JP2013181394A - エンジンの廃熱回収装置 - Google Patents

エンジンの廃熱回収装置 Download PDF

Info

Publication number
JP2013181394A
JP2013181394A JP2012043589A JP2012043589A JP2013181394A JP 2013181394 A JP2013181394 A JP 2013181394A JP 2012043589 A JP2012043589 A JP 2012043589A JP 2012043589 A JP2012043589 A JP 2012043589A JP 2013181394 A JP2013181394 A JP 2013181394A
Authority
JP
Japan
Prior art keywords
working fluid
engine
cooling water
temperature
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012043589A
Other languages
English (en)
Inventor
Takuya Yamaguchi
卓也 山口
Yoshiki Tanabe
圭樹 田邊
Takuya Kitasei
琢也 北清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to JP2012043589A priority Critical patent/JP2013181394A/ja
Publication of JP2013181394A publication Critical patent/JP2013181394A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】エンジンの暖機時などにランキンサイクルを利用して冷却水温を速やかに上昇させて早期に暖機完了できるエンジンの廃熱回収装置を提供する。
【解決手段】エンジン2の排気通路45に配設した排気側熱交換器48、冷却水路52に設けた冷却水側熱交換器51、及び膨張器64を作動流体路63によりループ状に接続すると共に、膨張器64をバイパスするバイパス路70を設ける。エンジン2の暖機時には、排気側熱交換器48で作動流体を排ガスと熱交換させて過熱蒸気に変化させ、第3,4バルブ68,69の切換により膨張器64をバイパスさせて冷却水側熱交換器51に流通させる。膨張器64で減圧膨張していない高温高圧の作動流体との熱交換により冷却水を迅速に昇温可能となる。暖機完了後には第3,4バルブ68,69の切換により作動流体を膨張器64に流通させ、取り出した動力により発電機66を駆動する。
【選択図】図2

Description

本発明はエンジンの廃熱回収装置に係り、詳しくはサイクル内で循環する作動流体をエンジンから排出される排ガスと熱交換させ、発生した過熱蒸気を減圧膨張させて動力や電力として取り出す所謂ランキンサイクルを利用したエンジンの廃熱回収装置に関する。
従来よりエンジンから排出される排ガスの廃熱を有効利用すべく、ランキンサイクルを利用したエンジンの廃熱回収装置が提案されている(例えば、特許文献1参照)。
当該特許文献1に開示された技術では、サイクル内で循環する作動流体を蒸気発生器でエンジンの排ガスと熱交換させ、過熱蒸気に変化した作動流体を膨張器で減圧膨張させて動力として取り出し、その動力により発電機を駆動して発電している。さらに減圧膨張後の作動流体に残存している熱も利用すべく、エンジンの冷態始動時などには、作動流体をエンジンの冷却水と熱交換することにより冷却水を昇温させて暖機時間の短縮化を図っている。
特開2005−42618号公報
しかしながら、減圧膨張後の作動流体に残存する熱量はそれほど多くはない。これはエンジン冷却水との間で十分な熱交換が望めないことを意味し、冷却水温を迅速に昇温不能なためエンジン暖機時間をほとんど短縮できないという問題があった。従って、エンジン暖機が長引き、未燃炭化水素(HC)が増加すると共に燃料増量に起因する燃費悪化も発生し、その対策が従来から要望されていた。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、エンジンの暖機時などにランキンサイクルを利用して冷却水温を速やかに上昇させて早期に暖機完了でき、ひいては未燃炭化水素の低減及び燃費改善を達成することができるエンジンの廃熱回収装置を提供することにある。
上記目的を達成するため、請求項1の発明は、サイクル内の作動流体を循環させるポンプと、エンジンから排出される排ガスとサイクル内の作動流体とを熱交換する第1の熱交換器と、第1の熱交換器によって熱交換した作動流体を減圧膨張させる膨張器と、エンジンの冷却水とサイクル内の作動流体とを熱交換する第2の熱交換器と、サイクル内の作動流体を膨張器からバイパスさせる第1のバイパス通路と、冷却水の温度を検出する冷却水温度検出手段と、冷却水温度検出手段により検出された冷却水の温度が予め設定された判定値以上の場合は作動流体を第1のバイパス通路に流さず、冷却水の温度が判定値未満の場合は作動流体を第1のバイパス通路に流通させるように切換制御する第1の切換手段とを備えたものである。
請求項2の発明は、請求項1において、走行用駆動源としてエンジンと共に走行用バッテリにより駆動される走行用モータを備えたハイブリッド車両に搭載され、作動流体の減圧膨張により膨張器が発電機を駆動し、発電電力を走行用バッテリに充電するものである。
請求項3の発明は、請求項1または2において、エンジンに備えられたターボチャージャーのタービンの上流側からコンプレッサの下流側に排ガスをEGRガスとして環流する高圧側EGRシステムと、高圧側EGRシステムにより環流される排ガスと前記サイクル内の作動流体とを熱交換する高圧側EGRクーラと、冷却水の温度が判定値以上の場合は作動流体を高圧側EGRクーラに流通させる第2の切換手段とを備えたものである。
請求項4の発明は、請求項3において、ターボチャージャーのタービンの下流側からコンプレッサの上流側に排ガスをEGRガスとして環流する低圧側EGRシステムと、低圧側EGRシステムにより環流される排ガスとサイクル内の作動流体とを熱交換する低圧側EGRクーラと、冷却水の温度が判定値以上の場合は作動流体を低圧側EGRクーラに流通させる第3の切換手段とを備えたものである。
請求項5の発明は、請求項4において、冷却水の温度が判定値以上の場合に、膨張器で減圧膨張後の作動流体を第2の熱交換器、低圧側EGRクーラ、高圧側EGRクーラの順に流通させるものである。
請求項6の発明は、請求項1乃至4において、低圧側EGRシステムにより環流される排ガスを前記低圧側EGRクーラからバイパスさせる第2のバイパス路と、冷却水の温度が判定値以上の場合は排ガスを第2のバイパス通路に流さず、冷却水の温度が判定値未満の場合は排ガスを第2のバイパス通路に流通させるように切換制御する第4の切換手段とを備えたものである。
以上説明したように請求項1の発明のエンジンの廃熱回収装置によれば、第1の熱交換器、膨張器、第2の熱交換器の順に作動流体を循環させると共に、作動流体を膨張器からバイパスさせる第1のバイパス路を設け、冷却水の温度が判定値以上の場合は第1の切換手段により作動流体を第1のバイパス通路に流さず、冷却水の温度が判定値未満の場合は作動流体を第1のバイパス通路に流通させるようにした。
従って、冷却水の温度が判定値未満となるエンジンの暖機時には作動流体が第1のバイパス路を流通し、膨張器で減圧膨張していない高温高圧の作動流体が第2の熱交換機で冷却水と熱交換される。よって、冷却水を迅速に昇温させて早期に暖機完了でき、ひいては未燃炭化水素の低減及び燃費改善を達成することができる。
また、冷却水の温度が判定値以上となるエンジンの暖機完了後には、作動流体が膨張器を流通して減圧膨張により動力を取出し可能となる。そして、減圧膨張後の作動流体が第2の熱交換器で既に温度上昇した冷却水と熱交換されて予熱されるため、その後の第1の熱交換器での過熱蒸気の生成を促進でき、ランキンサイクルの効率を高めることができる。
請求項2の発明のエンジンの廃熱回収装置によれば、請求項1に加えて、膨張器により発電機を駆動して発電電力をハイブリッド車両の走行用バッテリに充電するようにした。従って、エンジンの廃熱を走行用バッテリの充電に有効利用することができる。
請求項3の発明のエンジンの廃熱回収装置によれば、請求項1または2に加えて、冷却水の温度が判定値以上の場合に作動流体を高圧側EGRクーラに流通させるようにした。従って、膨張器で減圧膨張後の作動流体は第2の熱交換器で予熱されると共に、高圧側EGRクーラでも排ガスとの熱交換により予熱され、その後の第1の熱交換器での過熱蒸気の生成を一層促進することができる。
請求項4の発明のエンジンの廃熱回収装置によれば、請求項3に加えて、冷却水の温度が判定値以上の場合に作動流体を低圧側EGRクーラに流通させるようにした。従って、膨張器で減圧膨張後の作動流体は第2の熱交換器及び高圧側EGRクーラで予熱されると共に、低圧側EGRクーラでも排ガスとの熱交換により予熱され、その後の第1の熱交換器での過熱蒸気の生成を一層促進することができる。
請求項5の発明のエンジンの廃熱回収装置によれば、請求項4に加えて、相対的に低温の第2の熱交換器、中間温度の低圧側EGRクーラ、高温の高圧側EGRクーラの順に作動流体を流通させるようにした。従って、作動流体の温度を高温側に段階的に移行でき、熱交換時のロスを回避して作動流体の予熱効果を最大限に得ることができる。
請求項6の発明のエンジンの廃熱回収装置によれば、請求項1乃至4に加えて、排ガスを低圧側EGRクーラからバイパスさせる第2のバイパス路を設け、冷却水の温度が判定値以上の場合は排ガスを第2のバイパス通路に流さず、冷却水の温度が判定値未満の場合は排ガスを第2のバイパス通路に流通させるようにした。
従って、冷却水の温度が判定値未満になるエンジンの暖機時には、排ガスが低圧側EGRクーラを流れることなく第2のバイパス路に流通する。エンジンの暖機時に排ガスを低圧側EGRクーラで冷却すると、筒内に流入する吸気温度が低下して未燃炭化水素の増加や暖機の妨げになるが、このような不具合を防止することができる。
実施形態のエンジンの廃熱回収装置が適用されたハイブリッド電気自動車を示す全体構成図である。 廃熱回収装置の構成を示す詳細図である。
以下、本発明を具体化したエンジンの廃熱回収装置の一実施形態を説明する。
図1は本実施形態のエンジンの廃熱回収装置が適用されたハイブリッド電気自動車を示す全体構成図である。廃熱回収装置の説明に先立って、まず同図に基づき車両全体の構成について述べる。
ハイブリッド電気自動車1はいわゆるパラレル型ハイブリッド車両であり、本実施形態ではトラックとして構成されている。なお、以下の説明では、ハイブリッド電気自動車1を車両と称する場合もある。
ディーゼルエンジン(以下、エンジンという)2の出力軸には走行用クラッチ4の入力軸が連結されており、走行用クラッチ4の出力軸には例えば永久磁石式同期電動機のように発電も可能な走行用モータ6の回転軸を介して自動変速機8の入力軸が連結されている。自動変速機8は一般的な手動変速機をベースとして走行用クラッチ4の断接操作及び変速段の切換操作を自動化したものであり、本実施形態では、前進6速後退1速の変速段を有し、発進段としては第2速が設定されている。当然ながら、エンジン2や変速機8の形式はこれに限定されるものではなく任意に変更可能であり、例えばガソリンエンジンに具体化したり、通常の手動変速機に具体化したりしてもよい。
また、変速機8の出力軸はプロペラシャフト10、差動装置12及び駆動軸14を介して左右の駆動輪16に接続されている。従って、走行用クラッチ4の切断時には走行用モータ6のみが変速機8を介して駆動輪16側と連結され、走行用クラッチ4の接続時にはエンジン2及び走行用モータ6が共に変速機8を介して駆動輪16側と連結される。
走行用モータ6は、走行用バッテリ18に蓄えられた直流電力がインバータ20によって交流電力に変換されて供給されることによりモータとして作動し、その駆動トルクが変速機8により適宜変速された後に駆動輪16に伝達されることにより車両1を走行させる。また、アクセルオフにより車両1が減速する惰行運転時には、走行用モータ6が発電機として作動して交流電力を発電すると共に、回生トルクを発生させて駆動輪16に制動力を作用させながら車両1を減速させる。そして、発電された交流電力はインバータ20によって直流電力に変換された後にバッテリ18に充電され、これにより車両1の減速エネルギが電気エネルギとして回収されて、その後に走行用モータ6による走行に有効利用される。
一方、エンジン2の駆動力は、走行用クラッチ4が接続されているときに走行用モータ6の回転軸を経由して変速機8に伝達され、適宜変速された後に駆動輪16に伝達される。従って、エンジン2の駆動力が駆動輪16に伝達されているとき、走行用モータ6がモータとして作動しない場合には、エンジン2の駆動力のみが変速機8を介して駆動輪16に伝達され、走行用モータ6がモータとして作動する場合には、エンジン2及び走行用モータ6の駆動力が共に変速機8を介して駆動輪16に伝達されることになる。
また、バッテリ18の残存容量(SOC:State Of Charge)が低下してバッテリ18の充電が必要になると、車両1の走行中であっても走行用モータ6が発電機として作動すると共に、エンジン2の駆動力の一部を用いて走行用モータ6を作動することにより発電が行われ、発電された交流電力をインバータ20によって直流電力に変換した後にバッテリ18に充電するようにしている。
車両ECU22は、車両1やエンジン2の運転状態、及びエンジンECU24、インバータECU26並びにバッテリECU28からの情報などに応じて、図示しないアクチュエータを駆動制御して走行用クラッチ4の断接制御及び変速機8の変速制御を行うと共に、これらの制御状態や車両1の走行状態に合わせてエンジン2や走行用モータ6を適切に運転するための統合制御を行う。
そして車両ECU22には、このような制御のために、アクセルペダル30の操作量Accを検出するアクセルセンサ32、車両1の速度Vを検出する車速センサ34、エンジン2の出力軸の回転速度Neを検出するエンジン回転速度センサ35、走行用モータ6の回転速度Ng(変速機8の入力回転速度)を検出する電動機回転速度センサ36、及びブレーキペダル39の踏込操作を検出するブレーキセンサ40などのセンサ類が接続されている。これらの検出情報に基づき車両ECU22は、車両1の走行に必要な要求トルクを演算し、この要求トルクをエンジン2側と走行用モータ6側とに配分する。
また、これと並行して要求トルク、車両1の走行状態、エンジン2及び走行用モータ6の運転状態、或いはバッテリ18のSOCなどに基づき走行モード(エンジン走行、モータ走行、エンジン・モータ走行)を選択し、選択した走行モードを実行すべくエンジンECU24及びインバータECU26に指令を出力すると共に、適宜変速機8の変速制御を実行する。
エンジンECU24は、車両ECU22によって設定された走行モード及びエンジントルクを達成するように、噴射量制御や噴射時期制御を実行してエンジン2を運転させる。
また、インバータECU26は、車両ECU22によって設定された走行モード及び走行用モータ6のトルクを達成するように、インバータ20を駆動制御して走行用モータ6を力行制御によりモータ作動させたり、回生制御によりジェネレータ作動させたりする。
また、バッテリECU28は、バッテリ18の温度、バッテリ18の電圧、インバータ20とバッテリ18との間に流れる電流などを検出すると共に、これらの検出結果からバッテリ18のSOCを求め、そのSOCを検出結果と共に車両ECU22に出力する。
本実施形態の車両1は以上のように構成されており、そのエンジン2にはランキンサイクルを利用した廃熱回収装置が備えられている。以下、この廃熱回収装置の構成を図2に従って詳述する。
エンジン2の吸気通路41には上流側より、ターボチャージャー42のコンプレッサ42a、インタークーラ43が配設され、吸気通路41の下流側はエンジン2の吸気マニホールド44に接続されている。なお、インタークーラ43はターボチャージャー42の過給により温度上昇した吸入空気を冷却する機能を奏するが、その形式は空冷式でも水冷式でもよい。
また、エンジン2の排気マニホールド45には排気通路46が接続され、排気通路46には上流側より、上記ターボチャージャー42のコンプレッサ42aに対して同軸上に設けられたタービン42b、後処理装置47、蒸気発生器として機能する排気側熱交換器48(第1の熱交換器)、及び図示しない消音器が配設されている。なお、本実施形態では、後処理装置47をDPF(ディーゼルパティキュレートフィルタ)及びSCR(選択還元型NOx触媒)で構成したが、これに限ることはなく任意に変更可能である。
エンジン2の前方(図中の左方)にはクランク軸2aにより回転駆動される冷却ファン49が配設され、冷却ファン49の前側にはラジエータ50が設けられている。これらのエンジン2及びラジエータ50は冷却水側熱交換器51(第2の熱交換器)と共に冷却水路52を介してループ状に接続されている。
冷却水は図示しないポンプによりエンジン2、冷却水側熱交換器51、ラジエータ50の順に冷却水路52を循環し、エンジン2では冷却作用を奏し、ラジエータ50では放熱される。このためエンジン2の暖機完了後には、冷却水側熱交換器51を流通する冷却水の温度が100℃程度に達し、後述するようにランキンサイクルの作動流体(例えば純水など)との間で熱交換が行われる。
排気マニホールド45の一側と吸気マニホールド44の入口付近とはHPL-EGR通路53を介して接続され、HPL-EGR通路53にはHPL-EGRバルブ54及びHPL-EGRクーラ55(高圧側EGRクーラ)が配設されている(高圧側EGRシステム)。また、排気通路46の後処理装置47の下流側と吸気通路41のコンプレッサ42aの上流側とはLPL-EGR通路56を介して接続され、LPL-EGR通路56にはLPL-EGRバルブ57及びLPL-EGRクーラ58(低圧側EGRクーラ)が配設されている(低圧側EGRシステム)。
HPL-EGRバルブ54及びLPL-EGRバルブ57は上記エンジンECU24により開度制御され、それに応じてエンジン2の排ガスがHPL-EGR通路53及びLPL-EGR通路56を経てそれぞれEGRガスとして吸気側に環流される。このためエンジン2の暖機完了後にはHPL-EGRクーラ55を流通する排ガスの温度が300〜500℃程度に達し、LPL-EGRクーラ58を流通する排ガスの温度が150〜200℃程度に達し、それぞれ後述するようにランキンサイクルの作動流体との間で熱交換が行われる。
LPL-EGR通路56のLPL-EGRクーラ58の上流側には第1バルブ59(第4の切換手段)が介装され、この第1バルブ59の上流側とLPL-EGRクーラ58の下流側とはバイパス路61(第2のバイパス路)を介して接続され、バイパス通路61には第2バルブ60(第4の切換手段)が介装されている。
一方、上記した排気側熱交換器48、冷却水側熱交換器51、LPL-EGRクーラ58、及びHPL-EGRクーラ55は廃熱回収装置の作動流体路63を介してループ状に接続されている。排気側熱交換器48と冷却水側熱交換器51との間には膨張器64及びポンプ65が介装され、作動流体はポンプ65により排気側熱交換器48、膨張器64、冷却水側熱交換器51、LPL-EGRクーラ58、HPL-EGRクーラ55の順に作動流体路63を循環するようになっている。以下の説明では、この循環方向に従って作動流体路63の上流側と下流側とを規定する。
膨張器64には発電機66が連結されており、後述するように過熱蒸気となった作動流体を膨張器64内で減圧膨張させて動力(回転力)を取り出し、その動力により発電機66を駆動して発電させるようになっている。
作動流体路63の膨張器64の上流側(排気側熱交換器48側)には第3バルブ68(第1の切換手段)が介装され、この第3バルブ68の上流側と膨張器64の下流側(ポンプ65側)とはバイパス路70(第1のバイパス路)を介して接続され、バイパス通路70には第4バルブ69(第1の切換手段)が介装されている。
また、作動流体路63のLPL-EGRクーラ58の上流側には第5バルブ71(第3の切換手段)が介装され、この第5バルブ71の上流側とLPL-EGRクーラ58の下流側とはバイパス路73を介して接続され、バイパス通路73には第6バルブ72(第3の切換手段)が介装されている。
また、作動流体路63のHPL-EGRクーラ55の上流側には第7バルブ74(第2の切換手段)が介装され、この第7バルブ74の上流側とHPL-EGRクーラ55の下流側とはバイパス路76を介して接続され、バイパス通路76には第8バルブ75(第2の切換手段)が介装されている。
ポンプ65及び第1〜8バルブ59,60,68,69,71,72,74,75はエンジンECU24に接続され、このエンジンECU24によりポンプ65の駆動制御と各バルブ59,60,68,69,71,72,74,75の開閉制御が行われるようになっている。
また、冷却水側熱交換器51には水温センサ78(冷却水温度検出手段)が配設され、冷却水側熱交換器51内に流入したエンジン冷却水の温度Twを検出してエンジンECU24に出力するようになっている。なお、水温センサ78の位置はこれに限ることはなく任意に変更可能であり、例えばエンジン2や冷却水路52の一側に設けてもよい。
次に、このように構成されたエンジン2の廃熱回収装置の制御状況、特に各バルブ59,60,68,69,71,72,74,75の制御状況を説明する。
車両ECU22により走行モードとしてエンジン走行或いはエンジン・モータ走行が選択されると、エンジン2の運転指令を入力したエンジンECU24はエンジン2を始動して運転を開始すると共に、ポンプ65を駆動して作動流体路63内で作動流体を循環させる。これと並行してエンジンECUは水温センサ78により検出された冷却水温Twを予め設定された判定値Tw0と比較し、その比較結果に基づき、以下の表1に従って各バルブ59,60,68,69,71,72,74,75の開閉状態を切り換える。表中の○は開弁を表し、×は閉弁を表す。

Figure 2013181394
判定値Tw0は、エンジン2の暖機が完了した時点の冷却水温が設定されている。従って、冷却水温Twが判定値Tw0未満の場合はエンジン2の暖機時と見なせ、また冷却水温Twが判定値Tw0以上の場合はエンジン2の暖機完了後と見なせる。
例えば、冷態のエンジン2を始動して暖機を開始すると、当初は冷却水温Twが判定値Tw0未満であることから、エンジンECU24は第2,4,6,8バルブ60,69,72,75を開弁し、第1,3,5,7バルブ59,68,71,74を閉弁する。
第1バルブ59が閉弁し、第2バルブ60が開弁しているため、排ガスはLPL-EGRクーラ58を流通することなくバイパス路61を経てエンジン2の吸気側に環流される。排ガス温度が比較的低いエンジン2の暖機時にLPL-EGRクーラ58で排ガスを冷却した場合、筒内に流入する吸気温度が低下して未燃炭化水素の増加や暖機の妨げになるが、LPL-EGRクーラ58をバイパスさせることで不具合を防止できる。
また、エンジン2の運転継続により、冷却水温Twの上昇に先行して排ガスの温度は上昇する。排気側熱交換器48では排ガスと作動流体との熱交換が行われ、作動流体は液相から高温高圧の過熱蒸気に変化する。
第3バルブ68が閉弁し、第4バルブ69が開弁しているため、排気側熱交換器48から流出した作動流体は膨張器64を流れることなくバイパス路70を流通する。その後の作動流体は冷却水側熱交換器51を流通し、第5バルブ71が閉弁し、第6バルブ72が開弁しているため、LPL-EGRクーラ58を流れることなくバイパス路73を流通する。さらに、第7バルブ74が閉弁し、第8バルブ75が開弁しているため、作動流体はHPL-EGRクーラ55を流れることなくバイパス路76を流通して排気側熱交換器48に戻され、以上の循環を作動流体路63内で繰り返す。
エンジン2の暖機時には未だ冷却水温Twが低く(<Tw0)、未燃炭化水素や燃費の面から迅速な冷却水の昇温が要望される。排気側熱交換器48で昇温した作動流体は膨張器64をバイパスして冷却水側熱交換器51を流通する。このため冷却水側熱交換器51では、膨張器64で減圧膨張していない高温高圧の作動流体と冷却水との間で熱交換が行われる。よって、冷却水を迅速に昇温させて早期に暖機完了でき、ひいては未燃炭化水素の低減及び燃費改善を達成することができる。
加えて、冷却水側熱交換器51を流通後の作動流体はLPL-EGRクーラ58及びHPL-EGRクーラ55をバイパスするため、これらのEGRクーラ58,55で温度低下することなく排気側熱交換器48に戻される。よって、再び排気側熱交換器48で熱交換する際の作動流体の昇温が容易になり、その後の冷却水側熱交換器51の熱交換ではより高温の作動流体により冷却水を昇温でき、結果としてエンジン2の暖機を一層促進することができる。
そして、冷却水温Twが上昇して判定値Tw0以上になると、エンジンECU24は第1,3,5,7バルブ59,68,71,74を開弁し、第2,4,6,8バルブ60,69,72,75を閉弁する。
第1バルブ59が開弁し、第2バルブ60が閉弁しているため、排ガスはバイパス路61を流通することなくLPL-EGRクーラ58を経てエンジン2の吸気側に環流される。よって、以下に述べるように排ガスはLPL-EGRクーラ58で作動流体との間で熱交換され、冷却後にエンジン2の吸気側に環流される。
また、この時点の排ガスは十分に温度上昇しているため、排気側熱交換器48では排ガスとの熱交換により作動流体が高温高圧の過熱蒸気に変化する。第3バルブ68が開弁し、第4バルブ69が閉弁しているため、作動流体はバイパス路70を流れることなく膨張器64を流通して減圧膨張する。膨張器64から取り出された動力により発電機66が駆動されて発電し、その発電電力はインバータ20により直流電力に変換されてバッテリ18に充電される。これによりエンジン2の廃熱が電気エネルギとして回収されて、その後に走行用モータ6による走行に有効利用される。
その後の作動流体は冷却水側熱交換器51を流通し、第5バルブ71が開弁し、第6バルブ72が閉弁しているため、バイパス路73を流れることなくLPL-EGRクーラ58を流通する。さらに、第7バルブ74が開弁し、第8バルブ75が閉弁しているため、作動流体はバイパス路76を流れることなくHPL-EGRクーラ55を流通して排気側熱交換器48に戻され、以上の循環を作動流体路63内で繰り返す。
エンジン2の暖機完了後は既に冷却水温Twが十分に上昇しており、上記のように冷却水側熱交換器51には100℃程度の冷却水が流通し、LPL-EGRクーラ58には150〜200℃程度の排ガスが流通し、HPL-EGRクーラ55には300〜500℃程度の排ガスが流通している。膨張器64で減圧膨張後の作動流体は、このような冷却水側熱交換器51、LPL-EGRクーラ58及びHPL-EGRクーラ55を流通して順次熱交換を行う。
従って、その過程で作動流体は予熱され、かなり温度上昇した状態で排気側熱交換器48に戻される。よって、その後に排気側熱交換器48で熱交換する際の過熱蒸気の生成を促進でき、冷却水側熱交換器51ではより高温高圧の過熱蒸気を利用して発電機66を駆動できる。結果としてランキンサイクルの効率を高め、エンジン2の廃熱を最大限に有効利用することができる。
ここで、作動流体の流通順序は、相対的に低温の冷却水側熱交換器51、中間温度のLPL-EGRクーラ、高温のHPL-EGRクーラ55の順に設定されているため、作動流体の温度は高温側に段階的に移行することになる。これ以外の流通順序では、ある機器で昇温された作動流体がより低温の機器での熱交換により温度低下して予熱の効果が減少してしまう。上記のような作動流体の流通順序とすることで、熱交換時のロスを回避して作動流体の予熱効果を最大限に得ることができる。従って、排気側熱交換器48での過熱蒸気の生成を促進でき、ランキンサイクルの効率を一層向上させることができる。
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、ハイブリッド型トラック1に搭載されたエンジン2の廃熱回収装置に具体化したが、適用する車両はこれに限定されることはなく任意に変更可能である。例えばハイブリッド型のバスや乗用車に適用してもよいし、走行用駆動源としてエンジン2のみを備えたエンジン車両に適用してもよい。
また上記実施形態では、廃熱回収装置の作動流体路63にHPL-EGRクーラ55及びLPL-EGRクーラ58を設けたが、これに限ることはなく、これらのEGRクーラ55,58を省略してもよいし、何れか一方のみを設けてもよい。
また上記実施形態では、第1〜8バルブ59,60,68,69,71,72,74,75を完全に開弁または閉弁させたが、これらのバルブ制御に関しても限定されるものではない。例えば、各バルブ59,60,68,69,71,72,74,75を所定の開度に制御するようにしてもよい。
また上記実施形態では、廃熱回収装置の作動流体路63に凝縮器を備えなかったが、例えば膨張器64とポンプ65との間に凝縮器を設けてもよい。
また、上記実施形態では、作動流体を減圧膨張させて発電機66を駆動したが、エンジン2の廃熱利用はこれに限ることはなく、例えば取り出した動力を補助動力としてエンジン2のクランク軸2aに回収してもよい。
2 エンジン
6 走行用モータ
18 走行用バッテリ
24 エンジンECU(第1〜4の切換手段)
42 ターボ
42a コンプレッサ
42b タービン
48 排気側熱交換器(第1の熱交換器)
51 冷却水側熱交換器(第2の熱交換器)
53 HPL-EGR通路(高圧側EGRシステム)
54 HPL-EGRバルブ(高圧側EGRシステム)
55 HPL-EGRクーラ(高圧側EGRクーラ)
56 LPL-EGR通路(低圧側EGRシステム)
57 LPL-EGRバルブ(低圧側EGRシステム)
58 LPL-EGRクーラ(低圧側EGRクーラ)
59 第1バルブ(第4の切換手段)
60 第2バルブ(第4の切換手段)
61 バイパス路(第2のバイパス路)
64 膨張器
65 ポンプ
66 発電機
68 第3バルブ(第1の切換手段)
69 第4バルブ(第1の切換手段)
70 バイパス路(第1のバイパス路)
71 第5バルブ(第3の切換手段)
72 第6バルブ(第3の切換手段)
74 第7バルブ(第2の切換手段)
75 第8バルブ(第2の切換手段)
78 水温センサ(冷却水検出手段)

Claims (6)

  1. サイクル内の作動流体を循環させるポンプと、
    エンジンから排出される排ガスと前記サイクル内の作動流体とを熱交換する第1の熱交換器と、
    前記第1の熱交換器によって熱交換した作動流体を減圧膨張させる膨張器と、
    前記エンジンの冷却水と前記サイクル内の作動流体とを熱交換する第2の熱交換器と、
    前記サイクル内の作動流体を前記膨張器からバイパスさせる第1のバイパス通路と、
    前記冷却水の温度を検出する冷却水温度検出手段と、
    前記冷却水温度検出手段により検出された冷却水の温度が予め設定された判定値以上の場合は作動流体を前記第1のバイパス通路に流さず、前記冷却水の温度が前記判定値未満の場合は作動流体を第1のバイパス通路に流通させるように切換制御する第1の切換手段と
    を備えたことを特徴とするエンジンの廃熱回収装置。
  2. 走行用駆動源として前記エンジンと共に走行用バッテリにより駆動される走行用モータを備えたハイブリッド車両に搭載され、
    前記作動流体の減圧膨張により前記膨張器が発電機を駆動し、発電電力を前記走行用バッテリに充電することを特徴とする請求項2記載のエンジンの廃熱回収装置。
  3. 前記エンジンに備えられたターボチャージャーのタービンの上流側からコンプレッサの下流側に排ガスをEGRガスとして環流する高圧側EGRシステムと、
    前記高圧側EGRシステムにより環流される排ガスと前記サイクル内の作動流体とを熱交換する高圧側EGRクーラと、
    前記冷却水の温度が前記判定値以上の場合は前記作動流体を前記高圧側EGRクーラに流通させる第2の切換手段と
    を備えたことを特徴とする請求項1または2記載のエンジンの廃熱回収装置。
  4. 前記ターボチャージャーのタービンの下流側からコンプレッサの上流側に排ガスをEGRガスとして環流する低圧側EGRシステムと、
    前記低圧側EGRシステムにより環流される排ガスと前記サイクル内の作動流体とを熱交換する低圧側EGRクーラと、
    前記冷却水の温度が前記判定値以上の場合は前記作動流体を前記低圧側EGRクーラに流通させる第3の切換手段と
    を備えたことを特徴とする請求項3記載のエンジンの廃熱回収装置。
  5. 前記冷却水の温度が前記判定値以上の場合に、前記膨張器で減圧膨張後の作動流体を前記第2の熱交換器、前記低圧側EGRクーラ、前記高圧側EGRクーラの順に流通させることを特徴とする請求項4記載のエンジンの廃熱回収装置。
  6. 前記低圧側EGRシステムにより環流される排ガスを前記低圧側EGRクーラからバイパスさせる第2のバイパス路と、
    前記冷却水の温度が前記判定値以上の場合は排ガスを前記第2のバイパス通路に流さず、前記冷却水の温度が前記判定値未満の場合は排ガスを第2のバイパス通路に流通させるように切換制御する第4の切換手段と
    を備えたことを特徴とする請求項1乃至4の何れか記載のエンジンの廃熱回収装置。
JP2012043589A 2012-02-29 2012-02-29 エンジンの廃熱回収装置 Pending JP2013181394A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043589A JP2013181394A (ja) 2012-02-29 2012-02-29 エンジンの廃熱回収装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043589A JP2013181394A (ja) 2012-02-29 2012-02-29 エンジンの廃熱回収装置

Publications (1)

Publication Number Publication Date
JP2013181394A true JP2013181394A (ja) 2013-09-12

Family

ID=49272253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043589A Pending JP2013181394A (ja) 2012-02-29 2012-02-29 エンジンの廃熱回収装置

Country Status (1)

Country Link
JP (1) JP2013181394A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253595A (ja) * 2012-05-09 2013-12-19 Sanden Corp 排熱回収装置
CN104632499A (zh) * 2014-12-23 2015-05-20 潍柴动力股份有限公司 混合动力车辆热量控制方法及***
CN104747318A (zh) * 2013-12-27 2015-07-01 现代自动车株式会社 从内燃发动机回收废热的***
JP2016084727A (ja) * 2014-10-23 2016-05-19 日野自動車株式会社 Egrシステム
US9745881B2 (en) 2013-12-23 2017-08-29 Hyundai Motor Company System for recycling exhaust heat from internal combustion engine
CN107304725A (zh) * 2016-04-21 2017-10-31 现代自动车株式会社 发动机***以及使用发动机***控制发动机的方法
JP2017532473A (ja) * 2014-06-26 2017-11-02 ボルボトラックコーポレーション 熱回収機能を備えた内燃機関システム
AT518636B1 (de) * 2016-05-17 2017-12-15 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine für ein fahrzeug
JP2018059418A (ja) * 2016-10-03 2018-04-12 本田技研工業株式会社 内燃機関の吸排気装置
US10001069B2 (en) 2015-07-07 2018-06-19 Hyundai Motor Company Method for reducing exhaust gas of mild hybrid system
US10006316B2 (en) 2015-07-13 2018-06-26 Hyundai Motor Company Waste heat recovery system
US10138760B2 (en) 2015-07-13 2018-11-27 Hyundai Motor Company Working fluid collecting apparatus for rankine cycle waste heat recovery system
JP2019143533A (ja) * 2018-02-20 2019-08-29 いすゞ自動車株式会社 廃熱利用装置
KR20190109200A (ko) * 2018-03-16 2019-09-25 한국조선해양 주식회사 엔진 시스템 및 이를 구비한 선박
US11815052B2 (en) 2021-12-08 2023-11-14 Hyundai Motor Company EGR cooler

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253595A (ja) * 2012-05-09 2013-12-19 Sanden Corp 排熱回収装置
US9745881B2 (en) 2013-12-23 2017-08-29 Hyundai Motor Company System for recycling exhaust heat from internal combustion engine
US9551240B2 (en) 2013-12-27 2017-01-24 Hyundai Motor Company System of recycling exhaust heat from internal combustion engine
CN104747318A (zh) * 2013-12-27 2015-07-01 现代自动车株式会社 从内燃发动机回收废热的***
KR101567171B1 (ko) * 2013-12-27 2015-11-06 현대자동차주식회사 내연기관의 배기열 재활용 시스템
JP2017532473A (ja) * 2014-06-26 2017-11-02 ボルボトラックコーポレーション 熱回収機能を備えた内燃機関システム
JP2016084727A (ja) * 2014-10-23 2016-05-19 日野自動車株式会社 Egrシステム
CN104632499B (zh) * 2014-12-23 2016-08-24 潍柴动力股份有限公司 混合动力车辆热量控制方法及***
CN104632499A (zh) * 2014-12-23 2015-05-20 潍柴动力股份有限公司 混合动力车辆热量控制方法及***
US10001069B2 (en) 2015-07-07 2018-06-19 Hyundai Motor Company Method for reducing exhaust gas of mild hybrid system
US10006316B2 (en) 2015-07-13 2018-06-26 Hyundai Motor Company Waste heat recovery system
US10138760B2 (en) 2015-07-13 2018-11-27 Hyundai Motor Company Working fluid collecting apparatus for rankine cycle waste heat recovery system
US10794230B2 (en) 2015-07-13 2020-10-06 Hyundai Motor Company Waste heat recovery system
CN107304725A (zh) * 2016-04-21 2017-10-31 现代自动车株式会社 发动机***以及使用发动机***控制发动机的方法
US10578058B2 (en) 2016-04-21 2020-03-03 Hyundai Motor Company Engine system and method of controlling engine system to prevent condensation
KR101846886B1 (ko) * 2016-04-21 2018-05-24 현대자동차 주식회사 엔진 시스템 및 이를 이용한 엔진 제어 방법
CN107304725B (zh) * 2016-04-21 2021-11-26 现代自动车株式会社 发动机***以及使用发动机***控制发动机的方法
AT518636B1 (de) * 2016-05-17 2017-12-15 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine für ein fahrzeug
AT518636A4 (de) * 2016-05-17 2017-12-15 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine für ein fahrzeug
JP2018059418A (ja) * 2016-10-03 2018-04-12 本田技研工業株式会社 内燃機関の吸排気装置
WO2019163691A1 (ja) * 2018-02-20 2019-08-29 いすゞ自動車株式会社 廃熱利用装置
JP2019143533A (ja) * 2018-02-20 2019-08-29 いすゞ自動車株式会社 廃熱利用装置
US11280225B2 (en) 2018-02-20 2022-03-22 Isuzu Motors Limited Waste heat utilization device
KR102077938B1 (ko) 2018-03-16 2020-02-14 현대중공업 주식회사 엔진 시스템 및 이를 구비한 선박
KR20190109200A (ko) * 2018-03-16 2019-09-25 한국조선해양 주식회사 엔진 시스템 및 이를 구비한 선박
US11815052B2 (en) 2021-12-08 2023-11-14 Hyundai Motor Company EGR cooler

Similar Documents

Publication Publication Date Title
JP2013181394A (ja) エンジンの廃熱回収装置
US8739531B2 (en) Hybrid power plant with waste heat recovery system
KR101046550B1 (ko) 하이브리드 시스템 제어 장치 및 하이브리드 시스템 제어 방법
CN108131185B (zh) 用于排气热回收的方法和***
JP5481737B2 (ja) 内燃機関の廃熱利用装置
JP5761358B2 (ja) ランキンサイクル
WO2013046929A1 (ja) エンジン廃熱利用装置
EP3161288B1 (en) Exhaust gas arrangement
US10662822B2 (en) Heat cycle system
WO2015064302A1 (ja) エンジン冷却システム
GB2454349A (en) Heating hybrid vehicle engine oil
JP2010180710A (ja) エンジンの吸気制御方法及びその装置
KR102217930B1 (ko) 하이브리드 차량
JP2013181393A (ja) エンジンの過給システム
CN104669998A (zh) 一种基于水缓速器的混合动力汽车及其控制方法
JP2013181392A (ja) エンジンの過給システム
EP3411586A1 (en) A method for controlling the temperature of a waste heat recovery system and such a waste heat recovery system
JP2011179421A (ja) 内燃機関の冷却装置
JP5212276B2 (ja) ハイブリッド自動車
US20190234343A1 (en) Organic rankine cycle waste heat recovery system having two loops
JP6205867B2 (ja) エンジンの廃熱利用装置
EP3663552B1 (en) Method and system for thermal management of an after treatment system of an internal combustion engine
WO2015197087A1 (en) Internal combustion engine system with heat recovery
JP2015031235A (ja) エンジン冷却システム
JP3329123B2 (ja) ディーゼルエンジンの吸気温度制御装置