JP2013098352A - 移動体装置及び露光装置 - Google Patents

移動体装置及び露光装置 Download PDF

Info

Publication number
JP2013098352A
JP2013098352A JP2011239854A JP2011239854A JP2013098352A JP 2013098352 A JP2013098352 A JP 2013098352A JP 2011239854 A JP2011239854 A JP 2011239854A JP 2011239854 A JP2011239854 A JP 2011239854A JP 2013098352 A JP2013098352 A JP 2013098352A
Authority
JP
Japan
Prior art keywords
temperature
surface plate
gas
wafer
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011239854A
Other languages
English (en)
Inventor
Takayuki Mizutani
剛之 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011239854A priority Critical patent/JP2013098352A/ja
Publication of JP2013098352A publication Critical patent/JP2013098352A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】電機子コイルの熱を効率よく排熱する。
【解決手段】 圧空供給装置80により、露光装置(定盤21)外の空気が、減圧弁R1及び温度安定化素子HSを介して所定温度に調温され、定盤21の表面上(多孔カバーとの間の間隙21c内)に供給される。これにより、平面モータを構成する電機子コイルの熱が排熱され、定盤21上の雰囲気は常時、一定温度に維持され、周辺の気体の温度変動が抑えられることとなる。そして、干渉計を用いて構成されるウエハ干渉計の高い位置計測精度を維持することができ、ウエハ(基板ステージ)の位置決め精度を向上するとともにスループットを改善することが可能となる。
【選択図】図4

Description

本発明は、移動体装置及び露光装置に係り、特に、ベース上で移動する移動体を駆動する移動体装置、及び該移動体装置を有し、半導体素子、液晶表示素子等を製造するリソグラフィ工程で用いられる露光装置に関する。
半導体素子、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、主として、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)と、ステップ・アンド・スキャン方式の縮小投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))と、が用いられている。これらの露光装置では、照明光を、レチクル(又はマスク)及び投影光学系を介して、感光剤(レジスト)が塗布されたウエハ(又はガラスプレート等)上に投射することによって、レチクルに形成されたパターン(の縮小像)がウエハ上の複数のショット領域に逐次転写される。
ウエハの位置決め精度を向上するとともにスループットを改善するために、ウエハを保持して移動するウエハステージを2次元方向に駆動する平面モータ、例えば、非接触でウエハステージを駆動可能な可変磁気抵抗駆動方式のリニアパルスモータを2軸分結合させた構造のもの、或いはリニアモータを2次元方向に展開したローレンツ電磁力駆動による平面モータが開発されている(例えば、特許文献1)。
しかし、いずれの平面モータにおいても、大きな駆動力を得るためにコイルユニット(に含まれる電機子コイル)に大きな電流を流すことにより、コイルユニットの発熱が問題となる。コイルユニットの発熱は、例えば、ウエハステージの周辺の空気の温度変動を生じ、干渉計を用いて構成されるウエハステージの位置計測系の計測誤差の原因となり、ウエハ(ウエハステージ)の位置決め精度、さらにスループットの低下を招くこととなる。
米国特許第5,196,745号明細書
本発明は、上述の事情の下でなされたものであり、第1の観点からすると、定盤上で移動する移動体と、前記定盤内に配列された複数のコイルユニットを含む固定子と前記移動体内に設けられた少なくとも1つの磁石ユニットを含む可動子とから構成される駆動装置と、前記定盤外の気体を減圧弁を介して所定圧に調圧し、前記減圧弁を介した前記気体を温度安定化素子を介して所定温度に調温し、前記温度安定化素子を介した前記気体を前記定盤の前記移動体に対向する表面上に供給する気体供給装置と、を備える移動体装置である。
これによれば、減圧弁と温度安定化素子とを介して所定圧及び所定温度に調整された定盤外の気体を定盤の移動体に対向する表面上に供給することにより、複数のコイルユニットの発熱によるベース上の移動体の周辺の空気の温度変動を抑えることが可能となる。
本発明は、第2の観点からすると、エネルギビームを照射して物体上にパターンを形成する露光装置であって、前記物体を保持する前記移動体を駆動する、本発明の移動体装置を備える露光装置である。
これによれば、本発明の移動体装置を備えることによりベース上の移動体の周辺の空気の温度変動が抑えられるため、移動体の位置決め精度を向上するとともにスループットを改善することが可能となる。
露光装置の構成を概略的に示す図である。 基板ステージ装置を示す平面図である。 図2のA−A線断面図である。 圧空供給装置の構成を示す図である。 図5(A)及び図5(B)は、それぞれ、図4の圧空供給装置による気体の調温及び調圧を説明するための図である。 図1の露光装置の制御系の主要な構成を示すブロック図である。 圧空供給装置の変形構成を示す図である。 図8(A)及び図8(B)は、それぞれ、図7の圧空供給装置による気体の調温及び調圧を説明するための図である。
以下、本発明の一実施形態を、図1〜図6を用いて説明する。
図1には、本実施形態に係る露光装置100の全体的な構成が概略的に示されている。露光装置100は、いわゆるステップ・アンド・スキャン露光方式の走査型露光装置である。
露光装置100は、照明系10、レチクル(マスク)Rを保持するレチクルステージRST、レチクルステージRSTを駆動するレチクルステージ駆動系11、投影光学系PL、基板としてのウエハWを保持する基板ステージWST及び基板ステージWSTを駆動するステージ駆動系(平面モータ)50等を含む基板ステージ装置30、並びにこれらの制御系等を備えている。
照明系10は、例えば特開平9−320956号公報に開示されるように、光源ユニット、シャッタ、2次光源形成光学系、ビームスプリッタ、集光レンズ系、レチクルブラインド、及び結像レンズ系等(いずれも不図示)から構成され、照度分布のほぼ均一な露光用照明光を射出する。この照明光により、レチクルR上の矩形(あるいは円弧状)の照明領域IARが均一な照度で照明される。
レチクルステージRST上にはレチクルRが、例えば真空吸着により、固定されている。また、レチクルステージRSTは、レチクルベース(不図示)上をリニアモータ等で構成されたレチクルステージ駆動系11(図6参照)により、所定の走査方向(ここではY軸方向とする)に指定された走査速度で駆動可能となっている。
レチクルステージRST上にはレチクルレーザ干渉計(以下、「レチクル干渉計」という)16からのレーザビームを反射する移動鏡15が固定されており、レチクルステージRSTのステージ移動面内の位置はレチクル干渉計16によって、例えば0.5〜1nm程度の分解能で常時検出される。レチクル干渉計16からのレチクルステージRSTの位置情報は、主制御装置20に送られる。主制御装置20は、レチクルステージRSTの位置情報に基づいて、レチクルステージ駆動系11(図6参照)を介してレチクルステージRSTを駆動する。
投影光学系PLは、レチクルステージRSTの下方に配置され、その光軸AX(照明光学系の光軸IXに一致)の方向がZ軸方向とされ、ここでは両側テレセントリックな光学配置となるように光軸AX方向に沿って所定間隔で配置された複数枚のレンズエレメントから成る屈折光学系が使用されている。投影光学系PLは所定の投影倍率、例えば1/5(あるいは1/4)を有する縮小光学系である。このため、照明系10からの照明光によってレチクルRの照明領域IARが照明されると、このレチクルRを通過した照明光により、投影光学系PLを介してレチクルRの照明領域IAR内の回路パターンの縮小像(部分倒立像)が表面にフォトレジストが塗布されたウエハW上の照明領域IARに共役な露光領域IAに形成される。
基板ステージ装置30は、図1に示されるように、ベース盤12、ベース盤12上に配置された定盤21、ベース盤12上で定盤21を駆動する定盤駆動系68(図6参照)、定盤21上に配置された基板ステージWST、定盤21上で基板ステージWSTを駆動するステージ駆動系(平面モータ)50(図6参照)、基板ステージWSTの周囲に圧空を供給する圧空供給装置80(図6参照)等を備えている。
ベース盤12は、床面F上に防振機構(不図示)を介してほぼ水平に(XY平面に平行に)支持されている。ベース盤12の上面側には、XY二次元方向を行方向、列方向としてマトリックス状に配置された複数のコイルを含むコイルユニット(不図示)が収容されている。
定盤21は、ベース盤12上に、エアベアリング(不図示)を介して支持されている。定盤21の底部には、ベース盤12の上面側に収容されたコイルユニットに対応して、XY二次元方向を行方向、列方向としてマトリックス状に配置された複数の永久磁石及びヨークから成る磁石ユニット(不図示)が収容されている。また、定盤21の上部には、後述する固定子60が収容されている。
上述のベース盤12内のコイルユニット(不図示)と定盤21内の磁石ユニット(不図示)とから、例えば米国特許出願公開第2003/0085676号明細書などに開示されるローレンツ電磁力駆動方式の平面モータから成る定盤駆動系68(図6参照)が構成される。定盤駆動系68は、ベース盤12上で定盤21をXY平面内の3自由度方向(X、Y、θz)に駆動する。
定盤21の3自由度方向の位置情報は、例えば干渉計又はエンコーダから構成される定盤位置計測系69(図6参照)によって計測される。定盤位置計測系69の出力は、主制御装置20(図6参照)に供給される。主制御装置20は、定盤位置計測系69の出力に基づいて、定盤駆動系68のコイルユニットを構成する各コイルに供給する電流の大きさ及び方向を制御し、定盤21のXY平面内の3自由度方向の位置を制御する。主制御装置20は、定盤21が、カウンタマスとして機能した際に、定盤21の基準位置からの移動量が所定範囲に収まるように定盤21を駆動する。すなわち、定盤駆動系68は、トリムモータとして使用される。
基板ステージWSTは、後述するように、可動子51、支持機構32a、32b、32c、基板テーブル18等から構成されている。定盤21の上部に収容された固定子60と、基板ステージWSTの底部(ベース対向面側)に固定された可動子51とから成る平面モータが、ステージ駆動系50として使用される。以下においては、ステージ駆動系50を、便宜上、平面モータ50と呼ぶものとする。
基板テーブル18上に、ウエハWが、例えば真空吸着によって固定されている。また、基板テーブル18上にはウエハレーザ干渉計(以下、「ウエハ干渉計」という)31からのレーザビームを反射する移動鏡27が固定され、外部に配置されたウエハ干渉計31により、基板テーブル18のXY面内での位置が例えば0.5〜1nm程度の分解能で常時検出されている。ここで、実際には、図3に示されるように、基板テーブル18上には走査方向であるY軸方向に直交する反射面を有する移動鏡27Yと非走査方向であるX軸方向に直交する反射面を有する移動鏡27Xとが設けられ、ウエハ干渉計31は走査方向に1軸、非走査方向には2軸設けられているが、図1ではこれらが代表的に移動鏡27、ウエハ干渉計31として示されている。基板テーブル18の位置情報(又は速度情報)は、主制御装置20に送られる。主制御装置20は、その位置情報(又は速度情報)に基づいて平面モータ50を介して基板ステージWSTのXY面内の移動を制御する。
基板ステージWSTの構成各部、特に平面モータ50について詳述する。
図2には、基板ステージ装置30の平面図が示されている。図3には、図2のA−A線断面図が一部省略して拡大して示されている。図2及び図3に示されるように、基板テーブル18は、平面モータ50を構成する可動子51の上面(定盤21対向面と反対側の面)にボイスコイルモータ等を含む支持機構32a、32b、32cによって異なる3点で支持されており、XY面に対して傾斜及びZ軸方向の駆動が可能になっている。支持機構32a〜32cは、主制御装置20によって独立に制御される(図6参照)。
可動子51は、一種の空気静圧軸受け装置であるエアスライダ57と、エアスライダ57にその一部が上方から嵌合して一体化される平板状発磁体53と、平板状発磁体53に上方から係合する磁性体材料から成る磁性体部材52とを備えている。平板状発磁体53は、隣り合う磁極面の極性が互いに異なるようにマトリクス状に配列された複数の平板磁石から構成され、磁性体部材52とともに磁石ユニットを構成する。また、エアスライダ57によって、基板ステージWSTが定盤21の上面上に、例えば5μm程度のクリアランスを介して、浮上支持されている(図1及び図3参照)。
定盤21は、図3に示されるように、上面が開口した中空の本体部35と、本体部35の開口部を閉塞するセラミック板36とを備えている。セラミック板36の可動子51に対向する面(上面)には、可動子51の移動面21aが形成されている。移動面21aは、僅かな間隙21cを設けて多数の孔部を有する多孔カバー21bで覆われている。その間隙21cに、後述する圧空供給装置80により圧空が供給される。
本体部35とセラミック板36とにより形成される定盤21の内部空間41には、移動面21aに沿ってXY2次元方向に9行9列のマトリクス状に9×9=81個の電機子コイル38が配置されている(図2参照)。電機子コイル38としては、図2に示されるように、正方形状コイルが用いられている。これらの電機子コイル38から、平面モータ50の固定子60が構成されている。なお、電機子コイル38それぞれに供給される電流の大きさ及び方向は、主制御装置20(図6参照)によって制御される。
セラミック板36の移動面21aと反対側(下面側)には、図3に示されるように、所定間隔で断面円形の多数の突起部36aが形成されている。突起部36aは、図2に示されるように、セラミック板36を本体部35に組み付けた場合に、隣接する4つの電機子コイル38相互間の空間に対応する位置に8×8=64個それぞれ設けられている。
圧空供給装置80について説明する。
圧空供給装置80は、図4に模式的に示されるように、減圧弁(レギュレータ)R1と温度安定化素子(ヒートシンク)HSと流量調整弁F1と流路81とから構成される。圧空供給装置80は、ポンプaを用いて、工場用力(空気)を、露光装置100(定盤21)外から流路81を介して高圧Pで減圧弁R1に送る。ここで、減圧弁R1に送られる工場用力(空気)の圧力P及び温度Tは変動する。
図5(A)及び図5(B)には、それぞれ、圧空供給装置80内での空気の圧力と温度の変化が、流路81内の位置xに対して示されている。ポンプa(以下、流路81の入口aとも呼ぶ)では、空気は高圧P(例えば0.5〜0.9MPa)及び高温Tである。
減圧弁R1は、高圧Pの空気を、所望の圧力Pに調圧する。このとき断熱膨張により空気の温度はT01へ低下する。圧力Pは、露光装置100の起動時、調整時等に設定されている。流路81の入口aでの空気の温度Tが変動するため、減圧弁R1の出口での温度T01も変動する。減圧弁R1により調圧された空気は、流路81を介して温度安定化素子HSに送られる。
温度安定化素子HS(ヒートシンク)は、銅、ステンレス、又はAl製の金属板内にほぼ平行して設けられた2つの流路を有し、その一方に温度Tに調整された冷媒(例えば冷却水)を流し、流路81に接続する他方に減圧弁R1からの不定温度T01の空気を流すことにより、空気の熱を放熱して一定温度Tに調温する。なお、温度安定化素子は、ヒートシンクに限定されるものではない。略所定の温度に維持できるのであれば、放熱器や過熱器等の他の手段を使用することができる。温度Tは、露光装置100の起動時、調整時等に設定されている。ここで、空気の圧力は減圧弁R1によって調圧されているため、Pのように変動しない、すなわち、圧力Pは変動しない固定された値となる。なお、図5(B)内に破線を用いて示されるように、減圧弁R1からの空気の温度T01が冷媒の温度Tより低い場合、空気は加熱されて一定温度Tに調温されることとなる。温度安定化素子HSにより調温された空気は、流路81を介して流量調整弁F1に送られる。
流量調整弁F1は、減圧弁R1及び温度安定化素子HSにより圧力P及び温度Tに調圧及び調温された空気を所定の流量で定盤21の表面上(間隙21c内)に供給する。ここで、空気は温度安定化素子HS(より厳密には減圧弁R1)から流路81の出口bまでの間に断熱膨張するため、図5(A)及び図5(B)に示されるように、圧空は出口bまでにP(図5(A)では大気圧(1気圧))に減圧するとともに温度Tに低下する。
なお、圧空供給装置80において、圧力Pは、大気圧(1気圧)に又はそれより高く設定される。圧空供給装置80からの空気を圧空とも呼ぶ。また、温度Tは、露光装置100内の設定温度(例えば常温23度)に又はそれより低く設定される。
圧空供給装置80は、流量調整弁F1により所望の温度Tに調温した圧空を流路81を介して露光装置100内に送り、定盤21内の配管(不図示)を介して、白抜き矢印で示されるように、定盤21上の移動面21aと多孔カバー21bとの間の間隙21c内に供給する。圧空は、多孔カバー21bにより定盤21の表面(移動面21a)上の広範に広がり、多孔カバー21bの多数の孔部を介して定盤21上に吹き上げられる。なお、多孔カバー21bに限らず、間隙21c内に温調された圧空が流れ、定盤21上の雰囲気の温度変化がなくなるのであれば、他の部材を用いてもよい。
基板ステージWSTを駆動するために、基板ステージWSTの直下の定盤21内の電機子コイル38のそれぞれに電流が供給される。そのため電機子コイル38が発熱し、定盤21上の基板ステージWSTの周辺の気体(空気)が加熱され、気体に揺らぎが生じる。しかし、圧空供給装置80により、調温された圧空が間隙21c内の広範に供給され、多孔カバー21bの多数の孔部を介して定盤21上に吹き上げられることにより、電機子コイル38の熱が排熱され、定盤21上の雰囲気は一定温度Tに維持され、周辺の気体の温度変動も抑えられることとなる。
図6には、露光装置100の制御系の主要な構成が示されている。制御系は、装置全体を統括制御するマイクロコンピュータ(あるいはワークステーション)などを含む主制御装置20を中心として構成されている。
次に、前述した基板ステージ装置30を含む露光装置100における露光動作の流れについて簡単に説明する。
まず、主制御装置20の管理の下、レチクルローダ及びウエハローダ(いずれも不図示)によってそれぞれレチクルロード及びウエハロードが行われ、また、レチクルアライメント検出系13、基板テーブル18上の基準マーク板(不図示)、アライメント検出系ASを用いてレチクルアライメント、ベースライン計測等の準備作業が所定の手順に従って行われる。
その後、主制御装置20により、アライメント検出系ASを用いてEGA(エンハンスト・グローバル・アライメント)等のアライメント計測が実行される。
アライメント計測の終了後、以下のようにしてステップ・アンド・スキャン方式の露光動作が行われる。露光動作にあたって、まず、ウエハWのXY位置が、ウエハW上の最初のショット領域(ファースト・ショット)の露光のための走査開始位置となるように、基板テーブル18が移動される。同時に、レチクルRのXY位置が、走査開始位置となるように、レチクルステージRSTが移動される。そして、主制御装置20が、レチクル干渉計16によって計測されたレチクルRのXY位置情報、ウエハ干渉計31によって計測されたウエハWのXY位置情報に基づき、レチクル駆動部(不図示)及び平面モータ50を介してレチクルRとウエハWとを同期移動させることにより、走査露光が行われる。このウエハWの移動は、主制御装置20により、電機子コイル38に供給する電流値及び電流方向の少なくとも一方を制御することにより行われる。
このようにして、1つのショット領域に対するレチクルパターンの転写が終了すると、基板テーブル18が1ショット領域分だけステッピングされて、次のショット領域に対する走査露光が行われる。このようにして、ステッピングと走査露光とが順次繰り返され、ウエハW上に必要なショット数のパターンが転写される。
以上説明したように、本実施形態の圧空供給装置80を備えることにより、露光装置100(定盤21)外の空気が、減圧弁R1及び温度安定化素子HSを介して所定温度Tに調温され、定盤21の表面上(多孔カバー21bとの間の間隙21c内)に供給される。これにより、平面モータ50を構成する電機子コイル38の熱が排熱され、定盤21上の雰囲気は常時一定温度Tに維持されるとともに、周辺の気体の温度変動が抑えられることとなる。そして、干渉計を用いて構成されるウエハ干渉計31の高い位置計測精度を維持することができ、ウエハW(基板ステージWST)の位置決め精度を向上するとともにスループットを改善することが可能となる。
なお、図7に示される変形例のように、図4の圧空供給装置80における流量調整弁F1に代えて減圧弁R2を用いて、圧空供給装置80’を構成することもできる。係る場合、減圧弁R1及び温度安定化素子HSにより圧力P及び温度Tに調圧及び調温された空気(圧空)が流路81を介して減圧弁R2に送られ、減圧弁R2によりさらに減圧(断熱膨張)される。これにより、図8(A)及び図8(B)に示されるように、空気は一定圧力Pに調圧されるとともに所望の温度Tに調温される。この構成の圧空供給装置80’では、減圧弁R2を用いて空気の圧力Pを調整することで、容易に、定盤21の表面上に供給する圧空の温度Tを変更することができる。
なお、流路81の出口b或いは間隙21c内に温度センサ(不図示)を設け、温度センサを用いて圧空の温度を測定することとしても良い。圧空供給装置80は、温度センサの測定結果に基づいて、流量調整弁F1を制御して圧空の圧力を調整することで(又は変形例における減圧弁R2を制御することで)、定盤21の表面上での流量を制御する。或いは、流量を制御することで、定盤21の表面上での圧空の温度を調整する、すなわち、圧空の流量を増やす(減らす)ことにより温度を上げる(下げる)こともできる。
また、圧空供給装置80により、調温された圧空が平面モータ50を構成する電機子コイル38の熱を排熱するため、定盤21上の雰囲気の温度TはTより高くなることも予想される。係る場合、温度Tが露光装置100内の設定温度(例えば常温23度)となるように、温度Tを設定しても良い。
なお、上述の実施形態では、本発明が、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置に適用された場合について説明したが、これに限らず、例えば国際公開第99/49504号、欧州特許出願公開第1,420,298号明細書、国際公開第2004/055803号、米国特許第6,952,253号明細書などに開示されているように、投影光学系とウエハとの間に照明光の光路を含む液浸空間を形成し、投影光学系及び液浸空間の液体を介して照明光でウエハを露光する露光装置にも本発明を適用することができる。また、例えば国際公開第2007/097379号(対応米国特許出願公開第2008/0088843号明細書)に開示される、液浸露光装置などにも、本発明を適用することができる。
また、上記実施形態では、ステップ・アンド・スキャン方式等の走査型露光装置に本発明が適用された場合について説明したが、これに限らず、ステッパなどの静止型露光装置に本発明を適用しても良い。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどにも本発明は適用することができる。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも本発明を適用できる。また、例えば国際公開第2005/074014号などに開示されているように、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置にも本発明は適用が可能である。
また、上記実施形態の露光装置における投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。また、前述の照明領域及び露光領域はその形状が矩形であるものとしたが、これに限らず、例えば円弧、台形、あるいは平行四辺形などでも良い。
なお、上記実施形態の露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
また、上記実施形態では、露光装置の照明光ILとしては波長100nm以上の光に限らず、波長100nm未満の光を用いても良いことはいうまでもない。例えば、軟X線領域(例えば5〜15nmの波長域)のEUV(Extreme Ultraviolet)光を用いるEUV露光装置に本発明を適用することができる。その他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、本発明は適用できる。
さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを、投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも本発明を適用することができる。
なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものでなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体でも良い。
露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光装置(パターン形成装置)及びその露光方法によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
12…ベース盤、21…定盤、30…基板ステージ装置、38…電機子コイル、41…内部空間、50…ステージ駆動系(平面モータ)、80…圧空供給装置、100…露光装置、F1…流量調整弁、HS…温度安定化素子(ヒートシンク)、R1,R2…減圧弁(レギュレータ)、W…ウエハ。

Claims (5)

  1. 定盤上で移動する移動体と、
    前記定盤内に配列された複数のコイルユニットを含む固定子と前記移動体内に設けられた少なくとも1つの磁石ユニットを含む可動子とから構成される駆動装置と、
    前記定盤外の気体を減圧弁を介して所定圧に調圧し、前記減圧弁を介した前記気体を温度安定化素子を介して所定温度に調温し、前記温度安定化素子を介した前記気体を前記定盤の前記移動体に対向する表面上に供給する気体供給装置と、を備える移動体装置。
  2. 前記定盤の前記表面上に多孔カバーが配置され、
    前記気体供給装置は、前記表面と前記多孔カバーとの間の間隙に前記気体を供給する、請求項1に記載の移動体装置。
  3. 前記気体供給装置は、さらに、前記温度安定化素子を介した前記気体を別の減圧弁と流量調整弁との少なくとも一方を介して前記表面上での前記気体の流量を調整する、請求項1又は2に記載の移動体装置。
  4. 前記気体供給装置は、前記表面上での前記気体の温度を測定する温度センサを有し、該温度センサの測定結果に基づいて前記別の減圧弁と前記流量調整弁との少なくとも一方を制御する、請求項3に記載の移動体装置。
  5. エネルギビームを照射して物体上にパターンを形成する露光装置であって、
    前記物体を保持する前記移動体を駆動する、請求項1〜4のいずれか一項に記載の移動体装置を備える露光装置。
JP2011239854A 2011-11-01 2011-11-01 移動体装置及び露光装置 Pending JP2013098352A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239854A JP2013098352A (ja) 2011-11-01 2011-11-01 移動体装置及び露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239854A JP2013098352A (ja) 2011-11-01 2011-11-01 移動体装置及び露光装置

Publications (1)

Publication Number Publication Date
JP2013098352A true JP2013098352A (ja) 2013-05-20

Family

ID=48620005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239854A Pending JP2013098352A (ja) 2011-11-01 2011-11-01 移動体装置及び露光装置

Country Status (1)

Country Link
JP (1) JP2013098352A (ja)

Similar Documents

Publication Publication Date Title
JP6671643B2 (ja) 搬送方法、搬送システム及び露光装置、並びにデバイス製造方法
US7292317B2 (en) Lithographic apparatus and device manufacturing method utilizing substrate stage compensating
JPWO2006006730A1 (ja) 平面モータ装置、ステージ装置、露光装置及びデバイスの製造方法
US6366342B2 (en) Drive apparatus, exposure apparatus, and method of using the same
JPWO2009078422A1 (ja) ステージ装置、露光装置及びデバイス製造方法
TW200302507A (en) Stage device and exposure device
JP5455166B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2010080855A (ja) 露光装置、露光方法及びデバイスの製造方法
JP2009277679A (ja) 温度調整装置、露光装置、アクチュエータ装置、保持装置、及びデバイス製造方法
JP5456848B2 (ja) リソグラフィ装置及びデバイス製造方法
JP7472958B2 (ja) 移動体装置、露光装置、及びデバイス製造方法
JP2006287160A (ja) 露光装置及びデバイスの製造方法
JP2012033921A (ja) 露光装置及びデバイス製造方法
WO2016159200A1 (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP2013098352A (ja) 移動体装置及び露光装置
JP2008235470A (ja) 平面モータ装置、ステージ装置、露光装置及びデバイスの製造方法
JP2012033922A (ja) 露光装置及びデバイス製造方法
JP2014096589A (ja) 駆動装置及び駆動方法、露光装置及び露光方法、並びにデバイス製造方法
JP2010200452A (ja) モータ装置及びステージ装置並びに露光装置
JP2014157899A (ja) 駆動装置、露光装置、及びデバイス製造方法
JP2001345256A (ja) ステージ装置および露光装置
JP2010238986A (ja) 露光装置及びデバイスの製造方法
JP2006066687A (ja) 温調方法、ステージ装置、露光装置、及びデバイスの製造方法
JP2003031646A (ja) ステージ装置および露光装置
WO2013153744A1 (ja) 移動体装置、露光装置、及びデバイス製造方法