JP2013153627A - 非接触給電回路 - Google Patents

非接触給電回路 Download PDF

Info

Publication number
JP2013153627A
JP2013153627A JP2012013941A JP2012013941A JP2013153627A JP 2013153627 A JP2013153627 A JP 2013153627A JP 2012013941 A JP2012013941 A JP 2012013941A JP 2012013941 A JP2012013941 A JP 2012013941A JP 2013153627 A JP2013153627 A JP 2013153627A
Authority
JP
Japan
Prior art keywords
power
circuit
inverter
output
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012013941A
Other languages
English (en)
Other versions
JP5832317B2 (ja
Inventor
Haruo Watanabe
晴夫 渡辺
Takehiro Shimizu
健広 清水
Yoshiaki Matsuda
善秋 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2012013941A priority Critical patent/JP5832317B2/ja
Publication of JP2013153627A publication Critical patent/JP2013153627A/ja
Application granted granted Critical
Publication of JP5832317B2 publication Critical patent/JP5832317B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】送電コイルと受電コイルとの間隔が長くなった際における非接触給電回路の電力効率の低下を低減し、高電力効率の非接触給電回路を実現すること。
【解決手段】非接触給電回路1は、直流出力レギュレータ50と、インバータ11を有する送電回路10と、第2の制御回路40と、位相検出回路60と、第1の制御回路70と、を備える。送電回路10は、直流出力レギュレータ50の出力電力を用いて送電コイルL1に電力を出力する。位相検出回路60は、インバータ11の出力電流の位相を検出する。第1の制御回路70は、位相検出回路60による検出結果に応じて、直流出力レギュレータ50を制御する。
【選択図】図1

Description

本発明は、非接触給電回路に関する。
従来、非接触で電力を伝送する非接触給電回路が提案されている(例えば、特許文献1、2参照)。
[非接触給電回路100の構成]
図7は、従来例に係る非接触給電回路100の回路図である。非接触給電回路100は、間隙を隔てて設けられた送電コイルL1と受電コイルL2との間で、電力を伝送する。この非接触給電回路100は、上述の送電コイルL1および受電コイルL2に加えて、送電回路10、受電回路20、通信回路30、および第2の制御回路40を備える。
送電回路10は、インバータ11およびキャパシタC1を備える。インバータ11は、NチャネルMOSFETで構成されるスイッチ素子Q1、Q2を備える。スイッチ素子Q1とスイッチ素子Q2とは直列接続されており、スイッチ素子Q1のドレインには、直流電源V1の正極が接続され、スイッチ素子Q1のソースには、スイッチ素子Q2のドレインが接続され、スイッチ素子Q2のソースには、直流電源V1の負極が接続される。送電コイルL1とキャパシタC1とは直列接続されており、送電コイルL1の一端には、スイッチ素子Q1のソースと、スイッチ素子Q2のドレインと、が接続され、送電コイルL1の他端には、キャパシタC1を介して直流電源V1の負極が接続される。
受電回路20は、整流平滑回路21およびキャパシタC2を備える。整流平滑回路21は、ダイオードD1〜D4と、キャパシタC3と、を備える。ダイオードD1とダイオードD3とは直列接続されており、ダイオードD1のカソードには、負荷RLの一端が接続され、ダイオードD1のアノードには、ダイオードD3のカソードが接続され、ダイオードD3のアノードには、負荷RLの他端が接続される。ダイオードD2とダイオードD4とは直列接続されており、ダイオードD2のカソードには、負荷RLの一端が接続され、ダイオードD2のアノードには、ダイオードD4のカソードが接続され、ダイオードD4のアノードには、負荷RLの他端が接続される。ダイオードD1のアノードと、ダイオードD3のカソードとには、受電コイルL2の一端が接続され、受電コイルL2の他端には、キャパシタC2を介して、ダイオードD2のアノードと、ダイオードD4のカソードと、が接続される。キャパシタC3は、負荷RLに並列接続される。
通信回路30は、送信回路31、送信アンテナ32、受信アンテナ33、および受信回路34を備える。送信回路31は、負荷RLの一端に接続されるとともに、送信アンテナ32が接続される。送信アンテナ32と受信アンテナ33とは、予め定められた間隔を隔てて設けられ、赤外線通信などの無線通信により情報の送受信を行う。受信アンテナ33には、受信回路34が接続される。受信回路34には、第2の制御回路40が接続され、第2の制御回路40には、スイッチ素子Q1、Q2のそれぞれのゲートが接続される。
[非接触給電回路100の動作]
以上の構成を備える非接触給電回路100は、インバータ11により、直流電源V1の出力電力を用いて送電コイルL1に電力を供給し、送電コイルL1と受電コイルL2との電磁界結合によって、送電コイルL1に供給した電力を受電コイルL2に伝送する。そして、受電コイルL2に伝送した電力を、整流平滑回路21により整流平滑して負荷RLに出力する。また、通信回路30により、負荷RLへの出力情報を第2の制御回路40に送り、第2の制御回路40により、負荷RLに対して所定の出力を給電するようにインバータ11を駆動する。非接触給電回路100の具体的な動作について、図8、9、10を用いて以下に詳述する。
図8は、インバータ11に設けられたスイッチ素子Q1、Q2の動作を説明するための図である。VGSQ1は、スイッチ素子Q1のゲート・ソース間電圧を示し、VGSQ2は、スイッチ素子Q2のゲート・ソース間電圧を示す。ゲート・ソース間電圧VGSQ1がVHの場合に、スイッチ素子Q1がオン状態になり、ゲート・ソース間電圧VGSQ1がVLの場合に、スイッチ素子Q1がオフ状態になるものとする。スイッチ素子Q2についても、スイッチ素子Q1と同様に、ゲート・ソース間電圧VGSQ2がVHの場合に、スイッチ素子Q2がオン状態になり、ゲート・ソース間電圧VGSQ2がVLの場合に、スイッチ素子Q2がオフ状態になるものとする。VDSQ2は、スイッチ素子Q2のドレイン・ソース間電圧を示す。IDQ1は、スイッチ素子Q1のドレイン電流を示し、IDQ2は、スイッチ素子Q2のドレイン電流を示す。
ゲート・ソース間電圧VGSQ1とゲート・ソース間電圧VGSQ2とは、第2の制御回路40により、交互にVHになり、スイッチ素子Q1、Q2は、交互にオン状態になる。このため、ドレイン・ソース間電圧VDSQ2は、スイッチ素子Q1、Q2のオンオフに応じて、すなわちインバータ11のスイッチング動作に応じて、矩形波状に変化する。その結果、スイッチ素子Q2のドレインとソースとの間に接続されている、送電コイルL1およびキャパシタC1の直列回路が共振動作を行い、この直列回路に共振電流が流れる。この共振電流は、スイッチ素子Q1とスイッチ素子Q2とに交互に流れるため、ドレイン電流IDQ1、IDQ2は、図8に示すように変化する。
なお、厳密には、スイッチ素子Q1、Q2のオン状態を切り替える際に、これら2つのスイッチ素子Q1、Q2の双方がオン状態になるのを防ぐために、デッドタイムと称する2つのスイッチ素子Q1、Q2の双方がオフ状態になる時間を設ける必要があるが、ここではその説明を省略する。
図9は、送電コイルL1および受電コイルL2を備える非接触給電部Tの等価回路TTを用いて示した非接触給電回路100の簡略図である。等価回路TTは、非接触給電部Tの一般的な等価回路と同じ構成であり、1次巻線n1および2次巻線n2を備える理想トランスToと、励磁インダクタンスLmと、第1の漏れインダクタンスLaと、第2の漏れインダクタンスLbと、を含んで構成される。なお、図7における直流電源V1およびインバータ11は、図9では交流電源Veとして示され、図7における整流平滑回路21は、図9では省略されているものとする。
図10は、電磁界結合によって送電コイルL1から受電コイルL2に電力を伝送する際の、非接触給電回路100の各部に流れる電流を説明するための図である。IL1は、送電コイルL1を流れる電流を示し、IL2は、受電コイルL2を流れる電流を示し、ILmは、非接触給電部Tの等価回路TTの励磁インダクタンスLmを流れる励磁電流を示す。なお、VDSQ2は、上述のようにスイッチ素子Q2のドレイン・ソース間電圧を示すが、このVDSQ2は、インバータ11の出力電圧に相当する。
インバータ11をスイッチング動作させることによって、スイッチ素子Q2のドレイン・ソース間に図10の電圧VDSQ2に示す電圧を発生させると、この電圧により、共振電流が送電コイルL1およびキャパシタC1の直列回路に流れる。すると、送電コイルL1の周辺の空間に磁界が発生し、送電コイルL1と受電コイルL2との電磁界結合により、受電コイルL2に誘導電圧が発生する。この誘導電圧により、受電コイルL2およびキャパシタC2の直列回路に共振電流が流れる。この共振電流は、整流平滑回路21で整流平滑され、負荷RLに出力される。
負荷RLに接続された送信回路31は、非接触給電回路100の出力を検出し、検出結果を送信アンテナ32を介して受信アンテナ33に送信する。受信アンテナ33で受信された出力の情報は、受信回路34を介して第2の制御回路40に送られる。すなわち、これら送信回路31、送信アンテナ32、受信アンテナ33、および受信回路34を備える通信回路30は、非接触給電回路100の出力情報を第2の制御回路40に送信する。第2の制御回路40は、非接触給電回路100の出力情報に応じて、インバータ11に設けられたスイッチ素子Q1、Q2を制御して、非接触給電回路100の出力を制御する。なお、非接触給電回路100の出力の制御では、例えば定電力制御や定電圧制御や定電流制御が行われる。
特開2010−233354号公報 特開2010−252446号公報
図7に示した従来例に係る非接触給電回路100では、送電コイルL1と受電コイルL2との間隔が長くなるに従って、インバータ11を通過する無効電力が増加し、励磁電流によるスイッチ素子Q1、Q2や配線抵抗や送電コイルL1や受電コイルL2などにおける損失が増加してしまい、電力効率が低下してしまうという課題があった。この課題について、図11および図12を用いて以下に詳述する。
図11は、図7に示した従来例に係る非接触給電回路100の出力特性を示す図である。横軸は、インバータ11のスイッチング周波数を示し、縦軸は、非接触給電回路100の出力電力を示す。図11に示すように、インバータ11のスイッチング周波数を変化させることで、非接触給電回路100の出力電力を制御できる。
図9において、送電コイルL1のインダクタンスと、受電コイルL2のインダクタンスとが、ともにLoで等しいと仮定すると、1次巻線n1と2次巻線n2との巻数比は1:1となる。そこで、送電コイルL1と受電コイルL2との結合係数をkとすると、励磁インダクタンスLm、送電コイルの漏れインダクタンスLa、および受電コイルの漏れインダクタンスLbは、以下の数式(1)、(2)で表される。
Figure 2013153627
Figure 2013153627
また、キャパシタC1のキャパシタンスと、キャパシタC2のキャパシタンスとを、ともにCoとすると、図11に示す2つの共振周波数fm、feは、それぞれ数式(3)、(4)で表される。
Figure 2013153627
Figure 2013153627
図7に示した従来例に係る非接触給電回路100では、送電コイルL1と受電コイルL2との間隔が長くなると、結合係数kが小さくなるので、その結果、上述の数式(1)、(2)から分かるように、第1の漏れインダクタンスLaおよび第2の漏れインダクタンスLbが大きくなり、励磁インダクタンスLmが小さくなる。このため、上述の2つの共振周波数fm、feが変化し、非接触給電回路100の出力特性は、図12に示すように、送電コイルL1と受電コイルL2との間隔が長くなるに従って、h1から、h2、h3、h4の順に変化する。
すなわち、送電コイルL1と受電コイルL2との間隔が長くなるに従って、2つの共振周波数fm、feは互いに近づき、同時に、共振周波数fm、feでの非接触給電回路100の出力電力が増加する。この共振周波数fm、feでの非接触給電回路100の出力電力の増加の原因は、2つの共振周波数fm、feが互いに近づき、これら2つの共振動作が重畳されるためと考えられる。なお、送電コイルL1と受電コイルL2との間隔の変化に対する、共振周波数fm、feでの非接触給電回路100の出力電力の変化は、送電コイルL1と受電コイルL2との間隔が短い領域では小さいが、送電コイルL1と受電コイルL2との間隔が長くなるに従って大きくなる。
ここで、非接触給電回路100の出力を一定とすると、送電コイルL1と受電コイルL2との間隔が変化しても、励磁インダクタンスLmに印加される電圧は略一定となる。また、上述のように、送電コイルL1と受電コイルL2との間隔が長くなると、励磁インダクタンスLmが小さくなる。以上より、送電コイルL1と受電コイルL2との間隔が長くなると、励磁インダクタンスLmに流れる電流が増加する。
図9において、励磁インダクタンスLmは、電源Veから見ると、負荷RLと並列に接続されている。このため、励磁インダクタンスLmに流れる励磁電流が増加するに従って、電源Veと励磁インダクタンスLmとの間を流れる循環電流が増加し、無効電力が増加する。
以上のように、従来の非接触給電回路100では、送電コイルL1と受電コイルL2との間隔が長くなるに従って、共振周波数での出力電力が増えるが、それと同時に、励磁インダクタンスLmを流れる励磁電流が増える。このため、送電コイルL1と受電コイルL2との間隔が長くなるに従って、インバータ11を通過する無効電力が増加し、励磁電流によるスイッチ素子Q1、Q2や配線抵抗や送電コイルL1や受電コイルL2などにおける損失が増加してしまい、電力効率が低下してしまうという課題があった。
上述の課題を鑑み、本発明は、送電コイルと受電コイルとの間隔が長くなった際における非接触給電回路の電力効率の低下を低減し、高電力効率の非接触給電回路を実現することを目的とする。
本発明は、上述の課題を解決するために、以下の事項を提案している。
(1) 本発明は、間隙を隔てて設けられた送電コイル(例えば、図1の送電コイルL1に相当)と受電コイル(例えば、図1の受電コイルL2に相当)との間で電力を伝送する非接触給電回路(例えば、図1の非接触給電回路1に相当)であって、前記送電コイルまたは前記受電コイルのうち少なくともいずれかには、キャパシタ(例えば、図1のキャパシタC1、C2に相当)が接続され、インバータ(例えば、図1のインバータ11に相当)を有し、直流源(例えば、図1の直流電源V1および直流出力レギュレータ50に相当)の出力電力を用いて前記送電コイルに電力を供給する送電回路(例えば、図1の送電回路10に相当)と、前記インバータの出力電流の位相を検出する位相検出回路(例えば、図1の位相検出回路60に相当)と、前記位相検出回路による検出結果に応じて前記直流源を制御する制御回路(例えば、図1の第1の制御回路70に相当)と、を備えることを特徴とする非接触給電回路を提案している。
ここで、送電コイルと受電コイルとの間隔が変化すると、インバータの出力電流の位相が変化する。
そこで、この発明によれば、非接触給電回路に、直流源の出力電圧を用いて送電コイルに電力を供給する送電回路と、送電回路に設けられたインバータの出力電流の位相を検出する位相検出回路と、位相検出回路による検出結果に応じて直流源を制御する制御回路と、を設けた。このため、インバータの出力電流の位相の変化を検出すると、直流源を制御して、インバータの電源電圧を低下させることができる。インバータの電源電圧を低下させると、インバータの出力電流の位相の変化が低減し、その結果、インバータから出力される電力の無効電力が減少する。したがって、送電コイルと受電コイルとの間隔が長くなった際における非接触給電回路の電力効率の低下を低減し、高電力効率の非接触給電回路を実現できる。
(2) 本発明は、(1)の非接触給電回路について、前記制御回路は、前記直流源の出力電圧を変化させて、前記位相検出回路により検出された前記インバータの出力電流の位相を、予め定められた目標値に近付けることを特徴とする非接触給電回路を提案している。
この発明によれば、(1)の非接触給電回路において、制御回路により、直流源の出力電圧を変化させて、位相検出回路により検出されたインバータの出力電流の位相を、予め定められた目標値に近づけることとした。このため、上述した効果と同様の効果を奏することができる。
(3) 本発明は、(1)の非接触給電回路について、前記制御回路は、前記直流源の出力電圧を変化させて、前記位相検出回路により検出された前記インバータの出力電流の位相を、予め定められた目標値に保つことを特徴とする非接触給電回路を提案している。
この発明によれば、(1)の非接触給電回路において、制御回路により、直流源の出力電圧を変化させて、位相検出回路により検出されたインバータの出力電流の位相を、予め定められた目標値に保つこととした。このため、インバータの出力電流の位相の変化に対して、直流源をリニアに制御でき、上述した効果と同様の効果を奏することができる。
(4) 本発明は、(1)の非接触給電回路について、前記制御回路は、前記位相検出回路により検出された前記インバータの出力電流の位相が、予め定められた正の値より大きくなると、前記直流源の出力電圧を変化させることを特徴とする非接触給電回路を提案している。
この発明によれば、(1)の非接触給電回路において、制御回路により、位相検出回路により検出されたインバータの出力電流の位相が、予め定められた正の値より大きくなると、直流源の出力電圧を変化させることとした。このため、インバータの出力電流の位相進みを低減でき、上述した効果と同様の効果を奏することができる。
(5) 本発明は、(1)または(4)の非接触給電回路について、前記制御回路は、前記位相検出回路により検出された前記インバータの出力電流の位相が、予め定められた負の値より小さくなると、前記直流源の出力電圧を変化させることを特徴とする非接触給電回路を提案している。
この発明によれば、(1)または(4)の非接触給電回路において、制御回路により、位相検出回路により検出されたインバータの出力電流の位相が、予め定められた負の値より小さくなると、直流源の出力電圧を変化させることとした。このため、インバータの出力電流の位相遅れを低減でき、上述した効果と同様の効果を奏することができる。
(6) 本発明は、(1)〜(5)のいずれかの非接触給電回路について、前記インバータは、当該インバータの出力電圧の位相に対して当該インバータの出力電流の位相が遅れる領域で動作することを特徴とする非接触給電回路を提案している。
この発明によれば、(1)〜(5)のいずれかの非接触給電回路において、インバータは、インバータの出力電圧の位相に対してインバータの出力電流の位相が遅れる領域で、動作するものとした。このため、インバータをソフトスイッチング動作させることができるので、インバータにおけるスイッチング損失を低減して、非接触給電回路をさらに高電力効率化できる。
(7) 本発明は、(1)〜(6)のいずれかの非接触給電回路について、前記キャパシタは、前記送電コイルまたは前記受電コイルのうち少なくともいずれかに、直列接続されることを特徴とする非接触給電回路を提案している。
この発明によれば、(1)〜(6)のいずれかの非接触給電回路において、キャパシタを、送電コイルまたは受電コイルのうち少なくともいずれかに、直列接続することとした。このため、キャパシタと、送電コイルまたは受電コイルと、で共振回路を形成することができ、上述した効果と同様の効果を奏することができる。
(8) 本発明は、(1)〜(7)のいずれかの非接触給電回路について、前記キャパシタは、前記送電コイルまたは前記受電コイルのうち少なくともいずれかに、並列接続されることを特徴とする非接触給電回路を提案している。
この発明によれば、(1)〜(7)のいずれかの非接触給電回路において、キャパシタを、送電コイルまたは受電コイルのうち少なくともいずれかに、並列接続することとした。このため、キャパシタと、送電コイルまたは受電コイルと、で共振回路を形成することができ、上述した効果と同様の効果を奏することができる。
本発明によれば、送電コイルと受電コイルとの間隔が長くなった際における非接触給電回路の電力効率の低下を低減し、高電力効率の非接触給電回路を実現できる。
本発明の一実施形態に係る非接触給電回路の回路図である。 前記非接触給電回路の出力特性を示す図である。 前記非接触給電回路の動作を説明するための図である。 前記非接触給電回路の動作を説明するための図である。 前記非接触給電回路の動作を説明するための図である。 前記非接触給電回路の動作を説明するための図である。 従来例に係る非接触給電回路の回路図である。 前記非接触給電回路の動作を説明するための図である。 前記非接触給電回路の簡略図である。 前記非接触給電回路の動作を説明するための図である。 前記非接触給電回路の出力特性を示す図である。 前記非接触給電回路の動作を説明するための図である。
以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態における構成要素は適宜、既存の構成要素などとの置き換えが可能であり、また、他の既存の構成要素との組合せを含む様々なバリエーションが可能である。したがって、以下の実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。
[非接触給電回路1の構成]
図1は、本発明の一実施形態に係る非接触給電回路1の回路図である。非接触給電回路1は、図7に示した従来例に係る非接触給電回路100とは、直流出力レギュレータ50、位相検出回路60、および第1の制御回路70を備える点が異なる。なお、非接触給電回路1において、非接触給電回路100と同一構成要件については、同一符号を付し、その説明を省略する。
直流出力レギュレータ50は、送電回路10の前段、すなわち送電回路10より直流電源V1側に設けられる。この直流出力レギュレータ50は、いわゆる昇圧チョッパ回路であり、インダクタL3、ダイオードD5、NチャネルMOSFETで構成されるスイッチ素子Q3、およびキャパシタC4を備える。インダクタL3の一端には、直流電源V1の正極が接続され、インダクタL3の他端には、ダイオードD5のアノードと、スイッチ素子Q3のドレインと、が接続される。スイッチ素子Q3のソースには、直流電源V1の負極が接続される。ダイオードD5のカソードには、スイッチ素子Q1のドレインが接続されるとともに、キャパシタC4を介して直流電源V1の負極が接続される。
位相検出回路60には、インバータ11の出力および第1の制御回路70が接続される。第1の制御回路70には、スイッチ素子Q3のゲートが接続される。
[非接触給電回路1の動作]
以上の構成を備える非接触給電回路1は、非接触給電回路100と同様に、インバータ11により、直流電源V1の出力電力を用いて送電コイルL1に電力を供給し、送電コイルL1と受電コイルL2との電磁界結合によって、送電コイルL1に供給した電力を受電コイルL2に伝送する。そして、受電コイルL2に伝送した電力を、整流平滑回路21により整流平滑して負荷RLに出力する。また、通信回路30により、負荷RLへの出力情報を第2の制御回路40に送り、第2の制御回路40により、負荷RLに対して所定の出力を給電するようにインバータ11を駆動する。
非接触給電回路1は、さらに、位相検出回路60により、インバータ11の出力電圧および出力電流を測定して、インバータ11の出力電流の位相を検出し、第1の制御回路70により、位相検出回路60による検出結果に応じて、直流出力レギュレータ50の出力電圧、すなわちインバータ11の電源電圧を制御する。
図2は、送電コイルL1と受電コイルL2との間隔を変化させた際の、非接触給電回路1の出力特性を示す図である。h2は、送電コイルL1と受電コイルL2との間隔がd1の場合における、非接触給電回路1の出力特性を示す。h4は、送電コイルL1と受電コイルL2との間隔がd1より長いd2の場合における、非接触給電回路1の出力特性を示す。
送電コイルL1と受電コイルL2との間隔がd1からd2まで長くなると、非接触給電回路1の出力特性はh2からh4に変化し、共振周波数fm、feでの非接触給電回路1の出力電力が増加する。
ここで、出力特性h2と出力特性h4とは、それぞれ2つの峰(すなわち共振周波数fm、fe)を持っている。このため、非接触給電回路1の出力電力がW1の場合における動作点、すなわち非接触給電回路1の出力電力がW1になる際のインバータ11のスイッチング周波数は、出力特性h2と出力特性h4とにおいて、それぞれ複数(出力特性h2においては4点、出力特性h4においては2点)存在する。しかしながら、インバータ11のソフトスイッチング動作によるスイッチング損失を低減する目的や、非接触給電回路1の起動時にスイッチング周波数を高い周波数から動作点の周波数までスイープさせることによってソフトスタートを容易にする目的などを達成するためには、共振周波数feよりも周波数の高い領域で、すなわち上述の複数の動作点の中で最も高い周波数の動作点で、インバータ11を動作させることが望ましい。したがって、本実施形態では、出力特性h2、h4のそれぞれにおいて、最も周波数の高い動作点、すなわちM1およびM2で、インバータ11が動作している場合について説明する。
すると、非接触給電回路1の出力電力をW1で一定とした場合、すなわち第2の制御回路40により定電力制御が行われている場合において、送電コイルL1と受電コイルL2との間隔がd1からd2まで長くなると、非接触給電回路1の動作点は、M1からM2に変化する。
図3は、インバータ11のスイッチング周波数に対する、非接触給電回路1の出力電力と、インバータ11の出力電圧に対するインバータ11の出力電流の位相と、を示す図である。
共振周波数がfmの場合とfeの場合とでは、インバータ11の出力電圧に対するインバータ11の出力電流の位相はゼロであり、位相進みも位相遅れもない。しかしながら、共振周波数fm、feから離れると、インバータ11の出力電圧に対するインバータ11の出力電流の位相が変化し、特にfeよりも周波数の高い領域では、周波数が高くなるに従って、インバータ11の出力電圧に対するインバータ11の出力電流の位相遅れが増加する。そして、非接触給電回路1の出力電力がW1の場合、インバータ11の出力電圧に対するインバータ11の出力電流の位相遅れはθ2である。
ここで、インバータ11から出力される電力の有効電力をP、インバータ11から出力される電力の無効電力をQとすると、インバータ11の出力電圧に対するインバータ11の出力電流の位相θは、数式(5)で表される。
Figure 2013153627
ここで、非接触給電回路1の内部損失をゼロと仮定すると、有効電力Pは、非接触給電回路1の出力電力W1に相当する。このため、非接触給電回路1の出力電力W1が一定の場合、インバータ11の出力電流の位相θは、無効電力Qの増減に応じて変化し、インバータ11の出力電流の位相θの進みおよび遅れの増加は、無効電力Qの増加を意味する。
図4は、インバータ11の電源電圧を変化させた際の、非接触給電回路1の出力特性および動作点の変化を示す図である。h4は、インバータ11の電源電圧がVaの場合における、非接触給電回路1の出力特性を示す。h5は、インバータ11の電源電圧がVaより小さいVbの場合における、非接触給電回路1の出力特性を示す。
図4に示すように、インバータ11の電源電圧が変化しても、共振周波数fm、feは一定であり、インバータ11の出力電流の位相特性は変化しない。このため、インバータ11の電源電圧がVaからVbまで低下すると、非接触給電回路1の出力特性が図4の縦軸方向に縮小されて非接触給電回路1の出力電力が小さくなり、その結果、非接触給電回路1の動作点はM2からM3に変化し、インバータ11の出力電流の位相遅れはθ2からθ3まで減少する。
ここで、インバータ11の出力電流の位相進みおよび位相遅れの減少は、数式(5)を用いて上述したように、無効電力Qの減少を意味する。また、無効電力Qの減少は、図9を用いて上述したように、非接触給電部Tの励磁電流の減少を意味する。
以上より、送電コイルL1と受電コイルL2との間隔が長くなると、非接触給電部Tの励磁電流が増加して、非接触給電回路1の電力効率が低下するが、同時に、共振周波数feでの非接触給電回路1の出力電力が増加する。そこで、非接触給電回路1は、非接触給電部Tの励磁電流の増加を、インバータ11の出力電流の位相進みまたは位相遅れで検出する。そして、インバータ11の出力電流の位相進みまたは位相遅れを検出すると、インバータ11の電源電圧を低下させることで、インバータ11の出力電流の位相進みまたは位相遅れを低減させて、非接触給電部Tの励磁電流を低減させる。このため、非接触給電回路1は、送電コイルL1と受電コイルL2との間隔が長くなった際の電力効率の低下を低減し、高電力効率を実現できる。
また、非接触給電回路1は、インバータ11の出力電圧に対してインバータ11の出力電流の位相が遅れた周波数領域で、インバータ11を動作させる。このため、インバータ11をソフトスイッチング動作させることができるので、インバータ11におけるスイッチング損失を低減して、非接触給電回路1の高電力効率化を実現できる。
ところで、インバータ11の電源電圧の低下は、直流出力レギュレータ50の出力電圧の低下によって発生する。また、直流出力レギュレータ50は、上述したように昇圧チョッパ回路であり、この直流出力レギュレータ50の各部の波形は、図5のようになる。
VGSQ3は、スイッチ素子Q3のゲート・ソース間電圧を示し、VDSQ3は、スイッチ素子Q3のドレイン・ソース間電圧を示す。IL3は、インダクタL3を流れる電流を示し、IDQ3は、スイッチ素子Q3のドレイン電流を示し、ID5は、ダイオードD5を流れる電流を示す。VC4は、キャパシタC4の電圧を示す。
スイッチ素子Q3のゲートには、第1の制御回路70から駆動信号が印加され、スイッチ素子Q3のゲート・ソース間電圧VGSQ3は、図5に示すように変化し、スイッチ素子Q3は、期間T1の期間でオン状態になり、期間T2の期間でオフ状態になる。スイッチ素子Q3がオン状態である期間では、直流電源V1の出力電力、すなわち入力電力がインダクタL3に印加され、インダクタL3の電流IL3は、スイッチ素子Q3を流れる。一方、スイッチ素子Q3がオフ状態である期間では、インダクタL3の電流は、ダイオードD5を流れる。スイッチ素子Q3のオンオフが繰り返されることで、入力電力が出力に送られる。
ここで、直流出力レギュレータ50の入力電圧をVin、直流出力レギュレータ50の出力電圧をVout、第1の制御回路70からスイッチ素子Q3に送られる駆動信号の時比率(周期に対するオン期間の比率)をDとすると、数式(6)が成り立つ。
Figure 2013153627
直流出力レギュレータ50の出力電圧Voutは、数式(6)に示すように駆動信号の時比率Dによって定まり、キャパシタC4の電圧VC4に相当する。このため、第1の制御回路70は、位相検出回路60からの情報に基づいて、直流出力レギュレータ50に送る駆動信号の時比率を変化させることで、直流出力レギュレータ50の出力電圧、すなわちインバータ11の電源電圧を変化させることができる。
本発明は、上述の実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
例えば、上述の実施形態では、送電コイルL1にキャパシタC1が接続されるとともに、受電コイルL2にキャパシタC2が接続されており、送電コイルL1および受電コイルL2の双方にキャパシタが接続されるものとした。しかしながら、これに限らず、例えば、送電コイルL1にのみキャパシタが接続されるものであったり、受電コイルL2にのみキャパシタが接続されるものであったりしてもよい。
また、上述の実施形態では、送電コイルL1には、キャパシタC1が直列接続されるものとしたが、これに限らず、例えばキャパシタC1が並列接続されるものとしてもよい。また、2つのキャパシタが接続され、これら2つのキャパシタのうち、一方が直列接続され、他方が並列接続されるものとしてもよい。受電コイルL2についても、送電コイルL1と同様に、例えばキャパシタC2が並列接続されるものとしてもよいし、2つのキャパシタが接続され、これら2つのキャパシタのうち、一方が直列接続され、他方が並列接続されるものとしてもよい。
また、上述の実施形態では、送電コイルL1と受電コイルL2との間での電力の伝送は、これら送電コイルL1と受電コイルL2との電磁界結合によって行われるものとしたが、これに限らない。例えば、送電コイルL1と受電コイルL2とは、電磁界共鳴や、電磁誘導や、共振結合や、電界結合や、磁界結合や、電波により電力を伝送するものであってもよい。
また、上述の実施形態では、第2の制御回路40は、負荷RLに対して所定の出力を給電するようにインバータ11を駆動するものとしたが、例えば、定電力制御や定電圧制御や定電流制御をするものであってよい。
また、上述の実施形態では、インバータ11の出力電流の位相を検出するに際して、インバータ11の出力電圧を測定するものとしたが、これに限らない。インバータ11の出力電流の位相を検出するための基準となる信号を測定すればよく、例えば第2の制御回路40からスイッチ素子Q1やスイッチ素子Q2に送られる駆動信号の電圧を測定してもよい。
また、上述の実施形態では、直流出力レギュレータ50は、昇圧チョッパ回路であるものとしたが、これに限らない。直流出力レギュレータ50は、第1の制御回路70から送られる駆動信号によって出力電圧の制御されるコンバータであればよく、例えば、降圧チョッパ回路や、昇降圧チョッパ回路や、絶縁型のコンバータや、ドロッパ方式のコンバータや、交流入力でその前段に整流回路の設けられている構成であってもよい。
また、上述の実施形態では、インバータ11の出力電流の位相進みまたは位相遅れを検出すると、インバータ11の電源電圧を低下させることとしたが、これに限らない。例えば、インバータ11の出力電流の位相が、予め定められた正の値より大きくなったことを検出するか、または、予め定められた負の値より小さくなったことを検出すると、インバータ11の電源電圧を低下させることとしてもよい。
また、上述の実施形態では、インバータ11の出力電流の位相進みまたは位相遅れを検出すると、インバータ11の電源電圧を低下させることで、インバータ11の出力電流の位相進みまたは位相遅れを低減させることとしたが、これに限らない。例えば、インバータ11の出力電流の位相を、予め定められた目標値に近づけることとしてもよいし、予め定められた目標値に保つこととしてもよい。
また、上述の実施形態において、直流出力レギュレータ50の代わりに、高調波電流抑制機能付きの直流出力レギュレータを用いてもよい。これによれば、入力電流の高調波電流成分を低減できる。
1、100;非接触給電回路
10;送電回路
11;インバータ
20;受電回路
21;整流平滑回路
30;通信回路
40;第2の制御回路
50;直流出力レギュレータ
60;位相検出回路
70;第1の制御回路
C1〜C4;キャパシタ
L1;送電コイル
L2;受電コイル
Q1〜Q3;スイッチ素子
RL;負荷
T;非接触給電部
V1;直流電源

Claims (8)

  1. 間隙を隔てて設けられた送電コイルと受電コイルとの間で電力を伝送する非接触給電回路であって、
    前記送電コイルまたは前記受電コイルのうち少なくともいずれかには、キャパシタが接続され、
    インバータを有し、直流源の出力電力を用いて前記送電コイルに電力を供給する送電回路と、
    前記インバータの出力電流の位相を検出する位相検出回路と、
    前記位相検出回路による検出結果に応じて前記直流源を制御する制御回路と、を備えることを特徴とする非接触給電回路。
  2. 前記制御回路は、前記直流源の出力電圧を変化させて、前記位相検出回路により検出された前記インバータの出力電流の位相を、予め定められた目標値に近付けることを特徴とする請求項1に記載の非接触給電回路。
  3. 前記制御回路は、前記直流源の出力電圧を変化させて、前記位相検出回路により検出された前記インバータの出力電流の位相を、予め定められた目標値に保つことを特徴とする請求項1に記載の非接触給電回路。
  4. 前記制御回路は、前記位相検出回路により検出された前記インバータの出力電流の位相が、予め定められた正の値より大きくなると、前記直流源の出力電圧を変化させることを特徴とする請求項1に記載の非接触給電回路。
  5. 前記制御回路は、前記位相検出回路により検出された前記インバータの出力電流の位相が、予め定められた負の値より小さくなると、前記直流源の出力電圧を変化させることを特徴とする請求項1または4に記載の非接触給電回路。
  6. 前記インバータは、当該インバータの出力電圧の位相に対して当該インバータの出力電流の位相が遅れる領域で動作することを特徴とする請求項1から5のいずれかに記載の非接触給電回路。
  7. 前記キャパシタは、前記送電コイルまたは前記受電コイルのうち少なくともいずれかに、直列接続されることを特徴とする請求項1から6のいずれかに記載の非接触給電回路。
  8. 前記キャパシタは、前記送電コイルまたは前記受電コイルのうち少なくともいずれかに、並列接続されることを特徴とする請求項1から7のいずれかに記載の非接触給電回路。
JP2012013941A 2012-01-26 2012-01-26 非接触給電回路 Active JP5832317B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013941A JP5832317B2 (ja) 2012-01-26 2012-01-26 非接触給電回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013941A JP5832317B2 (ja) 2012-01-26 2012-01-26 非接触給電回路

Publications (2)

Publication Number Publication Date
JP2013153627A true JP2013153627A (ja) 2013-08-08
JP5832317B2 JP5832317B2 (ja) 2015-12-16

Family

ID=49049513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013941A Active JP5832317B2 (ja) 2012-01-26 2012-01-26 非接触給電回路

Country Status (1)

Country Link
JP (1) JP5832317B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110662A (ja) * 2012-11-30 2014-06-12 Denso Corp 非接触給電装置
WO2015162859A1 (ja) * 2014-04-23 2015-10-29 パナソニックIpマネジメント株式会社 非接触送電装置、非接触受電装置及び非接触送電システム
WO2015170460A1 (ja) * 2014-05-07 2015-11-12 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
WO2015173847A1 (ja) * 2014-05-14 2015-11-19 ネオテス株式会社 非接触電力伝送装置
WO2016017143A1 (ja) * 2014-07-31 2016-02-04 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
WO2016017142A1 (ja) * 2014-07-31 2016-02-04 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
WO2016047137A1 (ja) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 給電装置
JP2016182002A (ja) * 2015-03-24 2016-10-13 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
WO2017104450A1 (ja) * 2015-12-18 2017-06-22 オムロン株式会社 非接触給電装置、及びその制御方法
CN110014901A (zh) * 2017-07-31 2019-07-16 李尔公司 用于感应电力传输的早期硬切换检测和保护的方法
CN110121827A (zh) * 2017-03-02 2019-08-13 欧姆龙株式会社 非接触供电装置
JP2020502986A (ja) * 2016-12-22 2020-01-23 エッグトロニック エンジニアリング エス.アール.エル. 電力を無線で伝送するためのシステム
JP2022550508A (ja) * 2019-09-09 2022-12-02 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツング 誘導電力伝達パッド及び誘導電力伝達パッドの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074685A (ja) * 2011-09-27 2013-04-22 Equos Research Co Ltd 電力伝送システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074685A (ja) * 2011-09-27 2013-04-22 Equos Research Co Ltd 電力伝送システム

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110662A (ja) * 2012-11-30 2014-06-12 Denso Corp 非接触給電装置
US10076966B2 (en) 2014-04-23 2018-09-18 Panasonic Intellectual Property Management Co., Ltd. Contactless power transmission device, contactless power reception device, and contactless power transmission system
WO2015162859A1 (ja) * 2014-04-23 2015-10-29 パナソニックIpマネジメント株式会社 非接触送電装置、非接触受電装置及び非接触送電システム
JP2015208191A (ja) * 2014-04-23 2015-11-19 パナソニックIpマネジメント株式会社 非接触送電装置、非接触受電装置及び非接触送電システム
WO2015170460A1 (ja) * 2014-05-07 2015-11-12 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
US10547214B2 (en) 2014-05-14 2020-01-28 WQC, Inc. Wireless power transfer system
US10243406B2 (en) 2014-05-14 2019-03-26 WQC, Inc. Wireless power transfer system
US11005300B2 (en) 2014-05-14 2021-05-11 WQC, Inc. Wireless power transfer system
KR102209812B1 (ko) 2014-05-14 2021-01-28 더블유큐씨 가부시키가이샤 무선 전력 전송 장치
TWI702769B (zh) * 2014-05-14 2020-08-21 日商速充股份有限公司 無線電力傳送裝置
WO2015173847A1 (ja) * 2014-05-14 2015-11-19 ネオテス株式会社 非接触電力伝送装置
KR20170007744A (ko) * 2014-05-14 2017-01-20 더블유큐씨 가부시키가이샤 무선 전력 전송 장치
JPWO2015173850A1 (ja) * 2014-05-14 2017-04-20 Wqc株式会社 ワイヤレス電力伝送装置
TWI667858B (zh) * 2014-05-14 2019-08-01 日商速充股份有限公司 無線電力傳送裝置
JP2019058065A (ja) * 2014-05-14 2019-04-11 Wqc株式会社 ワイヤレス電力伝送装置
WO2015173850A1 (ja) * 2014-05-14 2015-11-19 ネオテス株式会社 ワイヤレス電力伝送装置
JP2018050460A (ja) * 2014-05-14 2018-03-29 Wqc株式会社 ワイヤレス電力伝送装置
WO2016017143A1 (ja) * 2014-07-31 2016-02-04 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
WO2016017142A1 (ja) * 2014-07-31 2016-02-04 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
WO2016047137A1 (ja) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 給電装置
JP2016073014A (ja) * 2014-09-26 2016-05-09 パナソニックIpマネジメント株式会社 給電装置
JP2016182002A (ja) * 2015-03-24 2016-10-13 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
WO2017104450A1 (ja) * 2015-12-18 2017-06-22 オムロン株式会社 非接触給電装置、及びその制御方法
CN107852034A (zh) * 2015-12-18 2018-03-27 欧姆龙株式会社 非接触供电装置以及其控制方法
JP2017112787A (ja) * 2015-12-18 2017-06-22 オムロン株式会社 非接触給電装置、及びその制御方法
JP2020502986A (ja) * 2016-12-22 2020-01-23 エッグトロニック エンジニアリング エス.アール.エル. 電力を無線で伝送するためのシステム
CN110121827A (zh) * 2017-03-02 2019-08-13 欧姆龙株式会社 非接触供电装置
CN110121827B (zh) * 2017-03-02 2024-03-12 欧姆龙株式会社 非接触供电装置
CN110014901A (zh) * 2017-07-31 2019-07-16 李尔公司 用于感应电力传输的早期硬切换检测和保护的方法
CN110014901B (zh) * 2017-07-31 2022-07-08 李尔公司 用于感应电力传输的早期硬切换检测和保护的方法
JP2022550508A (ja) * 2019-09-09 2022-12-02 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツング 誘導電力伝達パッド及び誘導電力伝達パッドの製造方法
JP7454654B2 (ja) 2019-09-09 2024-03-22 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツング 誘導電力伝達パッド及び誘導電力伝達パッドの製造方法
US11999248B2 (en) 2019-09-09 2024-06-04 Enrx Ipt Gmbh Inductive power transfer pad and method for producing an inductive power transfer pad

Also Published As

Publication number Publication date
JP5832317B2 (ja) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5832317B2 (ja) 非接触給電回路
US9478992B2 (en) Power transmission system
US9853460B2 (en) Power conversion circuit, power transmission system, and power conversion system
US10097012B2 (en) Power supplying device and wireless power-supplying system
EP3033829B1 (en) Wireless power receiver with programmable power path
US9660536B2 (en) Switching power supply device performs power transmission by using resonance phenomenon
US9660514B2 (en) Power feed device of inductive charging device
US9048741B2 (en) Switching power supply device
US9106141B2 (en) Switching power supply device
KR101405878B1 (ko) 전력 전송 시스템
US9755500B2 (en) Power feed device of inductive charging device
US7388760B2 (en) Switching power supply circuit
US11011936B2 (en) Single-stage transmitter for wireless power transfer
US9859798B2 (en) Wireless power-feeding apparatus
KR20130043629A (ko) 높은 q 값을 제공할 수 있는 무선 수전 장치
WO2014199691A1 (ja) 給電装置、および非接触給電システム
US10511194B2 (en) Wireless power transfer system
KR102008810B1 (ko) 무선 전력 송신 장치 및 방법
US9882498B2 (en) Switching power supply device, switching power supply control method, and electronic apparatus
JP6188820B2 (ja) 高周波電源用整流回路
WO2015097801A1 (ja) 高周波電源用整流回路
JPWO2015097803A1 (ja) 高周波電源用整流回路
WO2015072015A1 (ja) 高周波電源用整流回路
JP2017005841A (ja) 送電機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5832317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150