JP2013152792A - Composition for forming transparent conductive film and transparent conductive film - Google Patents

Composition for forming transparent conductive film and transparent conductive film Download PDF

Info

Publication number
JP2013152792A
JP2013152792A JP2012011870A JP2012011870A JP2013152792A JP 2013152792 A JP2013152792 A JP 2013152792A JP 2012011870 A JP2012011870 A JP 2012011870A JP 2012011870 A JP2012011870 A JP 2012011870A JP 2013152792 A JP2013152792 A JP 2013152792A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
particles
resin
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012011870A
Other languages
Japanese (ja)
Other versions
JP5908287B2 (en
Inventor
Akiko Kito
朗子 鬼頭
Ryo Nomura
涼 野村
Noriaki Otani
紀昭 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2012011870A priority Critical patent/JP5908287B2/en
Publication of JP2013152792A publication Critical patent/JP2013152792A/en
Application granted granted Critical
Publication of JP5908287B2 publication Critical patent/JP5908287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film having excellent electrical characteristics, optical characteristic and durability.SOLUTION: A composition for forming a transparent conductive film contains conductive particles, a resin component, and a solvent, and the resin component contains a thermoplastic resin-based dispersant having a melting point of 25°C or higher, a photopolymerizable monomer, and a polymerization initiator. The transparent conductive film contains conductive particles, and a resin component, and the resin component contains a thermoplastic resin-based dispersant having a melting point of 25°C or higher, and a photopolymerizable resin. Preferably, the thermoplastic resin-based dispersant has a glass transition temperature of 60°C or higher.

Description

本発明は、透明導電膜形成用組成物及びそれを用いて形成した透明導電膜に関する。   The present invention relates to a transparent conductive film forming composition and a transparent conductive film formed using the composition.

塗布型の透明導電膜、特に導電性無機粒子を分散して塗膜中に含有させた透明導電膜は、一般にPETフィルム等のフレキシブルシート上に形成され、ディスプレイの帯電防止フィルムや、タッチパネル電極として使用されている。   A coating-type transparent conductive film, particularly a transparent conductive film in which conductive inorganic particles are dispersed and contained in a coating film, is generally formed on a flexible sheet such as a PET film, and is used as an antistatic film for a display or a touch panel electrode. It is used.

一般に、導電性無機粒子を分散して塗膜中に含有させる場合、膜中の導電性無機粒子の量を増やすほど抵抗が低くなり帯電防止機能を高くすることができるが、一方で、導電性無機粒子によって透過率が低下し、ヘイズが上昇し、樹脂成分が少なくなるために膜の硬度が低下するという問題点がある。   In general, when conductive inorganic particles are dispersed and contained in the coating film, the resistance decreases and the antistatic function increases as the amount of the conductive inorganic particles in the film increases. There is a problem in that the transmittance of the inorganic particles decreases, the haze increases, and the resin component decreases, so that the hardness of the film decreases.

ここで、帯電防止フィルムは、ディスプレイ最表面に露出したフィルムであるため、表面への埃付着防止機能と同時に、高透過率、反射防止機能だけでなく傷つき防止機能も重要視される。このため、帯電防止フィルムを目的とした透明導電膜は、高い硬度、透過率及び反射防止性を有する一方で、表面抵抗は108〜1012Ω/スクエア程度であることが多い(例えば、特許文献1参照。)。 Here, since the antistatic film is a film exposed on the outermost surface of the display, not only the function of preventing dust adhesion to the surface but also the function of preventing damage as well as the high transmittance and antireflection function are regarded as important. For this reason, a transparent conductive film intended for an antistatic film has high hardness, transmittance and antireflection properties, while surface resistance is often about 10 8 to 10 12 Ω / square (for example, patents). Reference 1).

一方、フィルムではなく、液晶のガラス基板上に直接帯電防止機能を付与する場合等は、テレビ最表面の帯電防止に比べて、より高い帯電防止機能が求められることがある。この場合、帯電防止膜は最終製品の最表面に配置されることはないが、製品の製造段階においてはモジュール等への組み立て工程中の洗浄工程に耐えうる硬度や耐溶剤性が必要である。   On the other hand, when an antistatic function is directly provided on a liquid crystal glass substrate instead of a film, a higher antistatic function may be required as compared with the antistatic function on the outermost surface of the television. In this case, the antistatic film is not disposed on the outermost surface of the final product, but in the product manufacturing stage, it is necessary to have hardness and solvent resistance that can withstand the cleaning process during the assembly process to a module or the like.

このため、透明導電膜中の樹脂成分を光硬化性樹脂とし、かつガラス基板をシランカップリング剤処理することで、抵抗と透過率を両立させ、更にガラス基板上でも耐洗浄性の高い塗膜を作製する方法が提案されている(例えば、特許文献2参照。)。   For this reason, the resin component in the transparent conductive film is a photocurable resin, and the glass substrate is treated with a silane coupling agent to achieve both resistance and transmittance, and the coating film has high cleaning resistance even on the glass substrate. Has been proposed (see, for example, Patent Document 2).

特許第3560532号公報Japanese Patent No. 3560532 特開2010−218957号公報JP 2010-218957 A

一方、透明導電膜は、膜厚が薄いほど透過率が向上し、またコスト的にも有利である。しかしながら、膜厚が薄くなると硬度が低下し、製品の製造工程中で傷がつきやすいという問題が生じる。   On the other hand, as the transparent conductive film is thinner, the transmittance is improved and the cost is also advantageous. However, when the film thickness is reduced, the hardness is lowered, and there is a problem that the product is easily damaged during the manufacturing process.

本発明は、上記問題を解決したもので、薄膜領域においても、電気特性、光学特性及び耐久性に優れた透明導電膜を提供するものである。   The present invention solves the above problems, and provides a transparent conductive film excellent in electrical characteristics, optical characteristics and durability even in a thin film region.

本発明の透明導電膜形成用組成物は、導電性粒子と、樹脂成分と、溶剤とを含む透明導電膜形成用組成物であって、前記樹脂成分は、融点が25℃以上の熱可塑性樹脂系分散剤と、光重合性モノマーと、重合開始剤とを含むことを特徴とする。   The composition for forming a transparent conductive film of the present invention is a composition for forming a transparent conductive film containing conductive particles, a resin component, and a solvent, and the resin component is a thermoplastic resin having a melting point of 25 ° C. or higher. It contains a system dispersant, a photopolymerizable monomer, and a polymerization initiator.

また、本発明の透明導電膜は、導電性粒子と、樹脂成分とを含む透明導電膜であって、前記樹脂成分は、融点が25℃以上の熱可塑性樹脂系分散剤と、光重合性樹脂とを含むことを特徴とする。   The transparent conductive film of the present invention is a transparent conductive film containing conductive particles and a resin component, and the resin component includes a thermoplastic resin dispersant having a melting point of 25 ° C. or higher, and a photopolymerizable resin. It is characterized by including.

本発明によれば、電気特性、光学特性及び耐久性に優れた透明導電膜を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the transparent conductive film excellent in the electrical property, the optical characteristic, and durability can be provided.

図1は、本発明の透明導電膜を透明基材の上に形成した一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example in which the transparent conductive film of the present invention is formed on a transparent substrate.

(実施形態1)
先ず、本発明の透明導電膜形成用組成物について説明する。本発明の透明導電膜形成用組成物は、導電性粒子と、樹脂成分と、溶剤とを含み、上記樹脂成分は、融点が25℃以上の熱可塑性樹脂系分散剤と、光重合性モノマーと、重合開始剤とを含むことを特徴とする。
(Embodiment 1)
First, the composition for forming a transparent conductive film of the present invention will be described. The composition for forming a transparent conductive film of the present invention includes conductive particles, a resin component, and a solvent, and the resin component includes a thermoplastic resin dispersant having a melting point of 25 ° C. or higher, a photopolymerizable monomer, And a polymerization initiator.

本発明の透明導電膜形成用組成物により透明導電膜を形成すると、後述する実施形態2で説明するように、電気特性、光学特性及び耐久性に優れた透明導電膜を提供できる。   When a transparent conductive film is formed from the composition for forming a transparent conductive film of the present invention, a transparent conductive film excellent in electrical characteristics, optical characteristics, and durability can be provided as will be described in Embodiment 2 described later.

<導電性粒子>
上記導電性粒子としては、透明性と導電性を兼ね備えた粒子であれば特に限定されず、例えば、導電性金属酸化物粒子、導電性窒化物粒子等を用いることができる。上記導電性金属酸化物粒子としては、酸化インジウム、酸化スズ、酸化亜鉛、酸化カドミウム等の金属酸化物粒子が挙げられる。また、酸化インジウム、酸化スズ、酸化亜鉛及び酸化カドミウムからなる群から選ばれる1種類以上の金属酸化物を主成分として、更にスズ、アンチモン、アルミニウム、ガリウムがドープされた導電性金属酸化物粒子、例えば、アンチモン含有酸化スズ(ATO)粒子、スズ含有酸化インジウム(ITO)粒子、アルミニウム含有酸化亜鉛(AZO)粒子、ガリウム含有酸化亜鉛(GZO)粒子、ITOをアルミニウム置換した導電性金属酸化物粒子等も使用できる。中でも、透明性、導電性及び化学特性に優れている点から、酸化ズズ粒子、アンチモン含有酸化スズ粒子及びITO粒子からなる群から選ばれる少なくとも1種が好ましく、特にITO粒子が特に好ましい。また、導電性の観点から、上記ITO粒子において、ITO全体に対してスズの添加量は酸化スズ換算で1〜20重量%が好ましい。ITOへのスズの添加により導電性が改善されるが、スズの添加量が1重量%より少ない場合は導電性の改善が乏しい傾向があり、20重量%を超えても導電性向上の効果は少ない傾向がある。
<Conductive particles>
The conductive particles are not particularly limited as long as the particles have both transparency and conductivity. For example, conductive metal oxide particles, conductive nitride particles, and the like can be used. Examples of the conductive metal oxide particles include metal oxide particles such as indium oxide, tin oxide, zinc oxide, and cadmium oxide. In addition, conductive metal oxide particles doped with tin, antimony, aluminum, gallium, with one or more metal oxides selected from the group consisting of indium oxide, tin oxide, zinc oxide and cadmium oxide as main components, For example, antimony-containing tin oxide (ATO) particles, tin-containing indium oxide (ITO) particles, aluminum-containing zinc oxide (AZO) particles, gallium-containing zinc oxide (GZO) particles, conductive metal oxide particles obtained by replacing ITO with aluminum, etc. Can also be used. Among these, at least one selected from the group consisting of oxide particles, antimony-containing tin oxide particles, and ITO particles is preferable, and ITO particles are particularly preferable because of excellent transparency, conductivity, and chemical characteristics. From the viewpoint of conductivity, the amount of tin added to the ITO particles is preferably 1 to 20% by weight in terms of tin oxide. The conductivity is improved by adding tin to ITO. However, when the amount of tin added is less than 1% by weight, the improvement in conductivity tends to be poor. There is a small tendency.

上記導電性粒子は、平均一次粒子径が10〜200nmの範囲にあることが好ましい。10nmより大きい場合、分散処理が容易になり粒子同士の凝集を抑制でき、曇りを抑制でき、光学特性が向上する傾向がある。また、200nm以下の場合、粒子による可視光線の散乱が抑制され、曇りが小さくなる傾向がある。ここで、平均一次粒子径は、例えば、作製した塗膜の表面又は断面において、個々の粒子の粒子径を電子顕微鏡により観察・測定した後、少なくとも100個の粒子の粒子径を平均した平均粒子径をいう。   The conductive particles preferably have an average primary particle size in the range of 10 to 200 nm. When it is larger than 10 nm, the dispersion treatment becomes easy, aggregation of particles can be suppressed, fogging can be suppressed, and optical characteristics tend to be improved. Moreover, when it is 200 nm or less, scattering of visible light by the particles is suppressed, and the cloudiness tends to be reduced. Here, the average primary particle diameter is, for example, an average particle obtained by observing and measuring the particle diameter of each particle with an electron microscope on the surface or cross section of the prepared coating film, and then averaging the particle diameter of at least 100 particles. The diameter.

上記導電性粒子の含有量は、上記導電性粒子と上記樹脂成分との合計重量に対して、65〜80重量%とすればよい。この範囲内であれば、導電性及び透過率が高い透明導電膜が形成できるからである。   The content of the conductive particles may be 65 to 80% by weight with respect to the total weight of the conductive particles and the resin component. This is because a transparent conductive film having high conductivity and high transmittance can be formed within this range.

<熱可塑性樹脂系分散剤>
本発明で用いる樹脂成分は、融点が25℃以上の熱可塑性樹脂系分散剤を含む。融点が25℃以上の熱可塑性樹脂系分散剤を含めることにより、透明導電膜の厚さを例えば、0.3μm以下に薄くしても、前述の導電性粒子及び他の樹脂成分の分散性が高まり、透明導電膜の硬度が大きくなり、透明導電膜の耐久性が向上する。
<Thermoplastic resin dispersant>
The resin component used in the present invention contains a thermoplastic resin dispersant having a melting point of 25 ° C. or higher. By including a thermoplastic resin dispersant having a melting point of 25 ° C. or higher, even if the thickness of the transparent conductive film is reduced to, for example, 0.3 μm or less, the dispersibility of the aforementioned conductive particles and other resin components can be reduced. This increases the hardness of the transparent conductive film and improves the durability of the transparent conductive film.

融点が25℃以上の熱可塑性樹脂系分散剤としては、アニオン系官能基を含む熱可塑性樹脂が挙げられ、例えば、カルボン酸含有アクリル系樹脂、酸含有ポリエステル系樹脂、酸及び塩基含有ポリエステル系樹脂が好ましい。具体的には、三菱レイヨン社製のアクリル樹脂であるダイヤナールシリーズの“MR−2539”、“MB−2389”、“MB−2660”、“MB−3015”、“BR−64”、“BR−77”、“BR−84”、“BR−87”、“BR−106”、“BR−113”(商品名)等、アビシア社製の“ソルスパーズ56000”(商品名)等が挙げられる。   Examples of the thermoplastic resin dispersant having a melting point of 25 ° C. or higher include thermoplastic resins containing an anionic functional group, such as carboxylic acid-containing acrylic resins, acid-containing polyester resins, and acid and base-containing polyester resins. Is preferred. Specifically, “MR-2539”, “MB-2389”, “MB-2660”, “MB-3015”, “BR-64”, “BR” of the dialnal series acrylic resin manufactured by Mitsubishi Rayon Co., Ltd. -77 "," BR-84 "," BR-87 "," BR-106 "," BR-113 "(trade name) and the like," Solspers 56000 "(trade name) manufactured by Abyssia, and the like.

また、上記融点が25℃以上の熱可塑性樹脂系分散剤の中でも、そのガラス転移温度が60℃以上のものが透明導電膜の耐久性の向上の点で更に好ましく、ガラス転移温度が60℃以上の熱可塑性樹脂系分散剤としては、例えば、三菱レイヨン社製のアクリル樹脂“MB−2389”、“MB−3015”、“BR−77”、“BR−84”、“BR−87”、“BR−113”等が該当する。   Among the thermoplastic resin dispersants having a melting point of 25 ° C. or higher, those having a glass transition temperature of 60 ° C. or higher are more preferable in terms of improving the durability of the transparent conductive film, and the glass transition temperature is 60 ° C. or higher. Examples of the thermoplastic resin-based dispersant include acrylic resins “MB-2389”, “MB-3015”, “BR-77”, “BR-84”, “BR-87”, “Made by Mitsubishi Rayon Co., Ltd.” This corresponds to BR-113 "and the like.

本発明において、熱可塑性樹脂系分散剤の融点及びガラス転移温度は、示差走査熱量測定(DSC)により測定することができる。   In the present invention, the melting point and glass transition temperature of the thermoplastic resin dispersant can be measured by differential scanning calorimetry (DSC).

上記熱可塑性樹脂系分散剤の含有量は、上記導電性粒子と上記樹脂成分との合計重量に対して、3〜10重量%とすればよい。この範囲内であれば、耐久性が高い透明導電膜が形成できるからである。   The content of the thermoplastic resin dispersant may be 3 to 10% by weight with respect to the total weight of the conductive particles and the resin component. It is because a transparent conductive film with high durability can be formed within this range.

<光重合性モノマー及び重合開始剤>
本発明で用いる樹脂成分は、光重合性モノマー及び重合開始剤を含む。光重合性モノマー及び重合開始剤は、前述の導電性粒子を透明導電膜中に分散固定するマトリックス樹脂を形成するための成分であり、そのためには、上記光重合性モノマーの含有量は、上記導電性粒子と上記樹脂成分との合計重量に対して、10〜32重量%とすればよく、上記重合開始剤の含有量は、上記導電性粒子と上記樹脂成分との合計重量に対して、0.3〜10重量%とすればよい。
<Photopolymerizable monomer and polymerization initiator>
The resin component used in the present invention contains a photopolymerizable monomer and a polymerization initiator. The photopolymerizable monomer and the polymerization initiator are components for forming a matrix resin for dispersing and fixing the conductive particles in the transparent conductive film. For this purpose, the content of the photopolymerizable monomer is as described above. What is necessary is just to set it as 10 to 32 weight% with respect to the total weight of electroconductive particle and the said resin component, and content of the said polymerization initiator is with respect to the total weight of the said electroconductive particle and the said resin component. What is necessary is just to set it as 0.3 to 10 weight%.

上記光重合性モノマーとしては、特には3官能以上の(メタ)アクリルモノマーを50〜90%含むことが好ましい。ここで、光重合性モノマーの含率は、光重合性モノマー及び重合開始剤の合計重量に対する光重合性モノマーの重量含率と定義する。反応点の多い(メタ)アクリルモノマーを重合・硬化させてマトリックス樹脂とすることで、透明導電膜の強度を更に高めることができる。3官能以上の光重合性モノマーの重量含率が50%未満になると、塗膜の硬度が弱くなり、耐久性が低下する。また、上記光重合性モノマーとともに重合開始剤を使用する必要があることから、光重合性モノマーの重量含率が90%を超えることは実質的に困難である。   In particular, the photopolymerizable monomer preferably contains 50 to 90% of a tri- or higher functional (meth) acrylic monomer. Here, the content of the photopolymerizable monomer is defined as the weight content of the photopolymerizable monomer with respect to the total weight of the photopolymerizable monomer and the polymerization initiator. By polymerizing and curing a (meth) acrylic monomer having a large number of reaction points to form a matrix resin, the strength of the transparent conductive film can be further increased. When the weight content of the trifunctional or higher functional photopolymerizable monomer is less than 50%, the hardness of the coating film becomes weak and the durability decreases. Further, since it is necessary to use a polymerization initiator together with the photopolymerizable monomer, it is substantially difficult for the weight content of the photopolymerizable monomer to exceed 90%.

3官能(メタ)アクリルモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート;4官能以上の(メタ)アクリルモノマーとしては、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等が挙げられる。また、光重合性モノマーとしては、一般に販売されている多官能アクリルオリゴマーであってもよく、特に硬化性が高く硬度が高いものが好ましく、例えば、共栄社化学社製の“AH−600”、“UA−306H”や、新中村化学社製の“NKオリゴU−6HA”、“NKオリゴU−15HA”等が挙げられる。   Trifunctional (meth) acrylic monomers include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate; Examples include pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate. Further, the photopolymerizable monomer may be a polyfunctional acrylic oligomer that is generally sold, and particularly preferably has high curability and high hardness. For example, “AH-600”, “Kyoeisha Chemical Co., Ltd.” UA-306H ”,“ NK Oligo U-6HA ”,“ NK Oligo U-15HA ”manufactured by Shin-Nakamura Chemical Co., Ltd. and the like.

また、上記光重合性モノマー中には単官能及び2官能の光重合性モノマーを含有していてもよく、例えば、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9ノナンジオールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート等の2官能重合性モノマー;ビニルピロリドン、ビニルホルムアミド等のビニルモノマー、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の脂環式(メタ)アクリレート、(メタ)ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等のヒドロキシ(メタ)アクリレート、アクリロイルモルフォリン、ジメチルアミノエチル(メタ)アクリレート等の窒素含有(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族系(メタ)アクリレート等の単官能重合性モノマーが挙げられる。   The photopolymerizable monomer may contain monofunctional and bifunctional photopolymerizable monomers, such as 1,4-butanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate. Bifunctional polymerizable monomers such as 1,6-hexanediol di (meth) acrylate, 1,9 nonanediol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate; Vinyl monomers such as vinyl pyrrolidone and vinyl formamide, alkyl (meth) acrylates such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and alicyclic (meth) such as isobornyl (meth) acrylate Acrylate, (meta Hydroxy (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, etc., nitrogen-containing (meth) acrylates such as acryloylmorpholine, dimethylaminoethyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl ( And monofunctional polymerizable monomers such as aromatic (meth) acrylates such as (meth) acrylate.

上記重合開始剤としては、例えば、ベンジル、ジアセチル等のα−ジケトン類、ベンゾイン等のアシロイン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル類、チオキサントン、2,4−ジエチルチオキサントン、2−クロロチオキサントン、チオキサントン−4−スルホン酸等のチオキサントン類、ベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン類、ミヒラーケトン類、アセトフェノン、2−(4−トルエンスルホニルオキシ)−2−フェニルアセトフェノン、p−ジメチルアミノアセトフェノン、α,α’−ジメトキシアセトキシベンゾフェノン、2,2’−ジメトキシ−2−フェニルアセトフェノン、p−メトキシアセトフェノン、2−メチル[4−(メチルチオ)フェニル]−2−モルフォリノ−1−プロパノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン等のアセトフェノン類、アントラキノン、1,4−ナフトキノン等のキノン類、フェナシルクロライド、トリハロメチルフェニルスルホン、トリス(トリハロメチル)−s−トリアジン等のハロゲン化合物、アシルホスフィンオキシド類、ジ−t−ブチルパーオキサイド等の過酸化物等が挙げられる。   Examples of the polymerization initiator include α-diketones such as benzyl and diacetyl, acyloins such as benzoin, acyloin ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether, thioxanthone, and 2,4-diethyl. Thioxanthones such as thioxanthone, 2-chlorothioxanthone, thioxanthone-4-sulfonic acid, benzophenones, benzophenones such as 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, Michler's ketones, Acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, α, α′-dimethoxyacetoxybenzophenone, 2,2′-dimethoxy- -Phenylacetophenone, p-methoxyacetophenone, 2-methyl [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane- Acetophenones such as 1-one, quinones such as anthraquinone and 1,4-naphthoquinone, phenacyl chloride, trihalomethylphenylsulfone, halogen compounds such as tris (trihalomethyl) -s-triazine, acylphosphine oxides, di- Examples thereof include peroxides such as t-butyl peroxide.

上記光重合性モノマー及び重合開始剤は、それぞれ1種類を単独で使用してよく、それぞれ2種類以上を併用してもよい。   One of the photopolymerizable monomer and the polymerization initiator may be used alone, or two or more of them may be used in combination.

<溶剤>
上記溶剤としては、樹脂成分を溶解し、かつ塗布後の乾燥工程によって除去できるものであればよく、例えば、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族化合物、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールアルキルエーテル類やグリコールアルキルエステル類等が上げられる。
<Solvent>
The solvent is not particularly limited as long as it dissolves the resin component and can be removed by a drying process after coating. Examples thereof include alcohols such as ethanol, propanol, and butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, and cyclohexanone. Ketones such as diethyl ether, tetrahydrofuran and dioxane, aromatic compounds such as benzene, toluene and xylene, glycols such as ethylene glycol, diethylene glycol and propylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc. Glycol alkyl ethers, glycol alkyl esters, and the like.

(実施形態2)
次に、本発明の透明導電膜について説明する。本発明の透明導電膜は、導電性粒子と、樹脂成分とを含み、上記樹脂成分は、融点が25℃以上の熱可塑性樹脂系分散剤と、光重合性樹脂とを含むことを特徴とする。
(Embodiment 2)
Next, the transparent conductive film of the present invention will be described. The transparent conductive film of the present invention contains conductive particles and a resin component, and the resin component contains a thermoplastic resin dispersant having a melting point of 25 ° C. or higher and a photopolymerizable resin. .

本発明の透明導電膜は、前述の実施形態1で説明した本発明の透明導電膜形成用組成物を用いて形成したものであり、電気特性、光学特性及び耐久性に優れている。   The transparent conductive film of the present invention is formed using the transparent conductive film forming composition of the present invention described in the first embodiment, and is excellent in electrical characteristics, optical characteristics, and durability.

続いて、本発明の透明導電膜について図面に基づき説明する。以下では、実施形態1で説明したものと重複する説明は省略する。図1は、本発明の透明導電膜を透明基材の上に形成した一例を示す概略断面図である。図1において、本発明の透明導電膜10は、透明基材11上に形成されている。   Then, the transparent conductive film of this invention is demonstrated based on drawing. Below, the description which overlaps with what was demonstrated in Embodiment 1 is abbreviate | omitted. FIG. 1 is a schematic sectional view showing an example in which the transparent conductive film of the present invention is formed on a transparent substrate. In FIG. 1, the transparent conductive film 10 of the present invention is formed on a transparent substrate 11.

<透明導電膜>
透明導電膜11は、導電性粒子と、樹脂成分とを含み、上記樹脂成分は、融点が25℃以上の熱可塑性樹脂系分散剤と、光重合性樹脂とを含む。ここで、光重合性樹脂とは、実施形態1で説明した光重合性モノマーが重合して硬化したもので、上記導電性粒子を透明導電膜10の中に分散固定するマトリックス樹脂として機能する。
<Transparent conductive film>
The transparent conductive film 11 includes conductive particles and a resin component, and the resin component includes a thermoplastic resin dispersant having a melting point of 25 ° C. or higher and a photopolymerizable resin. Here, the photopolymerizable resin is obtained by polymerizing and curing the photopolymerizable monomer described in Embodiment 1, and functions as a matrix resin that disperses and fixes the conductive particles in the transparent conductive film 10.

透明導電膜10の厚さ特に限定されないが、本発明の透明導電膜10は硬度が大きいため、その厚さを例えば0.3μm以下に薄くしても、耐久性を維持できる。   Although the thickness of the transparent conductive film 10 is not particularly limited, since the transparent conductive film 10 of the present invention has high hardness, durability can be maintained even if the thickness is reduced to, for example, 0.3 μm or less.

<透明基材>
透明基材11は、透光性を有する材料で形成されていれば特に限定されないが、本発明では液晶パネル上に直接薄膜を形成できることが一つの特徴であることから、ガラスであることが好ましい。ガラス以外の基材としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリオレフィン類、セルローストリアセテート等のセルロース系樹脂、ナイロン、アラミド等のアミド系樹脂、ポリフェニレンエーテル、ポリスルホンエーテル等のポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、芳香族ポリアミド系樹脂、シクロオレフィンポリマー類等の材料からなる、フィルム又はシートを用いることができる。また、セラミックス等を用いてもよい。透明基材11の厚さは、その強度維持のため通常3〜1000μmが好ましく、25〜200μmがより好ましい。
<Transparent substrate>
The transparent base material 11 is not particularly limited as long as it is formed of a light-transmitting material. However, in the present invention, it is one of the characteristics that a thin film can be formed directly on the liquid crystal panel, and thus glass is preferable. . Examples of the base material other than glass include, for example, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyolefin resins, cellulose resins such as cellulose triacetate, amide resins such as nylon and aramid, polyphenylene ether, polysulfone ether and the like. A film or sheet made of a material such as an ether resin, a polycarbonate resin, a polyamide resin, a polyimide resin, a polyamideimide resin, an aromatic polyamide resin, or a cycloolefin polymer can be used. Further, ceramics or the like may be used. The thickness of the transparent substrate 11 is usually preferably 3 to 1000 μm and more preferably 25 to 200 μm in order to maintain its strength.

特に、透明基材11にガラス基板を用いる場合には、透明導電膜10と接するガラス基板の表面をシランカップリング剤で処理することが好ましい。   In particular, when a glass substrate is used for the transparent substrate 11, it is preferable to treat the surface of the glass substrate in contact with the transparent conductive film 10 with a silane coupling agent.

上記シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、グリシドキシトリメチルシラン、グリシドキシトリエチルシラン、p−スチリルトリメエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシランが挙げられ、また(メタ)アクリロイル基を含むシランカップリング剤としては、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン等が挙げられる。   Examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, glycidoxytrimethylsilane, glycidoxytriethylsilane, p-styryltrimethylethoxysilane, and N-2 (aminoethyl) 3-aminopropyl. Triethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N3-triethoxysilyl-N- (1,3-dimethyl- Butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, and silane coupling agents containing a (meth) acryloyl group include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltri Tokishishiran, 3-methacryloxypropyl triethoxysilane, 3-acryloxy propyl trimethoxy silane and the like.

ガラス基板をシランカップリング剤で処理する方法としては、シランカップリング剤溶液を塗布する方法が好ましい。シランカップリング剤溶液を作製するための溶剤としては、上記シランカップリング剤を溶解させるものであればよく、例えば、水や、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族化合物、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールアルキルエーテル類やグリコールアルキルエステル類などが上げられる。   As a method of treating a glass substrate with a silane coupling agent, a method of applying a silane coupling agent solution is preferable. The solvent for preparing the silane coupling agent solution may be any solvent that dissolves the silane coupling agent. For example, water, alcohols such as ethanol, propanol, and butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone. , Ketones such as diethyl ketone and cyclohexanone, ethers such as diethyl ether, tetrahydrofuran and dioxane, aromatic compounds such as benzene, toluene and xylene, glycols such as ethylene glycol, diethylene glycol and propylene glycol, ethylene glycol monomethyl ether and propylene Examples include glycol alkyl ethers such as glycol monomethyl ether acetate and glycol alkyl esters.

上記シランカップリング剤溶液中のシランカップリング剤の濃度としては、0.01〜10重量%の範囲が好ましく、これより濃度が低いと処理の効果が低下し、これより濃度が高いとガラス基板の表面に付着するシランカップリング剤の量が多くなりすぎる。   The concentration of the silane coupling agent in the silane coupling agent solution is preferably in the range of 0.01 to 10% by weight. If the concentration is lower than this, the effect of the treatment is lowered, and if the concentration is higher, the glass substrate is used. The amount of silane coupling agent adhering to the surface of the film becomes too large.

ガラス基板にシランカップリング剤を塗布する方法は制限されるものではないが、ディップ法や、スピン、ダイ、グラビア、マイクログラビアによるコート法や、スクリーン印刷やインクジェット、スプレー塗布等の塗布方法が挙げられる。また、シランカップリング剤溶液をガラス基板に塗布した後、乾燥によって溶剤を除去したり、加熱によってシランカップリグ剤をの反応を進めてガラス基板に強固に固定させることが好ましい。   The method for applying the silane coupling agent to the glass substrate is not limited, but examples include dipping, spin, die, gravure, and micro gravure coating methods, and screen printing, ink jet, and spray coating methods. It is done. Moreover, after apply | coating a silane coupling agent solution to a glass substrate, it is preferable to remove a solvent by drying or to advance reaction of a silane coupling agent by heating, and to fix it firmly to a glass substrate.

次に、本発明の透明導電膜をガラス基板の上に形成する方法を説明する。先ず、前述のようにシランカップリング剤により表面を処理したガラス基板を準備する。次に、実施形態1で説明した本発明の透明導電膜形成用組成物に用いる導電性粒子と、樹脂成分とを、溶剤中に混合して分散させ、透明導電膜形成用塗布液を作製する。   Next, a method for forming the transparent conductive film of the present invention on a glass substrate will be described. First, a glass substrate whose surface is treated with a silane coupling agent as described above is prepared. Next, the conductive particles used in the composition for forming a transparent conductive film of the present invention described in Embodiment 1 and the resin component are mixed and dispersed in a solvent to prepare a coating liquid for forming a transparent conductive film. .

上記導電性粒子と上記樹脂成分とを溶剤中に分散させる方法は特に限定されないが、例えば、ボールミル、サンドミル、ピコミル、ペイントコンディショナー等のメディアを介在させた機械的処理を行ってもよいし、超音波分散機、ホモジナイザー、ディスパー、ジェットミル等を使用した分散処理を行ってもよい。   The method for dispersing the conductive particles and the resin component in the solvent is not particularly limited.For example, mechanical treatment may be performed with media such as a ball mill, a sand mill, a pico mill, and a paint conditioner. Dispersion processing using a sonic disperser, a homogenizer, a disper, a jet mill, or the like may be performed.

続いて、表明処理した側のガラス基板の上に、上記透明導電膜形成用塗布液を塗布して塗膜を形成する。上記塗布方法としては、平滑な塗膜を形成しうる塗布方法であれば制限されるものではなく、例えば、グラビアロール法、マイクログラビアロール法、マイクログラビアコータ法、スリットダイコート法、スプレイ法、スピン法、ナイフ法、キス法、スクイズ法、リバースロール法、ディップ法、バーコート法等が挙げられる。次に、上記塗膜を乾燥して溶剤を除去する。乾燥温度は、使用した溶剤に応じて適宜決定できる。   Then, the said coating film for transparent conductive film formation is apply | coated on the glass substrate of the side by which the assertion process was carried out, and a coating film is formed. The coating method is not limited as long as it can form a smooth coating film. For example, a gravure roll method, a micro gravure roll method, a micro gravure coater method, a slit die coating method, a spray method, a spin method Method, knife method, kiss method, squeeze method, reverse roll method, dipping method, bar coat method and the like. Next, the coating film is dried to remove the solvent. The drying temperature can be appropriately determined according to the solvent used.

最後に、上記塗膜に紫外線、電子線、β線等を照射して、塗膜を硬化させて透明導電膜を形成する。塗膜の硬化には、簡便に利用できることから、紫外線が多用される。紫外線の光源としては、高圧水銀灯、メタルハライドランプ、紫外線LEDランプ等が使用できる。   Finally, the coating film is irradiated with ultraviolet rays, electron beams, β rays and the like to cure the coating film to form a transparent conductive film. For curing the coating film, ultraviolet rays are frequently used because they can be easily used. As the ultraviolet light source, a high-pressure mercury lamp, a metal halide lamp, an ultraviolet LED lamp, or the like can be used.

以下、実施例により本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples.

(実施例1)
<ITO分散溶液の調製>
先ず、以下の成分(1)〜(5)を100mLのプラスチック製ビンに所定量計り取り、東洋精機社製のペイントシェーカーで30分間混合して分散処理した後、ジルコニアビーズを除去してITO分散溶液を調製した。
(1)ITO粒子 21.6g
(2)熱可塑性樹脂系分散剤(三菱レイヨン社製のアクリル樹脂“ダイヤナールBR−106”、ガラス転移温度:50℃、融点:50℃以上) 1.94g
(3)メチルエチルケトン 18.23g
(4)トルエン 18.23g
(5)ジルコニアビーズ(直径:0.3mm) 80.0g
Example 1
<Preparation of ITO dispersion solution>
First, a predetermined amount of the following components (1) to (5) are weighed out in a 100 mL plastic bottle, mixed and dispersed for 30 minutes with a paint shaker manufactured by Toyo Seiki Co., Ltd., then the zirconia beads are removed to disperse the ITO. A solution was prepared.
(1) ITO particles 21.6g
(2) Thermoplastic resin dispersant (acrylic resin “Dianar BR-106” manufactured by Mitsubishi Rayon Co., Ltd., glass transition temperature: 50 ° C., melting point: 50 ° C. or higher) 1.94 g
(3) 18.23 g of methyl ethyl ketone
(4) Toluene 18.23g
(5) Zirconia beads (diameter: 0.3 mm) 80.0 g

<透明導電膜形成用塗布液の調製>
次に、上記ITO分散溶液と、以下の成分(1)〜(6)とを、紫外線を遮蔽した50mLのガラスビンに所定量測り取り、混合・攪拌して透明導電膜形成用塗布液を調製した。
ガを更に添加して混合した後、フィルターを通してジルコニアビースを除去して分散溶液を得た。得られた分散溶液に含まれる固形分の全重量に対するITO粒子(導電性粒子)の重量含有率は83重量%である。
(1)ITO分散溶液 12.67g
(2)光重合性モノマー(共栄社化学製の“ライトアクリレートDPE−6A”) 0.922g
(3)重合開始剤(チバスペシャルティケミカルズ社製の“イルガキュア907”) 0.108g
(4)メチルエチルケトン 5.75g
(5)トルエン 5.75g
(6)シクロヘキサノン 4.80g
<Preparation of coating liquid for forming transparent conductive film>
Next, a predetermined amount of the above ITO dispersion solution and the following components (1) to (6) were measured in a 50 mL glass bottle shielded from ultraviolet rays, mixed and stirred to prepare a coating solution for forming a transparent conductive film. .
After further addition of moth and mixing, the zirconia beads were removed through a filter to obtain a dispersion solution. The weight content of ITO particles (conductive particles) with respect to the total weight of the solid content contained in the obtained dispersion solution is 83% by weight.
(1) ITO dispersion solution 12.67g
(2) Photopolymerizable monomer (“Light Acrylate DPE-6A” manufactured by Kyoeisha Chemical Co., Ltd.) 0.922 g
(3) Polymerization initiator (“Irgacure 907” manufactured by Ciba Specialty Chemicals) 0.108 g
(4) 5.75 g of methyl ethyl ketone
(5) Toluene 5.75g
(6) Cyclohexanone 4.80 g

<シランカップリング剤溶液の調製>
続いて、以下の成分(1)及び(2)を300mLのビーカーに所定量計り取り、混合・攪拌して0.5重量%のシランカップリグ剤溶液を調製した。
(1)シランカップリング剤(信越化学社製の“KBM−5103”) 1.0g
(2)エタノール 200g
<Preparation of silane coupling agent solution>
Subsequently, the following components (1) and (2) were weighed out in a 300 mL beaker, mixed and stirred to prepare a 0.5 wt% silane coupling agent solution.
(1) 1.0 g of silane coupling agent ("KBM-5103" manufactured by Shin-Etsu Chemical Co., Ltd.)
(2) Ethanol 200g

<透明導電膜の形成>
先ず、上記シランカップリング剤溶液に、サイズ76mm×52mm、厚さ1mmのガラス基板を浸漬させた後、100℃の乾燥機で10分間加熱して、ガラス基板表面の表面処理を行った。次に、このガラス基板の上に、上記透明導電膜形成用塗布液を、ミカサ社製のスピンコーター“1−HDX2”にて回転数900rpmで塗布した後、100℃の乾燥機で1分間乾燥し、紫外線照射機にて300mWで1000mJの紫外線を照射して、塗膜を硬化させてガラス基板上に厚さ0.3μmの透明導電膜を作製した。
<Formation of transparent conductive film>
First, after a glass substrate having a size of 76 mm × 52 mm and a thickness of 1 mm was immersed in the silane coupling agent solution, the glass substrate surface was subjected to a surface treatment by heating for 10 minutes with a dryer at 100 ° C. Next, the coating liquid for forming the transparent conductive film is applied onto the glass substrate with a spin coater “1-HDX2” manufactured by Mikasa Co., Ltd. at a rotation speed of 900 rpm, and then dried for 1 minute with a dryer at 100 ° C. The film was cured by irradiating with 1000 mJ ultraviolet rays at 300 mW with an ultraviolet irradiator to produce a transparent conductive film having a thickness of 0.3 μm on the glass substrate.

(実施例2)
スピンコーターの回転数を1200rpmに変更し、透明導電膜の厚さを0.2μmに変更した以外は、実施例1と同様にして透明導電膜を作製した。
(Example 2)
A transparent conductive film was produced in the same manner as in Example 1 except that the rotation speed of the spin coater was changed to 1200 rpm and the thickness of the transparent conductive film was changed to 0.2 μm.

(実施例3)
熱可塑性樹脂系分散剤を三菱レイヨン社製のアクリル樹脂“ダイヤナールBR−113”(ガラス転移温度:75℃、融点:75℃以上)1.94gに変更した以外は、実施例1と同様にして厚さ0.3μmの透明導電膜を作製した。
(Example 3)
Example 1 except that the thermoplastic resin dispersant was changed to 1.94 g of acrylic resin “Dianar BR-113” (glass transition temperature: 75 ° C., melting point: 75 ° C. or higher) manufactured by Mitsubishi Rayon Co., Ltd. Thus, a transparent conductive film having a thickness of 0.3 μm was produced.

(実施例4)
スピンコーターの回転数を1200rpmに変更し、透明導電膜の厚さを0.2μmに変更した以外は、実施例3と同様にして透明導電膜を作製した。
Example 4
A transparent conductive film was produced in the same manner as in Example 3 except that the rotation speed of the spin coater was changed to 1200 rpm and the thickness of the transparent conductive film was changed to 0.2 μm.

(実施例5)
熱可塑性樹脂系分散剤を三菱レイヨン社製のアクリル樹脂“ダイヤナールBR−87”(ガラス転移温度:105℃、融点:105℃以上)1.94gに変更した以外は、実施例1と同様にして厚さ0.3μmの透明導電膜を作製した。
(Example 5)
Example 1 except that the thermoplastic resin dispersant was changed to 1.94 g of acrylic resin “Dianar BR-87” (glass transition temperature: 105 ° C., melting point: 105 ° C. or higher) manufactured by Mitsubishi Rayon Co., Ltd. Thus, a transparent conductive film having a thickness of 0.3 μm was produced.

(実施例6)
スピンコーターの回転数を1200rpmに変更し、透明導電膜の厚さを0.2μmに変更した以外は、実施例5と同様にして透明導電膜を作製した。
(Example 6)
A transparent conductive film was produced in the same manner as in Example 5 except that the rotation speed of the spin coater was changed to 1200 rpm and the thickness of the transparent conductive film was changed to 0.2 μm.

(実施例7)
熱可塑性樹脂系分散剤をアビシア社製の“ソルスパーズ56000”(ガラス転移温度:44℃、融点:52℃)1.94gに変更し、分散処理時間を20分に変更した以外は、実施例1と同様にしてITO分散溶液を作製した。上記ITO分散溶液を用いて透明導電膜形成用塗布液を作製し、スピンコーターの回転数を800rpmに変更した以外は、実施例1と同様にして厚さ0.3μmの透明導電膜を作製した。
(Example 7)
Example 1 except that the thermoplastic resin dispersant was changed to 1.94 g of “Solspers 56000” (glass transition temperature: 44 ° C., melting point: 52 ° C.) manufactured by Avisia, and the dispersion treatment time was changed to 20 minutes. In the same manner, an ITO dispersion solution was prepared. A transparent electroconductive film having a thickness of 0.3 μm was produced in the same manner as in Example 1 except that a coating liquid for forming a transparent electroconductive film was produced using the ITO dispersion solution and the rotation speed of the spin coater was changed to 800 rpm. .

(比較例1)
熱可塑性樹脂系分散剤をビックケミー社製の“BYK111”(ガラス転移温度:25℃未満、融点:25℃未満)1.94gに変更した以外は、実施例7と同様にして厚さ0.3μmの透明導電膜を作製した。
(Comparative Example 1)
Thickness of 0.3 μm in the same manner as in Example 7 except that the thermoplastic resin dispersant was changed to 1.94 g of “BYK111” (glass transition temperature: less than 25 ° C., melting point: less than 25 ° C.) manufactured by Big Chemie. A transparent conductive film was prepared.

(比較例2)
スピンコーターの回転数を1050rpmに変更し、透明導電膜の厚さを0.2μmに変更した以外は、比較例1と同様にして透明導電膜を作製した。
(Comparative Example 2)
A transparent conductive film was produced in the same manner as in Comparative Example 1 except that the rotation speed of the spin coater was changed to 1050 rpm and the thickness of the transparent conductive film was changed to 0.2 μm.

(比較例3)
熱可塑性樹脂系分散剤をビックケミー社製の“BYK111”(ガラス転移温度:25℃未満、融点:25℃未満)1.94gに変更した以外は、実施例1と同様にしてITO分散溶液を作製した。上記ITO分散溶液を用いて透明導電膜形成用塗布液を作製し、スピンコーターの回転数を250rpmに変更し、透明導電膜の厚さを0.9μmに変更した以外は、実施例1と同様にして透明導電膜を作製した。
(Comparative Example 3)
An ITO dispersion solution was prepared in the same manner as in Example 1 except that the thermoplastic resin dispersant was changed to 1.94 g of “BYK111” (glass transition temperature: less than 25 ° C., melting point: less than 25 ° C.) manufactured by Big Chemie. did. A coating solution for forming a transparent conductive film was prepared using the above ITO dispersion solution, and the same procedure as in Example 1 was performed except that the rotation speed of the spin coater was changed to 250 rpm and the thickness of the transparent conductive film was changed to 0.9 μm. A transparent conductive film was prepared.

実施例1〜8及び比較例1〜3の透明導電膜について、下記のとおり、透過率、ヘイズ、表面抵抗及び鉛筆硬度を測定した。その結果を表1に示す。また、表1では各透明導電膜の作製に用いた熱可塑性樹脂系分散剤の物性も示した。   About the transparent conductive film of Examples 1-8 and Comparative Examples 1-3, the transmittance | permeability, haze, surface resistance, and pencil hardness were measured as follows. The results are shown in Table 1. Table 1 also shows the physical properties of the thermoplastic resin dispersant used for the production of each transparent conductive film.

(透過率及びヘイズ)
透明導電膜の透過率及びヘイズを日本分光社製の分光光度計“V-570”を用いて測定した。透過率は、ガラス基板の透過率を換算して透明導電膜のみの透過率を測定し、波長450〜650nm領域の透過率を平均した値を透過率とした。具体的には、積分球“ILN−472”を組み合わせ、ヘイズ値計算モードで、レスポンスがFast、バンド幅が2.0nm、近赤外が8.0nm、走査速度が400nm/分の条件で波長範囲450〜650nmの透過率スペクトルを測定した。また、ヘイズの計算は、C光源、視野2度の条件で行った。
(Transmittance and haze)
The transmittance and haze of the transparent conductive film were measured using a spectrophotometer “V-570” manufactured by JASCO Corporation. For the transmittance, the transmittance of the transparent conductive film alone was measured by converting the transmittance of the glass substrate, and a value obtained by averaging the transmittance in the wavelength region of 450 to 650 nm was defined as the transmittance. Specifically, integrating the integrating sphere “ILN-472”, in the haze value calculation mode, the response is Fast, the bandwidth is 2.0 nm, the near infrared is 8.0 nm, and the scanning speed is 400 nm / min. A transmittance spectrum in the range of 450 to 650 nm was measured. Moreover, the calculation of haze was performed under the conditions of a C light source and a visual field of 2 degrees.

(表面抵抗)
透明導電膜の表面抵抗をダイアインスツルメンツ社製の抵抗計“ハイレスタHT−210”を用いて測定した。
(Surface resistance)
The surface resistance of the transparent conductive film was measured using a resistance meter “Hiresta HT-210” manufactured by Dia Instruments.

(鉛筆硬度)
透明導電膜の鉛筆硬度を新東科学社製の表面試験機“HEIDON−14FW”を用いて測定した。
(Pencil hardness)
The pencil hardness of the transparent conductive film was measured using a surface tester “HEIDON-14FW” manufactured by Shinto Kagaku.

(融点及びガラス転移温度)
“ダイヤナールBR−106”、“ダイヤナールBR−113”及び“ダイヤナールBR−87”のガラス転移温度(Tg)は、カタログ値を採用し、それらの融点はそれらのTg以上とした。“BYK11”は、常温(25℃)において液体であったため、Tg及び融点を25℃未満と判断した。“ソルスパーズ56000”については、RIGAKU社製の熱分析装置“DSC8230”を用いて−100℃から150℃までDSC測定を行ったところ、2つの重なったピークが観測され、1つ目のピークからTgを計算したところ、44℃であり、2つ目のピークから融点を読み取ったところ、52℃であった。
(Melting point and glass transition temperature)
Catalog values were adopted for the glass transition temperatures (Tg) of “Dianar BR-106”, “Dianar BR-113”, and “Dianar BR-87”, and their melting points were equal to or higher than their Tg. Since “BYK11” was liquid at room temperature (25 ° C.), the Tg and melting point were determined to be less than 25 ° C. Regarding “Solspers 56000”, when DSC measurement was performed from −100 ° C. to 150 ° C. using a thermal analyzer “DSC8230” manufactured by RIGAKU, two overlapping peaks were observed, and Tg from the first peak was observed. Was 44 ° C., and the melting point was read from the second peak to be 52 ° C.

Figure 2013152792
Figure 2013152792

表1において、比較例1及び2の鉛筆硬度は、2Bの鉛筆で傷がついたため、それより軟質の鉛筆での硬度試験は行わなかった。   In Table 1, since the pencil hardness of Comparative Examples 1 and 2 was scratched with the 2B pencil, the hardness test with a softer pencil was not performed.

表1から、融点が25℃以上の熱可塑性樹脂系分散剤を用いた本発明の実施例1〜7の透明導電膜は、電気特性(表面抵抗)、光学特性(透過率、ヘイズ)及び耐久性(鉛筆硬度)において高い評価を得たことが分かる。特に、Tgが60℃以上の熱可塑性樹脂系分散剤を用いた本発明の実施例3〜6の透明導電膜は、3H以上の鉛筆硬度を達成しており、透明導電膜の耐久性に優れていることが分かる。   From Table 1, the transparent conductive films of Examples 1 to 7 of the present invention using a thermoplastic resin dispersant having a melting point of 25 ° C. or higher have electrical characteristics (surface resistance), optical characteristics (transmittance, haze), and durability. It turns out that high evaluation was acquired in the property (pencil hardness). In particular, the transparent conductive films of Examples 3 to 6 of the present invention using a thermoplastic resin-based dispersant having a Tg of 60 ° C. or higher have achieved a pencil hardness of 3H or higher and are excellent in durability of the transparent conductive film. I understand that

一方、融点及びTgが25℃未満の熱可塑性樹脂系分散剤を用いた比較例1〜3においては、比較例1及び2では鉛筆硬度が低下し、比較例3では透過率が低下したことが分かる。   On the other hand, in Comparative Examples 1 to 3 using a thermoplastic resin dispersant having a melting point and Tg of less than 25 ° C., the pencil hardness decreased in Comparative Examples 1 and 2, and the transmittance decreased in Comparative Example 3. I understand.

本発明は、電気特性、光学特性及び耐久性に優れた透明導電膜を提供でき、ディスプレイの帯電防止フィルム、タッチパネル電極等への応用が期待できる。   The present invention can provide a transparent conductive film excellent in electrical characteristics, optical characteristics, and durability, and can be expected to be applied to an antistatic film for a display, a touch panel electrode, and the like.

10 透明導電膜
11 透明基材
10 transparent conductive film 11 transparent substrate

Claims (9)

導電性粒子と、樹脂成分と、溶剤とを含む透明導電膜形成用組成物であって、
前記樹脂成分は、融点が25℃以上の熱可塑性樹脂系分散剤と、光重合性モノマーと、重合開始剤とを含むことを特徴とする透明導電膜形成用組成物。
A composition for forming a transparent conductive film, comprising conductive particles, a resin component, and a solvent,
The composition for forming a transparent conductive film, wherein the resin component contains a thermoplastic resin dispersant having a melting point of 25 ° C. or higher, a photopolymerizable monomer, and a polymerization initiator.
前記熱可塑性樹脂系分散剤のガラス転移温度が、60℃以上である請求項1に記載の透明導電膜形成用組成物。   The composition for forming a transparent conductive film according to claim 1, wherein the thermoplastic resin-based dispersant has a glass transition temperature of 60 ° C. or higher. 前記導電性粒子と前記樹脂成分との合計重量に対して、前記導電性粒子の含有量が、65〜80重量%であり、前記熱可塑性樹脂系分散剤の含有量が、3〜10重量%であり、前記光重合性モノマーの含有量が、10〜32重量%である請求項1又は2に記載の透明導電膜形成用組成物。   The content of the conductive particles is 65 to 80% by weight, and the content of the thermoplastic resin dispersant is 3 to 10% by weight with respect to the total weight of the conductive particles and the resin component. The composition for forming a transparent conductive film according to claim 1, wherein the content of the photopolymerizable monomer is 10 to 32% by weight. 前記導電性粒子は、酸化ズズ粒子、アンチモン含有酸化スズ粒子及びスズ含有酸化インジウム粒子からなる群から選ばれる少なくとも1種である請求項1〜3のいずれか1項に記載の透明導電膜形成用組成物。   4. The transparent conductive film forming device according to claim 1, wherein the conductive particles are at least one selected from the group consisting of oxide particles, antimony-containing tin oxide particles, and tin-containing indium oxide particles. 5. Composition. 導電性粒子と、樹脂成分とを含む透明導電膜であって、
前記樹脂成分は、融点が25℃以上の熱可塑性樹脂系分散剤と、光重合性樹脂とを含むことを特徴とする透明導電膜。
A transparent conductive film containing conductive particles and a resin component,
The resin component includes a thermoplastic resin dispersant having a melting point of 25 ° C. or higher and a photopolymerizable resin.
前記熱可塑性樹脂系分散剤のガラス転移温度が、60℃以上である請求項5に記載の透明導電膜。   The transparent conductive film according to claim 5, wherein the thermoplastic resin dispersant has a glass transition temperature of 60 ° C. or higher. 前記導電性粒子と前記樹脂成分との合計重量に対して、前記導電性粒子の含有量が、65〜80重量%であり、前記熱可塑性樹脂系分散剤の含有量が、3〜10重量%であり、前記光重合性樹脂の含有量が、10〜32重量%である請求項5又は6に記載の透明導電膜。   The content of the conductive particles is 65 to 80% by weight, and the content of the thermoplastic resin dispersant is 3 to 10% by weight with respect to the total weight of the conductive particles and the resin component. The transparent conductive film according to claim 5 or 6, wherein the content of the photopolymerizable resin is 10 to 32% by weight. 前記導電性粒子は、酸化ズズ粒子、アンチモン含有酸化スズ粒子及びスズ含有酸化インジウム粒子からなる群から選ばれる少なくとも1種である請求項5〜7のいずれか1項に記載の透明導電膜。   The transparent conductive film according to any one of claims 5 to 7, wherein the conductive particles are at least one selected from the group consisting of oxide particles, antimony-containing tin oxide particles, and tin-containing indium oxide particles. 厚さが、0.3μm以下である請求項5〜8のいずれか1項に記載の透明導電膜。   Thickness is 0.3 micrometer or less, The transparent conductive film of any one of Claims 5-8.
JP2012011870A 2012-01-24 2012-01-24 Composition for forming transparent conductive film and transparent conductive film Active JP5908287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011870A JP5908287B2 (en) 2012-01-24 2012-01-24 Composition for forming transparent conductive film and transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011870A JP5908287B2 (en) 2012-01-24 2012-01-24 Composition for forming transparent conductive film and transparent conductive film

Publications (2)

Publication Number Publication Date
JP2013152792A true JP2013152792A (en) 2013-08-08
JP5908287B2 JP5908287B2 (en) 2016-04-26

Family

ID=49049011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011870A Active JP5908287B2 (en) 2012-01-24 2012-01-24 Composition for forming transparent conductive film and transparent conductive film

Country Status (1)

Country Link
JP (1) JP5908287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187979A (en) * 2014-03-13 2015-10-29 ナガセケムテックス株式会社 Method for repairing and regenerating transparent conductive film, and transparent conductive laminate
WO2023106194A1 (en) * 2021-12-06 2023-06-15 三井金属鉱業株式会社 Composite metal acid compound dispersion solution, composite metal acid compound powder, composite metal acid compound film, and methods respectively for producing those products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218917A (en) * 1997-02-03 1998-08-18 Toyo Ink Mfg Co Ltd Ultraviolet-curing resin composition and heat-ray-shielding film made therefrom
JP3560532B2 (en) * 2000-05-02 2004-09-02 株式会社巴川製紙所 Antistatic film for display
JP2010199016A (en) * 2009-02-27 2010-09-09 Hitachi Maxell Ltd Transparent conductive sheet and method of manufacturing the same
JP2010218957A (en) * 2009-03-18 2010-09-30 Hitachi Maxell Ltd Transparent conductive film and its manufacturing method
JP2011065966A (en) * 2009-09-18 2011-03-31 Dainippon Toryo Co Ltd Conductive fine particle dispersion liquid, conductive fine particle-containing photocurable composition and conductive fine particle-containing cured film
JP2011192401A (en) * 2010-03-11 2011-09-29 Hitachi Maxell Ltd Transparent conductive paste composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218917A (en) * 1997-02-03 1998-08-18 Toyo Ink Mfg Co Ltd Ultraviolet-curing resin composition and heat-ray-shielding film made therefrom
JP3560532B2 (en) * 2000-05-02 2004-09-02 株式会社巴川製紙所 Antistatic film for display
JP2010199016A (en) * 2009-02-27 2010-09-09 Hitachi Maxell Ltd Transparent conductive sheet and method of manufacturing the same
JP2010218957A (en) * 2009-03-18 2010-09-30 Hitachi Maxell Ltd Transparent conductive film and its manufacturing method
JP2011065966A (en) * 2009-09-18 2011-03-31 Dainippon Toryo Co Ltd Conductive fine particle dispersion liquid, conductive fine particle-containing photocurable composition and conductive fine particle-containing cured film
JP2011192401A (en) * 2010-03-11 2011-09-29 Hitachi Maxell Ltd Transparent conductive paste composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187979A (en) * 2014-03-13 2015-10-29 ナガセケムテックス株式会社 Method for repairing and regenerating transparent conductive film, and transparent conductive laminate
WO2023106194A1 (en) * 2021-12-06 2023-06-15 三井金属鉱業株式会社 Composite metal acid compound dispersion solution, composite metal acid compound powder, composite metal acid compound film, and methods respectively for producing those products
JP7490895B2 (en) 2021-12-06 2024-05-27 三井金属鉱業株式会社 Composite metal acid compound dispersing solution, composite metal acid compound powder, composite metal acid compound film, and methods for producing the same

Also Published As

Publication number Publication date
JP5908287B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP6607510B2 (en) Photocurable coating composition, low refractive layer and antireflection film
KR101816981B1 (en) Hard coat film and hard coat film roll
JP4187454B2 (en) Antireflection film
TWI630409B (en) Antireflection film and display device
JP6921005B2 (en) Anti-reflective film and display device
JP2020079958A (en) Antireflection film and display device
JP6732015B2 (en) Anti-reflection film
JP6206182B2 (en) LAMINATE, CONDUCTIVE LAMINATE, TOUCH PANEL, AND COATING COMPOSITION AND METHOD FOR PRODUCING LAMINATE USING THE COATING COMPOSITION
JP6505370B2 (en) Laminate and composition for forming index matching layer
WO2016129419A1 (en) Wavelength conversion member, backlight unit, image display device, and method for producing wavelength conversion member
CN110119004B (en) Anti-dazzle film and polarizing plate with same
JP2010151850A (en) Wire grid polarizing plate and manufacturing method thereof
TWI294040B (en) Film for optical applications
TW202004223A (en) Anti-reflective film, polarizing plate, and display apparatus
JP2010199016A (en) Transparent conductive sheet and method of manufacturing the same
JP5908287B2 (en) Composition for forming transparent conductive film and transparent conductive film
JP4627355B2 (en) High refractive index coating composition, high refractive index coating film, image display device, and antireflection film
JP7134549B2 (en) Anti-glare film and display device
JP2010211234A (en) Method for manufacturing wire grid polarizer
JP2014198405A (en) Conductive optical member
JP5405861B2 (en) Transparent conductive film and method for producing the same
JP2005290230A (en) Antireflection film with antistatic layer and coating composition for forming antistatic layer
JP5789163B2 (en) Transparent conductive sheet
JP2011098445A (en) Optical laminate and method for manufacturing the same, and polarizing plate and display device using the same
JP6498905B2 (en) Composition for forming transparent conductive film and transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160323

R150 Certificate of patent or registration of utility model

Ref document number: 5908287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250