072484A (en) * 2016-12-21 2018-06-29 일진전기 주식회사 Negative active material for secondary battery and second battery using the same
CN112823069A (en) * 2018-10-05 2021-05-18 住友化学株式会社 Method for producing metal particle composition, and metal particle composition
JP7014754B2 (en) * 2019-07-09 2022-02-01 Jfeスチール株式会社 Ferritic stainless steel sheet for collectors of sulfide-based solid-state batteries
EP4317500A1 (en) * 2021-03-31 2024-02-07 Sumitomo Chemical Company Limited Negative electrode for lithium secondary battery, and lithium secondary battery
EP4317499A1 (en) * 2021-03-31 2024-02-07 Sumitomo Chemical Company Limited Negative electrode active material for lithium secondary battery, metal negative electrode, and lithium secondary battery
CN114976037A (en) * 2022-06-23 2022-08-30 华星先进科学技术应用研究(天津)有限公司 Aluminum-based negative electrode plate for lithium ion battery and lithium ion secondary battery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403449B2 (en) * 1993-05-13 2003-05-06 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
KR100435180B1 (en) * 2001-09-28 2004-06-11 가부시끼가이샤 도시바 Negative electrode material for non-aqueous electrolyte secondary cell, negative electrode, non-aqueous electrolyte secondary cell, and method of producing the material
CN1419303A (en) * 2001-09-28 2003-05-21 株式会社东芝 Negative electrode material for nonelectrolyte cell and making method, negative electrode and cell
CN100382362C (en) 2003-03-26 2008-04-16 佳能株式会社 Electrode material for lithium secondary battery and electrode structure having the electrode material
KR100578872B1 (en) * 2004-03-08 2006-05-11 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
JP4752996B2 (en) 2004-04-20 2011-08-17 パイオニクス株式会社 Method for producing negative electrode active material particles for lithium secondary battery
JP4789032B2 (en) 2004-06-04 2011-10-05 パイオニクス株式会社 Negative electrode active material particles for lithium secondary battery and method for producing negative electrode
US7871727B2 (en) * 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7851085B2 (en) * 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
EP1955393B1 (en) * 2005-12-01 2014-08-27 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US20080206631A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
JP5343342B2 (en) * 2007-06-26 2013-11-13 大同特殊鋼株式会社 Negative electrode active material for lithium secondary battery and lithium secondary battery
US9722275B2 (en) * 2007-12-14 2017-08-01 Nanotek Instruments, Inc. Anode protective layer compositions for lithium metal batteries
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085190A1 (en) * 2014-11-25 2016-06-02 Iljin Electric Negative active material for secondary battery and secondary battery using the same
WO2016111468A1 (en) * 2015-01-07 2016-07-14 Iljin Electric Negative active material for secondary battery and secondary battery using the same
KR20160085383A (en) * 2015-01-07 2016-07-18 일진전기 주식회사 Negative active material for secondary battery and the secondary battery comprising the same
KR101670431B1 (en) * 2015-01-07 2016-11-10 일진전기 주식회사 Negative active material for secondary battery and the secondary battery comprising the same
KR101734838B1 (en) * 2015-01-07 2017-05-15 일진전기 주식회사 Negative active material for secondary battery and the secondary battery comprising the same
US10566616B2 (en) 2015-01-07 2020-02-18 Iljin Electric Co., Ltd. Negative active material for secondary battery and secondary battery using the same
WO2016208882A1 (en) * 2015-06-22 2016-12-29 Iljin Electric Negative electrode active material for secondary battery and preparing method thereof
US10892478B2 (en) 2015-06-22 2021-01-12 Iljin Electric Co., Ltd. Negative electrode active material for secondary battery and preparing method thereof

Also Published As

Publication number Publication date
CA2795792A1 (en) 2013-05-15
EP2595223A2 (en) 2013-05-22
EP2595223B1 (en) 2017-03-15
KR101884476B1 (en) 2018-08-01
CA2795792C (en) 2020-05-26
US20130122368A1 (en) 2013-05-16
CN103107316A (en) 2013-05-15
KR20130054178A (en) 2013-05-24
CN103107316B (en) 2016-06-29
JP2013105655A (en) 2013-05-30
EP2595223A3 (en) 2014-03-12
US8697284B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
JP5621753B2 (en) Anode material for lithium ion battery
KR101817664B1 (en) Si-based-alloy anode material
JP2009032644A (en) Negative electrode active material for lithium secondary battery, and lithium secondary battery
WO2013141230A1 (en) Porous silicon particles and porous silicon-composite particles
JP5696863B2 (en) Si negative electrode material
JP6211961B2 (en) Negative electrode materials for electricity storage devices
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
KR102060205B1 (en) Negative electrode material for lithium ion battery
CN112004777A (en) Porous amorphous silicon, method for producing porous amorphous silicon, and secondary battery
WO2017221693A1 (en) Negative electrode material for electricity storage devices
KR20150036208A (en) Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JP4069710B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4923877B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
WO2011132793A1 (en) Anode material of non-aqueous electrolyte secondary battery and method for producing same
JP6045879B2 (en) Sn alloy powder used as a raw material of the negative electrode active material of a lithium ion secondary battery, and its manufacturing method.
JP2017188271A (en) Negative electrode active material for lithium ion battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150