JP2013125016A - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
JP2013125016A
JP2013125016A JP2011275697A JP2011275697A JP2013125016A JP 2013125016 A JP2013125016 A JP 2013125016A JP 2011275697 A JP2011275697 A JP 2011275697A JP 2011275697 A JP2011275697 A JP 2011275697A JP 2013125016 A JP2013125016 A JP 2013125016A
Authority
JP
Japan
Prior art keywords
power storage
current
temperature
power
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011275697A
Other languages
English (en)
Other versions
JP5626195B2 (ja
Inventor
Hiroki Miki
宏紀 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011275697A priority Critical patent/JP5626195B2/ja
Publication of JP2013125016A publication Critical patent/JP2013125016A/ja
Application granted granted Critical
Publication of JP5626195B2 publication Critical patent/JP5626195B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】電流遮断器が作動した後に再通電した二次電池の異常検出を速やかにかつ精度よく行う。
【解決手段】本発明の車両に搭載される蓄電システムは、電流経路を遮断する電流遮断器を有する蓄電素子が複数直列に接続された蓄電装置と、電流遮断器が作動した後に再導通した蓄電素子の異常状態を判別するコントローラと、を有する。コントローラは、蓄電素子間の温度差が所定値以上である場合に、蓄電装置からの電力を受けて動作し、DC/DCコンバータを介して接続される電力消費機器の消費電力を変動させ、消費電力の変動に伴う電圧センサによる検出電圧および電流センサによる検出電流に基づいて、電流の変化量に対する電圧の変化量を示す蓄電素子の抵抗を算出し、算出した抵抗が閾値よりも高いときに、蓄電素子が異常状態であることを判別する。
【選択図】図7

Description

本発明は、蓄電装置の異常を判別する蓄電システムに関する。
特許文献1では、逐次検出される電流値及び電圧値から電池の内部抵抗異常を検出している。具体的には、所定電流で充電又は放電した際の電圧の変化が基準値を超える場合に、電池の内部抵抗異常を検出している。
特開2010−117235号公報
二次電池には電流遮断器を内蔵するものがあり、二次電池に異常が発生した場合に電流遮断器が動作して電流を遮断することができる。しかしながら、電流遮断器が動作した後に再度導通し、電流が流れる再導通現象が生じるおそれがある。
電流遮断器が動作した後の再導通現象は、機械的、物理的な抵抗上昇によって二次電池の抵抗が極端に上昇して高抵抗状態となるので、二次電池の抵抗上昇を速やかに検出する必要がある。
一方で、充放電電流の電流分散が十分に確保されないと、電圧センサや電流センサの検出誤差によって二次電池の抵抗異常を把握し難い課題がある。特に、充放電電流が低い状態では、電流センサの検出誤差の影響が大きくなり、抵抗異常を精度よく検出することができない。
本願第1の発明である車両に搭載される蓄電システムは、電流経路を遮断する電流遮断器を有する蓄電素子が複数直列に接続された蓄電装置と、電流遮断器が作動した後に再導通した蓄電素子の異常状態を判別するコントローラとを有する。コントローラは、蓄電素子間の温度差が所定値以上である場合に、蓄電装置からの電力を受けて動作し、DC/DCコンバータを介して接続される電力消費機器の消費電力を変動させ、消費電力の変動に伴う電圧センサによる検出電圧および電流センサによる検出電流に基づいて、電流の変化量に対する電圧の変化量を示す前記蓄電素子の抵抗を算出する。算出した抵抗が閾値よりも高いときに、蓄電素子が異常状態であると判別する。
本願第1の発明によれば、蓄電素子間の温度差を監視して、高抵抗状態にある電流遮断器が作動した後に再導通した単電池11の存在を素早く検出するとともに、電力消費機器の消費電力を変動させて電流分散を確保して蓄電素子の抵抗を精度よく検出できるので、電流遮断器が作動した後に再導通した蓄電素子の異常を速やかにかつ精度よく検出することができる。
コントローラは、電流センサによる検出電流が電流センサの検出誤差に応じた異常判定許容値以下である場合や異常判定許容値以下の継続時間が所定時間以上である場合に、DC/DCコンバータを介して接続される電力消費機器の消費電力を変動させることができる。充放電が電流センサの検出誤差に応じた異常判定許容値以下である場合であっても、電力消費機器の消費電力を変動させて電流分散を確保して蓄電素子の抵抗を精度よく検出でき、電流遮断器が作動した後に再導通した蓄電素子の異常を速やかにかつ精度よく検出することができる。
コントローラは、蓄電素子間の温度差が所定値以上である場合に、蓄電装置の充放電制御の入出力上限値を低く設定することができる。上限値を低く制限することで、蓄電素子の発熱量を抑制することができる。
本願第2の発明である車両に搭載される蓄電システムは、電流経路を遮断する電流遮断器を有する蓄電素子が複数直列に接続された蓄電装置と、複数の蓄電素子の温度を検出する温度センサと、蓄電装置を冷却する冷却装置と、温度センサによる検出温度に基づいて蓄電素子の単位時間当たりの昇温変化量及び降温変化量を算出し、電流遮断器が作動した後に再導通した蓄電素子の異常状態を判別するコントローラと、を有する。コントローラは、昇温変化量が第1閾値以上である場合に冷却装置を駆動し、冷却装置による蓄電装置の冷却に伴う降温変化量が第2閾値以上であるときに、蓄電素子が異常状態であると判別する。
本願第2の発明によれば、電流遮断器が作動した後に再導通した異常状態にある蓄電素子と異常が発生していない(電流遮断器が作動していない)蓄電素子の、温度上昇傾向及び温度降下傾向の相違に基づいて、電流遮断器が作動した後に再導通した蓄電素子を正確かつ素早く検出することができる。
本願第2の発明は、蓄電装置に流れる電流を検出する電流センサをさらに有することができ、コントローラは、電流センサによる検出電流が電流センサの検出誤差に応じた異常判定許容値以下である場合、昇温変化量及び降温変化量に基づいて、各蓄電素子の異常状態を判別することができる。電池電圧や電流値に基づいて蓄電素子の抵抗異常を検出しないため、充放電が電流センサの検出誤差に応じた異常判定許容値以下である場合であっても、電流遮断器が作動した後に再導通した蓄電素子を正確かつ素早く検出することができる。
コントローラは、昇温変化量が第1閾値以上である場合に、蓄電装置の充放電制御の入出力上限値を低く設定することができる。上限値を低く制限することで、蓄電素子の発熱量を抑制することができる。
実施例1の電池システムの構成を示す図である。 実施例1の単電池の内部構成を示す図である。 実施例1の電池システムの構成ブロック図である。 実施例1の単電池の抵抗を算出する方法を示す図である。 実施例1の電池異常(再導通)が発生した単電池の抵抗と電流値との関係を示す図である。 実施例1の電池異常(再導通)が発生した電池の温度挙動を説明する図である。 実施例1の単電池の異常を判定する処理を示すフローチャートである。 実施例1の消費電力を変動させた際の電流変動の一例を示す図である。 実施例2の電池異常(再導通)が発生した電池の温度挙動を説明する図である。 実施例2の電池システムの構成ブロック図である。 実施例2の単電池の異常を判定する処理を示すフローチャートである。
以下、本発明の実施例について説明する。
(実施例1)
図1〜図8を参照して、本発明の実施例1である電池システム(蓄電システムに相当する)について説明する。図1は、電池システムの構成を示す図である。本実施例の電池システムは、車両に搭載されている。
車両としては、ハイブリッド自動車や電気自動車がある。ハイブリッド自動車は、車両を走行させる動力源として、後述する組電池に加えて、エンジン又は燃料電池を備えている。電気自動車は、車両を走行させる動力源として、後述する組電池だけを備えている。以下に説明する実施例では、エンジンを備えたハイブリッド自動車について説明する。
組電池(蓄電装置に相当する)10は、直列に接続された複数の単電池(蓄電素子に相当する)11を有する。単電池11としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることができる。組電池10を構成する単電池11の数は、組電池10の要求出力などに基づいて、適宜設定することができる。本実施例では、組電池10を構成する、すべての単電池11が直列に接続されているが、これに限るものではない。並列に接続された複数の単電池11が組電池10に含まれていてもよい。
単電池11は、図2に示すように、発電要素11aおよび電流遮断器11bを有する。発電要素11aおよび電流遮断器11bは、単電池11の外装を構成する電池ケースに収容されている。発電要素11aは、充放電を行う要素であり、正極板と、負極板と、正極板および負極板の間に配置されるセパレータとを有する。
正極板は、集電板と、集電板の表面に形成された正極活物質層とを有する。負極板は、集電板と、集電板の表面に形成された負極活物質層とを有する。正極活物質層は、正極活物質や導電剤などを含んでおり、負極活物質層は、負極活物質や導電剤などを含んでいる。
単電池11としてリチウムイオン二次電池を用いるときには、例えば、正極板の集電板をアルミニウムで形成し、負極板の集電板を銅で形成することができる。また、正極活物質としては、例えば、LiCo1/3Ni1/3Mn1/3O2を用い、負極活物質としては、例えば、カーボンを用いることができる。セパレータ、正極活物質層および負極活物質層には、電解液がしみ込んでいる。電解液を用いる代わりに、正極板および負極板の間に、固体電解質層を配置することもできる。
電流遮断器11bは、単電池11の内部における電流経路を遮断するために用いられる。すなわち、電流遮断器11bが作動することにより、単電池11の内部における電流経路が遮断される。電流遮断器11bとして、例えば、ヒューズを用いることができる。ヒューズを溶断させることにより、単電池11の内部における電流経路を遮断することができる。
また、電流遮断器11bとして、例えば、単電池11の内圧が上昇することに応じて変形する弁を用いることができる。弁は、単電池11の内圧上昇に応じて変形し、発電要素11aとの機械的な接続を断つことにより、単電池11の内部における電流経路を遮断することができる。単電池11の内部は、密閉状態となっており、発電要素11aからガスが発生すると、単電池11の内圧が上昇する。単電池11の内圧が上昇することに応じて、電流遮断器11bとしての弁を変形させることにより、発電要素11aとの機械的な接続を断つことができる。これにより、発電要素11aに充放電電流が流れるのを阻止し、単電池11(発電要素11a)を保護することができる。
さらに、電流遮断器11bとして、例えば、温度上昇により抵抗が増大するPTC素子を用いることができる。PTC素子は、炭素などの導通性粒子を絶縁性樹脂で固めた構造をしており、電流が流れることで高温になると絶縁性樹脂が膨張して抵抗が増大し、抵抗増大によって発電要素11aとの電気的な接続を断たれ、単電池11の内部における電流経路を遮断することができる。これにより、発電要素11aに充放電電流が流れるのを阻止し、単電池11(発電要素11a)を保護することができる。
組電池10の正極ラインPLには、システムメインリレー31が設けられ、組電池10の負極ラインNLには、システムメインリレー32が設けられている。システムメインリレー31,32は、コントローラ50からの制御信号を受けることにより、オンおよびオフの間で切り替わる。
組電池10を負荷と接続するとき、コントローラ50は、システムメインリレー31,32をオフからオンに切り替える。これにより、組電池10および負荷の接続が完了し、図1に示す電池システムは、起動状態となる。一方、組電池10および負荷の接続を遮断するとき、コントローラ50は、システムメインリレー31,32をオンからオフに切り替える。これにより、図1に示す電池システムの起動は停止する。
昇圧回路41は、組電池10の出力電圧を昇圧し、昇圧後の電力をインバータ42に出力する。また、昇圧回路41は、インバータ42の出力電圧を降圧し、降圧後の電力を組電池10に出力することができる。昇圧回路41は、コントローラ50からの制御信号を受けて動作する。本実施例の電池システムでは、昇圧回路41を用いているが、昇圧回路41を省略することもできる。
インバータ42は、昇圧回路41から出力された直流電力を交流電力に変換し、交流電力をモータ・ジェネレータ43に出力する。また、インバータ42は、モータ・ジェネレータ43が生成した交流電力を直流電力に変換し、直流電力を昇圧回路41に出力する。モータ・ジェネレータ43としては、例えば、三相交流モータを用いることができる。
モータ・ジェネレータ43は、インバータ42からの交流電力を受けて、車両を走行させるための運動エネルギを生成したり、エンジン(図示せず)をクランキングさせるための運動エネルギを生成したりする。組電池10の電力を用いて車両を走行させるとき、モータ・ジェネレータ43によって生成された運動エネルギは、車輪に伝達される。エンジンをクランキングするとき、モータ・ジェネレータ43によって生成された運動エネルギは、エンジンに伝達される。
車両を減速させたり、停止させたりするとき、モータ・ジェネレータ43は、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。インバータ42は、モータ・ジェネレータ43が生成した交流電力を直流電力に変換し、直流電力を昇圧回路32に出力する。昇圧回路41は、インバータ42からの電力を組電池10に出力する。これにより、回生電力を組電池10に蓄えることができる。
組電池10には、電圧監視ユニット20、電流センサ21及び温度センサ22が設けられている。図3は、本実施形態の電池システムの構成ブロック図の一例である。
電圧監視ユニット(電圧センサに相当する)20は、各単電池11の端子間電圧(電池電圧という)を検出し、検出結果をコントローラ50に出力する。なお、本実施例では、組電池10を構成する複数の単電池11を、複数の電池ブロックに分けることができる。例えば、直列に接続されている複数の単電池11を、複数の各電池ブロックに区分し、区分された複数の電池ブロックを直列に接続することで、組電池10を構成することができる。この場合、電圧監視ユニット20は、単電池11単位、電池ブロック単位で電池電圧を検出することができる。また、電圧監視ユニット20は、組電池10の端子間電圧を検出することができる。
電流センサ21は、組電池10に流れる電流値(充放電電流値)を検出し、検出結果をコントローラ50に出力する。組電池10を放電しているときに電流センサ21によって検出される電流値を正の値とし、組電池10を充電しているときに電流センサ21によって検出される電流値を負の値として検出することができる。
温度センサ22は、各単電池11の温度(電池温度)を検出し、検出結果をコントローラ50に出力する。なお、温度センサ22は、電圧監視ユニット20に含まれるように構成することができ、例えば、組電池10の電圧及び温度を検出する監視ICとして構成できる。
コントローラ50は、組電池10の充放電制御を行う制御装置として機能する。コントローラ50は、出力要求に基づいて負荷に組電池10の電力を出力する放電制御、車両が減速したり、停止したりする際の車両制動時における回生電力を組電池10に充電する充電制御を行うことができる。
コントローラ50は、異常検出部51及び記憶部52を含んで構成される。異常検出部51は、単電池11の異常を判定する処理を行う。記憶部52は、コントローラ50を動作させるためのプログラムや、特定の情報を記憶している。なお、異常検出部51が遂行する処理は、コントローラ50とは個別の制御装置が行うように構成することもでき、記憶部52は、コントローラ50の外部に設けることもできる。
補機60は、DC/DCコンバータ44を介して接続され、組電池10からの電力を受けて動作する機器(電力消費機器)であり、例えば、車両に搭載されたエアコン、AV機器、照明装置、組電池10を冷却する冷却装置(例えば、冷却ファン)等である。組電池10から補機60に供給される電力は、コントローラ50によって制御される。コントローラ50は、消費電力に応じて補機60に電力を供給するように、組電池10の充放電制御を行う。
次に、本実施例の電池異常判定処理について詳細に説明する。電流遮断器11bが作動することにより、発電要素11aに充放電電流が流れることが一旦阻止された後でも、物理的な接触やアーク放電等によって電流遮断器11bが再度導通した状態となり、単電池11に電流が流れることがある。
電流遮断器11bが再導通状態の単電池11は、劣化等の抵抗上昇に比べて極端に抵抗が増加している。つまり、電流遮断器11bが抵抗体として作用し、単電池11は高抵抗状態となる。このような単電池11に電圧が印加されて電流が流れると、高抵抗状態の電流遮断器11bが発熱する。このため、単電池11を適切に保護する観点から、電流遮断器11bが作動した後に再導通した単電池11の異常を速やかに検出する必要がある。
電流遮断器11bが作動した後に再導通した単電池11を速やかに検出する必要がある一方で、単電池11の異常判定処理は、単電池11の電池電圧及び電流値を監視して電流値の変動に対する電圧値の変化量を示す抵抗を算出し、算出された単電池11の抵抗と所定の閾値とを比較して、算出された単電池11の抵抗が所定の閾値よりも高い場合、単電池11の抵抗異常を検出することができる。
図4は、単電池11の抵抗を算出する方法を示す図である。図4に示すように、単電池11の抵抗は、電流値の変動に対する電圧値の変化量として算出することができる。電流遮断器11bが作動していない単電池11の抵抗R1は、実線で表すように電池電圧と電流との関係に基づく傾きとして算出される。また、電流遮断器11bが作動した後に再導通した単電池11の抵抗R2も、一点鎖線で表すように電池電圧と電流との関係に基づく傾きとして算出される。例えば、時間t1で測定される電池電圧をV1,電流値をI1、時間t2で測定される電池電圧V2、電流値をI2とした場合、単電池11の抵抗Rは、R=(V2−V1)/(I2−I1)で算出することができる。
本実施例では、電流遮断器11bが再導通状態の単電池11の抵抗R2が、正常な単電池11の抵抗R1よりも高く(急勾配に)なるので、電流値の変動に対する電圧値の変化量を示す抵抗Rを算出し、算出された単電池11の抵抗Rを、正常な単電池11の抵抗R1に応じた所定の閾値と比較して、算出された単電池11の抵抗Rが所定の閾値よりも高い場合、単電池11の抵抗異常を検出する。
しかしながら、電圧監視ユニット20の検出電圧及び電流センサ21の検出電流には、それぞれ検出誤差が含まれる。このため、電流値の変動が少ない状態では、単電池11の抵抗Rを精度よく算出できないので、単電池11の異常を精度よく検出することが難しい。特に、充放電の電流値が低い状態(低レート領域)では、電流センサ21の検出電流に含まれる検出誤差の割合が大きくなり、単電池11の抵抗Rを精度よく算出できない。
図5は、単電池11に設けられた電流遮断器11bが作動した後に再導通した単電池11の抵抗と電流値との関係を示した図である。曲線は、充放電電流値と抵抗値とから求められる所定の発熱量の上限値に基づいた、充放電電流値と電流遮断器11bが作動した後に再導通した状態の単電池11の抵抗との関係を示している。
図5に示すように、充放電電流値A1以下の低レート領域では、電流センサ21の検出電流に含まれる検出誤差の割合が大きくなり、単電池11の抵抗Rを精度よく算出できない。さらに、斜線で示した低レート領域において電流遮断器11bが作動した状態の単電池11の抵抗が低い領域(低レート充放電/低抵抗領域)では、電圧監視ユニット20の検出誤差の影響も大きくなり、電圧監視ユニット20及び電流センサ21の検出誤差の影響の大きい低レート充放電/低抵抗領域では、さらに単電池11の抵抗Rを精度よく算出できない。
低レート充放電領域としては、電流センサ21の検出誤差に応じた異常検出許容値以下とすることができる。例えば、予め取得できる電流センサ21の検出誤差に基づいて、電流センサ21の検出電流に検出誤差が含まれる割合が検出精度上の観点から許容できる値を、異常検出許容値として定めることができる。低抵抗領域についても同様であり、電流センサ21の検出誤差に応じた異常検出許容値以下とすることができる。例えば、予め取得できる電圧監視ユニット20の検出誤差に基づいて、電圧監視ユニット20の検出電圧に検出誤差が含まれる割合が検出精度上の観点から許容できる値を、異常検出許容値(例えば、図5に示す抵抗Ra)として定めることができる。このように、電圧監視ユニット20及び電流センサ21それぞれの異常検出許容値以下の領域を、低レート充放電/低抵抗領域とすることができる。
このように単電池11の抵抗異常の検出精度が低下すると、電流遮断器11bが作動した後に再導通した状態の単電池11の異常を速やかに検出することができない。
そこで、本実施例では、電流遮断器11bが作動した後の再導通状態にある単電池11の電池温度が、電流遮断器11bが作動していない正常な単電池11の電池温度よりも高くなることを検出することで仮異常判定を行い、仮異常判定をトリガーに補機60の消費電力を変動させて単電池11の抵抗異常を検出することで、速やかにかつ精度よく単電池11の異常を検出する。
図6は、電流遮断器11bが作動した後に再導通した状態の単電池11(異常電池)と正常な単電池11(正常電池)の温度遷移を示す図である。図6に示すように、電流遮断器11bが作動した後の再導通状態にある単電池11は高抵抗状態なので、正常な単電池11に比べて極端に温度が上昇している。このように電流遮断器11bが作動した後に再導通した高抵抗状態の単電池11の温度上昇を、正常な単電池11の電池温度と比較して監視し、温度差ΔTが電流遮断器11bが作動した後の再導通状態にある単電池11の温度上昇に応じた所定値よりも高い場合に、単電池11を仮異常として判定する。
図7は、本実施例の電池異常判定処理のフローチャートである。電池異常判定処理は、コントローラ50によって遂行される。コントローラ50は、電池システム起動後、電池異常判定処理を開始する。
ステップ101において、コントローラ50は、温度センサ22の出力に基づいて、組電池10の各単電池11の電池温度を取得する。
ステップS102において、コントローラ50は、取得した各単電池11の電池温度を用いて、単電池11間の電池温度を比較して温度差が所定値以上であるか否かを判別する。例えば、直列に接続された各単電池11において、隣り合う2つの単電池11間の電池温度を比較したり、任意の2つの単電池11の電池温度を比較することができる。コントローラ50は、単電池11間の温度差が電流遮断器11bが作動したことに応じた所定値を超えると判別される場合、ステップS103に進み、電池異常判定処理を仮異常モードへ移行させる。コントローラ50は、単電池11間の温度差が、電流遮断器11bが作動した後に再導通したことに応じた所定値を超えていないと判別される場合は、電池異常判定処理を終了する。
なお、ステップS102において、組電池10を構成する直列に接続された複数の単電池11すべてを対象に、2つの単電池11間の電池温度を比較して温度差が所定値以上であるか否かを判別するように構成することができる。このとき、少なくとも1つの単電池11の電池温度が、他方の単電池11の電池温度に対して所定値を超える電池温度である場合に、電池異常判定処理を仮異常モードへ移行させることができる。
また、ステップS103において、コントローラ50は、仮異常モードへの移行に伴い、組電池10の入出力電力を制限して充放電制御の入出力上限値を低く設定することができる。例えば、図5の例において、コントローラ50は、単電池11間の温度差が電流遮断器11bが作動した後に再導通したことに応じた所定値を超えると判別された後の時間t3から充放電電流値の上限値を仮異常モードの移行前の充放電電流の上限値よりも低い上限値に設定し、コントローラ50は、低く設定した上限値に基づいた充放電制御を行う。上限値を低く制限することで、電流遮断器11bが作動した後に再導通した高抵抗状態にある単電池11の発熱量を抑制することができる。
仮異常モードに移行したコントローラ50は、ステップS104において、電流センサ21の出力に基づいて、組電池10の充放電電流値を取得する。コントローラ50は、ステップS105において、取得した充放電電流値が所定値(異常判定許容値)よりも小さいか否か、すなわち、低レート充放電中であるか否かを判別する。
ステップS105において低レート充放電中であると判別された場合、コントローラ50は、充放電電流値が所定値以下の低レート充放電の継続時間を計測して、低レート充放電の継続時間が所定値以上であるか否かを判別する。コントローラ50は、ステップS104からステップS106を繰り返し行い、低レート充放電中の時間が所定時間以上続く場合、ステップS107に進んで、低レートチェックモードに移行する。なお、ステップS105において、充放電電流値が所定値よりも大きいと判別された場合、コントローラ50は、通常のチェックモードに移行し、ステップS107をスキップしてステップS108に進む。
ステップS107において、コントローラ50は、低レートチェックモードとして補機60の消費電力を変動させる消費電力変動制御を行い、消費電力変動制御に伴う単電池11の電流値及び電圧値を、電圧監視ユニット20及び電流センサ21の出力に基づいて取得する。消費電力変動制御は、補機60が動作していなければ、動作するように制御して電力を消費させたり、動作中の補機60の出力値を現状よりも高く又は低くすることで、消費電力を変動させるようにする。また、低レートチェックモードにおける補機60の消費電力変動は、一定の周期で行うことができる。
図8は、消費電力変動制御の一例を示す図であり、時間t4において例えば、車両に搭載されたエアコンを稼働させたり、稼働中のエアコンの出力値を高く又は低くすることで、組電池10の電流変動を生じさせることができる。このとき、コントローラ50は、電圧監視ユニット20又は/及び電流センサ21の検出誤差に応じた所定の電流変動量以上となるように、補機60の消費電力を変動させる。例えば、電流センサ21の検出誤差の範囲外となる電流値の変動が発生するように、補機60の消費電力を変動させることができる。
ステップS108において、コントローラ50は、ステップS107において消費電力変動制御中に取得された電圧値及び電流値を用いて、図4に示した単電池11の抵抗Rを算出する。例えば、図8の例において、時間t4及び時間t5における各電圧値及び電流値を用いて、単電池11の抵抗Rを算出することができる。また、異常検出部51は、ステップS105において充放電電流値が所定値よりも大きいと判別された場合、ステップS108において充放電制御中の電圧値及び電流値を用いて、単電池11の抵抗Rを算出する。
ステップS109において、コントローラ50は、ステップS108で算出した抵抗Rが、電流遮断器11bが作動したことに応じた所定の閾値よりも大きいか否かを判別する。抵抗Rが、所定値よりも大きいと判別された場合、コントローラ50は、ステップS110に進み、単電池11の抵抗異常、すなわち、単電池11の異常を検出する。抵抗Rが所定の閾値よりも小さいと判別された場合には電池異常判別処理を終了する。
ステップS110において、単電池11の異常が検出された場合、コントローラ50は、組電池10の入出力を制限することができる。組電池10の入出力を制限する方法としては、組電池10の入出力を許容する上限電力を低下させることができる。上限電力は、組電池10の入力および出力のそれぞれに対して設定される。上限電力を低下させることには、上限電力を0[kW]に設定することも含まれる。上限電力を0[kW]に設定することにより、組電池10の入出力が行われないことになる。
また、単電池11が異常状態であるとき、コントローラ50は、組電池10の充放電を再開させないことができる。具体的には、単電池11が異常状態であると判別したとき、コントローラ50は、システムメインリレー31,32をオフからオンに切り替えないようにすることができる。
なお、ステップS108において、コントローラ50は、組電池10を構成する全ての単電池11の抵抗値を算出し、各単電池11に対してステップS109で抵抗異常を検出するように構成することができる。
また、ステップS102において、コントローラ50は、取得した各単電池11の電池温度を用いて、単電池11間の電池温度を比較して温度差が所定値以上であるか否かを判別しているので、所定値以上の温度差があると判別された電池温度が高い方の単電池11を特定することができる。コントローラ50は、所定値以上の温度差があると判別された電池温度が高い方の単電池11のみを対象に、ステップS108において消費電力変動制御中に取得された電圧値及び電流値、又は充放電制御中の電圧値及び電流値を用いて、単電池11の抵抗を算出し、ステップS109において、単電池11の抵抗異常を判別するように構成することができる。
図7では、低レート領域での充放電電流値が所定時間継続する場合に、低レートチェックモードとして、補機60の消費電力を変動させる消費電力変動制御を行う態様を一例に示しているが、低レート領域での充放電電流値が所定時間継続する場合に限らず、単電池11間の電池温度を比較して温度差が所定値以上であると判別されてステップS103で仮異常モードに移行した後、ステップS104〜S106を省略してステップS107に進み、補機60の消費電力を変動させる消費電力変動制御を行って、消費電力変動制御中の単電池11の電流値及び電圧値を、電圧監視ユニット20及び電流センサ21の出力に基づいて取得するように構成することも可能である。
本実施例の電池異常判別処理は、単電池11間の温度差を監視して、電流遮断器11bが作動した後に再導通した単電池11の存在を素早く検出するとともに、強制的に補機60の消費電力を変動させて単電池11の抵抗を精度よく検出できるので、電流遮断器11bが再導通状態にある単電池11を速やかにかつ精度よく検出することができる。
特に、強制的に補機60の消費電力を変動させて単電池11の抵抗を検出するので、低レートでの充放電が継続していても、速やかに単電池11の抵抗を精度よく検出することができる。
また、電流遮断器11bが、単電池11の内圧が上昇することに応じて変形する弁である場合、弁が単電池11の内圧上昇に応じて変形し、発電要素11aとの機械的な接続が断たれるので、弁が作動した単電池11は、過充電状態となっている。このため、過充電状態から再導通してさらに充電が継続されると、単電池11を適切に保護できないが、本実施例では、充放電電流値が低レートであっても精度よく単電池11の異常を検出することができるので、弁が作動した過充電状態の単電池11を適切に保護することができる。
(実施例2)
図9〜図11を参照して、本発明の実施例2である電池システム(蓄電システムに相当する)について説明する。本実施例の電池システムの主な構成は、上記実施例1の図1に示したものと同様である。以下、上記実施例1と相違する部分を中心の述べ、重複する部分については同符号を付して説明を省略する。
本実施例は、電流遮断器11bが作動した後に再導通して高抵抗状態にある単電池11の温度上昇が、充放電を繰り返し行う単電池11(発電要素11a)の内部抵抗の上昇に伴う温度上昇と相違する機械的又は物理的な発熱に基づくことから、単位時間当たりの昇温変化量及び降温変化量を算出し、各単電池11の異常状態を判別する。
図9は、電流遮断器11bが作動した後の再導通状態にある単電池11(異常電池)と正常な単電池11(正常電池)の温度遷移を示す図である。電流遮断器11bが作動していない正常な単電池11は、劣化等による発電素子11aの内部抵抗が増加し、内部抵抗の増加に伴って電池温度が上昇するが、内部抵抗の増加は、劣化等による経年変化に応じた緩やかな上昇であり、その温度上昇の変化量は小さい。図9に示すように、ΔTa/Δtが単電池11の内部抵抗の増加に伴って上昇する電池温度の単位時間当たりの変化量(変化率)である。
これに対して、電流遮断器11bが作動した後に再導通状態にある単電池11は、高抵抗状態なので、単電池11の抵抗が極端に増加している。このため、電流遮断器11bが作動したことによる抵抗増加に伴う電池温度の上昇は、機械的な又は物理的な発熱に基づくものであり、その温度上昇の変化量は、単電池11の内部抵抗の増加に伴って上昇する電池温度の単位時間当たりの変化量よりも極端に大きい。図9に示すように、電流遮断器11bが作動した後の再導通状態にある単電池11の単位時間当たりの昇温変化量は、ΔT1/Δtであり、ΔTa/Δtよりも大きくなっている。
一方で、電流遮断器11bが作動した後の再導通状態にある単電池11の温度上昇は、機械的な又は物理的な発熱に基づくものなので、冷却によって温度が下がる変化量(降温変化量)も大きい。すなわち、電流遮断器11bが抵抗体として発熱する表面発熱であるため、単電池11の内部抵抗の増加に伴って上昇する電池温度を冷却する場合に比べて、単位時間あたりの温度低下量は大きい。単電池11の内部抵抗の増加に伴って上昇する電池温度は、単電池11内部から生じる発電要素11aの発熱であることから、表面発熱に比べて単位時間あたりの温度低下量が小さい。図9に示すように、電流遮断器11bが作動した後の再導通状態にある単電池11の単位時間当たりの降温変化量は、ΔT2/Δtであり、電流遮断器11bが作動していない単電池11の降温変化量は、ΔT2/Δtよりも小さくなっている。
本実施例では、電流遮断器11bが作動した後の再導通状態にある単電池11と電流遮断器11bが作動していない単電池11との間の、温度上昇傾向及び温度降下傾向の相違に基づいて、電流遮断器11bが作動した後に再導通した単電池11を素早くかつ正確に検出する。
図10は、本実施例の電池システムの構成ブロック図である。上記実施例1の図3に示した図に対して冷却装置70が設けられている。冷却装置70は、冷却ファン等の送風機であり、冷却装置70の駆動制御は、コントローラ50によって行われる。コントローラ50は、温度センサ22によって検出される組電池10の電池温度に応じて冷却装置70を駆動し、組電池10を冷却する。
図11は、本実施例の電池異常判定処理のフローチャートである。電池異常判定処理は、コントローラ50によって遂行される。コントローラ50は、電池システム起動後、電池異常判定処理を開始する。
ステップ301において、コントローラ50は、電流センサ21の出力に基づいて、組電池10の充放電電流値を取得する。コントローラ50は、ステップS302において、取得した充放電電流値が所定値(上記実施例1と同様の電流センサ21の検出誤差に応じた異常判定許容値)よりも小さいか否か、すなわち、低レート充放電中であるか否かを判別する。
ステップS302において、充放電電流値が所定値よりも大きいと判別された場合、コントローラ50は、ステップS309、S310を遂行し、上記実施例1の図7で示した単電池11の抵抗に基づく異常判定処理を行う。ステップS309は、図7のステップS108に対応し、ステップS310は、図7のステップS109に対応している。
ステップS302において、充放電電流値が所定値よりも小さいと判別された場合、コントローラ50は、温度センサ22の出力に基づいて、組電池10の各単電池11の電池温度を取得する。
ステップS304において、コントローラ50は、取得した各単電池11の検出温度に基づいて、各単電池11の単位時間当たりの昇温変化量を算出し、単電池11間で算出された各昇温変化量の差が、電流遮断器11bが作動した後に再導通したことに応じた所定値以上であるか否かを判別する。例えば、直列に接続された各単電池11において、隣り合う2つの単電池11間の昇温変化量を比較したり、任意の2つの単電池11の昇温変化量を比較することができる。
ステップS304において、単電池11間で算出された各昇温変化量の差と比較する所定値(第1閾値に相当する)は、電流遮断器11bが作動していない正常な単電池11が、劣化等による発電素子11aの内部抵抗が増加によって異常と判定される予め決められた抵抗(劣化上限抵抗値)から算出される発熱量に応じた温度を考慮して決定することができる。すなわち、当該所定値は、電流遮断器11bが作動していない正常な単電池11の劣化上限抵抗値から算出される発熱量に応じた温度上昇における昇温変化量よりも大きい値とすることができ、劣化等による発電素子11aの内部抵抗の増加に伴う温度上昇の昇温変化量と、電流遮断器11bが作動した後の再導通状態にある単電池11の温度上昇における昇温変化量とを精度よく判別することができる。
コントローラ50は、単電池11間の昇温変化量の差が、電流遮断器11bが作動した後に再導通したことに応じた所定値を超えると判別される場合、ステップS305に進み、電池異常判定処理を仮異常モードへ移行させる。コントローラ50は、単電池11間の昇温変化量の差が、電流遮断器11bが作動した後に再導通したことに応じた所定値を超えていないと判別される場合、電池異常判定処理を終了する。
なお、ステップS304において、組電池10を構成する直列に接続された複数の単電池11すべてを対象に、2つの単電池11間の昇温変化量の差が所定値以上であるか否かを判別する。このとき、少なくとも1つの単電池11の昇温変化量が、他方の単電池11の昇温変化量に対して電流遮断器11bが作動した後に再導通したことに応じた所定値を超える場合に、電池異常判定処理を仮異常モードへ移行させることができる。
仮異常モードに移行したコントローラ50は、ステップS306において、冷却装置70を駆動して組電池10を冷却するとともに、組電池10の入出力電力を制限して充放電制御の入出力上限値を低く設定する。
例えば、図9の例において、コントローラ50は、単電池11間の昇温変化量の差が、電流遮断器11bが作動した後に再導通したことに応じた所定値を超えると判別された後の時間t6から充放電電流値の上限値を仮異常モードの移行前の充放電電流の上限値よりも低い上限値に設定し、低く設定した上限値に基づいた充放電制御を行う。上限値を低く制限することで、電流遮断器11bが作動した後に再導通した高抵抗状態の単電池11の発熱量を抑制することができる。さらに、コントローラ50は、時間t6から所定時間経過後の時間t7の時点から冷却装置70を駆動して冷却風を組電池10に送り、組電池10を冷却する。このとき、駆動出力を最大値にして冷却装置70の駆動することができる。
このように、単電池11間の昇温変化量の差が電流遮断器11bが作動した後に再導通したことに応じた所定値を超えると判別された後、上限値を低く制限して高抵抗状態にある単電池11の発熱量を抑制しつつ、冷却装置70によって冷却することで、電流遮断器11bが作動した後の再導通状態にある単電池11の電池温度を低減することができる。
次に、コントローラ50は、ステップS307に進み、冷却装置70の駆動した後に冷却される各単電池11の降温変化量を算出する。図9に示すように、冷却装置70を駆動した時間t7から単位時間当たりの降温変化量ΔT2/Δtを算出する。ステップS304同様、コントローラ50は、単電池11間の単位時間当たりの各昇温変化量を算出し、単電池11間で算出された各降温変化量の差が、電流遮断器11bが作動した後に再導通したことに応じた所定値(第2閾値に相当する)以上であるか否かを判別する。降温変化量の差が所定値よりも大きい場合、ステップS308に進み、単電池11の異常を検出する。降温変化量の差が所定値よりも小さいと判別された場合には、電池異常判別処理を終了する。
ステップS308において、単電池11の異常が検出された場合、コントローラ50は、上記実施例1同様に、組電池10の入出力を制限したり、組電池10の充放電を再開させないなどの異常処理を行うことができる。
なお、ステップS304において、コントローラ50は、取得した各単電池11の検出温度に基づいて、各単電池11の単位時間当たりの昇温変化量を算出し、単電池11間で算出された各昇温変化量の差が、電流遮断器11bが作動した後に再導通したことに応じた所定値以上であるか否かを判別しているので、所定値以上の昇温変化量の差があると判別された昇温変化量の高い方の単電池11を特定することができる。コントローラ50は、昇温変化量が正常な単電池11よりも高いと特定された単電池11のみを対象に、ステップS307を遂行して単電池11の異常を判別するように構成することができる。
図11の例では、上記実施例1同様に、所定の充放電電流値以下の低レート領域における単電池11の抵抗異常の検出精度の低下に鑑みて、所定の充放電電流値以下の場合に電池異常判定処理を行う一例を示しているが、これに限らずステップS301、S302を省略して本実施例の電池異常判定処理を行うこともできる。
本実施例の電池異常判別処理は、電流遮断器11bが作動した後の再導通状態にある単電池11と電流遮断器11bが作動していない単電池11の、温度上昇傾向及び温度降下傾向の相違に基づいて、電流遮断器11bが作動した後の再導通状態にある単電池11を正確かつ素早く検出することができる。
特に、電池電圧や電流値により単電池11の抵抗異常を検出しないので、電圧監視ユニット20や電流センサ21の検出誤差による検出精度の低下を抑制することができ、上記実施例1で説明した低レート領域や低レート充放電/低抵抗領域でも、電流遮断器11bが作動した後の再導通状態にある単電池11を精度よく検出することができる。
また、本実施例の電池異常判別処理は、温度上昇傾向(昇温変化量)のみならず温度降下傾向(降温変化量)の相違に基づいて、電流遮断器11bが作動した後の再導通状態にある単電池11を検出しているので、電流遮断器11bが作動していない正常な単電池11の、劣化等による発電素子11aの内部抵抗の増加に伴う温度上昇や冷却機能の低下による組電池10の温度上昇の影響を低減して精度よく電流遮断器11bが作動した単電池11の異常を検出することができる。
10 組電池(蓄電装置)
11 単電池(蓄電素子)
11a 発電要素
11b 電流遮断器
20 電圧監視ユニット
21 電流センサ
22 温度センサ
31,32 システムメインリレー
41 昇圧回路
42 インバータ
43 モータ・ジェネレータ
50 コントローラ
51 異常検出部
52 記憶部
60 補機
70 冷却装置

Claims (7)

  1. 車両に搭載される蓄電システムであって、
    電流経路を遮断する電流遮断器を有する蓄電素子が複数直列に接続された蓄電装置と、
    前記複数の蓄電素子の電圧を検出する電圧センサと、
    前記蓄電装置に流れる電流を検出する電流センサと、
    前記複数の蓄電素子の温度を検出する温度センサと、
    前記電流遮断器が作動した後に再導通した前記蓄電素子の異常状態を判別するコントローラと、を有し、
    前記コントローラは、
    前記蓄電素子間の温度差が所定値以上である場合に、前記蓄電装置からの電力を受けて動作し、DC/DCコンバータを介して接続される電力消費機器の消費電力を変動させ、前記消費電力の変動に伴う前記電圧センサによる検出電圧および前記電流センサによる検出電流に基づいて、電流の変化量に対する電圧の変化量を示す前記蓄電素子の抵抗を算出し、算出した抵抗が閾値よりも高いときに、前記蓄電素子が前記異常状態であると判別することを特徴とする蓄電システム。
  2. 前記コントローラは、前記電流センサによる検出電流が前記電流センサの検出誤差に応じた異常判定許容値以下である場合、前記DC/DCコンバータを介して接続される電力消費機器の消費電力を変動させることを特徴とする請求項1に記載の蓄電システム。
  3. 前記コントローラは、前記電流センサによる検出電流が前記電流センサの検出誤差に応じた異常判定許容値以下の継続時間が所定時間以上である場合、前記DC/DCコンバータを介して接続される電力消費機器の消費電力を変動させることを特徴とする請求項2に記載の蓄電システム。
  4. 前記コントローラは、前記蓄電素子間の温度差が所定値以上である場合に、前記蓄電装置の充放電制御の入出力上限値を低く設定することを特徴とする請求項1から3のいずれか1つに記載の蓄電システム。
  5. 車両に搭載される蓄電システムであって、
    電流経路を遮断する電流遮断器を有する蓄電素子が複数直列に接続された蓄電装置と、
    前記複数の蓄電素子の温度を検出する温度センサと、
    前記蓄電装置を冷却する冷却装置と、
    前記温度センサによる検出温度に基づいて前記蓄電素子の単位時間当たりの昇温変化量及び降温変化量を算出し、前記電流遮断器が作動した後に再導通した前記蓄電素子の異常状態を判別するコントローラと、を有し、
    前記コントローラは、
    前記昇温変化量が第1閾値以上である場合に前記冷却装置を駆動し、前記冷却装置による前記蓄電装置の冷却に伴う前記降温変化量が第2閾値以上であるときに、前記蓄電素子が前記異常状態であると判別することを特徴とする蓄電システム。
  6. 前記蓄電装置に流れる電流を検出する電流センサをさらに有し、
    前記コントローラは、前記電流センサによる検出電流が前記電流センサの検出誤差に応じた異常判定許容値以下である場合、前記昇温変化量及び降温変化量に基づいて、前記各蓄電素子の異常状態を判別することを特徴とする請求項5に記載の蓄電システム。
  7. 前記コントローラは、前記昇温変化量が第1閾値以上である場合に、前記蓄電装置の充放電制御の入出力上限値を低く設定することを特徴とする請求項5又は6に記載の蓄電システム。
JP2011275697A 2011-12-16 2011-12-16 蓄電システム Active JP5626195B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011275697A JP5626195B2 (ja) 2011-12-16 2011-12-16 蓄電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275697A JP5626195B2 (ja) 2011-12-16 2011-12-16 蓄電システム

Publications (2)

Publication Number Publication Date
JP2013125016A true JP2013125016A (ja) 2013-06-24
JP5626195B2 JP5626195B2 (ja) 2014-11-19

Family

ID=48776330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275697A Active JP5626195B2 (ja) 2011-12-16 2011-12-16 蓄電システム

Country Status (1)

Country Link
JP (1) JP5626195B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115232A (ja) * 2013-12-12 2015-06-22 三菱重工業株式会社 異状態監視装置、異状態監視システム、異状態監視方法、及びプログラム
CN105720315A (zh) * 2016-02-26 2016-06-29 成都雅骏新能源汽车科技股份有限公司 一种基于动态温差的动力电池快速直流充电方法
JP2016131451A (ja) * 2015-01-14 2016-07-21 株式会社豊田自動織機 蓄電装置
JP2020119721A (ja) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 電動車両
CN114300763A (zh) * 2021-12-06 2022-04-08 华人运通(江苏)技术有限公司 基于车云协调的电池内阻异常监测方法、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036328A (ja) * 1998-07-21 2000-02-02 Hitachi Ltd 二次電池用温度制御装置
JP2009117262A (ja) * 2007-11-08 2009-05-28 Sanyo Electric Co Ltd パック電池
JP2010117235A (ja) * 2008-11-13 2010-05-27 Denso Corp 電池の異常判断装置
JP2011055631A (ja) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd リレー故障診断装置
JP2011119157A (ja) * 2009-12-04 2011-06-16 Panasonic Corp 電池電源装置、及び電池電源システム
JP2011250622A (ja) * 2010-05-28 2011-12-08 Suzuki Motor Corp 電池並列接続回路の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036328A (ja) * 1998-07-21 2000-02-02 Hitachi Ltd 二次電池用温度制御装置
JP2009117262A (ja) * 2007-11-08 2009-05-28 Sanyo Electric Co Ltd パック電池
JP2010117235A (ja) * 2008-11-13 2010-05-27 Denso Corp 電池の異常判断装置
JP2011055631A (ja) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd リレー故障診断装置
JP2011119157A (ja) * 2009-12-04 2011-06-16 Panasonic Corp 電池電源装置、及び電池電源システム
JP2011250622A (ja) * 2010-05-28 2011-12-08 Suzuki Motor Corp 電池並列接続回路の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115232A (ja) * 2013-12-12 2015-06-22 三菱重工業株式会社 異状態監視装置、異状態監視システム、異状態監視方法、及びプログラム
JP2016131451A (ja) * 2015-01-14 2016-07-21 株式会社豊田自動織機 蓄電装置
CN105720315A (zh) * 2016-02-26 2016-06-29 成都雅骏新能源汽车科技股份有限公司 一种基于动态温差的动力电池快速直流充电方法
CN105720315B (zh) * 2016-02-26 2018-03-16 成都雅骏新能源汽车科技股份有限公司 一种基于动态温差的动力电池快速直流充电方法
JP2020119721A (ja) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 電動車両
JP7044080B2 (ja) 2019-01-23 2022-03-30 トヨタ自動車株式会社 電動車両
CN114300763A (zh) * 2021-12-06 2022-04-08 华人运通(江苏)技术有限公司 基于车云协调的电池内阻异常监测方法、设备及存储介质
CN114300763B (zh) * 2021-12-06 2023-10-20 华人运通(江苏)技术有限公司 基于车云协调的电池内阻异常监测方法、设备及存储介质

Also Published As

Publication number Publication date
JP5626195B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
US9933491B2 (en) Electric storage system
JP5334612B2 (ja) バッテリシステム
US20110148361A1 (en) Battery system and method for detecting current restriction state in a battery system
JP5675045B2 (ja) バッテリシステム
JP4311363B2 (ja) 蓄電システムおよび蓄電システムの異常処理方法
KR101600043B1 (ko) 배터리 충전 과정의 모니터링 방법
JP5626195B2 (ja) 蓄電システム
JP2014018018A (ja) バッテリシステム制御装置
JP4135297B2 (ja) 組電池の充電装置、充電方法、および電動車両
WO2013061358A1 (ja) 蓄電システム
JP2003259508A (ja) 電気自動車用の電源装置
KR20170003565A (ko) 배터리 팩, 배터리 시스템 및 방전 방법
JP2013145175A (ja) 電池システムおよび短絡検出方法
WO2010021076A1 (ja) 車両の電源装置およびその制御方法
JP2012085455A (ja) 電池の故障判定装置
JP2007018871A (ja) 二次電池の制御装置及びこの装置を搭載するシステム
JP2008312282A (ja) 車両用電源装置の制御方法
JP5487945B2 (ja) 蓄電素子の状態判別システム
JP5626190B2 (ja) 蓄電システム
JP5692040B2 (ja) 蓄電システム
US20220250478A1 (en) Method for operating an electric energy store, electric energy store, and device
JP5472472B2 (ja) 蓄電システムおよび蓄電ブロックの状態を判別する方法
US20230163606A1 (en) Battery management system and method of managing battery using the same
JP2015061505A (ja) 蓄電システム
JP2015109191A (ja) 蓄電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R151 Written notification of patent or utility model registration

Ref document number: 5626195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151