JP2013116440A - Oxidation catalyst - Google Patents

Oxidation catalyst Download PDF

Info

Publication number
JP2013116440A
JP2013116440A JP2011264534A JP2011264534A JP2013116440A JP 2013116440 A JP2013116440 A JP 2013116440A JP 2011264534 A JP2011264534 A JP 2011264534A JP 2011264534 A JP2011264534 A JP 2011264534A JP 2013116440 A JP2013116440 A JP 2013116440A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
organic sulfur
oxidation
metal oxide
catalyst according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011264534A
Other languages
Japanese (ja)
Other versions
JP5822349B2 (en
Inventor
Ayako Taketoshi
絢子 竹歳
Masaki Haruta
正毅 春田
Kei Oe
慧 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2011264534A priority Critical patent/JP5822349B2/en
Publication of JP2013116440A publication Critical patent/JP2013116440A/en
Application granted granted Critical
Publication of JP5822349B2 publication Critical patent/JP5822349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst capable of selectively productively processing oxidation reaction of organic sulfur compounds.SOLUTION: The oxidation catalyst is made of one or more metal oxides selected from the group consisting of compounds expressed by the formula below, CuMnOand VO5. In the oxidation catalyst of the organic sulfur compounds, small gold particles are carried on a carrier. The carrier is one or more metal oxides selected from the group consisting of compounds expressed by the formula below, CuMnO, VO, CoO, and CeO. The formula is MnO(wherein, x denotes an integer of 1-10, y denotes an integer of 1-20, y≥x, and 2≥y/x≥1).

Description

本発明は、有機硫黄化合物の酸化触媒に関し、さらに詳細には、有機硫黄化合物の特定基を選択的に酸化することができる酸化触媒に関するものである。   The present invention relates to an oxidation catalyst for an organic sulfur compound, and more particularly to an oxidation catalyst capable of selectively oxidizing a specific group of an organic sulfur compound.

環境負荷低減化や安全性確保の観点から、従来の毒性・爆発性の高い含重金属酸化剤に代わる酸化剤として酸素が注目され、酸素を用いた酸化反応のための触媒開発が進んでいる。大気中に豊富に存在する酸素だけを酸化剤とする反応は省資源・省エネルギーの理想的反応であるが、酸素の化学反応性の制御が難しく、酸化反応を特定の官能基において特定の価数に制御する点で選択性が低いという問題がある。
酸素を酸化剤として用いた酸化反応系として、特許文献1には二酸化マンガンの存在下で酸素含有気体を用いてポリスルフィドを含む白液を酸化し、パルプの収量を高めることが開示されている。しかし、かかる反応系では有機硫黄化合物を選択的に酸化し、スルホキシドやスルホンを合成するものではない。
From the viewpoint of reducing environmental burden and ensuring safety, oxygen is attracting attention as an oxidant that replaces the conventional highly toxic and explosive heavy metal oxidants, and catalysts for oxidation reactions using oxygen are being developed. The reaction using only oxygen abundant in the atmosphere as an oxidant is an ideal reaction for saving resources and energy, but it is difficult to control the chemical reactivity of oxygen, and the oxidation reaction has a specific valence at a specific functional group. However, there is a problem that the selectivity is low in terms of control.
As an oxidation reaction system using oxygen as an oxidizing agent, Patent Document 1 discloses that white liquor containing polysulfide is oxidized using an oxygen-containing gas in the presence of manganese dioxide to increase the yield of pulp. However, such a reaction system does not synthesize sulfoxide or sulfone by selectively oxidizing an organic sulfur compound.

そこで選択性高く酸化反応を制御できる酸素を用いた酸化反応用の触媒として金ナノ粒子触媒の開発が行われており、以前にアルコールやアミンの酸素酸化反応用の金ナノ粒子触媒を本発明者らは報告している(非特許文献1及び2)。
また、特許文献2には、酸化マンガンとアルミナを含む担体に白金成分等を担持させた炭化水素の水蒸気改質、自己熱改質又は部分酸化改質触媒が、特許文献3には、酸化マンガンと酸化鉄とからなる担体に金顆粒(5ナノ以下)を担持させた、選択的に一酸化炭素を酸化する触媒が、特許文献4には、酸化マンガンの存在下、マンガンイオン、クロムイオンおよびコバルトイオンからなる群より選ばれる少なくとも一種の金属イオンを含む水溶液からなる、二酸化炭素および酸素を接触させて二酸化炭素を酢酸に変換する触媒が、それぞれ提案されている。
Therefore, gold nanoparticle catalysts have been developed as catalysts for oxidation reactions using oxygen that can control the oxidation reaction with high selectivity, and gold nanoparticle catalysts for oxygen oxidation reactions of alcohols and amines have been developed by the present inventors. Have reported (Non-Patent Documents 1 and 2).
Patent Document 2 discloses a hydrocarbon steam reforming, autothermal reforming or partial oxidation reforming catalyst in which a platinum component or the like is supported on a carrier containing manganese oxide and alumina, and Patent Document 3 discloses manganese oxide. A catalyst that selectively oxidizes carbon monoxide, in which gold granules (5 nano or less) are supported on a support made of iron oxide and iron oxide, is disclosed in Patent Document 4 in the presence of manganese oxide. There have been proposed catalysts that convert carbon dioxide into acetic acid by contacting carbon dioxide and oxygen, which are made of an aqueous solution containing at least one metal ion selected from the group consisting of cobalt ions.

特表2004−517231Special table 2004-517231

特開2008−161873JP2008-161873

特開2008−253978JP2008-253978

特開2011−168568JP2011-168568

T. Ishida, M. Nagaoka, T.Akita, M. Haruta, Chem. Eur. J. 2008, 14, 8456-8460.T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem. Eur. J. 2008, 14, 8456-8460.

T. Ishida, N. Kawakita, T.Akita, M. Haruta, Gold Bull. 2009, 42, 267-274.T. Ishida, N. Kawakita, T. Akita, M. Haruta, Gold Bull. 2009, 42, 267-274.

上述の金ナノ粒子触媒は、確かに酸化反応の触媒として有用であるが有機硫黄化合物の酸化に有用なものは提案されていないのが現状である。
有機硫黄化合物の酸化反応用の触媒として従来提案されているものでは、スルホキシドからさらにスルホンまで過剰酸化が進行し、スルホキシドを選択的に得ることが難しい。特に、酸素を酸化剤とした系ではスルフィドのスルホキシドへの選択的な酸化は未だ十分なものではない。
そのため、有機硫黄化合物の酸化反応を選択的に収率よく進行させることができる触媒の開発が要望されているのが現状である。
The gold nanoparticle catalyst described above is certainly useful as a catalyst for oxidation reaction, but at present, no catalyst useful for oxidation of organic sulfur compounds has been proposed.
Conventionally proposed catalysts for the oxidation reaction of organic sulfur compounds undergo excessive oxidation from sulfoxide to sulfone, making it difficult to selectively obtain sulfoxide. In particular, in a system using oxygen as an oxidizing agent, selective oxidation of sulfide to sulfoxide is not yet sufficient.
Therefore, at present, there is a demand for the development of a catalyst that can selectively advance the oxidation reaction of the organic sulfur compound with a high yield.

したがって本発明の目的は、有機硫黄化合物の酸化反応を選択的に収率よく進行させることができる触媒を提供するものである。   Accordingly, an object of the present invention is to provide a catalyst capable of allowing the oxidation reaction of an organic sulfur compound to proceed selectively with high yield.

本発明者らは上記課題を解消するために鋭意検討した結果、特定の金属酸化物に有機硫黄化合物の酸化触媒機能があることを知見し、さらに検討した結果、当該金属酸化物のみならず当該金属化合物に金微粒子を担持させてなるものも上記目的を達成しうることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の各発明を提供するものである。
1.下記式で表される化合物、CuMn及びV25、からなる群より選択される1種以上の金属酸化物からなることを特徴とする有機硫黄化合物の酸化触媒(以下、「第1発明」という場合には、この発明をいう)。
式:Mnxy
(式中、xは1〜10の整数を、yは1〜20の整数を示し、y≧x、2≧y/x≧1である)
2.上記金属酸化物は、その形状が球状、板状又は棒状である粒子であり、粒子径が0.5nm〜1μmである1記載の酸化触媒。
3.上記金属酸化物は、その形状が板状又は棒状である粒子であり、その厚さが5〜100nmである2記載の酸化触媒。
4.上記有機硫黄化合物の酸化に用いられる酸化剤が、酸素である1記載の酸化触媒。
5.上記有機硫黄化合物がメチルフェニルスルフィドであり、酸化反応により生成される生成物がスルホキシド又はスルホンである1記載の酸化触媒。
6.担体に金微粒子が担持されてなる、有機硫黄化合物の酸化触媒であって、
上記担体が、下記式で表される化合物、CuMn、V25、Co34及びCeO2からなる群より選択される1種以上の金属酸化物であることを特徴とする酸化触媒(以下、「第2発明」という場合には、この発明をいう)。
式:Mnxy
(式中、xは1〜10の整数を、yは1〜20の整数を示し、y≧x、2≧y/x≧1である)
7.上記金属酸化物は、その形状が球状、板状又は棒状である粒子であり、粒子径が0.5nm〜1μmである6記載の酸化触媒。
8.上記金属酸化物は、その形状が板状又は棒状である粒子であり、その厚さが5〜100nmである7記載の酸化触媒。
9.上記金微粒子は、原子が8〜10000個凝集してなる原子集合体を形成して担持されており、上記金微粒子各々の粒子径が0.8〜10nmである6記載の酸化触媒。
10.上記有機硫黄化合物の酸化に用いられる酸化剤が、酸素である6記載の酸化触媒。
11.上記有機硫黄化合物がメチルフェニルスルフィドであり、酸化反応により生成される生成物がスルホキシド又はスルホンである6記載の酸化触媒。
As a result of intensive investigations to solve the above problems, the present inventors have found that a specific metal oxide has an oxidation catalyst function of an organic sulfur compound, and as a result of further investigation, as a result of not only the metal oxide, The inventors have found that a metal compound having gold fine particles supported thereon can also achieve the above object, and have completed the present invention.
That is, the present invention provides the following inventions.
1. An organic sulfur compound oxidation catalyst (hereinafter referred to as “No. 1”) comprising at least one metal oxide selected from the group consisting of a compound represented by the following formula: CuMn 2 O 4 and V 2 O 5 "Invention" refers to this invention).
Formula: Mn x O y
(Wherein x represents an integer of 1 to 10, y represents an integer of 1 to 20, and y ≧ x, 2 ≧ y / x ≧ 1)
2. 2. The oxidation catalyst according to 1, wherein the metal oxide is a particle having a spherical shape, a plate shape, or a rod shape, and a particle diameter of 0.5 nm to 1 μm.
3. 3. The oxidation catalyst according to 2, wherein the metal oxide is a particle having a plate shape or a rod shape and a thickness of 5 to 100 nm.
4). 2. The oxidation catalyst according to 1, wherein the oxidizing agent used for oxidizing the organic sulfur compound is oxygen.
5. 2. The oxidation catalyst according to 1, wherein the organic sulfur compound is methylphenyl sulfide, and the product produced by the oxidation reaction is sulfoxide or sulfone.
6). An oxidation catalyst of an organic sulfur compound, in which gold fine particles are supported on a carrier,
The carrier is one or more metal oxides selected from the group consisting of a compound represented by the following formula, CuMn 2 O 4 , V 2 O 5 , Co 3 O 4 and CeO 2. Oxidation catalyst (hereinafter referred to as "the second invention" refers to this invention).
Formula: Mn x O y
(Wherein x represents an integer of 1 to 10, y represents an integer of 1 to 20, and y ≧ x, 2 ≧ y / x ≧ 1)
7). 7. The oxidation catalyst according to 6, wherein the metal oxide is a particle having a spherical shape, a plate shape, or a rod shape, and a particle diameter of 0.5 nm to 1 μm.
8). 8. The oxidation catalyst according to 7, wherein the metal oxide is a particle having a plate shape or a rod shape and a thickness of 5 to 100 nm.
9. 7. The oxidation catalyst according to 6, wherein the gold fine particles are supported by forming an atomic aggregate formed by agglomerating 8 to 10,000 atoms, and each of the gold fine particles has a particle diameter of 0.8 to 10 nm.
10. 7. The oxidation catalyst according to 6, wherein the oxidizing agent used for oxidizing the organic sulfur compound is oxygen.
11. 7. The oxidation catalyst according to 6, wherein the organic sulfur compound is methylphenyl sulfide, and the product produced by the oxidation reaction is sulfoxide or sulfone.

本発明の酸化触媒は、有機硫黄化合物の酸素による酸化反応を選択的に収率よく進行させることができるものである。特に金属酸化物を担体として金微粒子を担持させてなる酸化触媒が、特に収率良く、選択性高く、酸素を酸化物とした有機硫黄化合物の酸化反応を行うことができ、好ましいものである。   The oxidation catalyst of the present invention can selectively advance an oxidation reaction of an organic sulfur compound with oxygen with high yield. In particular, an oxidation catalyst in which gold fine particles are supported using a metal oxide as a carrier is preferable because it can perform an oxidation reaction of an organic sulfur compound using oxygen as an oxide with particularly high yield and high selectivity.

以下、本発明についてさらに詳細に説明する。
本発明(第1発明)の有機硫黄化合物の酸化触媒は、特定の金属酸化物であることを特徴とする。
以下詳述する。
Hereinafter, the present invention will be described in more detail.
The organic sulfur compound oxidation catalyst of the present invention (first invention) is a specific metal oxide.
This will be described in detail below.

<有機硫黄化合物及び酸化剤>
本発明の酸化触媒が酸化の対象とする上記有機硫黄化合物は、硫黄原子を含み酸化可能な有機化合物であれば特に制限なく用いることができるが、具体的には以下の化合物等を挙げることができる。
メチルフェニルスルフィド、4−メトキシチオアニソール、4−フルオロチオアニソール、4−ブロモチオアニソール、4−クロロチオアニソール、メチル(4−メチルフェニル)スルフィド、エチルフェニルスルフィド、ジフェニルスルフィド、テトラヒドロチオフェン、ジブチルスルフィド
上記有機硫黄化合物の酸化に用いられる酸化剤は、酸素であるのが好ましい。
<Organic sulfur compounds and oxidizing agents>
The organic sulfur compound to be oxidized by the oxidation catalyst of the present invention can be used without particular limitation as long as it contains a sulfur atom and can be oxidized, and specific examples thereof include the following compounds. it can.
Methyl phenyl sulfide, 4-methoxythioanisole, 4-fluorothioanisole, 4-bromothioanisole, 4-chlorothioanisole, methyl (4-methylphenyl) sulfide, ethylphenyl sulfide, diphenyl sulfide, tetrahydrothiophene, dibutyl sulfide The oxidizing agent used for the oxidation of the organic sulfur compound is preferably oxygen.

<金属酸化物>
本発明の酸化触媒である上記の特定の金属酸化物は、下記式で表される化合物、CuMn及びV25からなる群より選択される金属酸化物の1種以上である。
式:Mnxy
(式中、xは1〜10の整数を、yは1〜20の整数を示し、y≧x、2≧y/x≧1である)
x及びyが上記範囲外であると、酸化触媒としての機能が低減する。
上記式で表される化合物としては、具体的には、MnO、Mn、Mn、MnO 等を挙げることができ、これらの2種以上を混合して用いてもよい。
<Metal oxide>
The specific metal oxide is an oxidation catalyst of the present invention is a compound represented by the following formula is at least one metal oxide selected from the group consisting of CuMn 2 O 4 and V 2 O 5.
Formula: Mn x O y
(Wherein x represents an integer of 1 to 10, y represents an integer of 1 to 20, and y ≧ x, 2 ≧ y / x ≧ 1)
When x and y are out of the above ranges, the function as an oxidation catalyst is reduced.
Specific examples of the compound represented by the above formula include MnO, Mn 3 O 4 , Mn 2 O 3 , and MnO 2 , and two or more of these may be used in combination.

本発明の酸化触媒又は上記担体としての金属酸化物の形状は、球状、板状、フラワー状、ロッド(棒)状等種々形態とすることができる。
また、本発明において上記担体としての金属酸化物の大きさは、平均粒子径で5nm〜1μmであるのが好ましく、10nmから1,000nmであることがさらに好ましい。また、担持される上記金微粒子の粒子径の4〜20倍であるのが好ましい。
また、板状、フラワー状、ロッド(棒)状である場合には、厚さが5nm〜100nmとするのが好ましい。
The shape of the oxidation catalyst of the present invention or the metal oxide as the carrier can be various forms such as a spherical shape, a plate shape, a flower shape, and a rod (rod) shape.
In the present invention, the size of the metal oxide as the carrier is preferably 5 nm to 1 μm as an average particle diameter, and more preferably 10 nm to 1,000 nm. Moreover, it is preferable that it is 4 to 20 times the particle diameter of the gold fine particles carried.
Moreover, when it is plate shape, flower shape, and rod (bar) shape, it is preferable that thickness shall be 5 nm-100 nm.

本発明においては上記金属酸化物として上記式で表される化合物、すなわち酸化マンガンを最も好ましく用いることができる。
酸化マンガンは、上述の具体的に例示した化合物をそれぞれ単独で用いてもよいが、2種以上混合して用いてもよい。特に好ましくは、MnOとMnとを、1:0.1〜1:10で混合してなる酸化マンガン混合物を用いるのが好ましい。
酸化マンガンの結晶構造は特に制限されず、α型(ホーランダイト型)、β型(ルチル型)、γ型、δ型、λ型(スピネル型)、及びラムスデライト型の結晶構造を採用することができる。
In the present invention, the compound represented by the above formula, that is, manganese oxide can be most preferably used as the metal oxide.
As the manganese oxide, the compounds specifically exemplified above may be used singly or in combination of two or more. It is particularly preferable to use a manganese oxide mixture obtained by mixing MnO and Mn 2 O 3 in a ratio of 1: 0.1 to 1:10.
The crystal structure of manganese oxide is not particularly limited, and α-type (hollandite type), β-type (rutile type), γ-type, δ-type, λ-type (spinel type), and ramsdellite type crystal structures should be adopted. Can do.

上述の各金属酸化物はそれぞれ常法に従って得ることができる。
たとえば上記酸化マンガンは、例えば下記の反応式を満たす反応を行うことにより得ることができる。
2 KMnO4 + 3 Mn(NO3)2 +
6 NaOH → 5 MnO2 + 2 KOH + 6 NaNO3 + 2 H2O (1)
Mn(NO3)2 空気焼成→Mn2O3 (2)
Mn(NO3)2 + Na2CO3
→ MnO + 2 NaNO3 + 2 CO2 (3)
具体的にはたとえば、硝酸マンガン六水和物を蒸留水に溶解し、この水溶液を炭酸ナトリウム水溶液等に加え、反応させて、乾燥させた後、焼成を行うことにより得ることができる。
また、本発明の酸化触媒には、上述の担体及び金微粒子以外に本発明の所望の効果を損なわない範囲で他の成分を配合してもよい。
このようにして得られる本発明の酸化触媒の使用方法については後述する。
また酸化触媒の比表面積は、50〜200m2/gであるのが好ましい。
Each of the above metal oxides can be obtained according to a conventional method.
For example, the manganese oxide can be obtained, for example, by performing a reaction that satisfies the following reaction formula.
2 KMnO 4 + 3 Mn (NO 3 ) 2 +
6 NaOH → 5 MnO 2 + 2 KOH + 6 NaNO 3 + 2 H 2 O (1)
Mn (NO 3 ) 2 air firing → Mn 2 O 3 (2)
Mn (NO 3 ) 2 + Na 2 CO 3
→ MnO + 2 NaNO 3 + 2 CO 2 (3)
Specifically, for example, it can be obtained by dissolving manganese nitrate hexahydrate in distilled water, adding this aqueous solution to a sodium carbonate aqueous solution, reacting, drying, and then baking.
Moreover, you may mix | blend another component with the oxidation catalyst of this invention in the range which does not impair the desired effect of this invention other than the above-mentioned support | carrier and gold fine particle.
A method for using the oxidation catalyst of the present invention thus obtained will be described later.
The specific surface area of the oxidation catalyst is preferably 50 to 200 m 2 / g.

次いで、本発明(第2発明)の酸化触媒について説明する。有機硫黄化合物及び酸化剤については上述の第1発明と同じである。
本発明(第2発明)の酸化触媒は、担体に金微粒子が担持されてなる、有機硫黄化合物の酸化触媒であって、上記担体が、特定の金属酸化物であることを特徴とする。
<金微粒子>
本発明において用いられる金微粒子は、金原子が8〜1,000個凝集してなる原子集合体を形成して担持されている。
上記金微粒子各々の粒子径(原子集合体の径)は、0.8〜10nmであるのが反応性の点で好ましい。
粒子径は、球状粒子の場合は直径、楕円形粒子の場合は長径であり、走査型電子顕微鏡(SEM)観察あるいは透過型電子顕微鏡(TEM)観察から、粒子径分布を作り、平均値を計算することで求めることができる。
また、粒子径の分布は上述の好ましい粒子径の範囲内にあるのが好ましい。
金微粒子の製造方法については、後述の酸化触媒の製造方法の欄において説明する。
Next, the oxidation catalyst of the present invention (second invention) will be described. The organic sulfur compound and the oxidizing agent are the same as those in the first invention.
The oxidation catalyst of the present invention (second invention) is an organic sulfur compound oxidation catalyst in which gold fine particles are supported on a carrier, wherein the carrier is a specific metal oxide.
<Gold fine particles>
The gold fine particles used in the present invention are supported by forming an atomic aggregate formed by aggregating 8 to 1,000 gold atoms.
The particle diameter of each gold fine particle (the diameter of the atomic aggregate) is preferably 0.8 to 10 nm from the viewpoint of reactivity.
The particle diameter is the diameter for spherical particles, and the long diameter for elliptical particles. From the observation with a scanning electron microscope (SEM) or transmission electron microscope (TEM), a particle diameter distribution is created and the average value is calculated. You can ask for it.
The particle size distribution is preferably within the above-mentioned preferable particle size range.
The method for producing the gold fine particles will be described in the column for the method for producing the oxidation catalyst described later.

<担体>
本発明において担体として用いられる上記の特定の金属酸化物は、下記式で表される化合物、CuMn、V25、Co34及びCeO2からなる群より選択される金属酸化物の1種以上である。
式:Mnxy
(式中、xは1〜10の整数を、yは1〜20の整数を示し、y≧x、2≧y/x≧1である)
x及びyが上記範囲外であると酸化触媒としての機能が低減する。
上記式で表される化合物としては、具体的には、MnO、Mn、Mn、MnO 等を挙げることができ、これらの2種以上を混合して用いてもよい。
<Carrier>
The specific metal oxide used as a carrier in the present invention is a metal oxide selected from the group consisting of a compound represented by the following formula, CuMn 2 O 4 , V 2 O 5 , Co 3 O 4 and CeO 2. One or more of the objects.
Formula: Mn x O y
(Wherein x represents an integer of 1 to 10, y represents an integer of 1 to 20, and y ≧ x, 2 ≧ y / x ≧ 1)
When x and y are out of the above ranges, the function as an oxidation catalyst is reduced.
Specific examples of the compound represented by the above formula include MnO, Mn 3 O 4 , Mn 2 O 3 , and MnO 2 , and two or more of these may be used in combination.

本発明の酸化触媒又は上記担体としての金属酸化物の形状は、球状、板状、フラワー状、ロッド(棒)状等種々形態とすることができる。
また、本発明において上記担体としての金属酸化物の大きさは、平均粒子径で0.5nm〜1μmであるのが好ましく、10nmから1,000nmであることがさらに好ましい。また、担持される上記金微粒子の粒子径の4〜20倍であるのが好ましい。
また、板状、フラワー状、ロッド(棒)状である場合には、厚さを5nm〜100nmとするのが好ましい。
The shape of the oxidation catalyst of the present invention or the metal oxide as the carrier can be various forms such as a spherical shape, a plate shape, a flower shape, and a rod (rod) shape.
In the present invention, the average size of the metal oxide as the carrier is preferably 0.5 nm to 1 μm, and more preferably 10 nm to 1,000 nm. Moreover, it is preferable that it is 4 to 20 times the particle diameter of the gold fine particles carried.
In the case of a plate shape, a flower shape, or a rod (rod) shape, the thickness is preferably 5 nm to 100 nm.

本発明においては上記金属酸化物として上記式で表される化合物、すなわち酸化マンガンを最も好ましく用いることができる。
酸化マンガンは、上述の具体的に例示した化合物をそれぞれ単独で用いてもよいが、2種以上混合して用いてもよい。特に好ましくは、MnOとMnとを、1:0.1〜1:10で混合してなる酸化マンガン混合物を用いるのが好ましい。
酸化マンガンの結晶構造は特に制限されず、α型(ホーランダイト型)、β型(ルチル型)、γ型、δ型、λ型(スピネル型)、及びラムスデライト型の結晶構造を採用することができる。
In the present invention, the compound represented by the above formula, that is, manganese oxide can be most preferably used as the metal oxide.
As the manganese oxide, the compounds specifically exemplified above may be used singly or in combination of two or more. It is particularly preferable to use a manganese oxide mixture obtained by mixing MnO and Mn 2 O 3 in a ratio of 1: 0.1 to 1:10.
The crystal structure of manganese oxide is not particularly limited, and α-type (hollandite type), β-type (rutile type), γ-type, δ-type, λ-type (spinel type), and ramsdellite type crystal structures should be adopted. Can do.

上記酸化マンガンは、常法に従い製造することができ、例えば下記の反応式を満たす反応を行うことにより得ることができる。
2KMnO4 + 3Mn(NO3)2 +6NaOH
→5MnO2 +2KOH+6NaNO3 +2H2O(1)
Mn(NO3)2 空気焼成→Mn2O3 (2)
Mn(NO3)2 +Na2CO3
MnO +2NaNO3 +2CO2 (3)
具体的にはたとえば、硝酸マンガン六水和物を蒸留水に溶解し、この水溶液を炭酸ナトリウム水溶液等に加え、反応させて、乾燥させた後、焼成を行うことにより得ることができる。
The said manganese oxide can be manufactured in accordance with a conventional method, for example, can be obtained by performing reaction which satisfy | fills the following reaction formula.
2KMnO 4 + 3Mn (NO 3 ) 2 + 6NaOH
→ 5MnO 2 + 2KOH + 6NaNO 3 + 2H 2 O (1)
Mn (NO 3 ) 2 air firing → Mn 2 O 3 (2)
Mn (NO 3 ) 2 + Na 2 CO 3
MnO + 2NaNO 3 + 2CO 2 (3)
Specifically, for example, it can be obtained by dissolving manganese nitrate hexahydrate in distilled water, adding this aqueous solution to a sodium carbonate aqueous solution, reacting, drying, and then baking.

<金微粒子の含有形態及び割合>
本発明の酸化触媒において、上記金微粒子は、たとえば担体が板状の場合には、その表裏両面に複数個規則的に配置されているのが好ましい。
上記担体と上記金微粒子との重量割合は、担体100重量部に対して、上記金微粒子0.1〜10重量部であるのが好ましい。
また酸化触媒の比表面積は、50〜200m2/gであるのが好ましい。
<Contained form and proportion of fine gold particles>
In the oxidation catalyst of the present invention, it is preferable that a plurality of the gold fine particles are regularly arranged on both the front and back surfaces, for example, when the carrier is plate-shaped.
The weight ratio of the carrier to the gold fine particles is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the carrier.
The specific surface area of the oxidation catalyst is preferably 50 to 200 m 2 / g.

<第3成分>
また、本発明の酸化触媒には、上述の担体及び金微粒子以外に本発明の所望の効果を損なわない範囲で他の成分を配合してもよい。
<Third component>
Moreover, you may mix | blend another component with the oxidation catalyst of this invention in the range which does not impair the desired effect of this invention other than the above-mentioned support | carrier and gold fine particle.

<製造方法>
第2発明の酸化触媒は、金属酸化物表面に金微粒子を分散・固定させる方法として従来公知の手法を特に制限なく採用して製造することができる。
たとえば、析出沈殿法の他、共沈法、析出還元法、気相グラフティング、固相混合法などが挙げられる。
例えば、析出沈殿法により製造する方法を示すと、金属酸化物粒子粉末を板状、球状、円筒状、蜂の巣状などの支持体に担持させて成形された成形体を金化合物の水溶液に懸濁するかまたは浸漬させ、アルカリを加えてpHを7〜10の範囲に調整し、金水酸化物を金属酸化物表面上に析出沈殿させる。水溶液の金化合物濃度を後述の範囲に調整すると共に、pHを上述の範囲に、温度を好ましくは0〜90℃、特に好ましくは30℃から70℃までの範囲に調整して、攪拌を1時間以上続けることにより金水酸化物が表面に分散・固定化された金属酸化物が得られる。これを水洗し、乾燥後、300℃以上で空気焼成することによって、金微粒子が担体表面に担持された酸化触媒が得られる。
<Manufacturing method>
The oxidation catalyst of the second invention can be produced by employing a conventionally known method without any limitation as a method for dispersing and fixing gold fine particles on the surface of the metal oxide.
For example, in addition to the precipitation method, a coprecipitation method, a precipitation reduction method, a gas phase grafting method, a solid phase mixing method, and the like can be given.
For example, a method for producing by precipitation method is shown: a molded body formed by supporting metal oxide particle powder on a plate-like, spherical, cylindrical, or honeycomb-like support is suspended in an aqueous solution of a gold compound. Or dipping and adding an alkali to adjust the pH to a range of 7 to 10 to precipitate and precipitate the gold hydroxide on the surface of the metal oxide. While adjusting the gold compound concentration of the aqueous solution to the range described later, the pH is adjusted to the above-mentioned range, the temperature is preferably adjusted to 0 to 90 ° C., particularly preferably from 30 ° C. to 70 ° C., and stirring is performed for 1 hour. By continuing the above, a metal oxide in which gold hydroxide is dispersed and immobilized on the surface can be obtained. This is washed with water, dried, and then fired at 300 ° C. or higher to obtain an oxidation catalyst in which gold fine particles are supported on the surface of the carrier.

上記金化合物としては、特に制限されないが、例えば、四塩化金酸(HAuCl4)、四塩化金酸塩(例えばNaAuCl4)、シアン化金(AuCN)、シアン化金カリウム{K[Au(CN)2]}、三塩化ジエチルアミン金酸[(C252NH・AuCl3]、エチレンジアミン金錯体(例えば、塩化物錯体{Au[C24(NH222Cl3})、ジメチル金β‐ジケトン誘導体錯体(例えば、ジメチル金アセチルアセトナート{(CH32Au[CH3COCHCOCH3]})や、その他、水や有機溶媒に溶解できる金の塩や錯体などが挙げられる。 Examples of the gold compound is not particularly limited, for example, tetrachloroauric acid (HAuCl 4), tetrachloroauric acid salts (e.g., NaAuCl 4), gold cyanide (AuCN), potassium gold cyanide {K [Au (CN ) 2 ]}, diethylamine trichloride gold acid [(C 2 H 5 ) 2 NH · AuCl 3 ], ethylenediamine gold complex (for example, chloride complex {Au [C 2 H 4 (NH 2 ) 2 ] 2 Cl 3 }) ), Dimethylgold β-diketone derivative complexes (for example, dimethylgold acetylacetonate {(CH 3 ) 2 Au [CH 3 COCHCOCH 3 ]}), and other gold salts and complexes that can be dissolved in water or organic solvents. Can be mentioned.

金化合物の水溶液中の濃度は、希薄すぎると金が金属酸化物上に水酸化物として析出できなくなり、濃厚すぎると金属酸化物上だけでなく溶液中でも金水酸化物の沈殿が起こってしまうので、0.1mmol/Lから10mmol/Lまでの範囲が望ましく、0.5mmol/Lから2mmol/Lまでの範囲がより望ましい。
pH調整用のアルカリとしては、アルカリ金属の水酸化物や炭酸塩、アルカリ土類金属の水酸化物や炭酸塩、アンモニア、尿素などを使うことができる。上記溶液のpHは、好ましくは5〜13、さらに好ましくは6〜10であり、金の水酸化物の溶解度が相対的に低い範囲を選ぶことが肝要である。
If the concentration of the gold compound in the aqueous solution is too dilute, gold cannot be deposited as a hydroxide on the metal oxide, and if it is too thick, the gold hydroxide precipitates not only on the metal oxide but also in the solution. The range from 0.1 mmol / L to 10 mmol / L is desirable, and the range from 0.5 mmol / L to 2 mmol / L is more desirable.
As the alkali for pH adjustment, alkali metal hydroxide or carbonate, alkaline earth metal hydroxide or carbonate, ammonia, urea or the like can be used. The pH of the solution is preferably 5 to 13, more preferably 6 to 10, and it is important to select a range in which the solubility of gold hydroxide is relatively low.

<使用方法(第1発明及び第2発明共通)>
本発明の酸化触媒は、有機硫黄化合物の酸化反応に用いられるものであり、その反応形態は特に制限されないが、具体的にはたとえば以下の有機硫黄酸化物の製造方法に適用することができる。
有機硫黄化合物と、酸化剤としての酸素と、本発明の酸化触媒とを、好ましくは反応温度50〜200℃、さらに好ましくは80〜140℃で、好ましくは10〜40時間、酸素圧力が好ましくは1〜15atm(ゲージ圧0.0〜1.4MPa)、好ましくは3〜11atm(ゲージ圧0.2〜1.0MPa)の反応条件で、無溶媒又は下記反応溶媒中で反応させる製造方法。
反応溶媒:トルエン、キシレン、クロロベンゼン、1,2-ジクロロベンゼンなどの芳香族炭化水素溶媒、N,N-ジメチルホルムアミドや1,4−ジオキサンなどの高極性溶媒等、中でも特に1,2-ジクロロベンゼンが効果的である。
また、酸化触媒の使用量は特に制限されないが、上記有機硫黄化合物100重量部に対して0.1〜500重量部とするのが好ましい。
<How to use (common to the first and second inventions)>
The oxidation catalyst of the present invention is used for an oxidation reaction of an organic sulfur compound, and the reaction form is not particularly limited. Specifically, for example, the oxidation catalyst can be applied to the following method for producing an organic sulfur oxide.
The organic sulfur compound, oxygen as an oxidizing agent, and the oxidation catalyst of the present invention are preferably reacted at a temperature of 50 to 200 ° C., more preferably 80 to 140 ° C., preferably 10 to 40 hours, preferably an oxygen pressure. A production method in which the reaction is carried out in the absence of a solvent or in the following reaction solvent under reaction conditions of 1 to 15 atm (gauge pressure 0.0 to 1.4 MPa), preferably 3 to 11 atm (gauge pressure 0.2 to 1.0 MPa).
Reaction solvent: aromatic hydrocarbon solvents such as toluene, xylene, chlorobenzene, 1,2-dichlorobenzene, highly polar solvents such as N, N-dimethylformamide and 1,4-dioxane, especially 1,2-dichlorobenzene Is effective.
The amount of the oxidation catalyst used is not particularly limited, but is preferably 0.1 to 500 parts by weight with respect to 100 parts by weight of the organic sulfur compound.

なお、本発明において、「選択的」とは、酸化対象物の特定基を特定の価数で反応させることを意味する。 In the present invention, “selective” means that a specific group of an oxidation target is reacted at a specific valence.

以下、本発明を実施例及び比較例によりさらに具体的に説明するが、本発明はこれらに制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not restrict | limited to these.

〔実施例1〕 MnOxの調製(300 ℃、4時間焼成)
硝酸マンガン六水和物 (11.5 g,0.04mol)を400mLの蒸留水に溶解した。得られた水溶液を0.1M炭酸ナトリウム水溶液480mLに一気に加え、室温で1時間撹拌した。生じた沈殿物を上澄み液のpHが安定するまで、蒸留水で洗浄し、吸引ろ過して沈殿物のみを取り出し、得られた沈殿物を120℃で一晩乾燥した後、空気中300℃で4時間焼成を行い、粉末の焼成物を得た。
得られた焼成物についてXRDパターンを測定したところ、MnOとMnの混合物であった。
[Example 1] Preparation of MnOx (calcined at 300 ° C for 4 hours)
Manganese nitrate hexahydrate (11.5 g, 0.04 mol) was dissolved in 400 mL of distilled water. The obtained aqueous solution was added all at once to 480 mL of a 0.1 M aqueous sodium carbonate solution and stirred at room temperature for 1 hour. The resulting precipitate is washed with distilled water until the pH of the supernatant is stabilized, suction filtered to remove only the precipitate, and the resulting precipitate is dried at 120 ° C. overnight and then at 300 ° C. in air. Firing was performed for 4 hours to obtain a powder fired product.
When the XRD pattern was measured about the obtained baked product, it was a mixture of MnO 2 and Mn 2 O 3 .

〔実施例2〕 MnOxの調製(200℃,2時間水素還元)
実施例1で得られた粉末をU字管に充填して、水素10vol%を含む窒素ガスを流通させてから200℃に昇温して2時間還元処理を行った。
得られた粉末についてXRDパターンを測定したところ、MnとMn、MnOの混合物であることがわかった。
〔実施例3〕 MnOxの調製(300℃,10時間水素還元)
実施例1で得られた粉末をU字管に充填して、水素10vol%を含む窒素ガスを流通させてから300℃に昇温して10時間還元処理を行った。
得られた粉末についてXRDパターンを測定したところ、MnとMnOの混合物であることがわかった。
〔実施例4〕MnOの調製
硝酸マンガン六水和物(21.5g,0.075mol)を125mLの蒸留水に溶解して、得られた水溶液を過マンガン酸カリウム(7.9
g,0.050mol)と水酸化カリウム(6.0g,0.15mol)との水溶液125
mLに一気に加え、その後室温で1時間撹拌した。ここで、生じた沈殿物を上澄み液のpHが安定するまで蒸留水で洗浄した後、吸引ろ過し、120℃で一晩乾燥した。乾燥終了後、空気中300℃で4時間焼成を行い、粉体の焼成物を得た。
得られた粉末についてXRDパターンを測定したところ、MnO2担体であることがわかった。
[Example 2] Preparation of MnOx (hydrogen reduction at 200 ° C for 2 hours)
The powder obtained in Example 1 was filled in a U-shaped tube, and after flowing nitrogen gas containing 10 vol% of hydrogen, the temperature was raised to 200 ° C. and reduction treatment was performed for 2 hours.
The obtained powder of a XRD pattern was measured and found to be a mixture of Mn 2 O 3 and Mn 3 O 4, MnO.
Example 3 Preparation of MnOx (hydrogen reduction at 300 ° C. for 10 hours)
The powder obtained in Example 1 was filled in a U-shaped tube, and after nitrogen gas containing 10 vol% of hydrogen was circulated, the temperature was raised to 300 ° C. and reduction treatment was performed for 10 hours.
The obtained powder of a XRD pattern was measured and found to be a mixture of Mn 3 O 4 and MnO.
Example 4 Preparation of MnO 2 Manganese nitrate hexahydrate (21.5 g, 0.075 mol) was dissolved in 125 mL of distilled water, and the resulting aqueous solution was dissolved in potassium permanganate (7.9).
g, 0.050 mol) and potassium hydroxide (6.0 g, 0.15 mol) 125
The mixture was added to mL at once, and then stirred at room temperature for 1 hour. Here, the resulting precipitate was washed with distilled water until the pH of the supernatant was stabilized, then suction filtered and dried at 120 ° C. overnight. After the completion of drying, firing was performed in air at 300 ° C. for 4 hours to obtain a powdered fired product.
The obtained powder of a XRD pattern was measured and found to be MnO 2 carrier.

〔実施例5〕 1wt%(Auの重量がMnOxの重量の1%、以下同じ)Au/MnOxの調製(析出沈殿法)
21.5mgのエチレンジアミン金錯体{Au[C24(NH222Cl3}を水に溶解して得られた1×10−3 Mの水溶液50mLを70 ℃に加熱した。これに0.1 M 水酸化ナトリウム水溶液を添加してpH7付近に調整し、担体として実施例1で得られたMnOとMnの混合物1.0gを加え、70℃で1時間撹拌した後、沈殿物を上澄み液のpHが安定するまで、蒸留水で洗浄した。吸引ろ過して沈殿物を分離し、得られた沈殿物を120℃で一晩乾燥した後、空気中300℃で4時間焼成を行い、目的とする金微粒子が担持された本発明の酸化触媒を得た。
〔実施例6〕 1wt%Au/MnOの調製
(析出沈殿法)
担体として実施例4で得たMnOを用いた以外は実施例5と同様にして本発明の酸化触媒を得た。
〔実施例7〕 1wt%Au/MnOxの調製
(固相混合法)
16.8mgのジメチル金アセチルアセトナートを秤量し、実施例1で得たMnOとMnの混合物1.0gと一緒に乳鉢で磨砕混合を20分間行った。その後、混合粉末を空気中300℃で4時間焼成
を行い、酸化触媒を得た。
〔実施例8〕1wt%Au/MnOの調製(固相混合法)
担体として、実施例4で得たMnOを用いた以外は実施例7と同様にして酸化触媒を得た。
〔実施例9〕1wt%Au/Vの調製
(固相混合法)
担体として、V(実施例9)を用いた以外は実施例7と同様にして酸化触媒を得た。
[Example 5] 1 wt% (Au weight is 1% of MnOx weight, the same applies hereinafter) Preparation of Au / MnOx (precipitation precipitation method)
50 mL of a 1 × 10 −3 M aqueous solution obtained by dissolving 21.5 mg of ethylenediamine gold complex {Au [C 2 H 4 (NH 2 ) 2 ] 2 Cl 3 } in water was heated to 70 ° C. A 0.1 M aqueous sodium hydroxide solution was added thereto to adjust the pH to around 7, and 1.0 g of a mixture of MnO 2 and Mn 2 O 3 obtained in Example 1 was added as a carrier, followed by stirring at 70 ° C. for 1 hour. After that, the precipitate was washed with distilled water until the pH of the supernatant was stabilized. The precipitate is separated by suction filtration, and the resulting precipitate is dried at 120 ° C. overnight and then calcined in air at 300 ° C. for 4 hours to carry the target gold fine particles supported by the present invention. Got.
[Example 6] Preparation of 1 wt% Au / MnO 2 (precipitation precipitation method)
An oxidation catalyst of the present invention was obtained in the same manner as in Example 5 except that MnO 2 obtained in Example 4 was used as the carrier.
[Example 7] Preparation of 1 wt% Au / MnOx (solid phase mixing method)
16.8 mg of dimethyl gold acetylacetonate was weighed and ground and mixed in a mortar with 1.0 g of the mixture of MnO 2 and Mn 2 O 3 obtained in Example 1 for 20 minutes. Thereafter, the mixed powder was calcined in air at 300 ° C. for 4 hours to obtain an oxidation catalyst.
[Example 8] Preparation of 1 wt% Au / MnO 2 (solid phase mixing method)
An oxidation catalyst was obtained in the same manner as in Example 7 except that MnO 2 obtained in Example 4 was used as the carrier.
Preparation of Example 9 1wt% Au / V 2 O 5 ( solid mixing method)
An oxidation catalyst was obtained in the same manner as in Example 7 except that V 2 O 5 (Example 9) was used as the carrier.

〔実施例10〕 Au/Coの調製(Au/Co=1/19重量比)(共沈法)
3.2Mの四塩化金酸0.2mLと硝酸コバルト六水和物3.58gを129mLの蒸留水に溶解した。この溶液を0.1M炭酸ナトリウム水溶液163mLに一気に加え、室温で3時間撹拌した。生じた沈殿物を上澄み液のpHが安定するまで、蒸留水で洗浄した。吸引ろ過、120℃で一晩乾燥した後、空気中400℃で5時間焼成を行った。
〔実施例11〕 1wt%Au/CeOの調製(析出沈殿法)
金化合物として四塩化金酸を、担体としてCeOを用いた以外は実施例5と同様にして触媒を得た。
[Example 10] Preparation of Au / Co 3 O 4 (Au / Co = 1/19 weight ratio) (coprecipitation method)
3.2 mL of 3.2 M tetrachloroauric acid and 3.58 g of cobalt nitrate hexahydrate were dissolved in 129 mL of distilled water. This solution was added all at once to 163 mL of a 0.1 M aqueous sodium carbonate solution and stirred at room temperature for 3 hours. The resulting precipitate was washed with distilled water until the pH of the supernatant was stabilized. After suction filtration and drying at 120 ° C. overnight, calcination was performed in air at 400 ° C. for 5 hours.
Preparation of Example 11 1wt% Au / CeO 2 (deposition precipitation method)
A catalyst was obtained in the same manner as in Example 5 except that tetrachloroauric acid was used as the gold compound and CeO 2 was used as the carrier.

得られた酸化触媒及び触媒を用いてスルフィドの酸素酸化反応を行い、効果を確認した。
〔試験例1〕触媒の選択(金担持金属酸化物および金属酸化物)
撹拌子を付したオートクレーブにメチルフェニルスルフィド(表1の1で示す化合物) (58.8μL,0.5mmol)、実施例1で得られた酸化触媒又は触媒(98.5 g)、トルエン(5mL)を投入し、さらに。酸素を室温で6atm(ゲージ圧0.5 MPa)となる様に封入した。その後、100℃に昇温し24時間撹拌した。撹拌終了後、常温に戻し、内部標準としてメシチレン(34.8μL,0.25mmol)を加え、クロロホルムで希釈し、反応終了物を得た。得られた反応終了物をろ過して触媒を除去し、反応生成物溶液を得た。得られた反応生成物溶液を少量取り出しCDClで希釈したものをH−NMR測定(日本電子製300MHzNMR)し、収率及び選択性を求めた。その結果を表2に示す。
また、実施例1、5、6、8で得られた酸化触媒について比表面積を測定した。比表面積の測定はTristar 3000(商品名、島津製作所)を用いて窒素吸着により行った。また測定前処理として、真空下で200℃2時間焼成を行ってから測定した。
その結果、実施例1:133m2/g、実施例5:134 m2/g、実施例6:86m2/g、実施例8:69m2/gであった。
Using the obtained oxidation catalyst and catalyst, oxygen oxidation reaction of sulfide was performed to confirm the effect.
[Test Example 1] Selection of catalyst (gold-supported metal oxide and metal oxide)
In an autoclave equipped with a stirrer, methylphenyl sulfide (compound represented by 1 in Table 1) (58.8 μL, 0.5 mmol), the oxidation catalyst or catalyst obtained in Example 1 (98.5 g), toluene (5 mL) ) And further. Oxygen was sealed at room temperature so that the pressure was 6 atm (gauge pressure 0.5 MPa). Then, it heated up at 100 degreeC and stirred for 24 hours. After completion of the stirring, the temperature was returned to room temperature, mesitylene (34.8 μL, 0.25 mmol) was added as an internal standard, and diluted with chloroform to obtain a reaction finished product. The obtained reaction product was filtered to remove the catalyst, thereby obtaining a reaction product solution. A small amount of the obtained reaction product solution was taken out and diluted with CDCl 3 , and subjected to 1 H-NMR measurement (300 MHz NMR manufactured by JEOL Ltd.) to determine yield and selectivity. The results are shown in Table 2.
Further, the specific surface area of the oxidation catalysts obtained in Examples 1, 5, 6, and 8 was measured. The specific surface area was measured by nitrogen adsorption using Tristar 3000 (trade name, Shimadzu Corporation). Further, as a pretreatment for measurement, measurement was performed after firing at 200 ° C. for 2 hours under vacuum.
As a result, Example 1 was 133 m 2 / g, Example 5 was 134 m 2 / g, Example 6 was 86 m 2 / g, and Example 8 was 69 m 2 / g.

Figure 2013116440
Figure 2013116440

〔試験例2〜7〕
それぞれ実施例1で得られた触媒に変えて実施例2〜7で得られた触媒を用いた以外は試験例1と同様にして試験を行い、収率と選択性とを確認した。
[Test Examples 2 to 7]
Tests were conducted in the same manner as in Test Example 1 except that the catalysts obtained in Examples 2 to 7 were used in place of the catalyst obtained in Example 1, and the yield and selectivity were confirmed.

Figure 2013116440
Figure 2013116440

〔比較例1〜4〕
担体として、TiO(比較例1)、Fe(比較例2)、NiO(比較例3)、CuO(比較例4)及びZnO(比較例5)を用いた以外は実施例5と同様にして金微粒子が担持された触媒を得た。
得られた酸化触媒及び触媒を用いてスルフィドの酸素酸化反応を行い、効果を確認した。
〔試験例8〕触媒の選択 (金担持金属酸化物および金属酸化物)
表3に示す金属酸化物に金微粒子が担持されてなる酸化触媒を用いて上記化学式の酸化反応を試験例1と同様にして行い、収率と選択性を確認した。なお、MnOについては上述の試験例5と同じである。結果を表3に示す。
表3に示す結果から明らかなように、酸化ヴァナジウム、酸化マンガン、酸化コバルト、酸化セリウムを担体とする酸化触媒では酸素酸化反応が進行し、特に酸化マンガン担体が好ましいことがわかる。
[Comparative Examples 1-4]
Example 5 except that TiO 2 (Comparative Example 1), Fe 2 O 3 (Comparative Example 2), NiO (Comparative Example 3), CuO (Comparative Example 4) and ZnO (Comparative Example 5) were used as the carrier. Similarly, a catalyst carrying gold fine particles was obtained.
Using the obtained oxidation catalyst and catalyst, oxygen oxidation reaction of sulfide was performed to confirm the effect.
[Test Example 8] Selection of catalyst (gold-supported metal oxide and metal oxide)
The oxidation reaction of the above chemical formula was carried out in the same manner as in Test Example 1 using an oxidation catalyst in which gold fine particles were supported on the metal oxide shown in Table 3, and the yield and selectivity were confirmed. Note that MnO x is the same as Test Example 5 described above. The results are shown in Table 3.
As is clear from the results shown in Table 3, it can be seen that an oxidation catalyst using vanadium oxide, manganese oxide, cobalt oxide and cerium oxide as a carrier causes an oxygen oxidation reaction, and a manganese oxide carrier is particularly preferable.

Figure 2013116440
Figure 2013116440

〔試験例9〕
また、酸化マンガンからなる(金微粒子の担持なし)酸化触媒について触媒活性を確認した。試験は上記試験例1と同様に行った。
また、酸化マンガン以外の金属酸化物(V,Co,CeO)についても試験を行った。酸化ヴァナジウムでも反応が進行した(Conv.11%、スルホキシド2: 10%、スルホン3:0%)。Vは、NHVOを300℃で、4時間空気中で焼成することにより得られた。
[Test Example 9]
Further, the catalytic activity of an oxidation catalyst made of manganese oxide (no gold fine particles supported) was confirmed. The test was performed in the same manner as in Test Example 1 above.
In addition, tests were also conducted on metal oxides (V 2 O 5 , Co 3 O 4 , CeO 2 ) other than manganese oxide. The reaction also proceeded with vanadium oxide (Conv. 11%, sulfoxide 2: 10%, sulfone 3: 0%). V 2 O 5 was obtained by firing NH 4 VO 3 at 300 ° C. for 4 hours in air.

Figure 2013116440
Figure 2013116440

〔試験例10〕酸素圧の影響
反応の進行には酸素が必要であるが、酸素の圧力はどの程度であるのが効果的であるかを、表5に示す各圧力で反応させることで確認した。なお、圧力以外の条件は化合物1(58.5μL,0.5mmol)、触媒としてMnOx(98.5mg)、溶媒toluene(5mL),反応温度 100℃、反応時間24時間とした以外は上記試験例1と同じである。表5に示す結果から明らかなように、圧力コストを勘案すると6気圧が最適であることが分かる。
[Test Example 10] Effect of oxygen pressure Oxygen is required for the progress of the reaction, but it is confirmed by reacting at each pressure shown in Table 5 how effective the pressure of oxygen is. did. The above test examples except that the conditions other than the pressure were Compound 1 (58.5 μL, 0.5 mmol), MnOx (98.5 mg) as a catalyst, solvent toluene (5 mL), reaction temperature 100 ° C., and reaction time 24 hours. Same as 1. As is apparent from the results shown in Table 5, it is understood that 6 atmospheres is optimal when the pressure cost is taken into consideration.

Figure 2013116440
Figure 2013116440

〔試験例11〕
反応温度と反応時間を表6に示す条件とし、化合物1(58.5μL、0.5mmol),酸化触媒MnOx (98.5mg)、溶剤量(5mL)とした以外は試験例1と同様に反応を行った。
その結果を表6に示す。
[Test Example 11]
The reaction was carried out in the same manner as in Test Example 1 except that the reaction temperature and reaction time were as shown in Table 6, except that Compound 1 (58.5 μL, 0.5 mmol), oxidation catalyst MnOx (98.5 mg), and solvent amount (5 mL) were used. Went.
The results are shown in Table 6.

Figure 2013116440
Figure 2013116440

Claims (11)

下記式で表される化合物、CuMn及びV25からなる群より選択される1種以上の金属酸化物からなることを特徴とする有機硫黄化合物の酸化触媒。
式:Mnxy
(式中、xは1〜10の整数を、yは1〜20の整数を示し、y≧x、2≧y/x≧1である)
An oxidation catalyst for an organic sulfur compound comprising one or more metal oxides selected from the group consisting of a compound represented by the following formula, CuMn 2 O 4 and V 2 O 5 .
Formula: Mn x O y
(Wherein x represents an integer of 1 to 10, y represents an integer of 1 to 20, and y ≧ x, 2 ≧ y / x ≧ 1)
上記金属酸化物は、その形状が球状、板状又は棒状である粒子であり、粒子径が0.5nm〜1μmである
請求項1記載の酸化触媒。
2. The oxidation catalyst according to claim 1, wherein the metal oxide is a particle having a spherical shape, a plate shape, or a rod shape, and a particle diameter of 0.5 nm to 1 μm.
上記金属酸化物は、その形状が板状又は棒状である粒子であり、その厚さが5〜100nmである
請求項2記載の酸化触媒。
The oxidation catalyst according to claim 2, wherein the metal oxide is a particle having a plate shape or a rod shape, and a thickness thereof is 5 to 100 nm.
上記有機硫黄化合物の酸化に用いられる酸化剤が、酸素である
請求項1記載の酸化触媒。
The oxidation catalyst according to claim 1, wherein the oxidizing agent used for oxidizing the organic sulfur compound is oxygen.
上記有機硫黄化合物がメチルフェニルスルフィドであり、酸化反応により生成される生成物がスルホキシド又はスルホンである
請求項1記載の酸化触媒。
The oxidation catalyst according to claim 1, wherein the organic sulfur compound is methylphenyl sulfide, and the product produced by the oxidation reaction is sulfoxide or sulfone.
担体に金微粒子が担持されてなる、有機硫黄化合物の酸化触媒であって、
上記担体が、下記式で表される化合物、CuMn、V25、Co34及びCeO2からなる群より選択される1種以上の金属酸化物であることを特徴とする酸化触媒。
式:Mnxy
(式中、xは1〜10の整数を、yは1〜20の整数を示し、y≧x、2≧y/x≧1である)
An oxidation catalyst of an organic sulfur compound, in which gold fine particles are supported on a carrier,
The carrier is one or more metal oxides selected from the group consisting of a compound represented by the following formula, CuMn 2 O 4 , V 2 O 5 , Co 3 O 4 and CeO 2. Oxidation catalyst.
Formula: Mn x O y
(Wherein x represents an integer of 1 to 10, y represents an integer of 1 to 20, and y ≧ x, 2 ≧ y / x ≧ 1)
上記金属酸化物は、その形状が球状、板状又は棒状である粒子であり、粒子径が0.5nm〜1μmである
請求項6記載の酸化触媒。
The oxidation catalyst according to claim 6, wherein the metal oxide is a particle having a spherical shape, a plate shape, or a rod shape, and a particle diameter of 0.5 nm to 1 μm.
上記金属酸化物は、その形状が板状又は棒状である粒子であり、その厚さが5〜100nmである
請求項7記載の酸化触媒。
The oxidation catalyst according to claim 7, wherein the metal oxide is a particle having a plate shape or a rod shape, and a thickness thereof is 5 to 100 nm.
上記金微粒子は、原子が8〜10,000個凝集してなる原子集合体を形成して担持されており、
上記金微粒子各々の粒子径が0.8〜10nmである
請求項6記載の酸化触媒。
The gold fine particles are supported by forming an atomic aggregate formed by agglomerating 8 to 10,000 atoms,
The oxidation catalyst according to claim 6, wherein each of the gold fine particles has a particle diameter of 0.8 to 10 nm.
上記有機硫黄化合物の酸化に用いられる酸化剤が、酸素である
請求項6記載の酸化触媒。
The oxidation catalyst according to claim 6, wherein the oxidizing agent used for oxidizing the organic sulfur compound is oxygen.
上記有機硫黄化合物がメチルフェニルスルフィドであり、酸化反応により生成される生成物がスルホキシド又はスルホンである
請求項6記載の酸化触媒。
The oxidation catalyst according to claim 6, wherein the organic sulfur compound is methylphenyl sulfide, and the product produced by the oxidation reaction is sulfoxide or sulfone.
JP2011264534A 2011-12-02 2011-12-02 Oxidation catalyst for organic sulfur compounds Active JP5822349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264534A JP5822349B2 (en) 2011-12-02 2011-12-02 Oxidation catalyst for organic sulfur compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264534A JP5822349B2 (en) 2011-12-02 2011-12-02 Oxidation catalyst for organic sulfur compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015120927A Division JP6086622B2 (en) 2015-06-16 2015-06-16 Oxidation catalyst for organic sulfur compound, method for producing oxidation catalyst for organic sulfur compound, method for selectively oxidizing organic sulfur compound

Publications (2)

Publication Number Publication Date
JP2013116440A true JP2013116440A (en) 2013-06-13
JP5822349B2 JP5822349B2 (en) 2015-11-24

Family

ID=48711366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264534A Active JP5822349B2 (en) 2011-12-02 2011-12-02 Oxidation catalyst for organic sulfur compounds

Country Status (1)

Country Link
JP (1) JP5822349B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897757A (en) * 2013-09-29 2014-07-02 华南理工大学 Cerium oxide catalyst for catalyzing methane combustion and preparation method of catalyst
WO2017154927A1 (en) * 2016-03-09 2017-09-14 公立大学法人首都大学東京 Gold composite material, method for manufacturing same, and gold nanocatalyst
JP2021506583A (en) * 2017-12-22 2021-02-22 ルミレッズ ホールディング ベーフェー Catalysts for catalyzing formaldehyde oxidation and their preparation and use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109648075B (en) * 2018-12-11 2021-06-08 济南大学 Composite nano material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100552A (en) * 1983-10-08 1985-06-04 バイエル・アクチエンゲゼルシヤフト Manufacture of sulfones and sulfoxides
JP2004517231A (en) * 2001-01-24 2004-06-10 パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ Improved Kraft Pulp Yield by Heat Treatment of Polysulfide Liquid Produced by Oxidation
JP2004195445A (en) * 2002-12-17 2004-07-15 Toshiaki Kabe Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus
JP2008161873A (en) * 2001-03-29 2008-07-17 Idemitsu Kosan Co Ltd Catalyst for reforming hydrocarbon and production process for the same, and process for reforming hydrocarbon using the catalyst
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
JP2010017649A (en) * 2008-07-10 2010-01-28 Tokyo Metropolitan Univ Highly active catalyst and its preparing method
WO2011051284A1 (en) * 2009-10-30 2011-05-05 Basf Se Process for the preparation of 4-sulfinyl-pyrazole derivatives
JP2011168568A (en) * 2010-02-22 2011-09-01 Hideki Koyanaka Method for converting carbon dioxide into acetic acid, and catalyst used therefor
JP2011219466A (en) * 2010-03-23 2011-11-04 Tokyo Metropolitan Univ Gold catalyst for ethanol oxidation and method for producing acetaldehyde and acetic acid using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100552A (en) * 1983-10-08 1985-06-04 バイエル・アクチエンゲゼルシヤフト Manufacture of sulfones and sulfoxides
JP2004517231A (en) * 2001-01-24 2004-06-10 パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ Improved Kraft Pulp Yield by Heat Treatment of Polysulfide Liquid Produced by Oxidation
JP2008161873A (en) * 2001-03-29 2008-07-17 Idemitsu Kosan Co Ltd Catalyst for reforming hydrocarbon and production process for the same, and process for reforming hydrocarbon using the catalyst
JP2004195445A (en) * 2002-12-17 2004-07-15 Toshiaki Kabe Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
JP2010017649A (en) * 2008-07-10 2010-01-28 Tokyo Metropolitan Univ Highly active catalyst and its preparing method
WO2011051284A1 (en) * 2009-10-30 2011-05-05 Basf Se Process for the preparation of 4-sulfinyl-pyrazole derivatives
JP2011168568A (en) * 2010-02-22 2011-09-01 Hideki Koyanaka Method for converting carbon dioxide into acetic acid, and catalyst used therefor
JP2011219466A (en) * 2010-03-23 2011-11-04 Tokyo Metropolitan Univ Gold catalyst for ethanol oxidation and method for producing acetaldehyde and acetic acid using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6015016084; T. HAKODA et al.: 'Oxidation of Dimethyl Sulfide in Air Using Electron-Beam Irradiation, and Enhancement of its Oxidati' Plasma Chem Plasma Process , 2009, 29, 549-557. *
JPN6015016085; F. GREGORI et al.: 'Selective oxidation of sulfides to sulfoxides and sulfones using 30% aqueous hydrogen peroxide and s' Journal of Molecular Catalysis A: Chemical , 2008, 286, 124-127. *
JPN6015016086; Y. BESSEKHOUAD et al.: 'Photocatalytic hydrogen production fromsuspension of spinel powders AMn2O4 (A = Cu and Zn)' International Journal of Hydrogen Energy , 2002, 27, 357-362. *
JPN6015016087; M. ILYAS et al.: 'A kinetic study of the oxidation of L-methionine by water soluble colloidal MnO2' Colloid Polym Sci , 2007, 285, 1169-1173. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897757A (en) * 2013-09-29 2014-07-02 华南理工大学 Cerium oxide catalyst for catalyzing methane combustion and preparation method of catalyst
WO2017154927A1 (en) * 2016-03-09 2017-09-14 公立大学法人首都大学東京 Gold composite material, method for manufacturing same, and gold nanocatalyst
JPWO2017154927A1 (en) * 2016-03-09 2019-01-10 公立大学法人首都大学東京 Gold composite material, method for producing the same, and gold nanocatalyst
JP7043072B2 (en) 2016-03-09 2022-03-29 東京都公立大学法人 Gold composite material, its manufacturing method and gold nanocatalyst
JP2021506583A (en) * 2017-12-22 2021-02-22 ルミレッズ ホールディング ベーフェー Catalysts for catalyzing formaldehyde oxidation and their preparation and use
JP7203110B2 (en) 2017-12-22 2023-01-12 ルミレッズ ホールディング ベーフェー Catalyst for catalyzing formaldehyde oxidation and its preparation and use

Also Published As

Publication number Publication date
JP5822349B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP4777670B2 (en) Ammonia synthesis catalyst and method for producing the same
JP5920750B2 (en) Gold catalyst for ethanol oxidation and method for producing acetaldehyde and acetic acid using the same
JP5822349B2 (en) Oxidation catalyst for organic sulfur compounds
TWI755411B (en) Catalyst for methanation reaction, method for producing catalyst for methanation reaction, and method for producing methane
CN107855133B (en) Method for preparing supported small-particle gold catalyst
CN102883809A (en) Supported precious metal catalysts via hydrothermal deposition
JP6086622B2 (en) Oxidation catalyst for organic sulfur compound, method for producing oxidation catalyst for organic sulfur compound, method for selectively oxidizing organic sulfur compound
JP5685395B2 (en) Method for producing iron sulfide
WO2006138485A1 (en) Catalyst for hydrogen production from water gas shift reaction
JP2005238131A (en) Methanization catalyst, production method thereof, and method for methanizing carbon monoxide with the catalyst
Abu-Zied et al. Fabrication, characterization and catalytic activity measurements of nano-crystalline Ag-Cr-O catalysts
JP4604211B2 (en) Perovskite complex oxide, method for producing the same, and catalyst using the same
JP2002079101A (en) Catalyst precursor for methanol steam reforming, catalyst for methanol steam reforming and its manufacturing method
Fouad et al. Microwave irradiation assisted growth of Cu, Ni, Co metals and/or oxides nanoclusters and their catalytic performance
JP4765094B2 (en) Method for producing perovskite complex oxide
CN113634246A (en) Rare earth metal vanadate catalyst for nitrogen oxide reduction
KR101400889B1 (en) Carbonhydrate reforming catalyst and the method of preparation thereof
KR101922193B1 (en) Hollow nanoreactor comprising supported metal catalysts inside the cavity and manufacturing method thereof
JP6909405B2 (en) Methaneization catalyst, its production method, and methane production method using it
KR102537063B1 (en) Preparing method of metal-based nanomaterials, metal-based nanomaterials prepared therefrom, catalyst and detection device
JP5605696B2 (en) Nitrile synthesis catalyst composition and method for producing nitrile using the same
CN112569982B (en) Precipitated epsilon/epsilon iron carbide-containing composition, preparation method thereof, catalyst and application thereof, and Fischer-Tropsch synthesis method
CN114471580B (en) Synthesis and application method of supported nickel-gallium catalyst
CN114308057B (en) Manganese-tungsten ore type oxide-supported cobalt-based catalyst for autothermal reforming of acetic acid to produce hydrogen
CN112569977B (en) Composition containing precipitated type χ -iron carbide and theta-iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

R150 Certificate of patent or registration of utility model

Ref document number: 5822349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250