JP2013171863A - Electronic component mounting structure and manufacturing method of the same - Google Patents

Electronic component mounting structure and manufacturing method of the same Download PDF

Info

Publication number
JP2013171863A
JP2013171863A JP2012033031A JP2012033031A JP2013171863A JP 2013171863 A JP2013171863 A JP 2013171863A JP 2012033031 A JP2012033031 A JP 2012033031A JP 2012033031 A JP2012033031 A JP 2012033031A JP 2013171863 A JP2013171863 A JP 2013171863A
Authority
JP
Japan
Prior art keywords
electronic component
pattern
region
weak heat
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012033031A
Other languages
Japanese (ja)
Inventor
Shozo Ochi
正三 越智
Shinji Ishitani
伸治 石谷
Isao Tashiro
功 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012033031A priority Critical patent/JP2013171863A/en
Publication of JP2013171863A publication Critical patent/JP2013171863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic component mounting structure which enables only a weak heat resistant component to be selectively mounted without causing influences on peripheral electronic components when the weak heat resistant component such as a camera module is included in a structure where multiple electronic components such a portable module are mounted with high density, and to provide a manufacturing method of the electronic component mounting structure.SOLUTION: In an electronic component mounting structure 100, a joining material 106a and a weak heat resistant component 101 are mounted on an electrode 105a formed at a region located immediately above a mesh pattern region 104a, which has a low wiring rate, from among a power source and a GND pattern 104 which are formed on any wiring layer 103b of a wiring board 103. A coil 107 is brought close to a region where the weak heat resistant component is mounted to selectively heat only the mesh pattern by induction heating. Then, the weak heat resistant component and the electrode formed on the wiring board are joined through the joint material.

Description

本発明は、カメラモジュールなどのような弱耐熱部品の電子部品が含まれている電子部品実装構造体及びその製造方法に関する。   The present invention relates to an electronic component mounting structure including a weak heat-resistant electronic component such as a camera module and a manufacturing method thereof.

近年、携帯電話などに代表されるモバイル機器は、小型及び軽量化、もしくは、カメラの搭載、もしくは、AV機器への対応など高機能及び高性能化の要求が一段と激しさを増している。これに伴い、電子機器に用いられる電子部品又は配線基板には、電子部品を高密度に実装でき、かつ小型化されたものが望まれており、特にカメラモジュールなどのような弱耐熱部品の半田付けにおいては、より精密な加熱技術が求められている。   In recent years, mobile devices represented by mobile phones and the like are becoming more and more demanding for high functionality and high performance such as miniaturization and weight reduction, camera mounting, and compatibility with AV devices. Along with this, electronic components or wiring boards used in electronic devices are desired to be able to mount electronic components with high density and to be miniaturized, and in particular solder for heat resistant components such as camera modules. In addition, more precise heating technology is required.

従来、半田をリフローさせて半田付けする方式として、熱風リフロー方式と、ベーパーリフロー方式と、赤外線照射方式が一般的に用いられている。熱風リフロー方式は、ヒータにより加熱した雰囲気を炉内で循環させ対流熱伝導により加熱するもので、さらにベーパーリフロー方式は、気相潜熱を利用したもので、両者は加熱温度を一定に保つことができるという利点を有している。また、赤外線照射方式は、赤外線を配線基板に直接照射して加熱するもので、設備が簡単で効率良く加熱することができるという利点を有している。   Conventionally, a hot air reflow method, a vapor reflow method, and an infrared irradiation method are generally used as a method of soldering by reflowing solder. The hot air reflow method circulates the atmosphere heated by the heater in the furnace and heats it by convection heat conduction, and the vapor reflow method uses vapor phase latent heat, both of which can keep the heating temperature constant. It has the advantage of being able to. Further, the infrared irradiation method is a method in which infrared rays are directly irradiated onto the wiring board and heated, and has an advantage that the equipment is simple and can be efficiently heated.

ところが、熱風リフロー方式も、ベーパーリフロー方式も、赤外線照射方式も、配線基板を局所的に加熱制御することはできず、電子部品と配線基板全体が加熱されるので、通常のリフロー温度では弱耐熱部品が壊れてしまう。弱耐熱部品が対応可能な領域までリフロー温度を下げるためには、低温接合材料の開発が必要となり、低温での接合品質を確保するための技術的ハードルが非常に高くなる。   However, neither the hot air reflow method, the vapor reflow method, nor the infrared irradiation method can locally control the heating of the wiring board, and the entire electronic component and the wiring board are heated. Parts are broken. In order to lower the reflow temperature to a region where weak heat-resistant parts can be handled, it is necessary to develop a low-temperature bonding material, and technical hurdles for ensuring bonding quality at low temperatures are extremely high.

これらの問題を解決する手段として、レーザービームを照射することによって配線基板の半田付け箇所だけを局所的に加熱して電子部品を実装する方法が提案されている(特許文献1)。   As means for solving these problems, there has been proposed a method of mounting electronic components by locally heating only a soldered portion of a wiring board by irradiating a laser beam (Patent Document 1).

具体的には、複数のレーザー素子を縦横に配置してなる平面状のレーザー光源と、前記レーザー光源によるレーザー光源照射領域に配線基板を搬送して位置決めする基板搬送手段と、前記搬送手段により位置決めされた配線基板にレーザービームを照射する際に、前記複数のレーザー素子のうち、半田付けを行う部位に位置するレーザー素子のみを駆動するよう、電子部品が実装された際の実装データに基づいて各レーザー素子を個別に駆動制御可能な制御手段を備えている。   Specifically, a planar laser light source in which a plurality of laser elements are arranged vertically and horizontally, a substrate transport means for transporting and positioning a wiring board in a laser light source irradiation area by the laser light source, and positioning by the transport means Based on the mounting data when the electronic component is mounted so as to drive only the laser element located at the part to be soldered among the plurality of laser elements when irradiating the laser beam to the printed wiring board Control means capable of individually driving and controlling each laser element is provided.

この場合、配線基板上の任意の半田付け箇所だけを局所的に加熱することで、弱耐熱部品の実装が可能となる。しかしながら、レーザービームが照射できる領域は可視領域のみに限られており、リードフレームのついた電子部品又はチップ部品といった電子部品に限定され、例えば、BGA又はLGAなどのようにエリアパッド構造の電子部品は、半田付け箇所が可視領域でないため、レーザービームでは対応できない。   In this case, it is possible to mount a weak heat-resistant component by locally heating only an arbitrary soldering portion on the wiring board. However, the region that can be irradiated with the laser beam is limited to the visible region, and is limited to electronic components such as electronic components with a lead frame or chip components. For example, electronic components with an area pad structure such as BGA or LGA Can not be handled with a laser beam because the soldering part is not visible.

この問題を解決するために、誘導加熱技術によって配線基板を急速加熱し、弱耐熱部品を実装する技術開発が行われている(特許文献2)。   In order to solve this problem, technology development has been performed in which a wiring board is rapidly heated by induction heating technology and a weak heat-resistant component is mounted (Patent Document 2).

このような具体的な電子部品実装構造体の製造方法の一例について、図10A〜図10Dを参照して以下に説明する。まず、図10Aに示すように、鉄系配線基板1001の配線パターン1001c上に半田1002を形成する。   An example of a method for manufacturing such a specific electronic component mounting structure will be described below with reference to FIGS. 10A to 10D. First, as shown in FIG. 10A, solder 1002 is formed on the wiring pattern 1001 c of the iron-based wiring board 1001.

次に、図10B及び図10Cに示すように、半田1002の上に弱耐熱部品1003を搭載した鉄系配線基板1001を、高周波加熱コイル1004上に搬送する。   Next, as shown in FIGS. 10B and 10C, an iron-based wiring board 1001 in which a weak heat-resistant component 1003 is mounted on the solder 1002 is conveyed onto the high-frequency heating coil 1004.

次に、図10Cに示すように、高周波加熱コイル1004で鉄系配線基板1001を誘導加熱すると、熱が、鉄系配線基板1001の鉄製のベース部1001aから、絶縁層1001bと、配線パターン1001cと、半田1002とを経て、弱耐熱部品1003の電極端子へと順に伝達する。この結果、半田1002が溶けて、弱耐熱部品1003の電極端子と配線パターン1001cとが接続される。このとき、弱耐熱部品1003の弱耐熱部へ伝わる温度は耐熱温度以下となり、加熱速度が高いほど弱耐熱部に伝わる温度は低くなる。   Next, as shown in FIG. 10C, when the iron-based wiring board 1001 is induction-heated by the high-frequency heating coil 1004, the heat is transferred from the iron base portion 1001a of the iron-based wiring board 1001 to the insulating layer 1001b and the wiring pattern 1001c. Then, the light is transmitted to the electrode terminals of the weak heat-resistant component 1003 through the solder 1002 in order. As a result, the solder 1002 is melted, and the electrode terminal of the weak heat-resistant component 1003 and the wiring pattern 1001c are connected. At this time, the temperature transmitted to the weak heat resistant part of the weak heat resistant component 1003 is equal to or lower than the heat resistant temperature, and the temperature transmitted to the weak heat resistant part decreases as the heating rate increases.

そして、図10Dに示すように、鉄系配線基板1001を高周波加熱コイル1004から外すように搬出して、鉄系配線基板1001を徐冷する。その後、鉄系配線基板1001の半田1002が固着し、半田1002を介して弱耐熱部品1003の電極端子と配線パターン1001cとが電気的に接続された電子部品実装構造体を製造することができる。   Then, as shown in FIG. 10D, the iron-based wiring board 1001 is unloaded from the high-frequency heating coil 1004, and the iron-based wiring board 1001 is gradually cooled. Thereafter, the solder 1002 of the iron-based wiring board 1001 is fixed, and an electronic component mounting structure in which the electrode terminals of the weak heat-resistant component 1003 and the wiring pattern 1001c are electrically connected via the solder 1002 can be manufactured.

この方法を用いれば、リードフレームのついた電子部品又はチップ部品といった半田付け箇所が可視領域のみで接続する電子部品に限定されず、例えば、BGA又はLGAなどのようにエリアパッド構造で、半田付け箇所が可視領域にない電子部品も実装が可能となる。   If this method is used, the soldering location such as an electronic component with a lead frame or a chip component is not limited to an electronic component that is connected only in the visible region. For example, soldering is performed with an area pad structure such as BGA or LGA. Electronic components whose locations are not in the visible region can also be mounted.

第2679180号No. 2679180 特開平9−283915号JP-A-9-283915

ところで、配線基板上に複数の電子部品を高密度に搭載し、複数の電子部品のうち、弱耐熱部品だけを局所加熱して実装する場合、鉄系配線基板1001に形成された鉄製のベース部1001aが一様に広がったベタパターンである。このため、誘導加熱すると、鉄製のベース部1001aにおいて高周波加熱コイル1004の直下の部分が最大温度になり、周辺に連続的な温度分布が発生する。よって、弱耐熱部品1003のサイズに応じて高周波加熱コイル1004のサイズを調整することで、最大温度になる部分を調整することは可能である。が、弱耐熱部品1003の周辺の隣接した電子部品の領域への熱拡散により、弱耐熱部品1003の周辺の電子部品の接続部も加熱されて再溶融する恐れがあり、接続品質の低下に繋がる。つまり、配線基板上に複数の電子部品を高密度に搭載し、複数の電子部品のうち、弱耐熱部品だけを誘導加熱によって局所加熱して実装する場合、弱耐熱部品の周辺の隣接した電子部品の領域への熱拡散を抑制し、周辺の電子部品の接続部の再溶融を抑制する必要がある。   By the way, when mounting a plurality of electronic components on a wiring board at high density and mounting only a weak heat-resistant component among the plurality of electronic components by locally heating, an iron base portion formed on the iron-based wiring substrate 1001 1001a is a solid pattern that spreads uniformly. For this reason, when induction heating is performed, the portion immediately below the high-frequency heating coil 1004 in the iron base portion 1001a has the maximum temperature, and a continuous temperature distribution is generated in the periphery. Therefore, by adjusting the size of the high-frequency heating coil 1004 according to the size of the weak heat-resistant component 1003, it is possible to adjust the portion that reaches the maximum temperature. However, due to thermal diffusion to the adjacent electronic component region around the weak heat-resistant component 1003, the connection part of the electronic component around the weak heat-resistant component 1003 may be heated and remelted, leading to a decrease in connection quality. . In other words, when mounting multiple electronic components on a wiring board at high density and mounting only weak heat-resistant components by induction heating among the multiple electronic components, adjacent electronic components around the weak heat-resistant components Therefore, it is necessary to suppress thermal diffusion to the region, and to suppress remelting of the connection part of the peripheral electronic component.

従って、本発明の目的は、携帯モジュールのような複数の電子部品が高密度に実装された構造において、カメラモジュールなどのような弱耐熱部品の電子部品が含まれている場合に、弱耐熱部品の周辺の弱耐熱部品以外の電子部品に影響を与えずに、弱耐熱部品のみを選択的に実装することが可能な電子部品実装構造体及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a weak heat-resistant component in a case where a plurality of electronic components such as a portable module are mounted at a high density and the electronic component of a weak heat-resistant component such as a camera module is included. It is an object to provide an electronic component mounting structure capable of selectively mounting only a weak heat-resistant component without affecting electronic components other than the weak heat-resistant component in the vicinity of the device, and a manufacturing method thereof.

前記の目的を達成するために、本発明の1つの態様によれば、配線基板のいずれかの配線層に電源もしくはGNDパターンの金属層を形成するとともに、前記金属層において、前記配線基板に実装される第1電子部品が配置される第1電子部品配置領域に対応する領域にメッシュ状パターンを形成し、
前記配線基板の表面の前記第1電子部品配置領域に形成された第1電極と、前記第1電極上に搭載された前記第1電子部品とを第1接合材料を介して接合するとともに、前記配線基板の表面であって前記メッシュ状パターンが形成された領域以外のベタパターンの領域に対応する領域に形成された第2電極と、前記第2電極上に搭載された第2電子部品とを第2接合材料を介して接合する、電子部品実装構造体の製造方法であって、
前記第1電極と前記第1電子部品との接合は、誘導加熱により前記メッシュ状パターンのみを加熱することにより行う電子部品実装構造体の製造方法を提供する。
In order to achieve the above object, according to one aspect of the present invention, a metal layer of a power supply or a GND pattern is formed on any wiring layer of the wiring board, and the metal layer is mounted on the wiring board. Forming a mesh pattern in a region corresponding to the first electronic component placement region where the first electronic component to be placed is placed,
The first electrode formed in the first electronic component placement region on the surface of the wiring board and the first electronic component mounted on the first electrode are bonded via a first bonding material, and A second electrode formed on a surface of the wiring board in a region corresponding to a solid pattern region other than the region where the mesh pattern is formed, and a second electronic component mounted on the second electrode; A method for manufacturing an electronic component mounting structure, which is bonded via a second bonding material,
The first electrode and the first electronic component are joined together by providing a method for manufacturing an electronic component mounting structure in which only the mesh pattern is heated by induction heating.

また、前記の目的を達成するために、本発明の別の態様によれば、複数の電子部品が実装された配線基板の何れかの配線層に形成された電源もしくはGNDパターンにおいて、前記複数の電子部品のうち、弱耐熱部品が実装される領域に形成された前記電源もしくはGNDパターンは、弱耐熱部品以外の電子部品が実装される領域の前記電源もしくはGNDパターンに比べて、パターンの面積比率が低いメッシュ状パターンである電子部品実装構造体を提供する。   In order to achieve the above object, according to another aspect of the present invention, in the power supply or the GND pattern formed in any wiring layer of the wiring board on which the plurality of electronic components are mounted, Of the electronic components, the power supply or GND pattern formed in the region where the weak heat-resistant component is mounted has a pattern area ratio compared to the power supply or GND pattern in the region where the electronic component other than the weak heat-resistant component is mounted. An electronic component mounting structure having a low mesh pattern is provided.

このような電子部品実装構造体及びその製造方法とすることにより、配線基板上に複数の電子部品(第1及び第2電子部品)を高密度に搭載し、複数の電子部品のうち、第1電子部品である弱耐熱部品だけを局所加熱して実装する場合、弱耐熱部品の弱耐熱部へ伝わる温度は耐熱温度以下となる。この結果、弱耐熱部品の周辺の隣接した電子部品の領域への熱拡散を抑制し、弱耐熱部品の周辺の電子部品の接続部の再溶融を抑制することが可能となる。   By adopting such an electronic component mounting structure and a manufacturing method thereof, a plurality of electronic components (first and second electronic components) are mounted on the wiring board with high density, and the first of the plurality of electronic components is the first. When only a weak heat-resistant component that is an electronic component is mounted by local heating, the temperature transmitted to the weak heat-resistant part of the weak heat-resistant component is equal to or lower than the heat-resistant temperature. As a result, it is possible to suppress thermal diffusion to the adjacent electronic component region around the weak heat-resistant component, and to suppress remelting of the connection portion of the electronic component around the weak heat-resistant component.

本発明の第1実施形態にかかる電子部品実装構造体の構成を示す縦断面図The longitudinal cross-sectional view which shows the structure of the electronic component mounting structure concerning 1st Embodiment of this invention 本発明の第1実施形態にかかる電子部品実装構造体の構成を示す平面図The top view which shows the structure of the electronic component mounting structure concerning 1st Embodiment of this invention. 図1Aに示す電子部品実装構造体における破線A−Aにおける、本発明の第1実施形態にかかる電子部品実装構造体の構成を示す平面図The top view which shows the structure of the electronic component mounting structure concerning 1st Embodiment of this invention in the broken line AA in the electronic component mounting structure shown to FIG. 1A 本発明の第1実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 1st Embodiment of this invention. 図2Aに続く、本発明の第1実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 1st Embodiment of this invention following FIG. 2A. 図2Bに続く、本発明の第1実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 1st Embodiment of this invention following FIG. 2B. 図2Cに続く、本発明の第1実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 1st Embodiment of this invention following FIG. 2C. 本発明の第2実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 2nd Embodiment of this invention. 図3Aに続く、本発明の第2実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 2nd Embodiment of this invention following FIG. 3A. 図3Bに続く、本発明の第2実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 2nd Embodiment of this invention following FIG. 3B. 図3Cに続く、本発明の第2実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 2nd Embodiment of this invention following FIG. 3C. 本発明の第3実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 3rd Embodiment of this invention. 図4Aに続く、本発明の第3実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 3rd Embodiment of this invention following FIG. 4A. 図4Bに続く、本発明の第3実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 3rd Embodiment of this invention following FIG. 4B. 図4Cに続く、本発明の第3実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 3rd Embodiment of this invention following FIG. 4C. 図4Dに続く、本発明の第3実施形態にかかる電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the electronic component mounting structure concerning 3rd Embodiment of this invention following FIG. 4D. 第1実施形態において、ベタパターンから複数の小さな円形のパターンを除去して形成されたメッシュ状パターンを示す図The figure which shows the mesh-shaped pattern formed by removing several small circular patterns from a solid pattern in 1st Embodiment. 第1実施形態において、ベタパターンを複数の小さな六角形のパターンを除去して形成されたメッシュ状パターンを示す図The figure which shows the mesh-like pattern formed by removing a several small hexagon pattern from the solid pattern in 1st Embodiment 本発明の第1実施形態にかかる誘導加熱する配線パターンの構成を示す平面図The top view which shows the structure of the wiring pattern which carries out induction heating concerning 1st Embodiment of this invention. 誘導加熱の状態を示す模式図Schematic diagram showing the state of induction heating 誘導加熱の状態を示す模式図Schematic diagram showing the state of induction heating 誘導加熱の状態を示す模式図Schematic diagram showing the state of induction heating それぞれの配線パターンにおける誘導加熱時の加熱状態を示す模式図Schematic diagram showing the heating state during induction heating in each wiring pattern それぞれの配線パターンにおける誘導加熱時の加熱状態を示す模式図Schematic diagram showing the heating state during induction heating in each wiring pattern それぞれの配線パターンにおける誘導加熱時の加熱状態を示す模式図Schematic diagram showing the heating state during induction heating in each wiring pattern それぞれの配線パターンにおける誘導加熱時の昇温特性を示す説明図Explanatory diagram showing temperature rise characteristics during induction heating in each wiring pattern 従来の電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the conventional electronic component mounting structure 図10Aに続く、従来の電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the conventional electronic component mounting structure following FIG. 10A 図10Bに続く、従来の電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the conventional electronic component mounting structure subsequent to FIG. 10B. 図10Cに続く、従来の電子部品実装構造体の製造方法の工程を示す断面図Sectional drawing which shows the process of the manufacturing method of the conventional electronic component mounting structure following FIG. 10C

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同じ要素については、同じ符号を付しており説明を省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same element, the same code | symbol is attached | subjected and description may be abbreviate | omitted.

(第1実施形態)
図1A〜図1Bは、本発明の第1実施形態にかかる電子部品実装構造体100の構成を示す断面図及び平面図である。図2A〜図2Cは、本発明の第1実施形態にかかる電子部品実装構造体100の製造方法のそれぞれの工程を示す断面図である。図6は、本発明の第1実施形態にかかる誘導加熱する配線パターンの構成を示す平面図である。
(First embodiment)
1A to 1B are a cross-sectional view and a plan view showing the configuration of the electronic component mounting structure 100 according to the first embodiment of the present invention. 2A to 2C are cross-sectional views showing respective steps of the method for manufacturing the electronic component mounting structure 100 according to the first embodiment of the present invention. FIG. 6 is a plan view showing the configuration of the wiring pattern for induction heating according to the first embodiment of the present invention.

第1実施形態の電子部品実装構造体100は、図1Aに示すように、表面に複数の第1電極105aと複数の第2電極105bとを有する配線基板103と、配線基板103の複数の第1電極105aに第1接合材料の一例としての第1(クリーム)半田106aをそれぞれ介して実装された弱耐熱部品101である第1電子部品と、配線基板103の複数の第2電極105bにそれぞれ第2接合材料の一例としての第2(クリーム)半田106bを介して実装された弱耐熱部品101以外の第2電子部品(言い換えれば、耐熱部品)102とを含む複数の電子部品とで構成されている。   As shown in FIG. 1A, the electronic component mounting structure 100 according to the first embodiment includes a wiring board 103 having a plurality of first electrodes 105 a and a plurality of second electrodes 105 b on the surface, and a plurality of second wiring boards 103. A first electronic component which is a weak heat-resistant component 101 mounted on one electrode 105 a via a first (cream) solder 106 a as an example of a first bonding material, and a plurality of second electrodes 105 b on the wiring substrate 103, respectively. A plurality of electronic components including a second electronic component (in other words, a heat resistant component) 102 other than the weak heat resistant component 101 mounted via a second (cream) solder 106b as an example of the second bonding material. ing.

電子部品実装構造体100の一例としては、携帯モジュールのような複数の電子部品が高密度に実装された構造である。弱耐熱部品101の一例としては、カメラモジュールなどが挙げられ、通常のリフロー温度(200〜250℃)では耐えることができず、壊れてしまうような部品であって、部品耐熱温度が200℃未満の部品を意味する。
一例として、配線基板103は、第1層103aと第2層103bと第3層103cの3層の絶縁層103で構成されている。配線基板103の第2層103bの配線層には、金属層の一例としてのGND(グランド)パターン104が形成されている。GNDパターン104のうち、配線率(面積比率)の低いメッシュ状パターン領域104aの直上の配線基板103の表面の弱耐熱部品搭載予定の領域(弱耐熱部品搭載配置領域)RG1には、複数の第1電極105aが配置され、当該複数の第1電極105aにそれぞれ第1接合材料106aを介して弱耐熱部品101が搭載されている。
An example of the electronic component mounting structure 100 is a structure in which a plurality of electronic components such as a portable module are mounted with high density. An example of the weak heat-resistant component 101 is a camera module, etc., which is a component that cannot withstand normal reflow temperatures (200 to 250 ° C.) and breaks, and the component heat resistant temperature is less than 200 ° C. Means parts.
As an example, the wiring board 103 is composed of three insulating layers 103 including a first layer 103a, a second layer 103b, and a third layer 103c. In the wiring layer of the second layer 103b of the wiring substrate 103, a GND (ground) pattern 104 as an example of a metal layer is formed. Of the GND pattern 104, a weak heat-resistant component mounting region (weak heat-resistant component mounting placement region) RG1 on the surface of the wiring substrate 103 immediately above the mesh pattern region 104a having a low wiring rate (area ratio) has a plurality of second patterns. One electrode 105a is disposed, and the weak heat-resistant component 101 is mounted on each of the plurality of first electrodes 105a via the first bonding material 106a.

配線基板103の裏面であって、前記弱耐熱部品101が搭載された領域(弱耐熱部品配置領域)RG1に対応する領域に、高周波加熱コイル107を近づけて、高周波加熱コイル107による誘導加熱を発生させる。このようにすることによって、前記メッシュ状パターン領域104aのみを選択的に加熱する。この結果、メッシュ状パターン領域104aに対応する配線基板103の表面の領域(弱耐熱部品配置領域)RG1に搭載された前記弱耐熱部品101の接続端子と、前記配線基板103に形成された複数の第1電極105aとが、前記第1接合材料106aを介して接合されている。なお、弱耐熱部品配置領域RG1と高周波加熱コイル107との大きさは、ほぼ同じ大きさとしている。ここで、メッシュ状パターン領域104aの全ての領域が加熱されるためには、全ての領域で高周波加熱コイル107から磁界を受け取ることが必要である。このため、少なくともメッシュ状パターン領域104aの方が高周波加熱コイル107よりも小さいことが好ましい。メッシュ状パターン領域104aが高周波加熱コイル107から受け取る磁界の量はメッシュ状パターン領域104aと高周波加熱コイル107との面積比に比例し、比率が高いほどエネルギー効率が高くなる。このため、メッシュ状パターン領域104aの面積は高周波加熱コイル107の面積に対して90%以上であることが望ましい。   Induction heating by the high-frequency heating coil 107 is generated by bringing the high-frequency heating coil 107 close to a region corresponding to the region (weakly heat-resistant component placement region) RG1 on which the weak heat-resistant component 101 is mounted on the back surface of the wiring board 103. Let In this way, only the mesh pattern region 104a is selectively heated. As a result, the connection terminal of the weak heat-resistant component 101 mounted on the surface region (weak heat-resistant component placement region) RG1 corresponding to the mesh-shaped pattern region 104a, and a plurality of formed on the wiring substrate 103 The first electrode 105a is bonded via the first bonding material 106a. The sizes of the weak heat-resistant component placement region RG1 and the high-frequency heating coil 107 are approximately the same. Here, in order to heat all areas of the mesh pattern area 104a, it is necessary to receive a magnetic field from the high-frequency heating coil 107 in all areas. For this reason, it is preferable that at least the mesh pattern region 104 a is smaller than the high-frequency heating coil 107. The amount of magnetic field received by the mesh pattern region 104a from the high frequency heating coil 107 is proportional to the area ratio between the mesh pattern region 104a and the high frequency heating coil 107, and the higher the ratio, the higher the energy efficiency. For this reason, it is desirable that the area of the mesh pattern region 104 a is 90% or more with respect to the area of the high frequency heating coil 107.

また、図1Bは、図1Aに示す電子部品実装構造体100を上から見た平面図であり、弱耐熱部品101と第2電子部品102とを含む複数の電子部品が配線基板103に実装されている。さらに、図1Cは、図1Aに示す電子部品実装構造体100における破線A−Aでの平面図であり、配線基板103にGNDパターン104が形成され、GNDパターン104のうち、中央部に、配線率(面積比率)の低いメッシュ状パターン領域104aが形成されている。GNDパターン104は、メッシュ状パターン領域104a以外の部分はベタパターン領域104bとなっている。   FIG. 1B is a plan view of the electronic component mounting structure 100 shown in FIG. 1A as viewed from above. A plurality of electronic components including the weak heat-resistant component 101 and the second electronic component 102 are mounted on the wiring board 103. ing. Further, FIG. 1C is a plan view taken along the broken line AA in the electronic component mounting structure 100 shown in FIG. 1A. A GND pattern 104 is formed on the wiring board 103, and a wiring pattern is formed at the center of the GND pattern 104. A mesh pattern region 104a having a low rate (area ratio) is formed. The GND pattern 104 is a solid pattern area 104b except for the mesh pattern area 104a.

このような電子部品実装構造体100は、図2A〜図2Dの工程により作製することができる。   Such an electronic component mounting structure 100 can be manufactured by the steps of FIGS. 2A to 2D.

始めに、図2Aに示すように、配線基板103の第2層103bにGNDパターン104を形成し、GNDパターン104のうち、弱耐熱部品101を搭載する領域(弱耐熱部品配置領域)RG1に対応する領域に、配線率の低いメッシュ状パターン領域104aを形成し、メッシュ状パターン領域104aの直上の配線基板103の表面の弱耐熱部品配置領域RG1に複数の第1電極105aを形成する。   First, as shown in FIG. 2A, the GND pattern 104 is formed on the second layer 103b of the wiring board 103, and the GND pattern 104 corresponds to a region (weak heat resistant component placement region) RG1 in which the weak heat resistant component 101 is mounted. A mesh pattern region 104a having a low wiring rate is formed in the region to be processed, and a plurality of first electrodes 105a are formed in the weak heat-resistant component placement region RG1 on the surface of the wiring substrate 103 immediately above the mesh pattern region 104a.

次いで、図2Bに示すように、配線基板103の表面に形成された各第1電極105a及び各第2電極105bの上に第1クリーム半田106aと第2クリーム半田106bをそれぞれ印刷する。   Next, as shown in FIG. 2B, the first cream solder 106a and the second cream solder 106b are printed on the first electrodes 105a and the second electrodes 105b formed on the surface of the wiring board 103, respectively.

次いで、図2Cに示すように、配線基板103において、メッシュ状パターン領域104aを除いた領域104bに対応する、配線基板103の表面の領域(耐熱部品配置領域)RG2に、複数の第2電極105b及び第2クリーム半田106bを介して、弱耐熱部品ではない(耐熱部品の)第2電子部品102を搭載する。そして、配線基板103をリフロー炉に流すことにより、第2クリーム半田106bが溶融する。その結果、第2半田106bを介して複数の第2電極105bと第2電子部品102の接続端子とが電気的に接続されて実装される。   Next, as shown in FIG. 2C, in the wiring substrate 103, a plurality of second electrodes 105b are formed in a region (heat-resistant component placement region) RG2 on the surface of the wiring substrate 103 corresponding to the region 104b excluding the mesh pattern region 104a. The second electronic component 102 (of a heat resistant component) that is not a weak heat resistant component is mounted via the second cream solder 106b. Then, the second cream solder 106b is melted by flowing the wiring board 103 into the reflow furnace. As a result, the plurality of second electrodes 105b and the connection terminals of the second electronic component 102 are electrically connected and mounted via the second solder 106b.

次いで、図2Dに示すように、配線基板103の表面において、メッシュ状パターン領域104aに対応する弱耐熱部品配置領域RG1に弱耐熱部品101を搭載し、配線基板103の裏面において、前記弱耐熱部品101が搭載された弱耐熱部品配置領域RG1に対応する領域に高周波加熱コイル107を近づけて、誘導加熱によって前記メッシュ状パターン領域104aのみを選択的に加熱する。すると、絶縁層である第1層103aを介して、メッシュ状パターン領域104aの直上の弱耐熱部品配置領域RG1の複数の第1電極105aに熱が伝達し、前記複数の第1電極105aにそれぞれ形成された第1半田106aが溶融する。その結果、前記配線基板103に形成された複数の第1電極105aと前記弱耐熱部品101の接続端子とが前記第1半田106aを介してそれぞれ接合された電子部品実装構造体100を製造することができる。なお、前記配線基板103に前記弱耐熱部品101を搭載する際、接着剤で弱耐熱部品101を配線基板103の表面に固定しても良い。あるいは、前記弱耐熱部品101を、第1電子部品冷却用のツールの一例としての吸着ツール(図3Dのツール308と同様なツール)で吸着させた状態で前記配線基板103に搭載しても良い。   Next, as shown in FIG. 2D, on the surface of the wiring substrate 103, the weak heat-resistant component 101 is mounted in the weak heat-resistant component placement region RG1 corresponding to the mesh pattern region 104a. The high-frequency heating coil 107 is brought close to a region corresponding to the weak heat-resistant component placement region RG1 on which 101 is mounted, and only the mesh pattern region 104a is selectively heated by induction heating. Then, heat is transmitted to the plurality of first electrodes 105a in the weak heat-resistant component placement region RG1 immediately above the mesh pattern region 104a through the first layer 103a which is an insulating layer, and the plurality of first electrodes 105a are respectively transmitted. The formed first solder 106a is melted. As a result, the electronic component mounting structure 100 in which the plurality of first electrodes 105a formed on the wiring board 103 and the connection terminals of the weak heat-resistant component 101 are joined via the first solder 106a is manufactured. Can do. When the weak heat-resistant component 101 is mounted on the wiring substrate 103, the weak heat-resistant component 101 may be fixed to the surface of the wiring substrate 103 with an adhesive. Alternatively, the weak heat-resistant component 101 may be mounted on the wiring board 103 in a state of being sucked by a suction tool (a tool similar to the tool 308 in FIG. 3D) as an example of a first electronic component cooling tool. .

一例として、このときの弱耐熱部品101用の第1半田材料106aは低温で実装することが可能なSnBi系半田を用いれば、160℃で第1半田材料106aが溶融して、弱耐熱部品101を接合することができる。   As an example, if the first solder material 106a for the weak heat-resistant component 101 at this time is SnBi-based solder that can be mounted at a low temperature, the first solder material 106a melts at 160 ° C., and the weak heat-resistant component 101 Can be joined.

ここで、誘導加熱のメカニズムについて説明する。図7A〜図7Cは薄板導体190を誘導加熱する状態を示し、図8A〜図8Cはそれぞれの配線パターンにおける誘導加熱時の加熱状態を示している。   Here, the mechanism of induction heating will be described. 7A to 7C show a state in which the thin plate conductor 190 is induction-heated, and FIGS. 8A to 8C show a heating state at the time of induction heating in each wiring pattern.

まず、図7Aに示すように、薄板導体190に高周波加熱コイル191を近づけて高周波加熱コイル191に交流電流を流す。   First, as shown in FIG. 7A, the high-frequency heating coil 191 is brought close to the thin plate conductor 190 and an alternating current is passed through the high-frequency heating coil 191.

次に、図7Bに示すように、ビオサバールの法則により、高周波加熱コイル191に交流電流を流すことによって交流磁場が発生する。   Next, as shown in FIG. 7B, an alternating magnetic field is generated by flowing an alternating current through the high-frequency heating coil 191 according to Biosavart's law.

そして、図7Cに示すように、ファラデーの電磁誘導の法則により、発生した磁場を打ち消すように薄板導体190に誘導電流192が発生し、ジュールの法則により、薄板導体190の表皮抵抗でジュール熱が発生する。   7C, an induced current 192 is generated in the thin plate conductor 190 so as to cancel the generated magnetic field by Faraday's law of electromagnetic induction, and Joule heat is generated by the skin resistance of the thin plate conductor 190 by Joule's law. Occur.

この時の加熱状態は、薄板導体190のパターンにより、以下のように異なる。   The heating state at this time differs as follows depending on the pattern of the thin plate conductor 190.

まず、図8Aに示すように、薄板導体190がベタパターンの薄板導体190Aの場合において誘導加熱すると薄板導体190Aに誘導電流192Aが発生し、薄板導体190Aにおいて高周波加熱コイル191の直下の部分が最大温度になり、高周波加熱コイル191の直下の部分の周辺に連続的な温度分布が発生する。   First, as shown in FIG. 8A, when the thin plate conductor 190 is a solid pattern thin plate conductor 190A, induction heating generates an induced current 192A in the thin plate conductor 190A, and the portion immediately below the high-frequency heating coil 191 is maximum in the thin plate conductor 190A. As a result of the temperature, a continuous temperature distribution is generated around the portion immediately below the high-frequency heating coil 191.

また、図8Bに示すように、薄板導体190が短冊状のそれぞれ独立したパターンの薄板導体190Bの場合において誘導加熱すると、電流の経路が分断されて誘導電流192Bが流れにくくなり、薄板導体190Bは殆ど加熱されない。   Further, as shown in FIG. 8B, when the thin plate conductor 190 is a strip-shaped thin plate conductor 190B having an independent pattern, when induction heating is performed, the current path is divided and the induced current 192B hardly flows, and the thin plate conductor 190B It is hardly heated.

また、図8Cに示すように、薄板導体190がメッシュ状パターンの薄板導体190Cの場合において誘導加熱すると、電流の経路が限定されて誘導電流192Cが集中的に流れ、薄板導体190Cが加熱され易くなる。つまり、誘導加熱によって局所加熱して実装する際に、周辺の第2電子部品102の接続部(第2低温半田106b)の再溶融を抑制するためには、誘導加熱する対象のパターンをベタパターンのみでなく、適切なパターン形状で配置する必要がある。   8C, when the thin plate conductor 190 is a thin plate conductor 190C having a mesh pattern, when induction heating is performed, the current path is limited and the induced current 192C flows intensively, and the thin plate conductor 190C is easily heated. Become. That is, in order to suppress remelting of the connection portion (second low-temperature solder 106b) of the peripheral second electronic component 102 when mounting by local heating by induction heating, the pattern to be induction-heated is a solid pattern. In addition to this, it is necessary to arrange in an appropriate pattern shape.

そして、一例として、この時の薄板導体190のパターンを構成する配線材料はCuを用い、配線基板103の第2層103bに形成されたGNDパターン104の配線厚みは18μmである。そして、GNDパターン104のうち、メッシュ状パターン領域104aの配線率(面積比率)は30%である。このパターン仕様は、図9に示すそれぞれの配線パターンにおける誘導加熱時の昇温特性の測定結果を基にして策定している。つまり、メッシュ状パターン領域104aの仕様は、図9のメッシュ(1)のパターンに対応し、メッシュ状パターン領域104aの周辺のベタパターンの仕様は、図9のベタパターンに対応している。高周波誘導加熱電源107Pの消費電力が500Wのとき、メッシュ(1)のパターンは27K/secで昇温し、5秒後に常温25℃から160℃に到達する。このとき、ベタパターンは3.5K/secで昇温するので、5秒後に到達する温度は43℃に留まり、弱耐熱部品101の周辺の隣接した第2電子部品102の領域(耐熱部品配置領域)RG2への熱拡散を抑制し、弱耐熱部品101の周辺の第2電子部品102の接続部(第2半田106b)の再溶融を抑制することが可能となる。なお、メッシュ状パターン(1)の配線率(面積比率)が低いほど、誘導電流192が集中的に流れて加熱され易くなるが、一方で、配線率が低くなって配線幅が狭くなると、許容電流値が小さくなって配線が溶断してしまうので、配線率は30%以上であることが好ましい。   As an example, the wiring material constituting the pattern of the thin plate conductor 190 at this time is Cu, and the wiring thickness of the GND pattern 104 formed on the second layer 103b of the wiring substrate 103 is 18 μm. In the GND pattern 104, the wiring rate (area ratio) of the mesh pattern region 104a is 30%. This pattern specification is formulated based on the measurement results of the temperature rise characteristics during induction heating in each wiring pattern shown in FIG. That is, the specification of the mesh pattern region 104a corresponds to the pattern of the mesh (1) in FIG. 9, and the specification of the solid pattern around the mesh pattern region 104a corresponds to the solid pattern of FIG. When the power consumption of the high-frequency induction heating power source 107P is 500 W, the pattern of the mesh (1) is heated at 27 K / sec and reaches from room temperature 25 ° C. to 160 ° C. after 5 seconds. At this time, since the solid pattern is heated at 3.5 K / sec, the temperature reached after 5 seconds remains at 43 ° C., and the area of the adjacent second electronic component 102 around the heat-resistant component 101 (heat-resistant component placement region) ) It is possible to suppress the thermal diffusion to RG2 and to suppress the remelting of the connection part (second solder 106b) of the second electronic component 102 around the weak heat-resistant component 101. Note that the lower the wiring rate (area ratio) of the mesh pattern (1), the more easily the induced current 192 flows and heats up. On the other hand, if the wiring rate is low and the wiring width is narrow, it is acceptable. Since the current value is reduced and the wiring is melted, the wiring rate is preferably 30% or more.

また、誘導加熱によって前記メッシュ状パターン領域104aのみを選択的に加熱して、絶縁層である第1層103aを介してメッシュ状パターン領域104aの直上の複数の第1電極105aに熱が伝達し、前記複数の電極105aにそれぞれ形成された第1半田106aが溶融し、配線基板103に形成された複数の第1電極105aと弱耐熱部品101の接続端子とが第1半田106aをそれぞれ介して接合されるとき、前記弱耐熱部品101の弱耐熱部へ伝わる温度は耐熱温度100℃以下となる。この結果、昇温速度が高いほど弱耐熱部に伝わる温度は低くなるため、望ましくは昇温速度8.5K/sec以上であることが好ましい。図9に示すように、メッシュ状パターンの配線率が高いほど昇温速度は遅くなり、目標温度に到達するまでの時間がかかるため、弱耐熱部品201の弱耐熱部に熱が伝導して耐熱温度を超える恐れがあることから、配線率(面積比率)は70%以下であることが好ましい。さらに、高周波誘導加熱電源107Pの消費電力と昇温速度との間には比例関係があるため、図9のメッシュ(1)のパターンを8.5K/sec以上で昇温するためには、少なくとも185W以上の消費電力が必要となる。   Further, only the mesh pattern region 104a is selectively heated by induction heating, and heat is transmitted to the plurality of first electrodes 105a immediately above the mesh pattern region 104a through the first layer 103a which is an insulating layer. The first solder 106a formed on each of the plurality of electrodes 105a is melted, and the plurality of first electrodes 105a formed on the wiring board 103 and the connection terminal of the weak heat-resistant component 101 are respectively connected via the first solder 106a. When being joined, the temperature transmitted to the weak heat resistant part of the weak heat resistant component 101 is a heat resistant temperature of 100 ° C. or lower. As a result, the higher the temperature rise rate, the lower the temperature transmitted to the weak heat-resistant part. Therefore, the temperature rise rate is preferably 8.5 K / sec or more. As shown in FIG. 9, the higher the mesh pattern wiring rate, the slower the rate of temperature rise, and it takes time to reach the target temperature. Since the temperature may be exceeded, the wiring rate (area ratio) is preferably 70% or less. Furthermore, since there is a proportional relationship between the power consumption of the high-frequency induction heating power source 107P and the rate of temperature increase, in order to increase the temperature of the pattern of mesh (1) in FIG. 9 at 8.5 K / sec or more, at least A power consumption of 185 W or more is required.

また、メッシュ状パターンの形状は、図1Cに示すような、ベタパターンから複数の小さな四角形のパターンを除去して形成されたメッシュ状パターンの他にも、図5Aに示すような、ベタパターンから複数の小さな円形のパターン104きを除去して形成されたメッシュ状パターン、又は、図5Bに示すようなベタパターンを複数の小さな六角形のパターン104hを除去して形成されたメッシュ状パターンでも良い。   In addition to the mesh pattern formed by removing a plurality of small square patterns from the solid pattern as shown in FIG. 1C, the mesh pattern has a shape of a solid pattern as shown in FIG. 5A. A mesh pattern formed by removing a plurality of small circular patterns 104, or a mesh pattern formed by removing a plurality of small hexagonal patterns 104h from a solid pattern as shown in FIG. 5B may be used. .

また、均熱化を図るために、メッシュ状パターンは、図6の(a)に示すような複数の同心円状のパターン形状104mであっても良い。図6の(a)及び図6の(a)の同心円状のパターン形状の拡大図である図6の(b)において、任意のループ配線104jのメッシュ状パターンの中心104kからの距離をrとし、同心円の配線104jの幅をwとし、配線厚をdとする。メッシュ状パターンと同一サイズのコイル191を近付けて誘導加熱した場合、発生する磁束密度をBとするとともに誘導電流をIとすると、
B=I/2rとなる。ここで、配線抵抗をRとし、ρを電気抵抗率とし、lを配線104jの中心線の長さとし、Sを配線104jの面積とすると、
R=ρ・l/S
=ρ・2πr/wd
であるから、誘導電流Iによってループ配線に発生するジュール熱をPとすると、
P=I
=(2rB)・ρ・2πr/wd
=A・r/wd [ただし、A=8πBρ(定数)]
よって、複数の同心円状の配線パターンを均熱化するための条件は、
/wd=一定
であれば良い。
例えば、温度バラツキを±10℃(150℃〜170℃)に抑えるためには、複数のループ配線において、温度が最も高い部分のジュール熱をPMAX、温度が最も低い部分のジュール熱をPMINとすると、
1≦PMAX/PMIN≦1.2
であれば良い。ここで、(PMAX/PMIN)の下限値「1」は、PMAX=PMINの、つまり温度バラツキ0℃のときを意味する。(PMAX/PMIN)の下限値「1.2」は、温度バラツキが±10℃(150℃〜170℃)のときで、(PMAX/PMIN)の=170/150=1.13であり、この1.13を切り上げて1.2としている。
Further, in order to achieve soaking, the mesh pattern may be a plurality of concentric pattern shapes 104m as shown in FIG. In FIG. 6B, which is an enlarged view of the concentric pattern shape of FIG. 6A and FIG. 6A, the distance from the center 104k of the mesh pattern of the arbitrary loop wiring 104j is r. The width of the concentric wiring 104j is w, and the wiring thickness is d. When the coil 191 having the same size as the mesh pattern is brought close to the induction heating, the generated magnetic flux density is B and the induced current is I.
B = I / 2r. Here, when the wiring resistance is R, ρ is the electrical resistivity, l is the length of the center line of the wiring 104j, and S is the area of the wiring 104j.
R = ρ · l / S
= Ρ · 2πr / wd
Therefore, when Joule heat generated in the loop wiring by the induced current I is P,
P = I 2 R
= (2rB) 2 · ρ · 2πr / wd
= A · r 3 / wd [where A = 8πB 2 ρ (constant)]
Therefore, the conditions for soaking a plurality of concentric wiring patterns are as follows:
It is sufficient if r 3 / wd = constant.
For example, in order to suppress the temperature variation to ± 10 ° C. (150 ° C. to 170 ° C.), in a plurality of loop wirings, the Joule heat at the highest temperature portion is P MAX and the Joule heat at the lowest temperature portion is P MIN. Then,
1 ≦ P MAX / P MIN ≦ 1.2
If it is good. Here, the lower limit value “1” of (P MAX / P MIN ) means that P MAX = P MIN , that is, a temperature variation of 0 ° C. The lower limit value “1.2” of (P MAX / P MIN ) is when temperature variation is ± 10 ° C. (150 ° C. to 170 ° C.) = (P MAX / P MIN ) = 170/150 = 1.13 This 1.13 is rounded up to 1.2.

また、誘導加熱の対象となる第2層103bのパターンは、GNDパターンに限らず、電源パターンを用いても良い。   Further, the pattern of the second layer 103b to be subjected to induction heating is not limited to the GND pattern, and a power supply pattern may be used.

なお、弱耐熱部品である第1電子部品101と弱耐熱部品以外の第2電子部品102とを含む複数の電子部品が実装された配線基板103において、弱耐熱部品101のみをリペアする場合にも、弱耐熱部品が実装された弱耐熱部品配置領域RG1に対応するメッシュ状パターン領域104aのみを選択的に加熱して、メッシュ状パターン領域104aの直上の弱耐熱部品配置領域RG1の複数の第1電極105aに形成された第1低温半田106aのみを溶融させることにより、弱耐熱部品101のみを配線基板より取り外すことが可能となり、周辺の隣接した第2電子部品102の領域への熱拡散を抑制し、かつ周辺の第2電子部品102の接続部(第2低温半田106b)の再溶融を抑制しながら、弱耐熱部品のリペアが可能となる。   Even when only the weak heat-resistant component 101 is repaired in the wiring board 103 on which a plurality of electronic components including the first electronic component 101 which is a weak heat-resistant component and the second electronic component 102 other than the weak heat-resistant component are mounted. Only the mesh pattern region 104a corresponding to the weak heat resistant component placement region RG1 on which the weak heat resistant component is mounted is selectively heated, and a plurality of first heat resistant component placement regions RG1 immediately above the mesh pattern region 104a are provided. By melting only the first low-temperature solder 106a formed on the electrode 105a, it becomes possible to remove only the weak heat-resistant component 101 from the wiring board and suppress thermal diffusion to the adjacent second electronic component 102 region. In addition, it is possible to repair the weak heat-resistant component while suppressing remelting of the connection portion (second low-temperature solder 106b) of the peripheral second electronic component 102.

このように、配線基板103上に第1及び第2電子部品101,102を高密度(例えば、部品間距離が0.5mm程度又はそれ以下の密度)に搭載し、
第1及び第2電子部品101,102のうち、弱耐熱部品101だけを局所加熱して実装する場合、メッシュ状パターン領域104aのみを選択的に加熱して、メッシュ状パターン領域104aの直上の複数の第1電極105aに形成された第1低温半田106aのみを溶融させて接合する。このようにすることにより、弱耐熱部品101の弱耐熱部へ伝わる温度は耐熱温度以下となる。このため、弱耐熱部品101の周辺の隣接した第2電子部品102の領域への熱拡散を抑制し、かつ弱耐熱部品101の周辺の第2電子部品102の接続部(第2低温半田106b)の再溶融を抑制することができて、良好な電気的接続が可能となる。
As described above, the first and second electronic components 101 and 102 are mounted on the wiring board 103 at a high density (for example, the distance between the components is about 0.5 mm or less).
When only the weak heat-resistant component 101 is mounted by being locally heated among the first and second electronic components 101, 102, only the mesh pattern region 104a is selectively heated, and a plurality of components directly above the mesh pattern region 104a are provided. Only the first low-temperature solder 106a formed on the first electrode 105a is melted and joined. By doing in this way, the temperature transmitted to the weak heat resistant part of the weak heat resistant component 101 becomes below the heat resistant temperature. For this reason, the thermal diffusion to the area of the adjacent second electronic component 102 around the weak heat-resistant component 101 is suppressed, and the connection portion (second low-temperature solder 106b) of the second electronic component 102 around the weak heat-resistant component 101 is suppressed. Can be prevented from being remelted, and good electrical connection can be achieved.

よって、第1実施形態によれば、配線基板103上に第1及び第2電子部品101,102を高密度(例えば、部品間距離が0.5mm程度の密度)に搭載し、これらの複数の電子部品101,102のうち、第1電子部品である弱耐熱部品101だけを局所加熱して実装する場合、弱耐熱部品101の弱耐熱部へ伝わる温度は耐熱温度以下となる。このため、弱耐熱部品101の周辺の隣接した第2電子部品102の領域への熱拡散を抑制し、弱耐熱部品101の周辺の第2電子部品102の接続部である第2低温半田106bの再溶融を抑制することが可能となる。   Therefore, according to the first embodiment, the first and second electronic components 101 and 102 are mounted on the wiring board 103 at a high density (for example, a distance between the components is about 0.5 mm), and a plurality of these When only the weak heat-resistant component 101 that is the first electronic component is mounted by local heating among the electronic components 101 and 102, the temperature transmitted to the weak heat-resistant portion of the weak heat-resistant component 101 is equal to or lower than the heat-resistant temperature. For this reason, the heat diffusion to the area | region of the adjacent 2nd electronic component 102 of the periphery of the weak heat-resistant component 101 is suppressed, and the 2nd low temperature solder 106b which is a connection part of the 2nd electronic component 102 of the periphery of the weak heat resistant component 101 is used. It becomes possible to suppress remelting.

(第2実施形態)
図3A〜図3Dは、本発明の第2実施形態にかかる電子部品実装構造体100の製造方法のそれぞれの工程を示す断面図である。図3Aから図3Cまでは、第1実施形態の図2Aから図2Cの工程とそれぞれ同じ工程である。
(Second Embodiment)
3A to 3D are cross-sectional views illustrating respective steps of the method of manufacturing the electronic component mounting structure 100 according to the second embodiment of the present invention. 3A to 3C are the same steps as the steps of FIGS. 2A to 2C of the first embodiment, respectively.

そして、図3Dに示すように、第1電子部品冷却用のツールの一例として機能しかつT字状の側面を有するツール308の底面を弱耐熱部品101の表面に押し当て、前記ツール308内の冷却水通路308aに冷却水を流して、弱耐熱部品101の弱耐熱部を冷却すると同時に、以下の加熱工程を行う。すなわち、この加熱工程は、メッシュ状パターン領域104aに弱耐熱部品101を搭載する。そして、配線基板103の裏面において、前記弱耐熱部品101が搭載された弱耐熱部品配置領域RG1に対応する領域に高周波加熱コイル107を近づけて、誘導加熱によって前記メッシュ状パターン領域104aのみを選択的に加熱する。そして、絶縁層である第1層103aを介してメッシュ状パターン領域104aの直上の複数の電極105aに熱が伝達し、前記複数の電極105aにそれぞれ形成された半田106aが溶融する。この結果、前記配線基板103に形成された複数の電極105aと前記弱耐熱部品101の接続端子とが前記半田106aを介してそれぞれ接合されて、電子部品が実装された電子部品実装構造体100を製造することができる。   Then, as shown in FIG. 3D, the bottom surface of the tool 308 that functions as an example of the first electronic component cooling tool and has a T-shaped side surface is pressed against the surface of the weak heat-resistant component 101, Cooling water is allowed to flow through the cooling water passage 308a to cool the weak heat resistant part of the weak heat resistant component 101, and at the same time, the following heating process is performed. That is, in this heating process, the weak heat-resistant component 101 is mounted on the mesh pattern region 104a. Then, on the back surface of the wiring substrate 103, the high-frequency heating coil 107 is brought close to a region corresponding to the weak heat-resistant component placement region RG1 on which the weak heat-resistant component 101 is mounted, and only the mesh pattern region 104a is selectively selected by induction heating. Heat to. Then, heat is transmitted to the plurality of electrodes 105a immediately above the mesh pattern region 104a through the first layer 103a which is an insulating layer, and the solder 106a formed on each of the plurality of electrodes 105a is melted. As a result, the plurality of electrodes 105a formed on the wiring board 103 and the connection terminals of the weak heat-resistant component 101 are joined via the solder 106a, and the electronic component mounting structure 100 on which the electronic component is mounted is obtained. Can be manufactured.

この時の第1半田材料106aは、実装に用いられる一般的な鉛フリー半田として、SnAgCu系半田を用い、240℃で接合することができる。   The first solder material 106a at this time can be bonded at 240 ° C. using SnAgCu solder as a general lead-free solder used for mounting.

さらに、この時、配線基板103の第2層103bに形成されたGNDパターン104を構成する配線材料はCuを用い、GNDパターン104の配線厚みは18μmである。そして、GNDパターン104のうち、メッシュ状パターン領域104aの配線率(面積比率)は30%である。このパターン仕様は、図9に示すそれぞれの配線パターンにおける誘導加熱時の昇温特性の測定結果を基にして策定している。つまり、メッシュ状パターン領域104aの仕様は、図9のメッシュ(1)のパターンに対応し、メッシュ状パターン領域104aの周辺のベタパターンの仕様は、図9のベタパターンに対応している。高周波誘導加熱電源107Pの消費電力が500Wのとき、メッシュ(1)のパターンは27K/secで昇温し、8秒後に常温25℃から240℃に到達する。このとき、ベタパターンは3.5K/secで昇温するので、8秒後に到達する温度は53℃に留まり、弱耐熱部品101の周辺の隣接した第2電子部品102の領域(耐熱部品配置領域)RG2への熱拡散を抑制し、弱耐熱部品101の周辺の第2電子部品102の接続部(第2半田106b)の再溶融を抑制することが可能となる。   Further, at this time, the wiring material constituting the GND pattern 104 formed on the second layer 103b of the wiring substrate 103 is Cu, and the wiring thickness of the GND pattern 104 is 18 μm. In the GND pattern 104, the wiring rate (area ratio) of the mesh pattern region 104a is 30%. This pattern specification is formulated based on the measurement results of the temperature rise characteristics during induction heating in each wiring pattern shown in FIG. That is, the specification of the mesh pattern region 104a corresponds to the pattern of the mesh (1) in FIG. 9, and the specification of the solid pattern around the mesh pattern region 104a corresponds to the solid pattern of FIG. When the power consumption of the high-frequency induction heating power source 107P is 500 W, the pattern of the mesh (1) is heated at 27 K / sec, and reaches from room temperature 25 ° C. to 240 ° C. after 8 seconds. At this time, since the solid pattern is heated at 3.5 K / sec, the temperature reached after 8 seconds remains at 53 ° C., and the area of the adjacent second electronic component 102 around the heat-resistant component 101 (heat-resistant component placement region) ) It is possible to suppress the thermal diffusion to RG2 and to suppress the remelting of the connection part (second solder 106b) of the second electronic component 102 around the weak heat-resistant component 101.

また、誘導加熱によって前記メッシュ状パターン領域104aのみを選択的に加熱して、絶縁層である第1層103aを介してメッシュ状パターン領域104aの直上の複数の電極105aに熱が伝達し、前記複数の電極105aにそれぞれ形成された第1半田106aが溶融する。そして、配線基板103に形成された複数の第1電極105aと弱耐熱部品101の接続端子とが第1半田106aを介して接合されるとき、前記弱耐熱部品101の弱耐熱部へ伝わる温度は耐熱温度100℃を越えてしまうことがあるので、ツール308を弱耐熱部品101に押し当て、前記ツール308に冷却水を流して、弱耐熱部品101の弱耐熱部を冷却することが必要となる。   Further, only the mesh pattern region 104a is selectively heated by induction heating, and heat is transmitted to the plurality of electrodes 105a immediately above the mesh pattern region 104a through the first layer 103a which is an insulating layer. The first solder 106a formed on each of the plurality of electrodes 105a is melted. When the plurality of first electrodes 105a formed on the wiring board 103 and the connection terminals of the weak heat-resistant component 101 are joined via the first solder 106a, the temperature transmitted to the weak heat-resistant portion of the weak heat-resistant component 101 is Since the heat resistant temperature may exceed 100 ° C., it is necessary to cool the weak heat resistant part of the weak heat resistant component 101 by pressing the tool 308 against the weak heat resistant component 101 and flowing cooling water to the tool 308. .

このように、配線基板103上に第1及び第2電子部品101,102を高密度(例えば、部品間距離が0.5mm程度の密度)に搭載し、第1及び第2電子部品101,102のうち、弱耐熱部品101だけを局所加熱して実装する場合、冷却水を流したツール308を弱耐熱部品101に押し当て、弱耐熱部品101の弱耐熱部を冷却する。この冷却と同時に、メッシュ状パターン領域104aのみを選択的に加熱して、メッシュ状パターン領域104aの直上の複数の第1電極105aに形成された第1半田106aのみを溶融させて接合する。このようにすることにより、弱耐熱部品101の弱耐熱部へ伝わる温度は耐熱温度以下となる。このため、弱耐熱部品101の周辺の隣接した第2電子部品102の領域への熱拡散を抑制し、かつ弱耐熱部品101の周辺の第2電子部品102の接続部(第2低温半田106b)の再溶融を抑制することができて、良好な電気的接続が可能となる。   As described above, the first and second electronic components 101 and 102 are mounted on the wiring board 103 at a high density (for example, the distance between the components is about 0.5 mm), and the first and second electronic components 101 and 102 are mounted. Among them, when only the weak heat-resistant component 101 is mounted by being locally heated, the tool 308 in which cooling water is flowed is pressed against the weak heat-resistant component 101 to cool the weak heat-resistant part of the weak heat-resistant component 101. Simultaneously with this cooling, only the mesh pattern region 104a is selectively heated, and only the first solder 106a formed on the plurality of first electrodes 105a immediately above the mesh pattern region 104a is melted and joined. By doing in this way, the temperature transmitted to the weak heat resistant part of the weak heat resistant component 101 becomes below the heat resistant temperature. For this reason, the thermal diffusion to the area of the adjacent second electronic component 102 around the weak heat-resistant component 101 is suppressed, and the connection portion (second low-temperature solder 106b) of the second electronic component 102 around the weak heat-resistant component 101 is suppressed. Can be prevented from being remelted, and good electrical connection can be achieved.

(第3実施形態)
図4A〜図4Eは、本発明の第3実施形態にかかる電子部品実装構造体100の製造方法のそれぞれの工程を示す断面図である。
(Third embodiment)
4A to 4E are cross-sectional views showing respective steps of the method of manufacturing the electronic component mounting structure 100 according to the third embodiment of the present invention.

始めに、図4Aに示すように、配線基板103の第2層103bにGNDパターン104を形成し、GNDパターン104のうち、弱耐熱部品101を搭載する弱耐熱部品配置領域RG1に対応する領域に、配線率の低いメッシュ状パターン領域104aを形成し、メッシュ状パターン領域104aの直上の配線基板103の表面の弱耐熱部品配置領域RG1に複数の第1電極105aを形成する。   First, as shown in FIG. 4A, the GND pattern 104 is formed on the second layer 103b of the wiring substrate 103, and the GND pattern 104 is formed in a region corresponding to the weak heat-resistant component placement region RG1 on which the weak heat-resistant component 101 is mounted. Then, a mesh pattern region 104a having a low wiring rate is formed, and a plurality of first electrodes 105a are formed in the weak heat-resistant component placement region RG1 on the surface of the wiring substrate 103 immediately above the mesh pattern region 104a.

次いで、図4Bに示すように、配線基板103の表面において、配線基板103の第2層103bに形成されたGNDパターン104のうち、メッシュ状パターン領域104aを除いた領域104bに対応する耐熱部品配置領域RG2にある複数の第2電極105bの上に、第2クリーム半田106bをそれぞれ印刷する。   Next, as shown in FIG. 4B, on the surface of the wiring substrate 103, the heat-resistant component placement corresponding to the region 104b excluding the mesh pattern region 104a in the GND pattern 104 formed on the second layer 103b of the wiring substrate 103. The second cream solder 106b is printed on each of the plurality of second electrodes 105b in the region RG2.

次いで、図4Cに示すように、配線基板103の表面において、GNDパターン104のうちメッシュ状パターン領域104aを除いた領域104bに対応する耐熱部品配置領域104bに、複数の第2電極105b及び第2クリーム半田106bを介して、第2電子部品102を搭載し、配線基板103をリフロー炉に流す。このようにすることにより、第2クリーム半田106bが溶融する。この結果、第2クリーム半田106bをそれぞれ介して複数の第2電極105bと第2電子部品102の接続端子とが電気的に接続される。   Next, as shown in FIG. 4C, on the surface of the wiring substrate 103, a plurality of second electrodes 105b and second electrodes are formed in the heat-resistant component placement region 104b corresponding to the region 104b of the GND pattern 104 excluding the mesh pattern region 104a. The second electronic component 102 is mounted via the cream solder 106b, and the wiring board 103 is caused to flow into a reflow furnace. By doing so, the second cream solder 106b is melted. As a result, the plurality of second electrodes 105b and the connection terminals of the second electronic component 102 are electrically connected through the second cream solder 106b.

次いで、図4Dに示すように、配線基板103において、メッシュ状パターン領域104aの直上にある弱耐熱部品配置領域RG1の複数の第1電極105aの上に、ディスペンサを用いて、第1半田406aをそれぞれ塗布する。   Next, as shown in FIG. 4D, on the wiring substrate 103, the first solder 406a is applied on the plurality of first electrodes 105a in the weak heat-resistant component placement region RG1 directly above the mesh pattern region 104a using a dispenser. Apply each.

次いで、図4Eに示すように、メッシュ状パターン領域104aの直上にある弱耐熱部品配置領域RG1に、複数の第1電極105a及び複数の第1半田406aを介して弱耐熱部品401を搭載する。そして、配線基板103の裏面において、前記弱耐熱部品401が搭載された弱耐熱部品配置領域RG1に対応する領域に高周波加熱コイル107を近づけて、誘導加熱によって前記メッシュ状パターン領域104aのみを選択的に加熱する。すると、絶縁層である第1層103aを介して、メッシュ状パターン領域104aの直上の弱耐熱部品配置領域RG1の複数の第1電極105aに熱が伝達し、前記複数の第1電極105aにそれぞれ形成された第1半田106aが溶融する。その結果、前記配線基板103に形成された複数の第1電極105aと前記弱耐熱部品101の接続端子とが前記第1半田406bを介してそれぞれ接合された電子部品実装構造体100を製造することができる。   Next, as shown in FIG. 4E, the weak heat-resistant component 401 is mounted on the weak heat-resistant component placement region RG1 directly above the mesh pattern region 104a via the plurality of first electrodes 105a and the plurality of first solders 406a. Then, on the back surface of the wiring substrate 103, the high frequency heating coil 107 is brought close to a region corresponding to the weak heat resistant component placement region RG1 on which the weak heat resistant component 401 is mounted, and only the mesh pattern region 104a is selectively selected by induction heating. Heat to. Then, heat is transmitted to the plurality of first electrodes 105a in the weak heat-resistant component placement region RG1 immediately above the mesh pattern region 104a through the first layer 103a which is an insulating layer, and the plurality of first electrodes 105a are respectively transmitted. The formed first solder 106a is melted. As a result, the electronic component mounting structure 100 in which the plurality of first electrodes 105a formed on the wiring board 103 and the connection terminals of the weak heat-resistant component 101 are respectively joined via the first solder 406b is manufactured. Can do.

このときの第2半田材料106bは、実装に用いられる一般的な鉛フリー半田として、SnAgCu系半田を用い、240℃で接合することができる。一方、第1半田材料106aは、低温で実装することが可能なSnBi系半田を用い、160℃で接合することができる。   The second solder material 106b at this time can be bonded at 240 ° C. using SnAgCu solder as a general lead-free solder used for mounting. On the other hand, the first solder material 106a can be bonded at 160 ° C. using SnBi-based solder that can be mounted at a low temperature.

さらに、このときのGNDパターン104を構成する配線材料はCuを用い、GNDパターン104の配線厚みは18μmである。そして、GNDパターン104のうち、メッシュ状パターン領域104aの配線率(面積比率)は70%である。このパターン仕様は、図9に示すそれぞれの配線パターンにおける誘導加熱時の昇温特性の測定結果を基にして策定している。つまり、この第3実施形態では、メッシュ状パターン領域104aの仕様は、図9のメッシュ(3)のパターンに対応し、メッシュ状パターン領域104aの周辺のベタパターンの仕様は、図9のベタパターンに対応している。高周波誘導加熱電源107Pの消費電力が500Wのとき、メッシュ(3)のパターンは8.5K/secで昇温し、16秒後に常温25℃から160℃に到達する。このとき、ベタパターンは3.5K/secで昇温するので、16秒後に到達する温度は80℃に留まり、弱耐熱部品401の周辺の隣接した第2電子部品102の領域への熱拡散を抑制し、弱耐熱部品401の周辺の第2電子部品102の接続部(第2低温半田106b)の再溶融を抑制することが可能となる。また、メッシュ(3)よりも昇温速度の高いメッシュ(2)を用いても良い。   Further, Cu is used as the wiring material constituting the GND pattern 104 at this time, and the wiring thickness of the GND pattern 104 is 18 μm. In the GND pattern 104, the wiring rate (area ratio) of the mesh pattern region 104a is 70%. This pattern specification is formulated based on the measurement results of the temperature rise characteristics during induction heating in each wiring pattern shown in FIG. That is, in the third embodiment, the specification of the mesh pattern region 104a corresponds to the pattern of the mesh (3) in FIG. 9, and the specification of the solid pattern around the mesh pattern region 104a is the solid pattern of FIG. It corresponds to. When the power consumption of the high-frequency induction heating power source 107P is 500 W, the pattern of the mesh (3) is heated at 8.5 K / sec, and after 16 seconds reaches from room temperature 25 ° C. to 160 ° C. At this time, since the solid pattern is heated at 3.5 K / sec, the temperature reached after 16 seconds remains at 80 ° C. and heat diffusion to the adjacent second electronic component 102 region around the weak heat-resistant component 401 is performed. It is possible to suppress the remelting of the connection portion (second low-temperature solder 106b) of the second electronic component 102 around the weak heat-resistant component 401. Moreover, you may use the mesh (2) whose heating rate is higher than the mesh (3).

このように、配線基板103上に第1及び第2電子部品101,102を高密度(例えば、部品間距離が0.5mm程度の密度)に搭載し、第1及び第2電子部品101,102のうち、弱耐熱部品101だけを局所加熱して実装する場合、まず、予め一般的に使用される半田を用いて、メッシュ状パターン領域104aを除いた領域104bに対応する耐熱部品配置領域RG2の第2電極105bに第2電子部品102を搭載して実装する。その後、配線基板103の弱耐熱部品配置領域RG1の複数の第1電極105aの上に第1半田406aを配置したのち、弱耐熱部品401を搭載し、誘導加熱によってメッシュ状パターン領域104aのみを選択的に加熱する。この結果、メッシュ状パターン領域104aの直上の弱耐熱部品配置領域RG1の複数の第1電極105aにそれぞれ形成された第1低温半田106aのみを溶融させて接合する。このようにすることにより、弱耐熱部品101の弱耐熱部へ伝わる温度は耐熱温度以下となる。このため、弱耐熱部品101の周辺の隣接した第2電子部品102の領域への熱拡散を抑制し、かつ弱耐熱部品101の周辺の第2電子部品の接続部(第2低温半田106b)は第1半田材料106aよりも溶融温度が高いため、第2半田材料106bの再溶融を確実に抑制することができて、良好な電気的接続が可能となる。   As described above, the first and second electronic components 101 and 102 are mounted on the wiring board 103 at a high density (for example, the distance between the components is about 0.5 mm), and the first and second electronic components 101 and 102 are mounted. Among them, when only the weak heat-resistant component 101 is mounted by locally heating, first of all, using solder generally used in advance, the heat-resistant component placement region RG2 corresponding to the region 104b excluding the mesh pattern region 104a is used. The second electronic component 102 is mounted and mounted on the second electrode 105b. Thereafter, after placing the first solder 406a on the plurality of first electrodes 105a in the weak heat-resistant component placement region RG1 of the wiring board 103, the weak heat-resistant component 401 is mounted, and only the mesh pattern region 104a is selected by induction heating. Heat up. As a result, only the first low-temperature solder 106a formed on each of the plurality of first electrodes 105a in the weak heat-resistant component placement region RG1 immediately above the mesh pattern region 104a is melted and joined. By doing in this way, the temperature transmitted to the weak heat resistant part of the weak heat resistant component 101 becomes below the heat resistant temperature. For this reason, the thermal diffusion to the area of the adjacent second electronic component 102 around the weak heat-resistant component 101 is suppressed, and the connection portion (second low-temperature solder 106b) of the second electronic component around the weak heat-resistant component 101 is Since the melting temperature is higher than that of the first solder material 106a, remelting of the second solder material 106b can be surely suppressed, and good electrical connection can be achieved.

なお、第1〜第3実施形態では、配線基板103上に第1及び第2電子部品101,102を高密度(例えば、部品間距離が0.5mm程度の密度)に搭載している場合について説明しているが、必ずしもこのような高密度実装に限定して適用するものに限らない。例えば、前記密度よりも低い低密度(例えば、部品間距離が0.5mm程度を越える密度)での実装基板に対しても、第1〜第3実施形態を適宜実施することにより、弱耐熱部品101の周辺の隣接した第2電子部品102の領域への熱拡散を抑制し、弱耐熱部品101の周辺の第2電子部品102の接続部である第2低温半田106bの再溶融を確実に抑制することが可能となる。   In the first to third embodiments, the first and second electronic components 101 and 102 are mounted on the wiring substrate 103 at a high density (for example, the distance between the components is about 0.5 mm). Although described, the present invention is not necessarily limited to such high density mounting. For example, a weak heat-resistant component can be obtained by appropriately carrying out the first to third embodiments even on a mounting board having a low density lower than the above-mentioned density (for example, a density where the distance between components exceeds about 0.5 mm). The heat diffusion to the area of the second electronic component 102 adjacent to the periphery of the 101 is suppressed, and the remelting of the second low-temperature solder 106b that is the connection portion of the second electronic component 102 around the weak heat-resistant component 101 is reliably suppressed. It becomes possible to do.

なお、前記様々な実施形態又は変型例のうちの任意の実施形態又は変型例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   In addition, it can be made to show the effect which each has by combining suitably any arbitrary embodiment or modification of the said various embodiment or modifications.

本発明の電子部品実装構造体及びその製造方法は、配線基板上に複数の電子部品を高密度に搭載し、複数の電子部品のうち、弱耐熱部品だけを局所加熱して実装する場合、メッシュ状パターン領域のみを選択的に加熱して、メッシュ状パターン領域の直上の電極に形成された低温半田のみを溶融させて接合することにより、弱耐熱部品の弱耐熱部へ伝わる温度は耐熱温度以下となり、周辺の隣接した電子部品の領域への熱拡散を抑制し、かつ周辺の電子部品の接続部の再溶融を抑制し、良好な電気的接続が可能な電子部品実装構造体を安価に提供することが可能となる。   The electronic component mounting structure and the manufacturing method thereof according to the present invention include a case where a plurality of electronic components are mounted on a wiring board with high density, and only a weak heat-resistant component among the plurality of electronic components is mounted by local heating. By selectively heating only the pattern pattern area and melting and bonding only the low-temperature solder formed on the electrode immediately above the mesh pattern area, the temperature transmitted to the weak heat-resistant part of the weak heat-resistant component is less than the heat-resistant temperature. Therefore, it is possible to provide an electronic component mounting structure that can suppress the heat diffusion to the adjacent adjacent electronic component region and suppress the remelting of the connection portion of the peripheral electronic component, thereby enabling a good electrical connection. It becomes possible to do.

100 電子部品実装構造体
101 弱耐熱部品(第1電子部品)
102 第2電子部品
103 配線基板
104 GNDパターン
104a メッシュ状パターン
104b ベタパターン
105a,105b 第1及び第2電極
106a,106b 第1及び第2半田
107 高周波加熱コイル
107P 高周波誘導加熱電源
308 ツール
RG1 弱耐熱部品配置領域
RG2 耐熱部品配置領域
100 Electronic component mounting structure 101 Weak heat resistant component (first electronic component)
DESCRIPTION OF SYMBOLS 102 2nd electronic component 103 Wiring board 104 GND pattern 104a Mesh pattern 104b Solid pattern 105a, 105b 1st and 2nd electrode 106a, 106b 1st and 2nd solder 107 High frequency heating coil 107P High frequency induction heating power supply 308 Tool RG1 Weak heat resistance Parts placement area RG2 Heat-resistant parts placement area

Claims (5)

配線基板のいずれかの配線層に電源もしくはGNDパターンの金属層を形成するとともに、前記金属層において、前記配線基板に実装される第1電子部品が配置される第1電子部品配置領域に対応する領域にメッシュ状パターンを形成し、
前記配線基板の表面の前記第1電子部品配置領域に形成された第1電極と、前記第1電極上に搭載された前記第1電子部品とを第1接合材料を介して接合するとともに、前記配線基板の表面であって前記メッシュ状パターンが形成された領域以外のベタパターンの領域に対応する領域に形成された第2電極と、前記第2電極上に搭載された第2電子部品とを第2接合材料を介して接合する、電子部品実装構造体の製造方法であって、
前記第1電極と前記第1電子部品との接合は、誘導加熱により前記メッシュ状パターンのみを加熱することにより行う電子部品実装構造体の製造方法。
A metal layer of a power supply or a GND pattern is formed on any wiring layer of the wiring board, and the metal layer corresponds to a first electronic component placement region in which a first electronic component mounted on the wiring board is placed. Form a mesh pattern in the area,
The first electrode formed in the first electronic component placement region on the surface of the wiring board and the first electronic component mounted on the first electrode are bonded via a first bonding material, and A second electrode formed on a surface of the wiring board in a region corresponding to a solid pattern region other than the region where the mesh pattern is formed, and a second electronic component mounted on the second electrode; A method for manufacturing an electronic component mounting structure, which is bonded via a second bonding material,
The method of manufacturing an electronic component mounting structure, wherein the first electrode and the first electronic component are joined by heating only the mesh pattern by induction heating.
前記第1電子部品と前記配線基板に形成された前記第1電極とを、前記第1接合材料を介して接合する際に、第1電子部品冷却用のツールと前記第1電子部品とが吸着もしくは接触しており、前記ツールが前記第1電子部品を冷却している、請求項1に記載の電子部品実装構造体の製造方法。   When the first electronic component and the first electrode formed on the wiring board are bonded via the first bonding material, the first electronic component cooling tool and the first electronic component are adsorbed. Alternatively, the electronic component mounting structure manufacturing method according to claim 1, wherein the tool is in contact and the tool cools the first electronic component. 前記メッシュ状パターンの形状が、前記ベタパターンから複数の円形、楕円形、もしくは多角形のパターンを除去して形成されたパターン形状であって、かつ、面積比率を30%以上でかつ70%以下にした形状である請求項1又は2に記載の電子部品実装構造体の製造方法。   The shape of the mesh pattern is a pattern shape formed by removing a plurality of circular, elliptical, or polygonal patterns from the solid pattern, and the area ratio is 30% or more and 70% or less. The method for manufacturing an electronic component mounting structure according to claim 1 or 2, wherein the electronic component mounting structure has a shape formed as described above. 前記第1電子部品は弱耐熱部品であり、
前記金属層の前記メッシュ状パターンは、電源もしくはGNDパターンを形成するメッシュ状パターンであり、かつ、前記メッシュ状パターンが形成された領域の中心からの距離をr、前記メッシュ状パターンの配線幅をw、厚みをdとすると、
/wd = 一定
の関係にあるメッシュ状パターンである請求項3に記載の電子部品実装構造体の製造方法。
The first electronic component is a weak heat-resistant component;
The mesh pattern of the metal layer is a mesh pattern forming a power supply or a GND pattern, and the distance from the center of the region where the mesh pattern is formed is r, and the wiring width of the mesh pattern is If w and thickness are d,
r 3 / wd = method of manufacturing an electronic parts packaging structure according to claim 3 which is a mesh pattern in the fixed relationship.
複数の電子部品が実装された配線基板の何れかの配線層に形成された電源もしくはGNDパターンにおいて、前記複数の電子部品のうち、弱耐熱部品が実装される領域に形成された前記電源もしくはGNDパターンは、弱耐熱部品以外の電子部品が実装される領域の前記電源もしくはGNDパターンに比べて、パターンの面積比率が低いメッシュ状パターンである電子部品実装構造体。   In a power supply or GND pattern formed on any wiring layer of a wiring board on which a plurality of electronic components are mounted, the power supply or GND formed in a region where a weak heat-resistant component is mounted among the plurality of electronic components. The electronic component mounting structure, wherein the pattern is a mesh pattern having a pattern area ratio lower than that of the power supply or GND pattern in a region where electronic components other than weak heat-resistant components are mounted.
JP2012033031A 2012-02-17 2012-02-17 Electronic component mounting structure and manufacturing method of the same Pending JP2013171863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033031A JP2013171863A (en) 2012-02-17 2012-02-17 Electronic component mounting structure and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033031A JP2013171863A (en) 2012-02-17 2012-02-17 Electronic component mounting structure and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013171863A true JP2013171863A (en) 2013-09-02

Family

ID=49265661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033031A Pending JP2013171863A (en) 2012-02-17 2012-02-17 Electronic component mounting structure and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013171863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026286A1 (en) * 2015-08-07 2017-02-16 東レエンジニアリング株式会社 Solder bonding method for mounting component and solder bonding apparatus for mounting component
US9847306B2 (en) 2016-03-16 2017-12-19 Kabushiki Kaisha Toshiba Circuit board having a ground layer including a plurality of polygonal openings
WO2020250427A1 (en) * 2019-06-14 2020-12-17 株式会社ワンダーフューチャーコーポレーション Circuit board and mounting method
WO2023286426A1 (en) * 2021-07-14 2023-01-19 国立研究開発法人産業技術総合研究所 Method for mounting electronic component and partial shield substrate for electronic component mounting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026286A1 (en) * 2015-08-07 2017-02-16 東レエンジニアリング株式会社 Solder bonding method for mounting component and solder bonding apparatus for mounting component
US9847306B2 (en) 2016-03-16 2017-12-19 Kabushiki Kaisha Toshiba Circuit board having a ground layer including a plurality of polygonal openings
WO2020250427A1 (en) * 2019-06-14 2020-12-17 株式会社ワンダーフューチャーコーポレーション Circuit board and mounting method
WO2023286426A1 (en) * 2021-07-14 2023-01-19 国立研究開発法人産業技術総合研究所 Method for mounting electronic component and partial shield substrate for electronic component mounting

Similar Documents

Publication Publication Date Title
JP4970292B2 (en) Electronic component repair method, repair device, and wiring board unit
JP6915843B2 (en) Solder joining device
US20120319253A1 (en) Semiconductor module manufacturing method, semiconductor module, and manufacturing device
TWI260718B (en) Apparatus and method for die attachment
US20060065431A1 (en) Self-reflowing printed circuit board and application methods
JP2013171863A (en) Electronic component mounting structure and manufacturing method of the same
JP4371619B2 (en) Reflow device
JP3718671B2 (en) System and method for mounting electronic components on a flexible substrate
TWI759440B (en) Solder bonding apparatus
CN111128790B (en) Micro-element processing device, welding method and display panel
JP2011049439A (en) Method of detaching electronic component, and electronic apparatus
JP2019145617A (en) Solder joining method, solder melting method, joining method, and solder joining apparatus
JP2009283871A (en) Rework soldering method and its apparatus
JP6738057B1 (en) Circuit board and mounting method
JP2018107367A (en) Power semiconductor module
JP2001257458A (en) Member for soldering, and method of soldering
US20030222124A1 (en) Radio wave soldering method for semiconductor device
JP2009095873A (en) Soldering device, soldering method and method of manufacturing electronic instrument
KR102065094B1 (en) Reflow method and apparatus for LED or lead frame
JP3729689B2 (en) Reflow method and apparatus
JP2007103618A (en) Method and device for manufacturing electronic apparatus
TWI768956B (en) Welding method
JP2009200170A (en) Heating device for terminal
JP2008021840A (en) Circuit board, and circuit board mounting method
KR20120051194A (en) Flip chip bonding apparatus and manufacturing method thereof