JP2013145833A - Led発光素子用反射基板およびledパッケージ - Google Patents

Led発光素子用反射基板およびledパッケージ Download PDF

Info

Publication number
JP2013145833A
JP2013145833A JP2012006174A JP2012006174A JP2013145833A JP 2013145833 A JP2013145833 A JP 2013145833A JP 2012006174 A JP2012006174 A JP 2012006174A JP 2012006174 A JP2012006174 A JP 2012006174A JP 2013145833 A JP2013145833 A JP 2013145833A
Authority
JP
Japan
Prior art keywords
substrate
emitting element
led light
light emitting
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012006174A
Other languages
English (en)
Inventor
Yoshinori Hotta
吉則 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012006174A priority Critical patent/JP2013145833A/ja
Priority to PCT/JP2012/083264 priority patent/WO2013108547A1/ja
Publication of JP2013145833A publication Critical patent/JP2013145833A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】高い発光効率を維持し、配線形成性に優れたLED発光素子用反射基板およびLEDパッケージの提供。
【解決手段】LED発光素子を実装する表面を有するLED発光素子用反射基板であって、
前記表面のうち、少なくとも前記LED発光素子が実装される部分以外の表面が、算術平均粗さRaが0.01〜0.20μmであり、かつ、凹凸の平均間隔Psmが10〜20μmであるLED発光素子用反射基板。
【選択図】なし

Description

本発明は、発光ダイオード(以下、「LED」という。)パッケージに用いられるLED発光素子用反射基板に関するものである。
一般的に、LEDは、蛍光灯と比較して、電力使用量が1/100、寿命が40倍(40000時間)と言われている。このような省電力かつ長寿命という特徴が、環境重視の流れの中でLEDが採用される重要な要素となっている。
特に白色LEDは、演色性に優れ、蛍光灯に比べて電源回路が簡便であるというメリットもあることから、照明用光源としての期待が高まっている。
近年、照明用光源として要求される発光効率の高い白色LED(30〜150Lm/W)も続々と登場し、実用時における光の利用効率の点では、蛍光灯(20〜110Lm/W)を逆転している。
これにより、蛍光灯に代わり白色LEDの実用化の流れが一気に高まり、液晶表示装置のバックライトや照明用光源として白色LEDが採用されるケースも増えつつある。
このような白色LEDに使用できる基板として、本出願人は、特許文献1において、「少なくとも、絶縁層と、該絶縁層と接して設けられる金属層とを有する光反射基板において、320nm超〜700nm波長光の全反射率が50%以上であって、且つ、300nm〜320nm波長光の全反射率が60%以上であることを特徴とする、光反射基板。」を提案しており([請求項1][請求項12])、光反射基板の表面が平均波長0.01〜100μmの凹凸である態様も提案している([請求項2])。
また、本出願人は、特許文献2において、「アルミニウム基板と、前記アルミニウム基板の表面に設けられる絶縁層とを有する絶縁基板であって、前記絶縁層がアルミニウムの陽極酸化皮膜であり、前記絶縁層を構成する元素のうち、アルミニウムおよび酸素以外の元素の含有率が20原子%以下であり、前記アルミニウム基板の表面が、平均波長5〜100μmの大波構造および/または平均開口径0.7〜5μmの中波構造の形状を有する絶縁基板。」を提案している([請求項1][請求項3])。
更に、本出願人は、特許文献3において、「金属基板と、前記金属基板の表面に設けられる絶縁層とを有する絶縁基板であって、前記金属基板がバルブ金属基板であり、前記絶縁層がバルブ金属の陽極酸化皮膜であり、前記陽極酸化皮膜の空隙率が30%以下である絶縁基板。」を提案しており([請求項1])、陽極酸化皮膜の表面が、平均ピッチが0.5μm以下で、かつ、平均直径が1μm以上の凹凸を有する態様も提案している([請求項2])。
国際公開第2010/150810号(特開2011−205051号公報) 特開2011−132590号公報 特開2011−199233号公報
本発明者は、特許文献1および2に記載された基板について検討を行った結果、反射率が高く、発光効率が良好であるものの、基板の表面形状によっては、LED発光素子とともに設けられる金属配線の形成性(特に、直線性および密着性)が劣る場合があることが分かった。
そこで、本発明は、高い発光効率を維持し、配線形成性に優れたLED発光素子用反射基板およびLEDパッケージを提供することを目的とする。
本発明者は、上記目的を達成すべく鋭意検討した結果、算術平均粗さRaおよび凹凸の平均間隔Psmが特定の範囲内となる表面を有する反射基板を用いることにより、高い発光効率を維持し、かつ、配線形成性にも優れることを見出し、本発明を完成させた。
すなわち、本発明は、以下の(1)〜(4)を提供する。
(1)LED発光素子を実装する表面を有するLED発光素子用反射基板であって、
上記表面のうち、少なくとも上記LED発光素子が実装される部分以外の表面が、算術平均粗さRaが0.01〜0.20μmであり、かつ、凹凸の平均間隔Psmが10〜20μmであるLED発光素子用反射基板。
(2)上記表面が、金属基板上に設けられる反射層の表面であり、
上記反射層が、平均粒子径が0.1〜5μmの無機粒子を用いて形成される上記(1)に記載のLED発光素子用反射基板。
(3)上記反射層が、さらに、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種の無機系結着剤を用いて形成される上記(2)に記載のLED発光素子用反射基板。
(4)上記(1)〜(3)のいずれかに記載のLED発光素子用反射基板と、上記表面に実装されたLED発光素子とを有するLEDパッケージ。
以下に説明するように、本発明によれば、高い発光効率を維持し、配線形成性に優れたLED発光素子用反射基板およびLEDパッケージを提供することができる。
図1は、本発明のLED発光素子用反射基板の好適な実施態様の例を示した模式的な断面図である。 図2は、本発明のLED発光素子用反射基板の他の好適な実施態様の例を示した模式的な断面図である。 図3は、本発明のLEDパッケージの好適な実施態様の一例を示す模式的な断面図である。
[LED発光素子用反射基板]
本発明のLED発光素子用反射基板(以下、単に「本発明の反射基板」という。)は、LED発光素子を実装する表面を有するLED発光素子用反射基板であって、上記表面のうち、少なくとも上記LED発光素子が実装される部分以外の表面が、算術平均粗さRa(以下、単に「Ra」ともいう。)が0.01〜0.20μmであり、かつ、凹凸の平均間隔Psm(以下、単に「Psm」ともいう。)が10〜20μmである反射基板である。
ここで、「LED発光素子を実装する表面」とは、LED発光素子が実装される部分の表面(以下、「表面(実装領域)」ともいう。)およびLED発光素子が実装される部分以外の表面(以下、「表面(非実装領域)」ともいう。)を含む表面である。
また、「Ra」および「Psm」は、それぞれ、JIS B0601:2001に記載された表面性状パラメータのことをいい、本発明においては、いずれも触針式の表面粗さ計(例えば、SURFCOM480A、ACCRETECH(東京精密)社製)を用いて測定することができる。
〔表面形状〕
本発明においては、上記表面(非実装領域)のRaは0.01〜0.20μmであり、0.10〜0.15μmであるのが好ましい。
上記表面(非実装領域)のRaがこの範囲であると、配線形成性(特に直線性)が良好となる。これは、配線層の材料(例えば、銀ナノ粒子インクなど)が滲むのが抑制されたためと考えられる。
また、本発明においては、上記表面(非実装領域)のPsmは10〜20μmであり、10〜15μmであるのが好ましい。
上記表面(非実装領域)のPsmがこの範囲であると、配線形成性(特に密着性)が良好となり、反射率が高くなり、高い発光効率を維持することができる。これは、Psmで表現される断面曲線要素の平均長さが配線サイズと合致することでアンカーとして機能するためと考えられる。
なお、反射率がより高くなり、より高い発光効率を維持することができる理由から、上記表面(実装領域)やLED発光素子を囲繞するように接合された枠体(例えば、特開2004−207678号公報の符号2参照。)の表面(以下、「枠体表面」ともいう。)のRaおよびPsmについても、上述した各数値範囲であるのが好ましい。
〔第1態様〕
本発明においては、図1に示すように、本発明の反射基板1における表面(非実装領域)および表面(実装領域)は、金属基板2上に設けられる反射層3の表面で構成されていてもよい。
なお、図1中、符号4は後述する無機粒子を示し、符号5は後述する無機系結着剤を示す。
<金属基板>
上記金属基板の素材である金属は特に限定されず、その具体例としては、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。
上記金属基板は、加工性および強度にも優れる理由から、以下に詳述するアルミニウム基板であるのが好ましい。
(アルミニウム基板)
上記アルミニウム基板は、公知のアルミニウム基板を用いることができ、純アルミニウム基板のほか、アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等を用いることもできる。
ここで、上記合金板に含まれてもよい異元素としては、ケイ素、鉄、銅、マンガン、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等が挙げられ、合金中の異元素の含有量は、10質量%以下であるのが好ましい。
このようなアルミニウム基板は、組成や調製方法(例えば、鋳造方法等)等については特に限定されず、特許文献1(国際公開第2010/150810号)の[0031]〜[0051]段落に記載された組成、調製方法等を適宜採用することができる。
本発明においては、上記アルミニウム基板の厚みは、0.1〜2.0mm程度であり、0.15〜1.5mmであるのが好ましく、0.2〜1.0mmであるのがより好ましい。この厚さは、ユーザーの希望等により適宜変更することができる。
<反射層>
上記反射層は、上記表面(非実装領域)のPsmを上述した数値範囲にする観点から、平均粒子径が0.1〜5μm、好ましくは0.5〜2μmの無機粒子を用いて形成されるものである。
ここで、平均粒子径とは、上記無機粒子の粒子径の平均値をいい、本発明においては、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。
(無機粒子)
上記無機粒子の種類は特に限定されず、例えば、従来公知の金属酸化物、金属水酸化物、炭酸塩、硫酸化物などを用いることができ、中でも、金属酸化物を用いるのが好ましい。
上記無機粒子としては、具体的には、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化イットリウム、酸化チタン、酸化亜鉛、二酸化ケイ素、酸化ジルコニウムなどの金属酸化物;水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウムなどの水酸化物;炭酸カルシウム(軽質炭酸カルシウム、重質炭酸カルシウム、極微細炭酸カルシウムなど)、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウムなどの炭酸塩; 硫酸カルシウム、硫酸バリウムなどの硫酸化物;また、その他に、カルシウムカーボネート、方解石、大理石、石膏、カオリンクレー、焼成クレー、タルク、セリサイト、光学ガラス、ガラスビーズなどが挙げられる。
この中でも、後述する無機系結着剤との親和性が良好となる理由から、酸化アルミニウム、二酸化ケイ素、水酸化アルミニウムが好ましい。
本発明においては、上記無機粒子は、2種類以上の粒子や、2種類以上の平均粒子径を有する粒子を併用してもよい。
種類や平均粒子径の異なる粒子を併用することにより、上記反射層の強度の向上や、上記反射層と上記金属基板との密着強度の向上を図ることができる。
また、本発明においては、上記無機粒子の形状は特に限定はされず、例えば、球状、多面体状(例えば、20面体状、12面体状等)、立方体状、4面体状、星型形状、板状、針状等いずれであってもよい。
これらのうち、断熱性に優れる理由から、球状、多面体状、立方体状、4面体状、コンペイトウ形状が好ましく、入手が容易で断熱性により優れる理由から、球状であるのがより好ましい。
更に、本発明においては、反射率がより高くなり、より高い発光効率を維持することができる理由から、屈折率が1.5〜1.8の無機粒子を用いることが好ましい。
上記屈折率を満たす無機粒子としては、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、硫酸カルシウム、硫酸バリウム、大理石、石膏、カオリンクレー、タルク、セリサイト、光学ガラス、ガラスビーズなどが挙げられる。
(無機系結着剤)
上記反射層は、上記反射層の強度が向上し、また、上記反射層と上記金属基板との密着強度も向上する理由から、さらに、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種の無機系結着剤を用いて形成されるのが好ましい。
上記反射層には、上述した無機粒子および無機系結着剤以外に、他の化合物を含有してもよい。
他の化合物としては、例えば、分散剤(水、有機溶媒)、光重合可能なモノマー、光重合開始剤、架橋剤、架橋促進剤、界面活性剤等が挙げられる。
(形成方法)
本発明においては、上記反射層の形成方法は特に限定されず、例えば、上記金属基板上に、上記無機粒子と上記無機系結着剤とを含有する塗布液(組成物)をスクリーン印刷等により塗布し、乾燥させる方法等により形成することができる。
また、本発明においては、上記表面(非実装領域)のRaを上述した数値範囲にする観点から、必要に応じて、上記反射層の表面を研磨することができる。
ここで、上記研磨の方法は特に限定されず、例えば、上記反射層を設けた金属基板をプレートに固定し、固定した面の反対側の面(反射層)を研摩する方法が挙げられる。
表面の研磨量の合計は、100μm以内が好ましく、60μm以下がより好ましく、5〜60μmが更に好ましい。この範囲であると両面の研摩量のバランスが良く、材料の反り、反りによる破損が少ない。
また、研磨に用いる具体的な手段としては、例えば、ラッピング、ポリッシング、ケミカルメカニカルポリッシング(CMP)、バフ研磨、ショットブラスト、ブラシグレイン等が挙げられる。
これらの手段のうち、乾式または湿式の機械研摩が好ましく、ラッピングであるのがより好ましい。なお、必要に応じて、ポリッシングを行って表面仕上げするのが好ましい。
ここで、ラッピングは、例えば、ラッピングマシンを用い、研磨材である砥粒を供給し、これを水で流しながら、研磨する方法が挙げられる。
また、研磨材のサイズは、研磨量の1/2以下が好ましく、研磨量の1/4以下がより好ましい。
更に、研磨材は、研磨精度と速度の点から粒径10μm以下のダイヤモンド砥粒が好ましく、仕上げ研磨に用いる研磨材は、粒径1μm以下のダイヤモンド、アルミナ、SiC、SiO2等が好ましい。
研磨された表面の精度は、厚さ精度±3μm以内、Ra0.15μm以下、反り量20μm/mm以内が好ましい。
厚さ精度は±1μm以内がより好ましく、Raは0.10μm以下がより好ましく、反り量は10μm/mm以内がより好ましい。
表面をより平滑に仕上げるためには、CMPによる研磨を行うことが好ましい。研磨プレ−トはエッジの割れや欠けを防止するために、樹脂と金属の複合材料であることが好ましい。樹脂の中に金属粒子を混合させたプレ−トがより好ましい。充填される金属粒子は、Cu、Au、Niが好ましい。
以下に、研磨方法の詳細を示す。
1)片面を、表面精度5μm以内のセラミック等の台にWAX、UV接着剤等を用い貼り付け固定する。貼り付けの精度は8μm以内、4μm以内がより好ましい。
2)貼り付け面と反対の面を研磨する。研磨砥粒はダイヤモンドスラリー5〜10μmが望ましい。研磨装置は、ケメットジャパン社製精密ラッピング装置が材料の割れや欠けが無く、精度良く研磨でき望ましい。研磨加重は、10〜500g/cm2が望ましく。研磨板回転速度は10〜150rpmが望ましい。研磨量は5〜100μm以内が好ましい。中間研磨として平均径2〜4μmの砥粒を用いて研摩するのが好ましい。
3)仕上げ研磨として、粒径0.25〜3.0μmのダイヤモンドスラリー等で仕上げる。また、CMPで研磨面を仕上げてもよい。これらを組み合わせて仕上げることも可能である。
4)研磨済みの面を表面精度5μm以内のセラミック等の台にWAX、UV接着剤等を用い貼り付け固定する。貼り付けの精度は8μm以内が好ましい。
5)もう一方の面を研磨する。研磨の条件は、上記2)と同様に研磨を行う。その後3)同様の仕上げ研磨を行う。
6)上記研磨を交互に繰り返し行うと尚望ましい。その場合には、仕上げ研磨はそれぞれの研磨面の最後で行えばよい。
また、上記研磨の方法として、回転工具を所定の切り込み高さで固定・回転させ、被加工物を横から送り込むことで、被加工物の表面平坦化を行う装置(例えば、(サーフェースプレーナーDFS8910、ディスコ社製)など)を用いることもできる。複合材料を、ダイヤモンドバイトによって高精度に平坦化することが可能という特徴を有するため、上記反射層の表面のみを研磨除去するのには最適である。
〔第2態様〕
本発明においては、図2に示すように、本発明の反射基板1における表面(非実装領域)および表面(実装領域)は、アルミナセラミックスからなる絶縁基板6の表面で構成されていてもよい。
上記アルミナセラミックスとしては、具体的には、例えば、酸化アルミニウム(Al23)質焼結体、窒化アルミニウム(AlN)質焼結体等の焼結体が挙げられる。
<エッチング>
本発明においては、上記絶縁基板は、上記表面(非実装領域)のPsmを上述した数値範囲にする観点から、上記アルミナセラミックスからなる焼結体の表面に所望のエッチングを施して得られるのである。
ここで、上記エッチングとしては、例えば、以下に示すアルカリエッチング処理が好適に挙げられる。
(アルカリエッチング処理)
アルカリエッチング処理は、上記絶縁基板をアルカリ溶液に接触させることにより、表層を溶解させ、表面に存在する焼結体の粒界のエッジ部分を溶解させ、滑らかな凹凸(うねり)を持つ表面に変えることを目的として行われる。
本発明においては、アルカリエッチング処理のエッチング量は、上記表面(非実装領域)のPsmを10〜20μmとする観点から、1g/m2以上であるのが好ましく、5〜20g/m2であるのがより好ましい。
上記アルカリ溶液に用いられるアルカリとしては、例えば、カセイアルカリ、アルカリ金属塩が挙げられる。具体的には、カセイアルカリとしては、例えば、カセイソーダ、カセイカリが挙げられる。また、アルカリ金属塩としては、例えば、タケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、カセイアルカリの溶液、および、カセイアルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、カセイソーダの水溶液が好ましい。
また、上記アルカリ溶液の濃度は、エッチング量に応じて決定することができるが、1〜50質量%であるのが好ましく、10〜35質量%であるのがより好ましい。アルカリ溶液中にアルミニウムイオンが溶解している場合には、アルミニウムイオンの濃度は、0.01〜10質量%であるのが好ましく、3〜8質量%であるのがより好ましい。アルカリ溶液の温度は20〜90℃であるのが好ましい。処理時間は1〜120秒であるのが好ましい。
また、上記絶縁基板をアルカリ溶液に接触させる方法としては、例えば、アルカリ溶液を入れた槽の中に絶縁基板を通過させる方法、アルカリ溶液を入れた槽の中に絶縁基板を浸せきさせる方法、アルカリ溶液をアルミニウム基板の表面に噴きかける方法が挙げられる。
<研磨>
本発明においては、上記絶縁基板は、上記表面(非実装領域)のRaを上述した数値範囲にする観点から、上記アルミナセラミックスからなる焼結体の表面に所望のエッチングを施した後に、必要に応じて、表面を研磨することができる。
ここで、上記研磨の方法は特に限定されず、上述した第1の態様で説明したものが挙げられる。
<反射層(銀蒸着膜)>
本発明においては、上記絶縁基板は、正反射率および拡散反射率がより良好となる理由から、上記絶縁基板上に銀(Ag)蒸着膜からなる反射層を有していてもよい。
ここで、上記Ag蒸着膜の膜厚は、上記表面(非実装領域)の表面形状を維持する観点から、0.1〜10μmであるのが好ましく、0.5〜1μmであるのがより好ましい。なお、膜厚の調整は、蒸着装置で用いるAg線質量を変更することにより行い、膜厚は、線質量を変えて平滑なガラス基板上に成膜した膜厚保を非接触干渉膜厚計を用いて測定することにより作成した検量線から算出することができる。
(形成方法)
上記Ag蒸着膜の形成方法は特に限定されず、従来公知の金属蒸着装置を用いて形成することができる。
〔共通態様〕
<配線層>
本発明の反射基板は、LED発光素子を実装するに当たり、配線層(金属配線層)を有していてもよい。
本発明においては、上記配線層は、LED発光素子が実装される側の表面の一部に設けられてもよいし、LED発光素子が実装される側の表面(以下、本段落において「実装面」という。)とは反対側の表面(裏面)の一部に設けられてLED発光素子の実装面とスルーホールを介して電気的に接続されてもよい。
上記配線層の材料は、電気を通す素材であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で使用してもよく2種以上を併用してもよい。
これらのうち、電気抵抗が低い理由からCuを用いるのが好ましい。なお、Cuによる配線層の表層には、ワイヤボンディングの容易性を高める観点から、Au層やNi/Au層を設けていてもよい。
また、上記配線層の厚さは、導通信頼性およびパッケージのコンパクト性の観点から、0.5〜1000μmが好ましく、1〜500μmがより好ましく、5〜250μmが特に好ましい。
上記配線層の形成方法としては、電解めっき処理、無電解めっき処理、置換めっき処理などの種々めっき処理の他、スパッタリング処理、蒸着処理、金属箔の真空貼付処理、接着層を設けての接着処理等が挙げられる。
これらのうち、耐熱性が高い観点から、金属のみの層形成であることが好ましく、厚膜/均一形成化および高密着性の観点から、めっき処理による層形成が特に好ましい。
上記めっき処理は、無機材料に対するめっき処理になるため、シード層と呼ばれる還元金属層を設けた後、その金属層を利用して厚い金属層を形成する手法を用いるのが好ましい。
また、上記シード層の形成には、無電解めっきを用いるのが好ましく、めっき液としては、主成分(例えば、金属塩、還元剤等)と補助成分(例えば、pH調整剤、緩衝剤、錯化剤、促進剤、安定剤、改良剤等)から構成される溶液を用いるのが好ましい。なお、めっき液としては、SE−650・666・680、SEK−670・797、SFK−63(いずれも日本カニゼン社製)、メルプレートNI−4128、エンプレートNI−433、エンプレートNI−411(いずれもメルテックス社製)等の市販品を適宜用いることができる。
また、上記配線層の材料として銅を用いた場合、硫酸、硫酸銅、塩酸、ポリエチレングリコールおよび界面活性剤を主成分とし、その他各種添加剤を加えた種々の電解液を用いることができる。
このようにして形成される配線層は、LED発光素子の実装の設計に応じ、公知の方法でパターン形成される。また、実際にLEDが実装される箇所には、再度金属層(半田も含む)を設け、熱圧着や、フリップチップ、ワイヤボンディング等で、接続しやすいように適宜加工することができる。
好適な金属層としては、半田、または、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等の金属素材が好ましく、加熱によるLEDの実装の観点では、半田、または、Niを介してのAu、Agを設ける方法が接続信頼性の観点から好ましい。
配線層の形成方法として以下で説明する金属インクを用いてインクジェット印刷法またはスクリーン印刷法によりパターンを形成すれば、凹凸のある表面に多くの工程を必要とせずに簡易にパターンを有する配線層を形成することができる。
(インクジェット印刷法)
導体金属を含む金属インクを用いてインクジェット印刷法により、反射基板の表面の所望の部位に配線層を形成することができる。具体的には、金属インクで配線パターンを形成し、その後焼成して配線とする。
金属インクとしては、例えば、バインダー、界面活性剤などを含む溶媒に導体金属の微粒子を均一分散させたもの等が挙げられる。この場合、溶媒は、導体金属に対する親和性と揮発性とを兼ね備えたものであることが必要である。
金属インクに含まれる導体金属としては、銀、銅、金、白金、ニッケル、アルミニウム、鉄、パラジウム、クロム、モリブデン、タングステンなどの金属の微粒子;酸化銀、酸化コバルト、酸化鉄、酸化ルテニウムなどの金属酸化物の微粒子;Cr−Co−Mn−Fe、Cr−Cu、Cr−Cu−Mn、Mn−Fe−Cu、Cr−Co−Fe、Co−Mn−Fe、Co−Ni−Cr−Feなどの複合合金の微粒子;銀めっき、銅などのめっき複合体の微粒子;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
これらのうち、金属の微粒子が好ましく、銀、銅、金がより好ましく、耐酸化性に優れて高絶縁性酸化物を生成しにくく、低コストであり、配線パターンの焼成後における導電性が向上するという理由から、特に銀が好ましい。
微粒子である導体金属の形状としては、特に限定されず、例えば、球状、粒状、鱗片状等が挙げられるが、微粒子同士の接触面積を大きくして導電性を向上させるという観点から、鱗片状が好ましい。
金属インクに含まれる導体金属の平均サイズは、金属インクにより形成される配線パターン中の充填率を高めて導電性を向上させるという観点から、1〜20nmが好ましく、5〜10nmがより好ましい。
(スクリーン印刷法)
導体金属を含む金属インクを用いてスクリーン印刷法により、反射基板の表面の所望の部位に配線パターンを形成し、その後焼成して配線とする。
スクリーン印刷法による金属インクの供給は、配線パターンに従った透過部分をスクリーンに設け、金属インクをこの透過部分からスキージングすることにより行うことができる。
導体金属を含む金属インクとしては、上述したインクジェット印刷法で用いたものを用いることができる。
[LEDパッケージ]
以下に、本発明のLEDパッケージについて詳細に説明する。
本発明のLEDパッケージは、上述した本発明の反射基板と、その表面に実装されたLED発光素子とを有するLEDパッケージである。
次に、本発明のLEDパッケージの構成について、図3を用いて説明する。
図3に示すように、LEDパッケージ20は、反射基板1の表面(反射層3)上に実装されたLED8を有する。また、LED8は、蛍光粒子9を混入した透明樹脂10でモールドされており、外部接続用の電極を兼ねた金属配線層7を有する本発明の反射基板1にワイヤボンディングされている。
本発明においては、上記LED発光素子は、基板上にGaAlN、ZnS、ZnSe、SiC、GaP、GaAlAs、AlN、InN、AlInGaP、InGaN、GaN、AlInGaN等の半導体を発光層として形成させたものが用いられる。
半導体の構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構造のものが挙げられる。半導体層の材料やその混晶度によって発光波長を紫外光から赤外光まで種々選択することができる。
また、上記透明樹脂の材質は、熱硬化性樹脂が好ましい。
上記熱硬化性樹脂としては、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂、アクリレート樹脂、ウレタン樹脂、ポリイミド樹脂からなる群から選択される少なくとも1種により形成することが好ましく、特にエポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂が好ましい。
また、透明樹脂は、青色LEDを保護するため硬質のものが好ましい。
また、透明樹脂は、耐熱性、耐候性、耐光性に優れた樹脂を用いることが好ましい。
また、透明樹脂は、所定の機能を持たせるため、フィラー、拡散剤、顔料、蛍光物質、反射性物質、紫外線吸収剤、酸化防止剤からなる群から選択される少なくとも1種を混合することもできる。
更に、上記蛍光粒子は、青色LEDからの光を吸収し異なる波長の光に波長変換するものであればよい。
蛍光粒子としては、具体的には、例えば、Eu、Ce等のランタノイド系元素で主に付活される窒化物系蛍光体、酸窒化物系蛍光体、サイアロン系蛍光体、βサイアロン系蛍光体;Eu等のランタノイド系、Mn等の遷移金属系の元素により主に付活されるアルカリ土類ハロゲンアパタイト蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類ケイ酸塩蛍光体、アルカリ土類硫化物蛍光体、アルカリ土類チオガレート蛍光体、アルカリ土類窒化ケイ素蛍光体、ゲルマン酸塩蛍光体;Ce等のランタノイド系元素で主に付活される希土類アルミン酸塩蛍光体、希土類ケイ酸塩蛍光体;Eu等のランタノイド系元素で主に付活される有機錯体;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
一方、本発明のLEDパッケージは、紫外〜青色LEDとそれを吸収し可視光領域で蛍光を発する蛍光発光体とを用いた蛍光体混色型白色系LEDパッケージとしても使用することができる。
これらの蛍光発光体が青色LEDからの青色光を吸収して蛍光(黄色系蛍光)を生じ、この蛍光と青色LEDの残光とにより、発光素子から白色系光が発光される。
上述した方式は、青色LED光源チップと黄色蛍光体1種とを組み合わせたいわゆる「擬似白色発光型」であるが、このほかにも、例えば紫外〜近紫外LED光源チップと赤色/緑色/青色蛍光体等を数種組み合わせた「紫外〜近紫外光源型」、及び、赤色/緑色/青色3光源で白色発光させる「RGB光源型」、等の公知の発光方法を用いる発光ユニットとして本発明のLEDパッケージを使用することができる。
本発明のLEDパッケージにおいて、本発明の反射基板にLED発光素子を実装する方法は加熱による実装を伴うが、半田リフローを含めての熱圧着、およびフリップチップによる実装方法では、均一かつ確実な実装を施す観点から、最高到達温度は220〜350℃が好ましく、240〜320℃がより好ましく、260〜300℃が特に好ましい。
これらの最高到達温度を維持する時間としては、同観点から2秒〜10分が好ましく、5秒〜5分がより好ましく、10秒〜3分が特に好ましい。
また、ワイヤボンディングでの実装時の温度としては、確実な実装を施す観点から、80〜300℃が好ましく、90〜250℃がより好ましく、100〜200℃が特に好ましい。加熱時間としては、2秒〜10分が好ましく、5秒〜5分がより好ましく、10秒〜3分が特に好ましい。
以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
〔反射基板の作製〕
<実施例1>
AL−160SG−3(平均粒子径:0.52μm、昭和電工社製)100gとポリビニルアルコール(PVA)バインダー0.5gと水20gとを混練した後に、300℃で2時間、焼成した。
その後、プレスにて、3cm×3cm(平面四角形状)、厚さ2mmのサイズに成形し、昇温速度400℃/時で加熱し、1800℃になったところで8時間保持して、焼結を行い、アルミナセラミックス焼結体を作製した。
次いで、作製したアルミナセラミックス焼結体に対して、カセイソーダ濃度5.0質量%、温度40℃の水溶液を用いてスプレーによるエッチング処理を10分間施し、表面を8g/m2溶解させた。
その後、DISCO社製のサーフェスプレーナ(型番:DFS8910)を用いて、エッチング処理後の表面を研磨し、反射基板を作製した。
<比較例1>
(アルミニウム基板の作製)
Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC鋳造法で作製した。
次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS 1050材のアルミニウム基板を得た。
(反射層形成材料の調製)
水90g、リン酸85%(和光純薬)55gおよび水酸化アルミニウム(和光純薬)25gを混合したバインダー液Aに、無機粒子としてアルミナ粒子(アドマファイン、平均粒子径:45nm、アドマテックス社製)を250g添加し、撹拌することにより、反射層を形成する無機組成物を調製した。
(反射層の形成)
上記アルミニウム基板に対して、上記無機組成物をスクリーン印刷法により塗布し、乾燥させることにより、反射層を有する反射基板を作製した。
具体的には、100メッシュのポリエステルバイアス製の版を用いて、膜厚70μmとなるようにベタ印刷し、その後、250℃で30分間、熱風循環式乾燥炉にて乾燥させ成膜した。
なお、反射層におけるリン酸アルミニウム(無機系結着剤)の存在は、赤外分光法(IR)により確認した。
<比較例2>
アルミナ粒子(アドマファイン、平均粒子径:45nm、アドマテックス社製)に代えて、アルミナ粒子(AL−160SG−3、平均粒子径:0.52μm、昭和電工社製)を用いた以外は、比較例1と同様の方法により、反射基板を作製した。
<比較例3>
比較例2で作製した反射基板を2.5質量%ケイ酸ソーダ液中に浸漬し、180℃、5分乾燥させてケイ酸ガラス質のオーバーコート層を有する反射基板を作製した。
<実施例2>
比較例2で作製した反射基板の表面をDISCO社製のサーフェスプレーナ(型番:DFS8910)を用いて研磨した反射基板を作製した。
<実施例3>
DISCO社製のサーフェスプレーナ(型番:DFS8910)に代えて、ダイアモンドラッピングシステム(MAT−MGR−311MF、MAT社製)を用い、研磨剤(リキッドダイアモンド(1−W2−PC−STD、ケメリット社製)を用いて研磨した以外は、実施例2と同様の方法により、反射基板を作製した。
<実施例4>
DISCO社製のサーフェスプレーナ(型番:DFS8910)に代えて、ダイアモンドラッピングシステム(MAT−MGR−311MF、MAT社製)を用い、研磨剤(リキッドダイアモンド 6−W2−PC−STD、ケメリット社製)を用いて研磨した以外は、実施例2と同様の方法により、反射基板を作製した。
<比較例4>
反射層形成材料として、以下に示す無機組成物を用いた以外は、比較例1と同様の方法により、反射基板を作製した。
(反射層形成材料)
以下に示す組成のバインダー液Bを100g用い、それに対して無機粒子としてアルミナ粒子(AL−160SG−3、平均粒子径:0.52μm、昭和電工社製)を250g添加し、撹拌することにより、反射層を形成する無機組成物を調製した。
<バインダー液Bの組成>
・塩酸85% (和光純薬) 46.9g
・水酸化アルミニウム(和光純薬) 11g
・水 90g
<実施例5>
比較例4で作製した反射基板の表面をDISCO社製のサーフェスプレーナ(型番:DFS8910)を用いて研磨した反射基板を作製した。
<比較例5>
比較例4で作製した反射基板の表面を、ダイアモンドラッピングシステム(MAT−MGR−311MF、MAT社製)を用い、研磨剤(リキッドダイアモンド 1−W2−PC−STD、ケメリット社製)を用いて研磨した反射基板を作製した。
〔表面形状の測定〕
上記で作製した各光反射基板の表面形状について、触針式の表面粗さ計(SURFCOM480A、ACCRETECH(東京精密)社製)を用いて、RaおよびPsmを測定した。これらの結果を下記第1表に示す。
〔発光効率〕
作製した各反射基板の表面に青色LED発光素子をワイヤボンディング法により実装し、Cu配線層と青色LED発光素子とを接続した。
青色LED発光素子を実装した後、表面に黄色蛍光体を含有した封止材を設けることで、擬似白色型LEDパッケージを作製した。
作製した各擬似白色型LEDパッケージについて、10Vの電圧で駆動した際の電流(A)と、色度X値=0.33での光拘束量(lm)とを測定し、下記式から発光効率(lm/W)を算出した。結果を下記第1表に示す。
発光効率(lm/W)=光拘束量(lm)/(電流(A)×10(V))
〔配線形成性〕
銀ペースト(AGEP−201X、住友電工社製)をスクリーン印刷法で所定の配線パターンに形成した後、200℃で30分加熱することにより、反射基板の表面に配線(長さ:1mm、幅:100μm)を形成させた。以下に示す基準で配線の直線性および密着性を評価した。結果を下記第1表に示す。
<直線性>
A:光学顕微鏡で撮影し、配線の端部の変動(DV)を観察し、DVが2μm以下であるものを直線性に極めて優れるものとして「A」と評価した。
B:光学顕微鏡で撮影し、配線の端部の変動(DV)を観察し、DVが2μm超5μm以下であるものを直線性に優れるものとして「B」と評価した。
C:光学顕微鏡で撮影し、配線の端部の変動(DV)を観察し、DVが5μm超20μm以下であるものを直線性に劣るものとして「C」と評価した。
D:光学顕微鏡で撮影し、配線の端部の変動(DV)を観察し、DVが20μm超であるものを直線性に極めて劣るものとして「D」と評価した。
<密着性>
A:配線(長さ:1mm、幅:100μm)を上から覆うように市販のテープを貼り付け、その後に剥離した際に、剥離が見られなかったものを密着性に優れるものとして「A」と評価した。
B:配線(長さ:1mm、幅:100μm)を上から覆うように市販のテープを貼り付け、その後に剥離した際に、部分的に剥離が見られたものを密着性にやや劣るものとして「B」と評価した。
C:配線(長さ:1mm、幅:100μm)を上から覆うように市販のテープを貼り付け、その後に剥離した際に、全て剥離したものを密着性に劣るものとして「C」と評価した。
第1表に示す結果から、Raが所定の数値範囲(0.01〜0.20μm)外にある表面形状を有する反射基板は、配線の直線性が劣ることが分かった(比較例1、2、4および5)。
また、Psmが所定の数値範囲(10〜20μm)外にある表面形状を有する反射基板は、配線の密着性が劣ることが分かった(比較例3)。
これに対し、RaおよびPsmが所定の範囲内にある表面形状を有する反射基板は、いずれも高い発光効率を維持し、配線形成性(直線性および密着性)に優れていることが分かった(実施例1〜5)。
1 反射基板
2 金属基板
3 反射層
4 無機粒子
5 無機系結着剤
6 絶縁基板(アルミナセラミックス)
7 金属配線層
8 LED発光素子
9 蛍光粒子
10 透明樹脂
20 LEDパッケージ

Claims (4)

  1. LED発光素子を実装する表面を有するLED発光素子用反射基板であって、
    前記表面のうち、少なくとも前記LED発光素子が実装される部分以外の表面が、算術平均粗さRaが0.01〜0.20μmであり、かつ、凹凸の平均間隔Psmが10〜20μmであるLED発光素子用反射基板。
  2. 前記表面が、金属基板上に設けられる反射層の表面であり、
    前記反射層が、平均粒子径が0.1〜5μmの無機粒子を用いて形成される請求項1に記載のLED発光素子用反射基板。
  3. 前記反射層が、さらに、リン酸アルミニウム、ケイ酸ナトリウムおよび塩化アルミニウムからなる群から選択される少なくとも1種の無機系結着剤を用いて形成される請求項2に記載のLED発光素子用反射基板。
  4. 請求項1〜3のいずれかに記載のLED発光素子用反射基板と、前記表面に実装されたLED発光素子とを有するLEDパッケージ。
JP2012006174A 2012-01-16 2012-01-16 Led発光素子用反射基板およびledパッケージ Pending JP2013145833A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012006174A JP2013145833A (ja) 2012-01-16 2012-01-16 Led発光素子用反射基板およびledパッケージ
PCT/JP2012/083264 WO2013108547A1 (ja) 2012-01-16 2012-12-21 Led発光素子用反射基板およびledパッケージ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006174A JP2013145833A (ja) 2012-01-16 2012-01-16 Led発光素子用反射基板およびledパッケージ

Publications (1)

Publication Number Publication Date
JP2013145833A true JP2013145833A (ja) 2013-07-25

Family

ID=48798983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006174A Pending JP2013145833A (ja) 2012-01-16 2012-01-16 Led発光素子用反射基板およびledパッケージ

Country Status (2)

Country Link
JP (1) JP2013145833A (ja)
WO (1) WO2013108547A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603497B (zh) * 2016-08-08 2017-10-21 九豪精密陶瓷股份有限公司 發光二極體陶瓷基板及其製造方法
CN112119445A (zh) * 2018-05-17 2020-12-22 株式会社半导体能源研究所 显示装置
JP2021084849A (ja) * 2019-11-29 2021-06-03 日亜化学工業株式会社 セラミックス複合体の製造方法
US11450709B2 (en) 2019-11-12 2022-09-20 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11610877B2 (en) 2019-11-21 2023-03-21 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11908850B2 (en) 2018-09-05 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and method for manufacturing display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200821632A (en) * 2006-08-23 2008-05-16 Mitsui Chemicals Inc Light reflector and light source having same
JP2009204837A (ja) * 2008-02-27 2009-09-10 Sumitomo Chemical Co Ltd 防眩フィルム、防眩性偏光板および画像表示装置
KR20110046440A (ko) * 2008-08-21 2011-05-04 파나소닉 주식회사 조명용 광원
JP2010263165A (ja) * 2009-05-11 2010-11-18 Mitsubishi Plastics Inc Led用反射基板及び発光装置
JP2010109328A (ja) * 2009-08-04 2010-05-13 Allied Material Corp 半導体素子搭載部材とそれを用いた半導体装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603497B (zh) * 2016-08-08 2017-10-21 九豪精密陶瓷股份有限公司 發光二極體陶瓷基板及其製造方法
CN112119445A (zh) * 2018-05-17 2020-12-22 株式会社半导体能源研究所 显示装置
US11908850B2 (en) 2018-09-05 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and method for manufacturing display device
US11450709B2 (en) 2019-11-12 2022-09-20 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11742379B2 (en) 2019-11-12 2023-08-29 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11610877B2 (en) 2019-11-21 2023-03-21 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
JP2021084849A (ja) * 2019-11-29 2021-06-03 日亜化学工業株式会社 セラミックス複合体の製造方法
JP7335506B2 (ja) 2019-11-29 2023-08-30 日亜化学工業株式会社 セラミックス複合体の製造方法

Also Published As

Publication number Publication date
WO2013108547A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5286585B2 (ja) 発光装置
JP5653503B2 (ja) 白色発光装置、バックライト、液晶表示装置および照明装置
JP6101629B2 (ja) 発光装置、照明装置、及び、発光装置の製造方法
JP4222017B2 (ja) 発光装置
JP3589187B2 (ja) 発光装置の形成方法
WO2013108547A1 (ja) Led発光素子用反射基板およびledパッケージ
JP4417906B2 (ja) 発光装置及びその製造方法
US20110267825A1 (en) Insulated light-reflective substrate
JP2009130301A (ja) 発光素子および発光素子の製造方法
WO2013027847A1 (ja) Led発光素子用反射基板およびledパッケージ
JPWO2005091387A1 (ja) 発光装置および照明装置
JPWO2009066430A1 (ja) 半導体発光装置および半導体発光装置の製造方法
JP2015065425A (ja) 発光装置及びその製造方法
KR20150055578A (ko) 발광소자, 발광장치 및 그들의 제조방법
JP4187033B2 (ja) 発光装置
US8299487B2 (en) White light emitting device and vehicle lamp using the same
JP2010155891A (ja) 窒化物赤色蛍光体及びこれを利用する白色発光ダイオード
JP2015023244A (ja) Led発光素子用反射基板、led発光素子用配線基板およびledパッケージならびにled発光素子用反射基板の製造方法
JP4009868B2 (ja) 窒化物蛍光体及びそれを用いた発光装置
WO2013031987A1 (ja) 絶縁反射基板およびledパッケージ
JP2006269757A (ja) 発光素子実装用基板、発光素子パッケージ体、表示装置及び照明装置
WO2014064901A1 (ja) 波長変換粒子、波長変換部材及び発光装置
WO2012077599A1 (ja) 光変換用セラミック複合体及びその製造方法
WO2014104035A1 (ja) 反射基板
JP2015041664A (ja) 絶縁反射基板およびledパッケージ