JP2004195445A - Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus - Google Patents

Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus Download PDF

Info

Publication number
JP2004195445A
JP2004195445A JP2002383296A JP2002383296A JP2004195445A JP 2004195445 A JP2004195445 A JP 2004195445A JP 2002383296 A JP2002383296 A JP 2002383296A JP 2002383296 A JP2002383296 A JP 2002383296A JP 2004195445 A JP2004195445 A JP 2004195445A
Authority
JP
Japan
Prior art keywords
organic
sulfur compound
oxidation
compound
organic sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383296A
Other languages
Japanese (ja)
Inventor
Toshiaki Kabe
利明 加部
Atsushi Ishihara
篤 石原
Eika Sen
衛華 銭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002383296A priority Critical patent/JP2004195445A/en
Publication of JP2004195445A publication Critical patent/JP2004195445A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation method, an oxidation catalyst, an oxidation desulfurization method and an oxidation desulfurization apparatus suitable for oxidation desulfurization of liquid containing an organic sulfur compound. <P>SOLUTION: In the desulfurization method, an oxidant is added into liquid containing the organic sulfur compound, the liquid is heated in the presence of an oxidation catalyst, thereby, the organic sulfur compound is converted into a sulfur oxide and, subsequently, the produced sulfur compound is selectively adsorbed and removed. As the oxidant, at least one kind of oxidant selected from among peroxide water, organic peroxide, organic hypochlorite compound and organic hypobromite compound is added to the liquid by stoichiometric quantity or more necessary for oxidation of sulfur atom in the organic sulfur compound, the oxidation reaction is performed by using the oxidation catalyst and, further, the oxidized sulfur compound is removed by adsorption etc. Furthermore, by using the oxidation desulfurization apparatus provided with a first step reactor filled with the oxidation catalyst and a second step reactor filled with the adsorbent, a petroleum product whose sulfur content is in the order of several hundreds ppb can be supplied. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は有機硫黄化合物を含有する液体の酸化方法、酸化触媒、酸化脱硫方法および酸化脱硫装置に関する。具体的にガソリン、灯油及び水素化脱硫後の軽油等の石油類からの脱硫に適した酸化脱硫方法、酸化触媒、酸化脱硫方法および酸化脱硫装置に関する。
【0002】
【従来の技術】石油、石炭等の化石燃料の燃焼が原因となる酸性雨に対する対策が急務となったことに伴い、従来以上に、石油製品に対して高い品質が求められるに至り、化石燃料中の硫黄を接触還元して硫化水素とし、これを除去する水素化脱硫方法が対策として広く採用されてきた。しかしながら、この方法の場合には高温高圧の反応条件を余儀なくされる上、(ジ)ベンゾチオフェンを基本骨格とするような、化学的に安定な芳香族アルキル誘導体として硫黄が含有されている場合には、これを還元すること自体が困難な場合があり、十分な脱硫効果を挙げることができないという欠点があった。
【0003】また、近年、省エネ性が高く、環境負荷が小さいエネルギー技術である燃料電池が、二酸化炭素等の温室効果ガス排出を抑制し、地球温暖化を防止するための重要な開発課題として注目されている。燃料電池を普及させる実用化用途として、小型燃料電池汎用電源や燃料電池自動車が急ピッチで開発されている。燃料電池の水素源としては、様々な候補が挙げられるが、ガソリンや灯油の改質が現実的であり、これがクローズアップされてきた。ところが燃料電池用原料油の硫黄含有量を、従来レベルより遥かに下の数十〜数百ppbオーダーまで下げなければならない。この解決策として化学吸着による吸着型硫黄除去器が開発中であるが、これは吸着選択性が低く、再生できない高価な吸着剤が使用され、処理能力も低いとされている。
【0004】以上のように、ガソリン、灯油、軽油等石油系燃料油中の硫黄分については様々な観点から現在の1/10、ひいては1ppm以下に削減することが要求されるに至っているが、その目標を達成することのできる工業的技術は未だ開発されていない。かかる課題を解決する方法として、酸化反応を用いる脱硫方法が提案されている(例えば、特許文献1参照)。この方法は、有機硫黄化合物中の硫黄原子を酸化して有機スルホキシドや有機スルホンの形にすることによる、有機硫黄化合物の著しい物性変化を利用して有機硫黄化合物を除去するものであり、接触還元方法に比して温和な条件下で効率良く脱硫することにおいて優れた方法であり、先に挙げた特許文献1では、低濃度のジベンゾチオフェン(DBT)含有液において、極めて穏和な条件下であっても80%の転化率を達成できることが確認されている。また、非特許文献1では、バッチ式反応器を用い、酸化触媒の存在下、120℃で酸化剤を加えた水素化処理した軽油の酸化反応が行われ、酸化後の軽油にSiO−AlやSiO等の吸着剤を入れることによって、軽油中の硫黄分が低減する可能性を報告した(例えば、非特許文献1参照)。
【特許文献1】特開平11−140462号(第2−4頁、図1、図2)
【非特許文献1】日本化学会第79春季年会要旨、1E6−25、2001年3月28−31日、神戸
【0005】
【発明が解決しようとする課題】しかしながら、酸化触媒、酸化剤および酸化方法について、まだ改良の余地がある。また、酸化後硫黄化合物の除去についてもまだ実用化の方法が提案されていない。従って本発明は、有機硫黄化合物を含有する液体の酸化脱硫方法として好適な、有機硫黄化合物を含有する液体の酸化方法、酸化触媒、酸化脱硫方法および酸化脱硫装置を提供することにある。
【0006】
【課題を解決するための手段】本発明者等は、さらなる高活性に到達するために鋭意研究した結果、酸化剤を添加した有機硫黄化合物含有液体を固体酸化触媒と接触させ、酸化反応を行なうことにより、有機硫黄化合物を含有する液体中の硫黄化合物を硫黄酸化物に転化させ、さらに吸着剤の吸着によって除去することができる手段となることを見出し、本発明に到達した。本発明は、有機硫黄化合物を含有する液体中に酸化剤を添加し、酸化触媒の存在下加熱することにより前記有機硫黄化合物を硫黄酸化物に転化させ、次いで生成した硫黄酸化物を吸着より除去する脱硫方法である。酸化剤として、過酸化水素水、有機過酸化物、有機次亜塩素酸化合物及び有機次亜臭素酸化合物からなる群の中から選択される少なくとも一種の酸化剤を、前記有機硫黄化合物中の硫黄原子の酸化に必要な化学量論量以上添加し、酸化触媒を用いて、触媒酸化反応を行ない、さらにその酸化硫黄化合物を吸着等により除去することを特徴とする、有機硫黄化合物を含有する液体の酸化脱硫方法によって達成された。
【0007】
【発明の実施の形態】本発明における有機硫黄化合物含有液体は特に限定されるものではないが、特に、その中に含有される有機硫黄化合物が、一般に最も除去することが難しいとされているベンゾチオフェン、ジベンゾチオフェン等のチオフェン類であって、硫黄分の残存量が数百ppm以下となったナフサ、ガソリン、灯油、軽油、重油、アスファルテン、オイルサンド油、石炭液化油、石炭系重質油等であることが好ましい。これらのチオフェン類中の硫黄原子が酸化されたスルホキシド及びスルホンは、共に、その物性が元の化合物の物性と大きく異なるので、ろ過や吸着等により、容易に分離することができる。また、微生物を利用して分解することも可能である。
【0008】本発明で使用する酸化剤は、過酸化水素水、有機過酸化物、有機次亜塩素酸化合物、および有機次亜臭素酸化合物の中から適宜選択することができる。これらの酸化剤は、2種以上を併用しても良い。有機過酸化物の具体例としては、例えば、過蟻酸、過酢酸、tert−ブチルヒドロペルオキシド等の過酸化物等がある。反応性、取り扱い性等の観点から本発明においては、特に有機過酸化物を使用することが好ましく、特に、tert−ブチルヒドロペルオキシドを使用することが好ましい。
【0009】酸化剤の使用量は、液体中に含有される酸化されるべき有機硫黄化合物の全てをスルホキシドに酸化するに必要な量以上であれば良いが、通常は、硫黄原子1個あたり、0.5〜30個の酸素原子、特に1〜10個の酸素原子を供給する量の酸化剤を添加することが、有機硫黄化合物を速やかにスルホキシド又はスルホンに酸化する上で好ましい。
【0010】本発明における有機硫黄化合物含有液体と酸化剤を混合し、加熱しても、それだけでは酸化反応が進行しないので、酸化触媒が必要である。ここで、触媒として固体触媒を使用すれば、有機硫黄化合物含有液体中の硫黄化合物を酸化でき、次いで吸着等の処理することによって、従来の水素化脱硫後、引き続き酸化脱硫することが可能である。
【0011】本発明では固体触媒が、有機硫黄化合物を酸化してスルホキシドやスルホンにすることのできる触媒の中から適宜選択して使用することができる。このような固体触媒は、公知のものの中から適宜選択することができるが、ブレンステッド酸性又はルイス酸性の固体酸触媒、遷移金属酸化物触媒、及び固体塩基触媒が好ましい。担体として、γ−アルミナ、チタニア、シリカ−アルミナ、シリカの中から適宜選択して使用することができ、その中でもγ−アルミナが好ましい。担体の粒径は適宜選択できるが、反応溶液が詰まらない程度の粒径(−300メッシュ)を有する限りにおいて比較的小さいものが好ましいが、触媒強度と取り扱いの点より25〜100メッシュの範囲が好ましい。
【0012】触媒の担持金属はモリブデン、タングステン、クロム、バナジウム、ニオブ、ジルコニウム、ニッケルの少なくとも1種以上を担持したものが好ましい。担持金属の量は酸化物換算で0〜50質量%の範囲内であれば良いが、担体に単層程度担持する範囲が好ましく、酸化モリブデンであれば3〜30質量%、酸化タングステンであれば10〜50質量%、酸化クロムであれば5〜30質量%、酸化バナジウムであれば2〜15質量%、酸化ニオブであれば1〜15質量%、酸化ジルコニウムであれば5〜20質量%の範囲が好ましい。担体としては前述のような担体から少なくとも1種が選択できる。
【0013】担持方法については、含浸法又はイオン交換法が好ましく、担持する金属化合物を複数回に分けて含浸しても良いが、一度に行うのが効率的である。担持金属化合物は調製する触媒重量の0.5〜100倍の重量の純水を用いて溶解させてやればよいが、担持金属の分散率を高めるために1〜10倍の範囲が好ましい。溶解度の低い担持金属化合物を用いる場合には、硝酸やアンモニア水等を加えてもかまわないが、含浸液の安定性を考慮するとpH3〜11の範囲内が好ましい。含浸後、通常20〜200℃(好ましくは100〜120℃)の範囲内で、1〜12時間(好ましくは2〜6時間)乾燥させる。その後、200〜500℃(好ましくは350〜450℃)で2〜15時間(好ましくは3〜12時間)焼成する。
【0014】酸化した硫黄化合物を有機硫黄化合物含有液体から除去する方法については、蒸留、ろ過、吸着等の分離方法を用いられるが、再生可能な吸着剤を用い、選択的に吸着によって除去することが望ましい。吸着剤として、活性炭、アルミナ、シリカゲル、石油精製プロセスに使われる流動床接触クラッキング(FCC)平衡触媒(使用済み)、シリカーアルミナ、モリキュラーシーブ、ゼオライトの中から選択される少なくとも一種の吸着剤を用い、前記有機硫黄酸化物を吸着により除去できる。
【0015】使用済みの吸着剤の再生に使用する溶媒は公知のもの、たとえば、メタノール、トルエン、スルホラン、ジメチルスルホキシド、アセトニトリル等から適宜選択して、使用することができ、その中でもテトラヒドロフランが好ましい。再生の際の温度は使用する溶媒の沸点以下でよいが、室温が好ましい。
【0016】つぎに、本発明の有機硫黄化合物を含有する液体の酸化脱硫する方法について説明する。酸化処理条件については、一般的には反応温度0〜400℃(好ましくは20〜120℃)、常圧〜3気圧(好ましくは常圧)の範囲内で行われる。反応形式は特に限定されないが、通常は、バッチ式装置や流通式装置(固定床、移動床、懸濁床等)の種々のプロセスから選択できるが、流通式固定床が好ましい。流通式固定床の場合の反応条件としては、WHSVは0.1〜400hr−1(好ましくは0.5〜300hr−1)の範囲内が好ましく、有機硫黄化合物を含有する液体中の硫黄分と酸化剤のモル比(O/S比)は0.5〜30(好ましくは1〜10)が好ましい。吸着脱硫の条件については、一般的には吸着温度−50〜100℃(好ましくは0〜50℃)、常圧〜3気圧(好ましくは常圧)の範囲内で行われる。吸着装置の形式は特に限定されないが、通常は、流通式固定床が好ましい。固定床の場合の反応条件としては、WHSVは0.1〜400hr−1(好ましくは1〜100hr−1)の範囲内が好ましい。
【0017】本発明の酸化脱硫装置は2段式反応器で構成されている。第1段目の反応器に上記の少なくとも1種の固体触媒を充填し、少なく1種の酸化剤を添加した有機硫黄化合物を含有する液体を連続的に通すことにより有機硫黄化合物を硫黄酸化物に転化し、第2段目の反応器に前述の少なくとも1種の吸着剤を充填し、第1段目の反応器から出てきた酸化反応後の液体から硫黄化合物を選択的に除去することができる。
【0018】
なお、本発明は上述の実施の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
【0019】
【実施例】
以下、実施例によって本発明を更に詳述するが、本発明はこれによって限定されるものではないこともちろんである。
【0020】
実施例1 触媒組成としてMoOが16質量%となるように(ただし担体8.4g)モリブデン酸アンモニウム4水和物((NHMo24・4HO)をビーカーに入れ、10mlの純水で完全に溶解させてモリブデン酸アンモニウム水溶液を調製する。そこにγ−アルミナ担体(25−80メッシュ)を入れ、振蕩しながらサンドバスで加熱し水分を蒸発させてモリブデン酸アンモニウムを含浸させる。さらに120℃で2時間乾燥させた後、450℃で12時間焼成して16質量%モリブデン酸γ−アルミナ触媒(MoO/γ−Al)10gを得た。これを触媒Aとする。つぎに、触媒Aを0.1g、200mlのナス型フラスコに加え、さらに1500ppmのジベンゾチオフェン(DBT)を含有する水素化処理後軽油(全硫黄含有量:730ppm)を65ml入れ、tert−ブチルヒドロペロオキシドと軽油中の全硫黄のモル比(O/S)が9になるように、tert−ブチルヒドロペロオキシドを0.63g加えた後、オイルバスを用いて120℃に加温し、酸化反応を2時間行なった。これをフレームホトメトリック検出器(FPD)付きガスクロマトグラフー(島津製作所:GC−14A−FPD)で分析したところ、第1表に示すようなDBTの酸化活性が得られた。
【0021】
実施例2〜4 実施例1と同様にバナジン酸アンモニウム4水和物(NHVO)を用い、4質量%V/γ−Al触媒(触媒B)、硝酸クロム(Cr(NO)を用い、22質量%CrO/γ−Al(触媒C)、タングステン酸アンモニウム5水和物((NH104112・5HO)を用い、19.3質量%WO/γ−Al(触媒D)をそれぞれ調製した。また、これらの触媒をそれぞれ用い、実施例1と同様の酸化反応を行なったところ、第1表に示すようなDBTの酸化活性が得られた。
【0022】
実施例5 120℃で2時間乾燥させたγ−アルミナ担体を450℃で12時間焼成して、触媒Eとする。つぎに触媒Eを用い、実施例1と同様の酸化反応を行なったところ、第1表に示すようなDBTの酸化活性が得られた。
【0023】
実施例6、7 実施例1と同様の酸化脱硫反応を行なった。ただし、tert−ブチルヒドロペロオキシドと軽油中の全硫黄のモル比(O/S)がそれぞれ4.5と1になった。その結果を第1表に示した。
【0024】
比較例1 特許文献1のPt/Al触媒および次亜塩素酸−tert−ブチルを用い、実施例1と同様の酸化反応を行なったところ、第1表に示すようなDBTの酸化活性が得られた。
【0025】
実施例8 吸着剤としてシリカーアルミナ(表面積560m/g)1gを実施例1で酸化反応を行なった軽油に加え、70℃で3hr、さらに20℃で3hr吸着による硫黄化合物の除去を行った。吸着脱硫後の軽油中の硫黄含有量を蛍光X線分析装置(島津製作所:EDX−800型)で分析したところ、第2表に示すように酸化−吸着操作によって10ppm以下という低濃度まで硫黄分を削減することができた。
【0026】
実施例9〜15 吸着剤としてモリキューラシーブ4A、モリキューラシーブ13X、γ−アルミナ(表面積256m/g)、活性炭(表面積800−1000m/g)、シリカゲル(表面積347m/g)、ZSM−5ゼオライト、NaYゼオライト(表面積663m/g)をそれぞれ使用し、実施例8と同様の吸着実験を行い、硫黄化合物の除去を行った。その結果を第2表に示した。
【0027】
比較例2 実施例8と同様の吸着実験を行い、硫黄化合物の除去を行なった。ただし、1500ppmのジベンゾチオフェン(DBT)を含有する水素化処理後軽油(全硫黄含有量:730ppm)の酸化反応を行なわず、そのまま吸着を行った。第2表に示したように酸化反応を行なわず吸着のみでは脱硫率が低かった。
【0028】
実施例16 触媒Aを0.1g、200mlのナス型フラスコに加え、さらに100mlのメスシリンダーに市販の灯油(硫黄濃度55ppm)を100ml入れ、tert−ブチルヒドロペロオキシドと灯油中の全硫黄のモル比(O/S)が2になるように、tert−ブチルヒドロペロオキシドを0.020g加えた後、オイルバスを用いて100℃に加温し、酸化反応を2時間行なった。次いで、吸着剤としてシリカゲル(表面積347m/g)1.2mlを充填したカラム中に、常圧、25℃、WHSV:4hr−1の条件で前述の酸化した灯油を流下させ、硫黄除去を行った。酸化脱硫後の灯油中の硫黄含有量を微量硫黄分析装置(ダイヤインスツルメンツ:TS−100型)で分析し、その結果を第3表に示した。
【0029】
実施例17〜20 実施例16と同様の酸化脱硫反応を行なった。ただし、吸着剤としてFCC平衡触媒、活性化アルミナ、活性炭(表面積800−1000m/g)、シリカ−アルミナ(表面積560m/g)をそれぞれ使用した。その結果を第3表に示した。
【0030】
実施例21 500mlのメスシリンダーに市販の灯油(硫黄濃度55ppm)を500ml入れ、tert−ブチルヒドロペロオキシドをO/S比が10になるように加えた。図1に示したような装置において、第1段目の反応器に触媒A17.5mlを充填し、常圧、80℃,WHSV:30hr−1の条件で、次いで図1に示したように第2段目の反応器に吸着剤としてシリカゲル35mlを充填し、常圧、室温、WHSV:4.9hr−1の条件で前述のような酸化剤を添加した灯油を通した。第1段目の反応器の出口で酸化後の灯油を採取し、これを化学発光硫黄検出装置付きガスクロマトグラフー(アジレント:GC−SCD)でDBT、4−メチルジベンゾチオフェン(4MDBT)、4,6−ジメチルジベンゾチオフェン(4,6−DMDBT)及び、これらの化合物の酸化生成物であるジベンゾチオフェンスルホン(DBTS)、4−メチルジベンゾチオフェンスルホン(4MDBTS)、4,6−ジメチルジベンゾチオフェンスルホン(4,6−DMDBTS)を分析したそれぞれの化合物の濃度及び、微量硫黄分析装置(ダイヤインスツルメンツ:TS−100型)で分析した灯油中の全硫黄分を第4表に示した。また、第2段目の反応器の出口で酸化脱硫後の灯油を採取し、同様に灯油中の各硫黄化合物および全硫黄分を測定し、第4表に示した。第4表に示すように灯油中の硫黄化合物がほとんど酸化され、スルホン類化合物になり、吸着によって、ほとんど除去できる。一方、酸化反応後ごく少ない未酸化の硫黄化合物が吸着後も残される。また、酸化−吸着操作によって0.45ppmという極めて低濃度まで灯油中の硫黄分を削減することができた。
【0031】
実施例22 100mlのメスシリンダーに市販の灯油(硫黄濃度55ppm)を100ml入れ、tert−ブチルヒドロペロオキシドと灯油中の全硫黄のモル比(O/S)が1.5になるように、tert−ブチルヒドロペロオキシドを0.020g加えた。これを触媒A1gを充填した図1に示したように第1段目の反応器に、常圧、110℃,WHSV:60hr−1の条件で通し、酸化反応のみを行なった。これを化学発光硫黄検出装置付きガスクロマトグラフー(アジレント:GC−SCD)で分析したところ、第5表に示すような各硫黄化合物の酸化活性が得られた。
【0032】
実施例23〜27 実施例1と同様にタングステン酸アンモニウム5水和物((NH104112・5HO)を用い、35質量%WO/γ−Al(触媒F)、硝酸クロム(Cr(NO)を用い、11質量%CrO/γ−Al(触媒G)、バナジン酸アンモニウム4水和物(NHVO)を用い、10質量%V/γ−Al触媒(触媒H)、ニオブ酸ナトリウム(NaNb)を用い、10質量%Nb/γ−Al(触媒I)、塩化ジルコニウム(ZrCl)を用い、15質量%ZrO/γ−Al(触媒J)をそれぞれ調製した。また、これらの触媒をそれぞれ用い、実施例22と同様の酸化反応を行なったところ、第5表に示すような各硫黄化合物の酸化活性が得られた。
【0033】
実施例28、29 γ−アルミナ担体の代わりにチタンニア担体およびシリカ担体を使用し、実施例1と同様に16質量%MoO/TiO(触媒K)および16質量%MoO/SiO(触媒L)を調製した。また、触媒KおよびLを用い、実施例22と同様の酸化反応を行なったところ、第5表に示すような各硫黄化合物の酸化活性が得られた。
【0034】
実施例30 実施例1と同様にモリブデン酸アンモニウム4水和物((NHMo24・4HO)と硝酸ニッケル6水和物(Ni(NO・6HO)を用い、触媒組成としてMoOが16質量%と、NiとMoのモル比を0.4になるように0.4NiMoO/Al(触媒M)を調製した。つぎに触媒Mを用い、実施例22と同様の酸化反応を行なったところ、第5表に示すような各硫黄化合物の酸化活性が得られた。
【0035】
実施例31〜37 触媒上の酸化モリブデンの担持量を3質量%から25質量%までになるように、実施例1と同様に3質量%MoO/γ−Al(触媒N)、6質量%MoO/γ−Al(触媒O)、12質量%MoO/γ−Al(触媒P)、14質量%MoO/γ−Al(触媒Q)、18質量%MoO/γ−Al(触媒R)、20質量%MoO/γ−Al(触媒S)および25質量%MoO/γ−Al(触媒T)を調製した。また、これらの触媒をそれぞれ用い、実施例22と同様の酸化反応を行なったところ、第5表に示すような各硫黄化合物の酸化活性が得られた。
【0036】
比較例3 特許文献1のPt/Al触媒および次亜塩素酸−tert−ブチルを用い、実施例22と同様の酸化反応を行なったところ、第5表に示すような各硫黄化合物の酸化活性が得られた。
【0037】
実施例38、39 実施例22と同様の酸化反応を行なった。ただし、O/S比をそれぞれ1.0、10および20になるようにtert−ブチルヒドロペロオキシドを加えた。その結果を第6表に示した。
【0038】
実施例40〜43 実施例22と同様の酸化反応を行なった。ただし、反応温度をそれぞれ30℃、70℃、90℃および120℃にした。その結果を第7表に示した。
【0039】
実施例44〜48 実施例22と同様の酸化反応を行なった。ただし、WHSVを6hr−1、20hr−1、120hr−1、180hr−1、300hr−1にした。その結果を第8表に示した。
【0040】
実施例49 実施例22と同様の酸化反応を行なった。ただし、酸化剤として、tert−ブチルヒドロペロオキシドの代わりに、過酸化水素水を0.015g使用した。その結果を第9表に示した。
【0041】
実施例50 市販の灯油(硫黄分55ppm)にtert−ブチルヒドロペロオキシドをO/S比が2になるように加えた。図1に示したような装置において、第1段の反応器での反応条件は第1段目の反応器に触媒P(12%Mo)10.0mlを充填し、常圧、80℃,WHSV:67.3hr−1の条件で、次いで図1に示したように第2段の反応器に吸着剤としてシリカゲル40mlを充填し、常圧、20℃、WHSV:16.8hr−1の条件で前述のような酸化剤を添加した灯油を通した。得られた酸化脱硫後の灯油の平均硫黄分を表10に示した。
【0042】
実施例51 実施例50と同様の灯油の酸化脱硫を行なった。ただし、第1段目の反応器での酸化反応のWHSVを24.8hr−1に、第2段目の反応器での吸着のWHSVを7.1hr−1にした。その結果は表10に示した。
【0043】
実施例52 実施例50と同様の灯油の酸化脱硫を行なった。ただし、第1段目の反応器での酸化反応のWHSVを22.9hr−1にし、第2段目の反応器での吸着のWHSVを1.8hr−1にした。その結果は表10に示した。
【0044】
実施例53 市販ガソリン(硫黄分39.2ppm)を用い、実施例21と同様の酸化脱硫反応を行なった。得られた酸化脱硫後のガソリンの平均硫黄分を表10に示した。
【0045】
実施例54 水素化処理後の中東系直留軽油(硫黄分38.8ppm)を用い、実施例21と同様の酸化脱硫反応を行なった。得られた酸化脱硫後の軽油の平均硫黄分を表10に示した。
【0046】
比較例4 市販の灯油(硫黄分55ppm)に次亜塩素酸−tert−ブチルをO/S比が2になるように加えた。図1に示したような装置において、第1段の反応器に特許文献1のPt/Al触媒10.0mlを充填し、実施例21と同様の反応条件下で酸化脱硫反応を行なった。得られた酸化脱硫後の灯油の平均硫黄分を表10に示した。
【0047】
比較例5 市販ガソリン(硫黄分39.2ppm)を用い、比較例4と同様の酸化脱硫反応を行なった。得られた酸化脱硫後のガソリンの平均硫黄分を表10に示した。
【0048】
比較例6 水素化処理後の中東系直留軽油(硫黄分38.8ppm)を用い、比較例4と同様の酸化脱硫反応を行なった。得られた酸化脱硫後の軽油の平均硫黄分を表10に示した。
【0049】
実施例55 市販の灯油(硫黄濃度55ppm)にtert−ブチルヒドロペロオキシドをO/S比が1.5になるように加えた。図1に示したような装置において、第1段目の反応器での反応条件は第1段目の反応器に触媒A(16%Mo)3.0mlを充填し、常圧、80℃,WHSV:30hr−1の条件で、次いで図1に示したように第2段目の反応器に吸着剤としてシリカゲル20mlを充填し、常圧、20℃、WHSV:4.5hr−1の条件で前述のような酸化剤を添加した灯油を吸着剤の吸着飽和まで通し続けた。吸着剤の吸着能力を示す吸着破過曲線を図2に、求めた吸着破過点(吸着剤の体積ごとに吸着剤の飽和吸着まで処理できる灯油の体積)および得られた酸化脱硫後の灯油の平均硫黄分を第11表に示した。
【0050】
実施例56 実施例55で吸着破過をむかえた第2段目の反応器に20℃で、30mlのテトラヒドロフラン(THF)を流し、吸着剤を再生した。次いで、実施例55と同様の酸化脱硫を行なった。その結果を図2及び第11表に示した。吸着剤が再生することによって、ほとんど実施例55と同様の酸化脱硫結果を得ることができた。
【0051】
実施例57 実施例56で吸着破過をむかえた第2段目の反応器に20℃で、50mlのテトラヒドロフラン(THF)を流し、吸着剤を再生した。次いで、実施例55と同様の酸化脱硫を行なった。その結果を図2及び第11表に示した。吸着剤が再生することによって、ほとんど実施例55と同様の酸化脱硫結果を得ることができた。
【0052】
実施例58 実施例57で吸着破過をむかえた第2段目の反応器に20℃で、100mlのテトラヒドロフラン(THF)を流し、吸着剤を再生した。次いで、実施例55と同様の酸化脱硫を行なった。その結果を図2及び第11表に示した。吸着剤が再生することによって、ほとんど実施例55と同様の酸化脱硫することができた。
【表1】

Figure 2004195445
【表2】
Figure 2004195445
【表3】
Figure 2004195445
【表4】
Figure 2004195445
【表5】
Figure 2004195445
【表6】
Figure 2004195445
【表7】
Figure 2004195445
【表8】
Figure 2004195445
【表9】
Figure 2004195445
【表10】
Figure 2004195445
【表11】
Figure 2004195445
【0053】
【発明の効果】本発明は、酸化剤を添加した有機硫黄化合物を含有する液体を、酸化触媒の存在下、常圧、低温の温和な条件で反応させることにより、酸化脱硫方法の前工程として硫黄化合物をほぼ完全に酸化できる。また、後工程として、シリカゲルやアルミナ等の吸着剤を用い、高選択的に酸化した硫黄化合物を除去できる。さらに酸化触媒を充填し、有機硫黄化合物を硫黄酸化物に転化する第1段の反応器、吸着剤を充填し、第1段目の反応器で生成した硫黄酸化物を選択的に除去する第2段の反応器を有することを特徴とする酸化脱硫装置に、酸化剤を添加した有機硫黄化合物を含有する液体を連続的に通すことにより、工業的価値が極めて大きく、安価に硫黄分が数百ppbオーダーである石油製品を供給することができる。
【図面の簡単な説明】
【図1】有機硫黄化合物を含有する液体の酸化脱硫装置を示す図である。
【図2】シリカゲルと吸着破過したシリカゲルをTHFによる再生したシリカゲルの酸化後の灯油に対する吸着能力を比較する図である。[0001]
The present invention relates to a method for oxidizing a liquid containing an organic sulfur compound, an oxidation catalyst, an oxidative desulfurization method, and an oxidative desulfurization apparatus. More specifically, the present invention relates to an oxidative desulfurization method, an oxidation catalyst, an oxidative desulfurization method, and an oxidative desulfurization apparatus suitable for desulfurization from petroleum such as gasoline, kerosene, and gas oil after hydrodesulfurization.
[0002]
2. Description of the Related Art With the urgent need to take measures against acid rain caused by the burning of fossil fuels such as petroleum and coal, petroleum products are required to have higher quality than ever before, and Hydrodesulfurization methods for catalytically reducing sulfur in hydrogen to hydrogen sulfide and removing it have been widely adopted as a countermeasure. However, in this method, reaction conditions of high temperature and high pressure are inevitable, and when sulfur is contained as a chemically stable aromatic alkyl derivative having a basic skeleton of (di) benzothiophene, However, in some cases, it is difficult to reduce this itself, and there is a drawback that a sufficient desulfurization effect cannot be obtained.
[0003] In recent years, fuel cells, which are energy technologies with high energy saving and low environmental impact, have been attracting attention as important development issues for suppressing greenhouse gas emissions such as carbon dioxide and preventing global warming. Have been. As a practical application to spread fuel cells, general-purpose power sources for small fuel cells and fuel cell vehicles are being developed at a rapid pace. There are various candidates for the hydrogen source of the fuel cell, but reforming of gasoline and kerosene is realistic and has been highlighted. However, the sulfur content of the fuel oil for fuel cells must be reduced to the order of tens to hundreds of ppb, which is far below the conventional level. As a solution to this, an adsorptive sulfur remover by chemical adsorption is under development, but it is said that this method has a low adsorption selectivity, uses an expensive non-reproducible adsorbent, and has a low treatment capacity.
[0004] As described above, the sulfur content in petroleum fuel oils such as gasoline, kerosene, and gas oil has been required to be reduced to 1/10 of the current level, and further to 1 ppm or less from various viewpoints. No industrial technology has yet been developed to achieve that goal. As a method for solving such a problem, a desulfurization method using an oxidation reaction has been proposed (for example, see Patent Document 1). This method removes an organic sulfur compound by utilizing a remarkable change in physical properties of the organic sulfur compound by oxidizing a sulfur atom in the organic sulfur compound to form an organic sulfoxide or an organic sulfone. This is an excellent method for efficient desulfurization under mild conditions compared to the method. In the above-mentioned Patent Document 1, a low-concentration solution containing dibenzothiophene (DBT) is used under extremely mild conditions. However, it has been confirmed that a conversion of 80% can be achieved. Further, in Non-Patent Document 1, an oxidation reaction of hydrogenated gas oil with an oxidizing agent added at 120 ° C. is performed in the presence of an oxidation catalyst using a batch reactor, and the oxidized gas oil is subjected to SiO 2 oxidation. 2 -Al 2 O 3 And SiO 2 The possibility of reducing the sulfur content in light oil by adding an adsorbent such as described above was reported (for example, see Non-Patent Document 1).
[Patent Document 1] JP-A-11-140462 (pages 2-4, FIGS. 1 and 2)
[Non-Patent Document 1] Abstracts of the 79th Annual Meeting of the Chemical Society of Japan, 1E6-25, March 28-31, 2001, Kobe
[0005]
However, there is still room for improvement in the oxidation catalyst, oxidizing agent and oxidation method. As for the removal of sulfur compounds after oxidation, no practical method has been proposed yet. Accordingly, an object of the present invention is to provide a method for oxidizing a liquid containing an organic sulfur compound, an oxidation catalyst, an oxidative desulfurization method, and an oxidative desulfurization apparatus suitable as a method for oxidative desulfurization of a liquid containing an organic sulfur compound.
[0006]
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to attain even higher activity, and as a result, an organic sulfur compound-containing liquid to which an oxidizing agent has been added is brought into contact with a solid oxidation catalyst to carry out an oxidation reaction. Thus, the present inventors have found that the present invention provides a means for converting a sulfur compound in a liquid containing an organic sulfur compound into a sulfur oxide and removing the sulfur compound by adsorption of an adsorbent, thereby achieving the present invention. In the present invention, an oxidizing agent is added to a liquid containing an organic sulfur compound, and the organic sulfur compound is converted into a sulfur oxide by heating in the presence of an oxidation catalyst, and then the generated sulfur oxide is removed by adsorption. Is a desulfurization method. As the oxidizing agent, hydrogen peroxide solution, organic peroxide, at least one oxidizing agent selected from the group consisting of organic hypochlorous compound and organic hypobromite compound, sulfur in the organic sulfur compound A liquid containing an organic sulfur compound, characterized by adding a stoichiometric amount or more necessary for the oxidation of atoms, performing a catalytic oxidation reaction using an oxidation catalyst, and removing the sulfur oxide compound by adsorption or the like. Was achieved by the oxidative desulfurization method of
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION The organic sulfur compound-containing liquid in the present invention is not particularly limited, but in particular, the organic sulfur compound contained therein is generally considered to be most difficult to remove. Thiophenes, such as thiophene and dibenzothiophene, whose naphtha, gasoline, kerosene, light oil, heavy oil, asphaltenes, oil sand oil, coal liquefied oil, coal heavy oil whose residual amount of sulfur is several hundred ppm or less And the like. Sulfoxide and sulfone in which thiophenes have a sulfur atom oxidized have greatly different physical properties from those of the original compound, and thus can be easily separated by filtration or adsorption. It is also possible to decompose using a microorganism.
The oxidizing agent used in the present invention can be appropriately selected from aqueous hydrogen peroxide, an organic peroxide, an organic hypochlorite compound, and an organic hypobromite compound. These oxidizing agents may be used in combination of two or more. Specific examples of the organic peroxide include, for example, peroxides such as formic acid, peracetic acid, and tert-butyl hydroperoxide. From the viewpoints of reactivity, handleability, and the like, in the present invention, it is particularly preferable to use an organic peroxide, and particularly preferable to use tert-butyl hydroperoxide.
The amount of the oxidizing agent used may be at least the amount necessary to oxidize all of the organic sulfur compounds to be oxidized contained in the liquid to the sulfoxide. It is preferable to add an oxidizing agent in an amount to supply 0.5 to 30 oxygen atoms, particularly 1 to 10 oxygen atoms, in order to quickly oxidize the organic sulfur compound to sulfoxide or sulfone.
[0010] Even if the liquid containing the organic sulfur compound and the oxidizing agent according to the present invention are mixed and heated, the oxidation reaction does not proceed by itself, so that an oxidation catalyst is required. Here, if a solid catalyst is used as a catalyst, it is possible to oxidize a sulfur compound in an organic sulfur compound-containing liquid, and then, by performing treatment such as adsorption, it is possible to continuously perform oxidative desulfurization after conventional hydrodesulfurization. .
In the present invention, the solid catalyst can be appropriately selected and used from catalysts capable of oxidizing an organic sulfur compound to sulfoxide or sulfone. Such a solid catalyst can be appropriately selected from known ones, but a Bronsted or Lewis acidic solid acid catalyst, a transition metal oxide catalyst, and a solid base catalyst are preferred. As the carrier, γ-alumina, titania, silica-alumina, and silica can be appropriately selected and used, and among them, γ-alumina is preferable. The particle size of the carrier can be appropriately selected, but is preferably relatively small as long as it has a particle size (-300 mesh) that does not clog the reaction solution, but the range of 25 to 100 mesh is preferred from the viewpoint of catalyst strength and handling. preferable.
The metal supported on the catalyst preferably supports at least one of molybdenum, tungsten, chromium, vanadium, niobium, zirconium and nickel. The amount of the supported metal may be in the range of 0 to 50% by mass in terms of oxide, but is preferably in the range of about a single layer supported on a carrier, 3 to 30% by mass for molybdenum oxide, and 3 to 30% by mass for tungsten oxide. 10 to 50% by mass, 5 to 30% by mass for chromium oxide, 2 to 15% by mass for vanadium oxide, 1 to 15% by mass for niobium oxide, 5 to 20% by mass for zirconium oxide A range is preferred. As the carrier, at least one kind can be selected from the carriers described above.
The loading method is preferably an impregnation method or an ion-exchange method. The metal compound to be loaded may be impregnated in a plurality of times, but it is efficient to carry it out at once. The supported metal compound may be dissolved using pure water having a weight of 0.5 to 100 times the weight of the catalyst to be prepared, but is preferably in a range of 1 to 10 times in order to increase the dispersion ratio of the supported metal. When using a supported metal compound having low solubility, nitric acid or aqueous ammonia may be added, but the pH is preferably in the range of 3 to 11 in consideration of the stability of the impregnating liquid. After the impregnation, it is dried usually in the range of 20 to 200 ° C (preferably 100 to 120 ° C) for 1 to 12 hours (preferably 2 to 6 hours). Thereafter, baking is performed at 200 to 500 ° C (preferably 350 to 450 ° C) for 2 to 15 hours (preferably 3 to 12 hours).
As a method for removing the oxidized sulfur compound from the liquid containing the organic sulfur compound, a separation method such as distillation, filtration, or adsorption may be used. Is desirable. At least one adsorbent selected from activated carbon, alumina, silica gel, fluidized bed catalytic cracking (FCC) equilibrium catalyst used in petroleum refining processes (used), silica-alumina, molecular sieve, and zeolite And the organic sulfur oxide can be removed by adsorption.
The solvent used for regenerating the used adsorbent can be appropriately selected from known solvents, for example, methanol, toluene, sulfolane, dimethyl sulfoxide, acetonitrile and the like, and among them, tetrahydrofuran is preferred. The temperature at the time of regeneration may be lower than the boiling point of the solvent used, but is preferably room temperature.
Next, a method for oxidatively desulfurizing a liquid containing an organic sulfur compound according to the present invention will be described. The oxidation treatment is generally performed at a reaction temperature of 0 to 400 ° C. (preferably 20 to 120 ° C.) and a normal pressure to 3 atm (preferably normal pressure). Although the reaction type is not particularly limited, it can be generally selected from various processes of a batch type apparatus or a flow type apparatus (fixed bed, moving bed, suspension bed, etc.), but a flow type fixed bed is preferable. As the reaction conditions in the case of a flow-type fixed bed, WHSV is 0.1 to 400 hours. -1 (Preferably 0.5 to 300 hours -1 ) Is preferable, and the molar ratio (O / S ratio) between the sulfur content and the oxidizing agent in the liquid containing the organic sulfur compound is preferably 0.5 to 30 (preferably 1 to 10). The conditions for the adsorption desulfurization are generally in the range of an adsorption temperature of −50 to 100 ° C. (preferably 0 to 50 ° C.) and normal pressure to 3 atm (preferably normal pressure). The type of the adsorption device is not particularly limited, but usually a flow-type fixed bed is preferred. As the reaction conditions in the case of a fixed bed, WHSV is 0.1 to 400 hours. -1 (Preferably 1 to 100 hours -1 ) Is preferable.
The oxidative desulfurization apparatus of the present invention is constituted by a two-stage reactor. The first-stage reactor is charged with at least one solid catalyst as described above, and a liquid containing an organic sulfur compound to which at least one oxidizing agent is added is continuously passed through to convert the organic sulfur compound into a sulfur oxide. And filling the second stage reactor with at least one adsorbent as described above, and selectively removing sulfur compounds from the liquid after the oxidation reaction coming out of the first stage reactor. Can be.
[0018]
Note that the present invention is not limited to the above-described embodiment, but can adopt various other configurations without departing from the gist of the present invention.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it is needless to say that the present invention is not limited thereto.
[0020]
Example 1 MoO as a catalyst composition 3 Is adjusted to 16% by mass (provided that 8.4 g of the carrier is used) and ammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ・ 4H 2 O) is placed in a beaker and completely dissolved with 10 ml of pure water to prepare an aqueous solution of ammonium molybdate. A γ-alumina carrier (25-80 mesh) is put therein, and heated in a sand bath while shaking to evaporate water and impregnate with ammonium molybdate. After further drying at 120 ° C. for 2 hours, it was calcined at 450 ° C. for 12 hours and then 16% by mass of γ-alumina molybdate catalyst (MoO 2 3 / Γ-Al 2 O 3 ) 10 g were obtained. This is designated as catalyst A. Next, 0.1 g of Catalyst A was added to a 200 ml eggplant-shaped flask, and 65 ml of hydrogenated gas oil (total sulfur content: 730 ppm) containing 1500 ppm of dibenzothiophene (DBT) was further added. 0.63 g of tert-butyl hydroperoxide was added so that the molar ratio (O / S) of the peroxide to the total sulfur in the gas oil was 9, and the mixture was heated to 120 ° C. using an oil bath and oxidized. The reaction was performed for 2 hours. This was analyzed by a gas chromatograph with a flame photometric detector (FPD) (Shimadzu Corporation: GC-14A-FPD), and the oxidation activity of DBT as shown in Table 1 was obtained.
[0021]
Examples 2 to 4 As in Example 1, ammonium vanadate tetrahydrate (NH 4 VO 3 4% by mass V 2 O 5 / Γ-Al 2 O 3 Catalyst (catalyst B), chromium nitrate (Cr (NO 3 ) 3 ) Using 22% by mass CrO 3 / Γ-Al 2 O 3 (Catalyst C), ammonium tungstate pentahydrate ((NH 4 ) 10 O 41 W 12 ・ 5H 2 O) and 19.3 mass% WO 3 / Γ-Al 2 O 3 (Catalyst D) was prepared respectively. When an oxidation reaction was carried out in the same manner as in Example 1 using each of these catalysts, the oxidation activity of DBT as shown in Table 1 was obtained.
[0022]
Example 5 A γ-alumina support dried at 120 ° C. for 2 hours was calcined at 450 ° C. for 12 hours to obtain a catalyst E. Next, when the same oxidation reaction as in Example 1 was carried out using the catalyst E, the oxidation activity of DBT as shown in Table 1 was obtained.
[0023]
Examples 6 and 7 The same oxidative desulfurization reaction as in Example 1 was performed. However, the molar ratio (O / S) of tert-butyl hydroperoxide to the total sulfur in the gas oil was 4.5 and 1, respectively. The results are shown in Table 1.
[0024]
Comparative Example 1 Pt / Al of Patent Document 1 2 O 3 When an oxidation reaction was carried out in the same manner as in Example 1 using a catalyst and -tert-butyl hypochlorite, the oxidation activity of DBT as shown in Table 1 was obtained.
[0025]
Example 8 Silica-alumina (surface area: 560 m) as an adsorbent 2 / G) 1 g was added to the gas oil that had been subjected to the oxidation reaction in Example 1, and sulfur compounds were removed by adsorption at 70 ° C. for 3 hours and further at 20 ° C. for 3 hours. The sulfur content in the gas oil after the adsorption and desulfurization was analyzed with a fluorescent X-ray analyzer (EDX-800, Shimadzu Corporation). As shown in Table 2, the sulfur content was reduced to a low concentration of 10 ppm or less by the oxidation-adsorption operation as shown in Table 2. Could be reduced.
[0026]
Examples 9 to 15 As a sorbent, molicula sieve 4A, molicula sieve 13X, γ-alumina (surface area: 256 m 2 / G), activated carbon (surface area 800-1000m) 2 / G), silica gel (surface area: 347 m) 2 / G), ZSM-5 zeolite, NaY zeolite (surface area 663 m 2 / G), and the same adsorption experiment as in Example 8 was performed to remove sulfur compounds. The results are shown in Table 2.
[0027]
Comparative Example 2 The same adsorption experiment as in Example 8 was performed to remove sulfur compounds. However, the adsorption reaction was carried out without performing the oxidation reaction of the hydrogenated gas oil (total sulfur content: 730 ppm) containing 1500 ppm of dibenzothiophene (DBT). As shown in Table 2, the desulfurization rate was low only by adsorption without performing the oxidation reaction.
[0028]
Example 16 0.1 g of Catalyst A was added to a 200 ml eggplant-shaped flask, and 100 ml of commercially available kerosene (sulfur concentration: 55 ppm) was further placed in a 100 ml measuring cylinder, and tert-butyl hydroperoxide and a mole of total sulfur in kerosene After adding 0.020 g of tert-butyl hydroperoxide so that the ratio (O / S) became 2, the mixture was heated to 100 ° C. using an oil bath, and the oxidation reaction was performed for 2 hours. Next, silica gel (surface area: 347 m) was used as an adsorbent. 2 / G) In a column packed with 1.2 ml, normal pressure, 25 ° C., WHSV: 4 hr -1 Under the conditions described above, the oxidized kerosene was allowed to flow down to remove sulfur. The sulfur content in the kerosene after the oxidative desulfurization was analyzed by a trace sulfur analyzer (Dia Instruments: TS-100), and the results are shown in Table 3.
[0029]
Examples 17 to 20 The same oxidative desulfurization reaction as in Example 16 was performed. However, FCC equilibrium catalyst, activated alumina, activated carbon (surface area 800-1000 m 2 / G), silica-alumina (surface area: 560 m) 2 / G). The results are shown in Table 3.
[0030]
Example 21 A 500 ml measuring cylinder was charged with 500 ml of commercially available kerosene (sulfur concentration: 55 ppm), and tert-butyl hydroperoxide was added so that the O / S ratio became 10. In the apparatus as shown in FIG. 1, 17.5 ml of the catalyst A was charged into the first-stage reactor, and normal pressure, 80 ° C., WHSV: 30 hr -1 Then, as shown in FIG. 1, 35 ml of silica gel was charged into the second-stage reactor as an adsorbent under normal pressure, room temperature, and WHSV: 4.9 hr. -1 Under the conditions described above, kerosene to which the oxidizing agent was added was passed. At the outlet of the first-stage reactor, the oxidized kerosene was collected, and this was subjected to DBT, 4-methyldibenzothiophene (4MDBT), 4,4 by gas chromatography (Agilent: GC-SCD) equipped with a chemiluminescent sulfur detector. 6-dimethyldibenzothiophene (4,6-DMDBT) and oxidation products of these compounds, dibenzothiophene sulfone (DBTS), 4-methyldibenzothiophene sulfone (4MDBTS), and 4,6-dimethyldibenzothiophene sulfone (4 , 6-DMDBTS) and the total sulfur content in kerosene analyzed with a trace sulfur analyzer (Dia Instruments: TS-100) are shown in Table 4. Further, kerosene after oxidative desulfurization was sampled at the outlet of the second-stage reactor, and the respective sulfur compounds and the total sulfur content in kerosene were measured in the same manner. As shown in Table 4, sulfur compounds in kerosene are almost oxidized to sulfone compounds, which can be almost completely removed by adsorption. On the other hand, very little unoxidized sulfur compound remains after the oxidation reaction even after the adsorption. Further, the sulfur content in kerosene could be reduced to an extremely low concentration of 0.45 ppm by the oxidation-adsorption operation.
[0031]
Example 22 100 ml of commercially available kerosene (sulfur concentration: 55 ppm) was placed in a 100 ml measuring cylinder, and tert-butyl hydroperoxide was added so that the molar ratio (O / S) of total sulfur in the kerosene was 1.5. 0.020 g of -butylhydroperoxide was added. As shown in FIG. 1 filled with 1 g of the catalyst A, this was charged into the first-stage reactor at normal pressure, 110 ° C. and WHSV: 60 hr. -1 And only the oxidation reaction was performed. This was analyzed by gas chromatography with a chemiluminescent sulfur detector (Agilent: GC-SCD), and the oxidation activity of each sulfur compound as shown in Table 5 was obtained.
[0032]
Examples 23 to 27 As in Example 1, ammonium tungstate pentahydrate ((NH 4 ) 10 O 41 W 12 ・ 5H 2 O) and 35 mass% WO 3 / Γ-Al 2 O 3 (Catalyst F), chromium nitrate (Cr (NO 3 ) 3 ) And 11 mass% CrO 3 / Γ-Al 2 O 3 (Catalyst G), ammonium vanadate tetrahydrate (NH 4 VO 3 ) Using 10% by mass V 2 O 5 / Γ-Al 2 O 3 Catalyst (catalyst H), sodium niobate (Na 2 Nb 2 O 5 ) Using 10% by mass Nb 2 O 5 / Γ-Al 2 O 3 (Catalyst I), zirconium chloride (ZrCl 2 ) Using 15% by mass ZrO 2 / Γ-Al 2 O 3 (Catalyst J) was prepared. When an oxidation reaction was carried out in the same manner as in Example 22 using each of these catalysts, the oxidation activity of each sulfur compound as shown in Table 5 was obtained.
[0033]
Examples 28 and 29 A titanium dioxide carrier and a silica carrier were used in place of the γ-alumina carrier, and 16% 3 / TiO 2 (Catalyst K) and 16% by mass MoO 3 / SiO 2 (Catalyst L) was prepared. When the same oxidation reaction as in Example 22 was performed using catalysts K and L, the oxidation activity of each sulfur compound as shown in Table 5 was obtained.
[0034]
Example 30 In the same manner as in Example 1, ammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ・ 4H 2 O) and nickel nitrate hexahydrate (Ni (NO 3 ) 2 ・ 6H 2 O) and MoO as a catalyst composition. 3 Is 16% by mass and 0.4NiMoO so that the molar ratio of Ni and Mo is 0.4. 3 / Al 2 O 3 (Catalyst M) was prepared. Next, when the same oxidation reaction as in Example 22 was carried out using the catalyst M, the oxidation activity of each sulfur compound as shown in Table 5 was obtained.
[0035]
Examples 31 to 37 3% by mass of MoO as in Example 1 so that the supported amount of molybdenum oxide on the catalyst was 3% by mass to 25% by mass. 3 / Γ-Al 2 O 3 (Catalyst N), 6% by mass MoO 3 / Γ-Al 2 O 3 (Catalyst O), 12% by mass MoO 3 / Γ-Al 2 O 3 (Catalyst P), 14% by mass MoO 3 / Γ-Al 2 O 3 (Catalyst Q), 18% by mass MoO 3 / Γ-Al 2 O 3 (Catalyst R), 20% by mass MoO 3 / Γ-Al 2 O 3 (Catalyst S) and 25% by mass MoO 3 / Γ-Al 2 O 3 (Catalyst T) was prepared. When an oxidation reaction was carried out in the same manner as in Example 22 using each of these catalysts, the oxidation activity of each sulfur compound as shown in Table 5 was obtained.
[0036]
Comparative Example 3 Pt / Al of Patent Document 1 2 O 3 Using a catalyst and -tert-butyl hypochlorite, the same oxidation reaction as in Example 22 was carried out. As a result, the oxidation activity of each sulfur compound as shown in Table 5 was obtained.
[0037]
Examples 38 and 39 The same oxidation reaction as in Example 22 was performed. However, tert-butyl hydroperoxide was added so that the O / S ratio became 1.0, 10 and 20, respectively. The results are shown in Table 6.
[0038]
Examples 40 to 43 The same oxidation reaction as in Example 22 was performed. However, the reaction temperatures were 30 ° C., 70 ° C., 90 ° C. and 120 ° C., respectively. The results are shown in Table 7.
[0039]
Examples 44 to 48 The same oxidation reaction as in Example 22 was performed. However, the WHSV is 6 hours -1 , 20hr -1 , 120hr -1 , 180hr -1 , 300hr -1 I made it. The results are shown in Table 8.
[0040]
Example 49 The same oxidation reaction as in Example 22 was performed. However, instead of tert-butyl hydroperoxide, 0.015 g of hydrogen peroxide was used as the oxidizing agent. The results are shown in Table 9.
[0041]
Example 50 Tert-butyl hydroperoxide was added to commercially available kerosene (sulfur content: 55 ppm) so that the O / S ratio became 2. In the apparatus as shown in FIG. 1, the reaction conditions in the first-stage reactor are as follows. The first-stage reactor is charged with 10.0 ml of the catalyst P (12% Mo), and the pressure is 80.degree. : 67.3 hr -1 Then, as shown in FIG. 1, 40 ml of silica gel was charged into the second-stage reactor as an adsorbent as shown in FIG. 1, and normal pressure, 20 ° C., WHSV: 16.8 hr -1 Under the conditions described above, kerosene to which the oxidizing agent was added was passed. Table 10 shows the average sulfur content of the obtained kerosene after oxidative desulfurization.
[0042]
Example 51 The same oxidative desulfurization of kerosene as in Example 50 was performed. However, the WHSV of the oxidation reaction in the first-stage reactor was 24.8 hr. -1 The WHSV of the adsorption in the second-stage reactor was 7.1 hr. -1 I made it. The results are shown in Table 10.
[0043]
Example 52 The same oxidative desulfurization of kerosene as in Example 50 was performed. However, the WHSV of the oxidation reaction in the first-stage reactor was 22.9 hr. -1 And the WHSV of the adsorption in the second-stage reactor is 1.8 hr. -1 I made it. The results are shown in Table 10.
[0044]
Example 53 The same oxidative desulfurization reaction as in Example 21 was performed using commercially available gasoline (sulfur content: 39.2 ppm). Table 10 shows the average sulfur content of the obtained gasoline after oxidative desulfurization.
[0045]
Example 54 The same oxidative desulfurization reaction as in Example 21 was performed using Middle Eastern straight-run gas oil (having a sulfur content of 38.8 ppm) after the hydrotreating. Table 10 shows the average sulfur content of the obtained gas oil after oxidative desulfurization.
[0046]
Comparative Example 4 -tert-butyl hypochlorite was added to commercially available kerosene (sulfur content: 55 ppm) so that the O / S ratio became 2. In the apparatus as shown in FIG. 1, the Pt / Al of Patent Document 1 is added to the first stage reactor. 2 O 3 10.0 ml of the catalyst was charged, and an oxidative desulfurization reaction was performed under the same reaction conditions as in Example 21. Table 10 shows the average sulfur content of the obtained kerosene after oxidative desulfurization.
[0047]
Comparative Example 5 The same oxidative desulfurization reaction as in Comparative Example 4 was performed using a commercially available gasoline (sulfur content: 39.2 ppm). Table 10 shows the average sulfur content of the obtained gasoline after oxidative desulfurization.
[0048]
Comparative Example 6 The same oxidative desulfurization reaction as in Comparative Example 4 was performed using a Middle Eastern straight-run gas oil (having a sulfur content of 38.8 ppm) after hydrotreating. Table 10 shows the average sulfur content of the obtained gas oil after oxidative desulfurization.
[0049]
Example 55 Tert-butyl hydroperoxide was added to commercially available kerosene (sulfur concentration: 55 ppm) so that the O / S ratio became 1.5. In the apparatus as shown in FIG. 1, the reaction conditions in the first-stage reactor are as follows. The first-stage reactor is charged with 3.0 ml of catalyst A (16% Mo), WHSV: 30 hr -1 Then, as shown in FIG. 1, the second stage reactor was charged with 20 ml of silica gel as an adsorbent at normal pressure, 20 ° C., WHSV: 4.5 hr. -1 Under the conditions described above, kerosene to which the oxidizing agent was added was continued to pass until the adsorption saturation of the adsorbent. The adsorption breakthrough curve showing the adsorption capacity of the adsorbent is shown in FIG. 2, and the obtained adsorption breakthrough point (volume of kerosene that can be processed up to the saturated adsorption of the adsorbent for each volume of the adsorbent) and the obtained kerosene after oxidative desulfurization Are shown in Table 11.
[0050]
Example 56 The adsorbent was regenerated by flowing 30 ml of tetrahydrofuran (THF) at 20 ° C. into the second-stage reactor in the case of adsorption breakthrough in Example 55. Next, the same oxidative desulfurization as in Example 55 was performed. The results are shown in FIG. 2 and Table 11. By regenerating the adsorbent, almost the same oxidative desulfurization results as in Example 55 could be obtained.
[0051]
Example 57 The adsorbent was regenerated by flowing 50 ml of tetrahydrofuran (THF) at 20 ° C. into the second-stage reactor in the case of adsorption breakthrough in Example 56. Next, the same oxidative desulfurization as in Example 55 was performed. The results are shown in FIG. 2 and Table 11. By regenerating the adsorbent, almost the same oxidative desulfurization results as in Example 55 could be obtained.
[0052]
Example 58 At 20 ° C., 100 ml of tetrahydrofuran (THF) was flowed into the second-stage reactor facing adsorption breakthrough in Example 57 to regenerate the adsorbent. Next, the same oxidative desulfurization as in Example 55 was performed. The results are shown in FIG. 2 and Table 11. By regenerating the adsorbent, almost the same oxidative desulfurization as in Example 55 could be performed.
[Table 1]
Figure 2004195445
[Table 2]
Figure 2004195445
[Table 3]
Figure 2004195445
[Table 4]
Figure 2004195445
[Table 5]
Figure 2004195445
[Table 6]
Figure 2004195445
[Table 7]
Figure 2004195445
[Table 8]
Figure 2004195445
[Table 9]
Figure 2004195445
[Table 10]
Figure 2004195445
[Table 11]
Figure 2004195445
[0053]
According to the present invention, a liquid containing an organic sulfur compound to which an oxidizing agent has been added is allowed to react under mild conditions of normal pressure and low temperature in the presence of an oxidation catalyst, so that it can be used as a pre-step of the oxidative desulfurization method. Almost completely oxidize sulfur compounds. Further, as a post-process, a highly selectively oxidized sulfur compound can be removed by using an adsorbent such as silica gel or alumina. Further, a first-stage reactor for charging an oxidation catalyst and converting an organic sulfur compound into a sulfur oxide, and a first-stage reactor for charging an adsorbent and selectively removing the sulfur oxide generated in the first-stage reactor. By continuously passing a liquid containing an organic sulfur compound to which an oxidizing agent has been added through an oxidizing desulfurization apparatus characterized by having a two-stage reactor, the industrial value is extremely large, and the sulfur content can be reduced at a low cost. It can supply petroleum products on the order of 100 ppb.
[Brief description of the drawings]
FIG. 1 is a diagram showing a liquid oxidative desulfurization device containing an organic sulfur compound.
FIG. 2 is a graph comparing the adsorption abilities of kerosene after oxidation of silica gel and silica gel obtained by regenerating silica gel which has been adsorbed and broken through with THF.

Claims (16)

モリブデン、タングステン、クロム、バナジウム、ニオブ、ジルコニウム、ニケッルからなる群から選択された1種または数種の酸化物0〜50質量%を含有し、アルミナ、シリカ、チタニアのいずれの少なく1つの担体を用いることを特徴とする酸化触媒。One or several oxides selected from the group consisting of molybdenum, tungsten, chromium, vanadium, niobium, zirconium, and nickel are contained in an amount of 0 to 50% by mass, and at least one carrier of alumina, silica, and titania is contained. An oxidation catalyst characterized by being used. 有機硫黄化合物を含有する液体中に酸化剤を添加し、酸化触媒の存在下で前記有機硫黄化合物を硫黄酸化物に転化する酸化方法において、酸化剤として、無機過酸化剤、有機過酸化物、有機次亜塩素酸化合物及び有機次亜臭素酸化合物からなる群の中から選択される少なくとも一種の酸化剤を用い、触媒酸化反応を行なうことを特徴とする、有機硫黄化合物を含有する液体の酸化方法。In an oxidation method of adding an oxidizing agent to a liquid containing an organic sulfur compound and converting the organic sulfur compound to sulfur oxide in the presence of an oxidation catalyst, as an oxidizing agent, an inorganic peroxide, an organic peroxide, Oxidation of a liquid containing an organic sulfur compound, wherein a catalytic oxidation reaction is performed using at least one oxidizing agent selected from the group consisting of an organic hypochlorous compound and an organic hypobromite compound. Method. 酸化触媒がモリブデン、タングステン、クロム、バナジウム、ニオブ、ジルコニウム、ニケッルからなる群から選択された1種または数種の酸化物0〜50質量%を含有し、アルミナ、シリカ、チタニアのいずれの少なく1つの担体を用いることを特徴とする、請求項2に記載された有機硫黄化合物を含有する液体の酸化方法。The oxidation catalyst contains 0 to 50% by mass of one or several oxides selected from the group consisting of molybdenum, tungsten, chromium, vanadium, niobium, zirconium, and nickel, and at least one of alumina, silica, and titania is used. The method for oxidizing a liquid containing an organic sulfur compound according to claim 2, wherein two carriers are used. 酸化剤が過酸化水素水、有機過酸化合物のtert−ブチルヒドロペルオキシド、有機次亜塩素酸化合物及び有機次亜臭素酸化合物であることを特徴とする、請求項2に記載された有機硫黄化合物を含有する液体の酸化方法。The organic sulfur compound according to claim 2, wherein the oxidizing agent is aqueous hydrogen peroxide, tert-butyl hydroperoxide of an organic peracid compound, an organic hypochlorite compound, and an organic hypobromite compound. A method for oxidizing a liquid comprising: 有機硫黄化合物を含有する液体が、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン、オイルサンド油、石炭液化油、石炭系重質油及びシェールオイルのいずれかであることを特徴とする、請求項2に記載された有機硫黄化合物を含有する液体の酸化方法。The liquid containing an organic sulfur compound is one of naphtha, gasoline, kerosene, light oil, heavy oil, asphaltenes, oil sand oil, coal liquefied oil, coal-based heavy oil and shale oil, characterized by the above-mentioned. 2. A method for oxidizing a liquid containing an organic sulfur compound according to item 2. 酸化剤と酸化触媒を用いて酸化した硫黄化合物を、吸着剤を用い、吸着により除去することを特徴とする、有機硫黄化合物を含有する液体の酸化脱硫方法。A method for oxidatively desulfurizing a liquid containing an organic sulfur compound, wherein the sulfur compound oxidized using an oxidizing agent and an oxidation catalyst is removed by adsorption using an adsorbent. 酸化剤が過酸化水素水、有機過酸化合物のtert−ブチルヒドロペルオキシド、有機次亜塩素酸化合物及び有機次亜臭素酸化合物であることを特徴とする、請求項6に記載された有機硫黄化合物を含有する液体の酸化脱硫方法。The organic sulfur compound according to claim 6, wherein the oxidizing agent is aqueous hydrogen peroxide, tert-butyl hydroperoxide of an organic peracid compound, an organic hypochlorite compound, and an organic hypobromite compound. A method for oxidative desulfurization of a liquid containing: 酸化触媒がモリブデン、タングステン、クロム、バナジウム、ニオブ、ジルコニウム、ニケッルからなる群から選択された1種または数種の酸化物0〜50質量%を含有し、アルミナ、シリカ、チタニアのいずれの少なく1つの担体を用いることを特徴とする、請求項6に記載された有機硫黄化合物を含有する液体の酸化脱硫方法。The oxidation catalyst contains 0 to 50% by mass of one or several oxides selected from the group consisting of molybdenum, tungsten, chromium, vanadium, niobium, zirconium, and nickel, and at least one of alumina, silica, and titania is used. The method for oxidative desulfurization of a liquid containing an organic sulfur compound according to claim 6, wherein one carrier is used. 吸着剤が活性炭、活性化アルミナ、シリカゲル、シリカ−アルミナ、使用済み流動層接触分解(FCC)平衡触媒、ゼオライトの中から選択される少なくとも一種である特徴とする、請求項6に記載された有機硫黄化合物を含有する液体の酸化脱硫方法。The organic material according to claim 6, wherein the adsorbent is at least one selected from activated carbon, activated alumina, silica gel, silica-alumina, used fluidized bed catalytic cracking (FCC) equilibrium catalyst, and zeolite. A method for oxidative desulfurization of a liquid containing a sulfur compound. 有機硫黄化合物を含有する液体が、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン、オイルサンド油、石炭液化油、石炭系重質油及びシェールオイルのいずれかであることを特徴とする、請求項6に記載された有機硫黄化合物を含有する液体の酸化脱硫方法。The liquid containing an organic sulfur compound is one of naphtha, gasoline, kerosene, light oil, heavy oil, asphaltenes, oil sand oil, coal liquefied oil, coal-based heavy oil and shale oil, characterized by the above-mentioned. 6. A method for oxidative desulfurization of a liquid containing an organic sulfur compound according to 6. 酸化触媒を充填した第1段目の反応器、吸着剤を充填した第2段の反応器を有することを特徴とする、有機硫黄化合物を含有する液体の酸化脱硫装置。A liquid oxidative desulfurization apparatus containing an organic sulfur compound, comprising a first-stage reactor filled with an oxidation catalyst and a second-stage reactor filled with an adsorbent. 酸化触媒を充填し、酸化剤を添加した有機硫黄化合物を含有する液体を、連続的に通すことにより前記有機硫黄化合物を硫黄酸化物に転化する第1段の反応器、吸着剤を充填し、第1段目の反応器で生成した硫黄酸化物を除去する第2段の反応器を有することを特徴とする、有機硫黄化合物を含有する液体の酸化脱硫装置。Filling the oxidation catalyst, a first-stage reactor for converting the organic sulfur compound to sulfur oxide by continuously passing a liquid containing an organic sulfur compound to which an oxidizing agent has been added, filling the adsorbent, A oxidative desulfurization device for a liquid containing an organic sulfur compound, comprising a second-stage reactor for removing sulfur oxides generated in the first-stage reactor. 酸化剤が過酸化水素水、有機過酸化合物のtert−ブチルヒドロペルオキシド、有機次亜塩素酸化合物及び有機次亜臭素酸化合物であることを特徴とする、請求項12に記載された有機硫黄化合物を含有する液体の酸化脱硫装置。The organic sulfur compound according to claim 12, wherein the oxidizing agent is aqueous hydrogen peroxide, tert-butyl hydroperoxide of an organic peracid compound, an organic hypochlorite compound, and an organic hypobromite compound. A liquid oxidative desulfurization device containing. 酸化触媒がモリブデン、タングステン、クロム、バナジウム、ニオブ、ジルコニウム、ニケッルからなる群から選択された1種または数種の酸化物0〜50質量%を含有し、アルミナ、シリカ、チタニアのいずれの少なく1つの担体を用いることを特徴とする、請求項12記載の有機硫黄化合物を含有する液体の酸化脱硫装置。The oxidation catalyst contains 0 to 50% by mass of one or several oxides selected from the group consisting of molybdenum, tungsten, chromium, vanadium, niobium, zirconium, and nickel, and at least one of alumina, silica, and titania is used. 13. The liquid oxidative desulfurization device containing an organic sulfur compound according to claim 12, wherein one carrier is used. 吸着剤が活性炭、アルミナ、シリカゲル、シリカーアルミナ、使用済み流動層接触分解(FCC)平衡触媒、モリキュラーシーブ、ゼオライトの中から選択される少なくとも一種である特徴とする、請求項12記載の有機硫黄化合物を含有する液体の酸化脱硫装置。The organic material according to claim 12, wherein the adsorbent is at least one selected from activated carbon, alumina, silica gel, silica-alumina, spent fluidized bed catalytic cracking (FCC) equilibrium catalyst, molecular sieve, and zeolite. Liquid oxidative desulfurization equipment containing sulfur compounds. 有機硫黄化合物含有液体が、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン、オイルサンド油、石炭液化油、石炭系重質油及びシェールオイルのいずれかであることを特徴とする、請求項12に記載された有機硫黄化合物を含有する液体の酸化脱硫装置。The organic sulfur compound-containing liquid is any one of naphtha, gasoline, kerosene, light oil, heavy oil, asphaltenes, oil sand oil, coal liquefied oil, coal heavy oil and shale oil, according to claim 12, characterized in that: A liquid oxidative desulfurization device containing the described organic sulfur compound.
JP2002383296A 2002-12-17 2002-12-17 Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus Pending JP2004195445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383296A JP2004195445A (en) 2002-12-17 2002-12-17 Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383296A JP2004195445A (en) 2002-12-17 2002-12-17 Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus

Publications (1)

Publication Number Publication Date
JP2004195445A true JP2004195445A (en) 2004-07-15

Family

ID=32767062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383296A Pending JP2004195445A (en) 2002-12-17 2002-12-17 Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus

Country Status (1)

Country Link
JP (1) JP2004195445A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169297A (en) * 2007-01-11 2008-07-24 Adeka Corp Desulfurizing agent for super-deep oxidative desulfurization and oxidative desulfurization method using the same
CN100406540C (en) * 2005-05-31 2008-07-30 中国科学院大连化学物理研究所 Catalyst in use for oxidation and deodoration of light oil, and preparation method
JP2009045536A (en) * 2007-08-17 2009-03-05 Cosmo Oil Co Ltd Method of preparing agent for desulfurizing hydrocarbon
EP2105489A1 (en) * 2008-03-26 2009-09-30 General Electric Company Oxidative desulfurization of fuel oil
JP2011241320A (en) * 2010-05-19 2011-12-01 Jx Nippon Oil & Energy Corp Method for desulfurizing hydrocarbon
JP2011241321A (en) * 2010-05-19 2011-12-01 Jx Nippon Oil & Energy Corp Method for desulfurizing hydrocarbon
WO2013019629A1 (en) * 2011-07-29 2013-02-07 Saudi Arabian Oil Company Oxidative desulfurization in fluid catalytic cracking process
JP2013522449A (en) * 2010-03-19 2013-06-13 カレン、マーク Method for removing sulfur from hydrocarbon streams using hydroprocessing, fractional distillation, and oxidation
JP2013116440A (en) * 2011-12-02 2013-06-13 Tokyo Metropolitan Univ Oxidation catalyst
CN103566958A (en) * 2013-11-12 2014-02-12 西南化工研究设计院有限公司 Catalyst for preparing refined benzene from crude benzene hydrogenation and preparation method thereof
US8663459B2 (en) 2006-03-03 2014-03-04 Saudi Arabian Oil Company Catalytic process for deep oxidative desulfurization of liquid transportation fuels
US8906227B2 (en) 2012-02-02 2014-12-09 Suadi Arabian Oil Company Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds
US8920635B2 (en) 2013-01-14 2014-12-30 Saudi Arabian Oil Company Targeted desulfurization process and apparatus integrating gas phase oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds
US9663725B2 (en) 2011-07-27 2017-05-30 Saudi Arabian Oil Company Catalytic compositions useful in removal of sulfur compounds from gaseous hydrocarbons, processes for making these and uses thereof
CN107469762A (en) * 2016-06-20 2017-12-15 伦慧东 A kind of composite of micro-loading type titanium oxide and silica gel and preparation method thereof
CN108003920A (en) * 2017-07-18 2018-05-08 华南理工大学 A kind of oxidized sulfur method with load metal oxide double-function catalyzing adsorption desulfurizing agent
CN108525660A (en) * 2017-03-03 2018-09-14 中国石油化工股份有限公司 A kind of method of sulfur-bearing hydrocarbon oxygenation desulfurization
CN110465325A (en) * 2018-05-09 2019-11-19 中国石油化工股份有限公司 Support type oxidation-desulfurizing catalyst molecular sieve and its preparation method and application
CN110882690A (en) * 2019-11-07 2020-03-17 武汉科技大学 Silicon dioxide nanosphere supported molybdenum oxide quantum dot catalyst and preparation method thereof
CN111514849A (en) * 2020-04-26 2020-08-11 东营科尔特新材料有限公司 Dechlorination adsorbent, preparation method and regeneration method thereof and application of dechlorination adsorbent to organic chlorine
CN113926448A (en) * 2021-11-01 2022-01-14 华北电力大学(保定) Supported niobium oxide catalyst and method for catalytic degradation of dimethyl sulfoxide by using same
US20230012374A1 (en) * 2019-10-31 2023-01-12 Kumiai Chemical Industry Co., Ltd. Process for producing herbicide and intermediate thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406540C (en) * 2005-05-31 2008-07-30 中国科学院大连化学物理研究所 Catalyst in use for oxidation and deodoration of light oil, and preparation method
US8663459B2 (en) 2006-03-03 2014-03-04 Saudi Arabian Oil Company Catalytic process for deep oxidative desulfurization of liquid transportation fuels
JP2008169297A (en) * 2007-01-11 2008-07-24 Adeka Corp Desulfurizing agent for super-deep oxidative desulfurization and oxidative desulfurization method using the same
JP2009045536A (en) * 2007-08-17 2009-03-05 Cosmo Oil Co Ltd Method of preparing agent for desulfurizing hydrocarbon
EP2105489A1 (en) * 2008-03-26 2009-09-30 General Electric Company Oxidative desulfurization of fuel oil
JP2013522449A (en) * 2010-03-19 2013-06-13 カレン、マーク Method for removing sulfur from hydrocarbon streams using hydroprocessing, fractional distillation, and oxidation
JP2011241320A (en) * 2010-05-19 2011-12-01 Jx Nippon Oil & Energy Corp Method for desulfurizing hydrocarbon
JP2011241321A (en) * 2010-05-19 2011-12-01 Jx Nippon Oil & Energy Corp Method for desulfurizing hydrocarbon
US9663725B2 (en) 2011-07-27 2017-05-30 Saudi Arabian Oil Company Catalytic compositions useful in removal of sulfur compounds from gaseous hydrocarbons, processes for making these and uses thereof
KR20140064801A (en) * 2011-07-29 2014-05-28 사우디 아라비안 오일 컴퍼니 Oxidative desulfurization in fluid catalytic cracking process
CN103827264A (en) * 2011-07-29 2014-05-28 沙特***石油公司 Oxidative desulfurization in fluid catalytic cracking process
CN103827264B (en) * 2011-07-29 2015-09-02 沙特***石油公司 Oxidation sweetening in fluid catalytic cracking process
WO2013019629A1 (en) * 2011-07-29 2013-02-07 Saudi Arabian Oil Company Oxidative desulfurization in fluid catalytic cracking process
US9062259B2 (en) 2011-07-29 2015-06-23 Saudi Arabian Oil Company Oxidative desulfurization in fluid catalytic cracking process
JP2013116440A (en) * 2011-12-02 2013-06-13 Tokyo Metropolitan Univ Oxidation catalyst
US8906227B2 (en) 2012-02-02 2014-12-09 Suadi Arabian Oil Company Mild hydrodesulfurization integrating gas phase catalytic oxidation to produce fuels having an ultra-low level of organosulfur compounds
US8920635B2 (en) 2013-01-14 2014-12-30 Saudi Arabian Oil Company Targeted desulfurization process and apparatus integrating gas phase oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds
CN103566958A (en) * 2013-11-12 2014-02-12 西南化工研究设计院有限公司 Catalyst for preparing refined benzene from crude benzene hydrogenation and preparation method thereof
CN107469762A (en) * 2016-06-20 2017-12-15 伦慧东 A kind of composite of micro-loading type titanium oxide and silica gel and preparation method thereof
CN108525660A (en) * 2017-03-03 2018-09-14 中国石油化工股份有限公司 A kind of method of sulfur-bearing hydrocarbon oxygenation desulfurization
CN108003920A (en) * 2017-07-18 2018-05-08 华南理工大学 A kind of oxidized sulfur method with load metal oxide double-function catalyzing adsorption desulfurizing agent
CN108003920B (en) * 2017-07-18 2020-12-04 华南理工大学 Fuel oxidation desulfurization method using supported metal oxide bifunctional catalytic adsorption desulfurizer
CN110465325A (en) * 2018-05-09 2019-11-19 中国石油化工股份有限公司 Support type oxidation-desulfurizing catalyst molecular sieve and its preparation method and application
US20230012374A1 (en) * 2019-10-31 2023-01-12 Kumiai Chemical Industry Co., Ltd. Process for producing herbicide and intermediate thereof
CN110882690A (en) * 2019-11-07 2020-03-17 武汉科技大学 Silicon dioxide nanosphere supported molybdenum oxide quantum dot catalyst and preparation method thereof
CN111514849A (en) * 2020-04-26 2020-08-11 东营科尔特新材料有限公司 Dechlorination adsorbent, preparation method and regeneration method thereof and application of dechlorination adsorbent to organic chlorine
CN111514849B (en) * 2020-04-26 2023-10-31 东营科尔特新材料有限公司 Dechlorination adsorbent, preparation method thereof, regeneration method thereof and application of dechlorination adsorbent in removal of organic chlorine
CN113926448A (en) * 2021-11-01 2022-01-14 华北电力大学(保定) Supported niobium oxide catalyst and method for catalytic degradation of dimethyl sulfoxide by using same

Similar Documents

Publication Publication Date Title
JP2004195445A (en) Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus
Srivastava An evaluation of desulfurization technologies for sulfur removal from liquid fuels
Babich et al. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review☆
Xiao et al. A novel approach for ultra‐deep adsorptive desulfurization of diesel fuel over TiO2–CeO2/MCM‐48 under ambient conditions
Hernández‐Maldonado et al. New sorbents for desulfurization of diesel fuels via π‐complexation
US7309416B2 (en) Methods and compositions for desulfurization of hydrocarbon fuels
JP5252674B2 (en) Hydrocarbon oil desulfurization method
US8501134B2 (en) Process and catalyst for desulfurization of hydrocarbonaceous oil stream
Lv et al. Adsorptive separation of dimethyl disulfide from liquefied petroleum gas by different zeolites and selectivity study via FT-IR
Xiao et al. Air‐promoted adsorptive desulfurization of diesel fuel over T i‐C e mixed metal oxides
CA2523006A1 (en) Method for purifying a liquid medium
JP2004504143A (en) Regeneration of hydrogen sulfide sorbent
Eseva et al. Oxidative desulfurization of hydrocarbon feedstock using oxygen as oxidizing agent (a review)
US20180353893A1 (en) Removal of heteroatom-containing compounds from fluids
Velu et al. Zeolite-based adsorbents for desulfurization of jet fuel by selective adsorption
JP6142785B2 (en) Method and apparatus for desulfurization of sulfur compounds in fuel
CN101255352A (en) Method for removing sulfides in gasoline by oxidation-absorption under mild conditions
US20060191821A1 (en) Process for deep desulfurization by adsorption of a gas oil-type hydrocarbon fraction
Mohammadi Ionic liquids for desulfurization
KR101918775B1 (en) Oxidative desulfurization process for hydrocarbon
Gangwal Desulfurization for fuel cells
Song et al. Desulfurization technologies
JP5049995B2 (en) Adsorbent regeneration method
JP5909942B2 (en) Method and apparatus for desulfurization of sulfur compounds in fuel
Ahmedzeki et al. Reactive adsorption desulfurization by nanocrystalline ZnO/Zeolite a molecular sieves

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20050628

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050629

A711 Notification of change in applicant

Effective date: 20051214

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A072 Dismissal of procedure

Effective date: 20061208

Free format text: JAPANESE INTERMEDIATE CODE: A073

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A977 Report on retrieval

Effective date: 20080910

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630