JP2011168568A - Method for converting carbon dioxide into acetic acid, and catalyst used therefor - Google Patents

Method for converting carbon dioxide into acetic acid, and catalyst used therefor Download PDF

Info

Publication number
JP2011168568A
JP2011168568A JP2010036687A JP2010036687A JP2011168568A JP 2011168568 A JP2011168568 A JP 2011168568A JP 2010036687 A JP2010036687 A JP 2010036687A JP 2010036687 A JP2010036687 A JP 2010036687A JP 2011168568 A JP2011168568 A JP 2011168568A
Authority
JP
Japan
Prior art keywords
carbon dioxide
acetic acid
acid
manganese
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010036687A
Other languages
Japanese (ja)
Other versions
JP5749440B2 (en
Inventor
Hideki Koyanaka
秀樹 古屋仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010036687A priority Critical patent/JP5749440B2/en
Publication of JP2011168568A publication Critical patent/JP2011168568A/en
Application granted granted Critical
Publication of JP5749440B2 publication Critical patent/JP5749440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for converting carbon dioxide into acetic acid, capable of efficiently converting carbon dioxide into acetic acid inexpensively, simply and easily, and with high safety; and a catalyst used therefor. <P>SOLUTION: Carbon dioxide is converted into acetic acid by contacting carbon dioxide and oxygen with an aqueous solution including at least one kind of metallic ion selected from the group consisting of manganese ion, chromium ion and cobalt ion, in the presence of manganese oxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水中の二酸化炭素を酢酸に変換する方法、およびそれに用いられる触媒に関する。   The present invention relates to a method for converting carbon dioxide in water to acetic acid, and a catalyst used therefor.

温暖化の原因物質である二酸化炭素は水中に溶解する際、酸性の水中では主に二酸化炭素ガス(CO)および炭酸(HCO)として存在し、pHが6.3くらいよりも中性になっていくと炭酸水素イオン(HCO )として存在する。また、pHが7.5から強アルカリ性にかけては炭酸イオン(CO 2−)が発現することも知られている。二酸化炭素を安定な物質に変換固定する触媒材料としてはコバルト触媒や二酸化マンガン触媒(例えば、特許文献1参照)などが知られている。これらのうち、二酸化マンガン触媒はその結晶構造がラムズデライト型の二酸化マンガンのナノ粒子であり、水溶液中で二酸化炭素を酢酸へ変換する機能性を有する。しかしながら、その変換過程で毒性のある蟻酸も副産物として生じるため、二酸化炭素を安全な物質に変換できる触媒材料の開発が望まれている。 When carbon dioxide, which is a cause of warming, dissolves in water, it exists mainly as carbon dioxide gas (CO 2 ) and carbonic acid (H 2 CO 3 ) in acidic water, and the pH is medium than about 6.3. It becomes as hydrogen carbonate ion (HCO 3 ) as it becomes more toxic. It is also known that carbonate ions (CO 3 2− ) are expressed when the pH is 7.5 to strongly alkaline. Cobalt catalysts and manganese dioxide catalysts (for example, see Patent Document 1) are known as catalyst materials that convert and fix carbon dioxide to a stable substance. Among these, the manganese dioxide catalyst is a nanoparticle of manganese dioxide whose crystal structure is Ramsdelite type, and has a function of converting carbon dioxide into acetic acid in an aqueous solution. However, since toxic formic acid is also produced as a by-product during the conversion process, development of a catalyst material capable of converting carbon dioxide into a safe substance is desired.

特開2007−238424号公報JP 2007-238424 A

二酸化炭素ガスを水中に導入してコバルト触媒と接触させる手法では、二酸化炭素から変換された品位の低いプラスチックの用途を検討する必要があり、コバルト触媒のコストも高価であった。また、二酸化炭素ガスを水中に導入して二酸化マンガン触媒と接触させる手法では、酢酸の発生にギ酸の発生を伴うという問題があった。また本発明による酸化マンガン触媒は層状酸化マンガンに類似の結晶構造を有しているが、従来の層状酸化マンガンの合成方法にはコスト面や複雑な合成プロセスなどの問題があった。   In the method in which carbon dioxide gas is introduced into water and brought into contact with the cobalt catalyst, it is necessary to examine the use of a low-quality plastic converted from carbon dioxide, and the cost of the cobalt catalyst is also expensive. Further, the method of introducing carbon dioxide gas into water and bringing it into contact with the manganese dioxide catalyst has a problem that acetic acid is accompanied by formic acid. The manganese oxide catalyst according to the present invention has a crystal structure similar to that of layered manganese oxide. However, conventional methods for synthesizing layered manganese oxide have problems such as cost and complicated synthesis process.

そこで、本願発明は上記の従来技術における問題点を鑑み、安価かつ簡易に安全性の高い酢酸に二酸化炭素を高効率に変換することを可能とする二酸化炭素を酢酸に変換する方法、およびそれに用いられる触媒を提供することを課題としている。   In view of the above-described problems in the prior art, the present invention is a method for converting carbon dioxide to acetic acid that can convert carbon dioxide into acetic acid that is inexpensive and simple and highly safe, and is used for the method. It is an object to provide a catalyst that can be obtained.

本発明は以下のことを特徴としている。
<1>本発明の二酸化炭素の酢酸への変換方法は、酸化マンガンの存在下、マンガンイオン、クロムイオンおよびコバルトイオンからなる群より選ばれる少なくとも一種の金属イオンを含む水溶液に二酸化炭素および酸素を接触させて二酸化炭素を酢酸に変換する。
<2>上記第1の発明において、酸化マンガンは、層状酸化マンガンまたはその酸処理物である。
<3>上記第1または第2の発明において、炭酸マンガンを酸水溶液に溶解して酸化マンガンと二酸化炭素を生成させ、得られたマンガンイオンを含む水溶液に酸素を接触させて二酸化炭素を酢酸に変換する。
<4>本発明の二酸化炭素から酢酸に変換するための触媒は、炭酸マンガンを酸水溶液で溶解してなる。
<5>上記第4の発明において、炭酸マンガンを酸水溶液に溶解することによって生成された酸化マンガンを含有し、該酸化マンガンが層状酸化マンガンである。
The present invention is characterized by the following.
<1> In the method for converting carbon dioxide to acetic acid according to the present invention, carbon dioxide and oxygen are added to an aqueous solution containing at least one metal ion selected from the group consisting of manganese ions, chromium ions and cobalt ions in the presence of manganese oxide. Contact to convert carbon dioxide to acetic acid.
<2> In the first invention, the manganese oxide is layered manganese oxide or an acid-treated product thereof.
<3> In the first or second invention, manganese carbonate is dissolved in an acid aqueous solution to produce manganese oxide and carbon dioxide, and oxygen is brought into contact with the obtained aqueous solution containing manganese ions to convert carbon dioxide into acetic acid. Convert.
<4> The catalyst for converting carbon dioxide into acetic acid according to the present invention is obtained by dissolving manganese carbonate with an acid aqueous solution.
<5> In the fourth invention described above, manganese oxide produced by dissolving manganese carbonate in an acid aqueous solution is contained, and the manganese oxide is layered manganese oxide.

上記発明によれば、例えば水中に導入された二酸化炭素を酢酸(CHCOOH)分子に変換することができる。例えば20℃の水中に導入された二酸化炭素(純度99.9%)を二酸化炭素分子700個に1個の割合で高効率に酢酸分子に変換することができる。また、蟻酸などの毒性のある副生成物の発生を防ぐこともできる。さらに、上記発明によれば、酸化マンガンと共存させる金属イオンは、マンガンイオンに限らず、クロムイオンやコバルトイオンなどの金属イオンも使用可能である。 According to the above invention, for example, carbon dioxide introduced into water can be converted into acetic acid (CH 3 COOH) molecules. For example, carbon dioxide (purity: 99.9%) introduced into water at 20 ° C. can be converted into acetic acid molecules with high efficiency at a ratio of 1 in 700 carbon dioxide molecules. Moreover, generation | occurrence | production of toxic by-products, such as formic acid, can also be prevented. Furthermore, according to the said invention, the metal ion coexisting with a manganese oxide is not restricted to a manganese ion, Metal ions, such as chromium ion and cobalt ion, can also be used.

実施例において合成した酸化マンガンのX線回折パターンである。It is an X-ray-diffraction pattern of the manganese oxide synthesize | combined in the Example.

以下に、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本実施形態では、例えば、予め0.1%濃度程度のマンガンイオン、クロムイオンおよびコバルトイオンからなる群より選ばれる少なくとも一種の金属イオンと、当該酸化マンガン触媒1グラム程度を共存させた水溶液中に、二酸化炭素ガスと酸素を含むガス(例えば空気)を導入して気泡によって混合する方法によって、二酸化炭素を酢酸に変換することができる。本実施形態の二酸化炭素からの酢酸への変換方法では、酸性から弱酸性の同水溶液中において、酸化マンガンの存在下、二酸化炭素、炭酸イオン、または炭酸水素イオンからアセトアルデヒト(CO)に変換され、これが上記金属イオンの触媒効果と導入された酸素ガスによる酸化作用によって酢酸へと変換されていると推定される。本実施形態では、酸素ガス(空気)の導入流量や希塩酸水溶液の温度やpHを調整することによって、酢酸への変換反応効率を変えることができるため、最終生成物質を酢酸だけでなくアセトアルデヒトを原料とする他の生成物への変換などが可能になり、本技術の適用範囲が拡がることになる。 In the present embodiment, for example, in an aqueous solution in which at least one metal ion selected from the group consisting of manganese ions, chromium ions and cobalt ions having a concentration of about 0.1% in advance and about 1 gram of the manganese oxide catalyst coexist. Carbon dioxide can be converted into acetic acid by a method of introducing a gas (for example, air) containing carbon dioxide gas and oxygen and mixing with bubbles. In the method for converting carbon dioxide to acetic acid according to this embodiment, carbon dioxide, carbonate ions, or hydrogen carbonate ions are converted to acetaldehyde (C 2 H 4 O) in the presence of manganese oxide in the acidic to weakly acidic aqueous solution. This is presumed to be converted into acetic acid by the catalytic effect of the metal ions and the oxidizing action of the introduced oxygen gas. In this embodiment, by adjusting the introduction flow rate of oxygen gas (air) and the temperature and pH of dilute hydrochloric acid aqueous solution, the conversion reaction efficiency to acetic acid can be changed, so that the final product is not only acetic acid but also acetaldehyde. Conversion to other products as raw materials becomes possible, and the scope of application of the present technology is expanded.

本実施形態における酸化マンガンは、例えば、炭酸マンガンを希酸で酸処理することにより得られる。希酸とは低濃度の酸水溶液であり、塩酸、硫酸、硝酸などの酸の低濃度溶液である。炭酸マンガンを希酸で酸処理して得られる酸化マンガンは、層状酸化マンガンに類した結晶構造を有する。このことは、例えば、一般的な実験室用X線回折分析装置でX線回折パターンを分析することで確認できる。   Manganese oxide in the present embodiment can be obtained, for example, by acid-treating manganese carbonate with a dilute acid. The dilute acid is a low-concentration acid aqueous solution, and is a low-concentration solution of an acid such as hydrochloric acid, sulfuric acid, or nitric acid. Manganese oxide obtained by acid treatment of manganese carbonate with dilute acid has a crystal structure similar to layered manganese oxide. This can be confirmed, for example, by analyzing the X-ray diffraction pattern with a general laboratory X-ray diffraction analyzer.

炭酸マンガンの希酸による酸処理は、例えば、希酸中の炭酸マンガンの溶解反応である。希酸中に炭酸マンガンを溶解させると、酸化マンガン、二酸化炭素、水が生成する。生成した水には、マンガンイオンが含まれる。二酸化炭素は発泡しながら発生するため空気中から酸素を含んだ大気が同希酸中に混入する。そしてこの溶解反応において、酸化マンガンおよびマンガンイオン等が触媒として作用して、二酸化炭素が酢酸に変換される。   The acid treatment of manganese carbonate with a dilute acid is, for example, a dissolution reaction of manganese carbonate in dilute acid. When manganese carbonate is dissolved in dilute acid, manganese oxide, carbon dioxide, and water are generated. The produced water contains manganese ions. Since carbon dioxide is generated while foaming, the atmosphere containing oxygen is mixed into the dilute acid. In this dissolution reaction, manganese oxide, manganese ions, etc. act as a catalyst, and carbon dioxide is converted into acetic acid.

このような希酸中の炭酸マンガンの溶解反応において酢酸を生成するためには、酸濃度を制御することが重要である。反応や安全性等を勘案すると、好ましい希酸の濃度としては0.1〜2.0mol/L、より好ましくは0.3〜1.0mol/Lの範囲が考慮される。希酸の濃度が2.0mol/Lよりも高い場合には、酸化マンガン自体を溶解させる反応速度が早くなりすぎて好ましくない。希酸の濃度が0.1mol/L未満の場合には、酢酸への変換効率が低下する場合があるため好ましくない。よく制御された溶解反応を実現するためには、好ましくは希塩酸、希硝酸、または希硫酸を用いる。   In order to produce acetic acid in such a dissolution reaction of manganese carbonate in dilute acid, it is important to control the acid concentration. Considering reaction, safety, etc., a preferable dilute acid concentration is 0.1 to 2.0 mol / L, more preferably 0.3 to 1.0 mol / L. When the concentration of the dilute acid is higher than 2.0 mol / L, the reaction rate for dissolving manganese oxide itself becomes too fast, which is not preferable. When the concentration of the dilute acid is less than 0.1 mol / L, the conversion efficiency to acetic acid may decrease, which is not preferable. In order to realize a well-controlled dissolution reaction, dilute hydrochloric acid, dilute nitric acid, or dilute sulfuric acid is preferably used.

本実施形態において触媒として用いられる酸化マンガンは、炭酸マンガンを酸処理して合成されているが、従来の合成方法(Y.Omomo,他,Redoxable Nanosheet Crystallites of MnO2 Derived via Delamination of a Layered Manganese Oxide,J.AM.CHEM.SOC.2003,125,3568−3575.)で得られる層状酸化マンガンを上記の濃度の希酸で酸処理することで得られる酸化マンガンであってもよい。上記合成方法による層状酸化マンガンは、例えば、マンガンイオンを含むアルカリ性水溶液にオゾン、過酸化水素、過マンガン酸カリウム等の酸化剤を添加することによって得られる。   Manganese oxide used as a catalyst in the present embodiment is synthesized by acid treatment of manganese carbonate. J.AM.CHEM.SOC.2003,125,3568-3575.) Manganese oxide obtained by acid-treating the layered manganese oxide obtained with a dilute acid having the above-mentioned concentration may be used. The layered manganese oxide obtained by the above synthesis method can be obtained, for example, by adding an oxidizing agent such as ozone, hydrogen peroxide or potassium permanganate to an alkaline aqueous solution containing manganese ions.

以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって本願発明が限定されることはない。   Hereinafter, examples will be shown and described in more detail. Of course, the present invention is not limited by the following examples.

<実施例1>酸化マンガン触媒の合成方法
ビーカー中の0.5mol/L希塩酸(HCl)500mL(水温20℃)に、12.5gの炭酸マンガンMnCO・nHO(和光純薬製試薬特級)を加えて1時間、マグネチックスタラーで攪拌した。60分経過後にビーカー中の物質を0.2マイクロ・メッシュのガラスろ紙(アドバンテック(株)GS−25)と減圧ろ過器を使ってガラスろ紙上に回収した。ろし上に回収された物質を500mLの超純水に懸濁させて1時間、テフロン(登録商標)製のマグネチックスタラーで攪拌した後、再び同様にろ過回収し、粉末X線回折分析装置(リガク製RINT−2000、CuKα)でその結晶構造を分析した。分析結果を図1に示した。同パターンから同物質が層状酸化マンガンの結晶構造を有している事が同定できた。特に最も低角側の2θが12.1°にピークがあることが特徴的である。一般的に層状酸化マンガンは、酸化マンガン層の層間に入る物質によって、最低角ピークが移動する事が知られている。本材料に関する図1に示した結果では水素イオンHや塩素イオンClなどが酸化マンガン層の層間に入り込んで層状酸化マンガンが構成されているものと考えられた。
<実施例2>二酸化炭素の酢酸への変換反応
実施例1の実験において、炭酸マンガンを希塩酸に添加後5分、および60分経過時に、合成実験中の希塩酸水溶液のサンプルをガラスろ紙(アドバンテック(株)のテフロン(登録商標)樹脂製のDISMIC)を用いて15mLずつ採取した。採取した各サンプルを島津製作所製の有機酸分析装置を用いてサンプルに含まれる有機酸濃度を分析した。その結果、5分および60分のサンプルには酢酸が105ppmの濃度で含まれていることがわかった。これに対してギ酸の濃度は両サンプルとも0.2ppmと極めて低く、酢酸が優位に発生していることが分かった。通常、炭酸マンガンは、希塩酸水溶液中でマンガンイオンと塩素イオン、および二酸化炭素と水を発生しながら溶解するが、もともと酢酸は含まない。このため、実施例1で記載した合成実験の際に同希塩酸中で発生した層状酸化マンガンおよびマンガンイオンらが触媒として働くことで二酸化炭素を酢酸に変換したものと考えられた。変換効率は、炭酸マンガンから発生する二酸化炭素分子が約700個に1個の割合で酢酸分子に変換されていると計算できた。また、炭酸マンガンの希塩酸中での溶解反応は二酸化炭素が発泡しながら発生するため空気中から酸素を含んだ大気が同希塩酸中に混入するため、酢酸への変換反応に必要なアセトアルデヒトの空気酸化反応が一気に進んだものと考えられた。このため、添加後5分のサンプルと60分のサンプルには、ほぼ同濃度の酢酸濃度が検出されたものと考えられた。同様な酢酸発生の結果は、希塩酸の代わりに0.25mol/Lの希硫酸(HSO)を用いた場合にも確認された。
<Example 1> Method for synthesizing manganese oxide catalyst To 500 mL of 0.5 mol / L dilute hydrochloric acid (HCl) in a beaker (water temperature: 20 ° C), 12.5 g of manganese carbonate MnCO 3 · nH 2 O (special grade manufactured by Wako Pure Chemical Industries, Ltd.) ) And stirred with a magnetic stirrer for 1 hour. After 60 minutes, the substance in the beaker was collected on glass filter paper using a 0.2 micro mesh glass filter paper (Advantech GS-25) and a vacuum filter. The substance collected on the filter was suspended in 500 mL of ultrapure water, stirred for 1 hour with a magnetic stirrer made of Teflon (registered trademark), and then collected again by filtration in the same manner. The crystal structure was analyzed by RINT-2000 (Rigaku, CuKα). The analysis results are shown in FIG. From this pattern, it was identified that the same substance had a layered manganese oxide crystal structure. In particular, the lowest angle 2θ is characterized by a peak at 12.1 °. In general, it is known that a layered manganese oxide moves its lowest angle peak depending on a substance entering between the layers of the manganese oxide layer. In the results shown in FIG. 1 regarding this material, it was considered that layered manganese oxide was formed by hydrogen ions H + , chlorine ions Cl − and the like entering the layer of the manganese oxide layer.
<Example 2> Conversion reaction of carbon dioxide to acetic acid In the experiment of Example 1, 5 minutes and 60 minutes after the addition of manganese carbonate to dilute hydrochloric acid, a sample of dilute hydrochloric acid aqueous solution during the synthesis experiment was placed on a glass filter paper (Advantech ( 15 mL each was collected using TESRON (registered trademark) resin DISMIC). Each sample collected was analyzed for the concentration of organic acid contained in the sample using an organic acid analyzer manufactured by Shimadzu Corporation. As a result, it was found that the samples of 5 minutes and 60 minutes contained acetic acid at a concentration of 105 ppm. In contrast, the concentration of formic acid was extremely low at 0.2 ppm in both samples, indicating that acetic acid was predominantly generated. In general, manganese carbonate dissolves in a dilute hydrochloric acid solution while generating manganese ions and chlorine ions, carbon dioxide and water, but originally does not contain acetic acid. For this reason, it was considered that carbon dioxide was converted to acetic acid by the layered manganese oxide and manganese ions generated in the dilute hydrochloric acid during the synthesis experiment described in Example 1 acting as a catalyst. The conversion efficiency was calculated when carbon dioxide molecules generated from manganese carbonate were converted to acetic acid molecules at a rate of about 1 in 700. In addition, the dissolution reaction of manganese carbonate in dilute hydrochloric acid occurs while carbon dioxide foams, so the atmosphere containing oxygen from the air is mixed into the dilute hydrochloric acid, so the air of acetaldehyde that is necessary for the conversion reaction to acetic acid. It was thought that the oxidation reaction progressed at a stretch. For this reason, it was considered that almost the same concentration of acetic acid was detected in the sample after 5 minutes and the sample after 60 minutes. The same acetic acid generation result was confirmed when 0.25 mol / L dilute sulfuric acid (H 2 SO 4 ) was used instead of dilute hydrochloric acid.

Claims (5)

酸化マンガンの存在下、マンガンイオン、クロムイオンおよびコバルトイオンからなる群より選ばれる少なくとも一種の金属イオンを含む水溶液に二酸化炭素および酸素を接触させて二酸化炭素を酢酸に変換することを特徴とする二酸化炭素の酢酸への変換方法。   Carbon dioxide is converted to acetic acid by contacting carbon dioxide and oxygen with an aqueous solution containing at least one metal ion selected from the group consisting of manganese ions, chromium ions and cobalt ions in the presence of manganese oxide. How to convert carbon to acetic acid. 酸化マンガンは、層状酸化マンガンまたはその酸処理物であることを特徴とする請求項1に記載の二酸化炭素の酢酸への変換方法。   The method for converting carbon dioxide into acetic acid according to claim 1, wherein the manganese oxide is layered manganese oxide or an acid-treated product thereof. 炭酸マンガンを酸水溶液に溶解して酸化マンガンと二酸化炭素を生成させ、得られたマンガンイオンを含む水溶液に酸素を接触させて二酸化炭素を酢酸に変換することを特徴とする請求項1または2に記載の二酸化炭素の酢酸への変換方法。   3. The method according to claim 1, wherein manganese carbonate is dissolved in an acid aqueous solution to produce manganese oxide and carbon dioxide, and oxygen is brought into contact with the obtained aqueous solution containing manganese ions to convert carbon dioxide into acetic acid. The method for converting carbon dioxide to acetic acid as described. 炭酸マンガンを酸水溶液で溶解してなることを特徴とする二酸化炭素から酢酸に変換するための触媒。   A catalyst for converting carbon dioxide to acetic acid, which is obtained by dissolving manganese carbonate with an aqueous acid solution. 炭酸マンガンを酸水溶液に溶解することによって生成された酸化マンガンを含有し、該酸化マンガンが層状酸化マンガンであることを特徴とする請求項4に記載の触媒。   The catalyst according to claim 4, comprising manganese oxide produced by dissolving manganese carbonate in an acid aqueous solution, wherein the manganese oxide is a layered manganese oxide.
JP2010036687A 2010-02-22 2010-02-22 Method for converting carbon dioxide to acetic acid and catalyst used therefor Expired - Fee Related JP5749440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036687A JP5749440B2 (en) 2010-02-22 2010-02-22 Method for converting carbon dioxide to acetic acid and catalyst used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036687A JP5749440B2 (en) 2010-02-22 2010-02-22 Method for converting carbon dioxide to acetic acid and catalyst used therefor

Publications (2)

Publication Number Publication Date
JP2011168568A true JP2011168568A (en) 2011-09-01
JP5749440B2 JP5749440B2 (en) 2015-07-15

Family

ID=44683065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036687A Expired - Fee Related JP5749440B2 (en) 2010-02-22 2010-02-22 Method for converting carbon dioxide to acetic acid and catalyst used therefor

Country Status (1)

Country Link
JP (1) JP5749440B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116440A (en) * 2011-12-02 2013-06-13 Tokyo Metropolitan Univ Oxidation catalyst
CN110075827A (en) * 2019-05-31 2019-08-02 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of manganese oxide catalyst of acid surfaces processing and products thereof and application
US11541639B2 (en) 2017-10-12 2023-01-03 Avery Dennison Corporation Low outgassing clean adhesive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630622A (en) 2019-10-04 2022-06-14 伊诺瓦细胞股份有限公司 Parallel path puncture device introducer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106924A (en) * 2007-02-09 2009-05-21 Hideki Koyanaka Catalyst material for producing oxygen gas from water, production method of oxygen gas using the catalyst material, catalyst material for synthesizing acetic acid or organic material from carbon dioxide, synthesis method of acetic acid or organic material using the catalyst material, electric-energy generation method, hydrogen-gas sensor, waste-liquid recycling method, and production method of r-type manganese dioxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106924A (en) * 2007-02-09 2009-05-21 Hideki Koyanaka Catalyst material for producing oxygen gas from water, production method of oxygen gas using the catalyst material, catalyst material for synthesizing acetic acid or organic material from carbon dioxide, synthesis method of acetic acid or organic material using the catalyst material, electric-energy generation method, hydrogen-gas sensor, waste-liquid recycling method, and production method of r-type manganese dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116440A (en) * 2011-12-02 2013-06-13 Tokyo Metropolitan Univ Oxidation catalyst
US11541639B2 (en) 2017-10-12 2023-01-03 Avery Dennison Corporation Low outgassing clean adhesive
CN110075827A (en) * 2019-05-31 2019-08-02 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of manganese oxide catalyst of acid surfaces processing and products thereof and application

Also Published As

Publication number Publication date
JP5749440B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
Hayashi et al. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid
Ndayiragije et al. Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate
Khan et al. Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@ MnO2 nanocatalyst
Chen et al. CO2 capture and conversion to value-added products promoted by MXene-based materials
Zhu et al. Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: key role of superoxide radicals
Zhang et al. Preparation of Mn–FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3
Li et al. Heterogeneous activation of peroxymonosulfate by hierarchically porous cobalt/iron bimetallic oxide nanosheets for degradation of phenol solutions
JP5749440B2 (en) Method for converting carbon dioxide to acetic acid and catalyst used therefor
Gu et al. Water enables lattice oxygen activation of transition metal oxides for volatile organic compound oxidation
Ni et al. The remarkable effect of alkali earth metal ion on the catalytic activity of OMS-2 for benzene oxidation
Wang et al. Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions
Hess et al. Catalytic stability studies employing dedicated model catalysts
Zhang et al. Oxygen vacancies enhancing performance of Mg-Co-Ce oxide composite for the selective catalytic ozonation of ammonia in water
CN105797741A (en) Copper-doped manganese dioxide catalyst and preparation method therefor
Tian et al. Engineering Ru/MnCo3O x for 1, 2-Dichloroethane Benign Destruction by Strengthening C–Cl Cleavage and Chlorine Desorption: Decisive Role of H2O and Reaction Mechanism
Saeed et al. Oxidative degradation of oxalic acid in aqueous medium using manganese oxide as catalyst at ambient temperature and pressure
Lu et al. Catalytic oxidation of volatile organic compounds over manganese-based oxide catalysts: Performance, deactivation and future opportunities
Li et al. Tandem supported Pt and ZSM-5 catalyst with separated catalytic functions for promoting multicomponent VOCs oxidation
Wu et al. Mn1ZrxOy mixed oxides with abundant oxygen vacancies for propane catalytic oxidation: Insights into the contribution of Zr doping
CN105585541A (en) Preparation method of cyclohexene oxide
Yue et al. Study on the stability, evolution of physicochemical properties, and postsynthesis of metal–organic frameworks in bubbled aqueous ozone solution
Song et al. Selective surface modification of activated carbon for enhancing the catalytic performance in hydrogen peroxide production by hydroxylamine oxidation
Wang et al. HCHO oxidation over the δ-MnO2 catalyst: Enhancing oxidative activities of surface lattice oxygen and surface adsorbed oxygen by weakening Mn-O bond
Yu et al. Influence of residual anions (Cl-, SO42-and NO3-) on Mn2O3 for photothermal catalytic oxidation of toluene
JP5951303B2 (en) Method for producing ferric nitrate aqueous solution and sodium nitrite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees