JP2009143791A - Apparatus for generating hydrogen and fuel battery system - Google Patents

Apparatus for generating hydrogen and fuel battery system Download PDF

Info

Publication number
JP2009143791A
JP2009143791A JP2008260343A JP2008260343A JP2009143791A JP 2009143791 A JP2009143791 A JP 2009143791A JP 2008260343 A JP2008260343 A JP 2008260343A JP 2008260343 A JP2008260343 A JP 2008260343A JP 2009143791 A JP2009143791 A JP 2009143791A
Authority
JP
Japan
Prior art keywords
solution
hydrogen
introduction path
solution introduction
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008260343A
Other languages
Japanese (ja)
Inventor
Kazutaka Yuzurihara
一貴 譲原
Fumiharu Iwasaki
文晴 岩崎
Tsuneaki Tamachi
恒昭 玉地
Takashi Sarada
孝史 皿田
Toru Ozaki
徹 尾崎
Takamasa Yanase
考応 柳▲瀬▼
Noboru Ishizone
昇 石曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008260343A priority Critical patent/JP2009143791A/en
Publication of JP2009143791A publication Critical patent/JP2009143791A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for generating hydrogen which can suppress an influence of a decrease in the reaction rate by a product and stably supply hydrogen, and to provide a fuel battery system which can generate a stable electric power in a fuel battery. <P>SOLUTION: The apparatus is provided with a first solution introduction passage through which a reaction solution is fed to a first hydrogen generating substance, a second solution introduction passage through which the reaction solution is fed to a second hydrogen generating substance, and a control valve which changes the feeding of the reaction solution from the first solution introduction passage to the second solution introduction passage, wherein even if the reaction is inhibited by adhesion of a product to the first hydrogen generating substance, control of the control valve changes the feeding of the reaction solution from the first solution introduction passage to the second solution introduction passage to feed the reaction solution to the second hydrogen generating substance, whereby a decrease in the reaction rate can be suppressed and hydrogen can stably be generated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は水素発生装置に関するものであり、さらには、かかる水素発生装置を備えた燃料電池システムに関する。   The present invention relates to a hydrogen generator, and further relates to a fuel cell system provided with such a hydrogen generator.

燃料電池は、固体高分子電解質膜を挟んでアノードとカソードを有する発電部のアノード側に例えば水素ガスやメタノール等の燃料流体と、カソード側に酸化用流体例えば酸素や空気を供給し電気化学反応により電力を発生する。   A fuel cell is an electrochemical reaction in which a fuel fluid such as hydrogen gas or methanol is supplied to the anode side of a power generation unit having an anode and a cathode across a solid polymer electrolyte membrane, and an oxidizing fluid such as oxygen or air is supplied to the cathode side. To generate power.

水素ガスを燃料とする場合の水素を低エネルギーで得る方法として、ケミカルハイドライドと呼ばれる金属水素化物を加水分解する方法が知られている。ケミカルハイドライドとして、例えば金属水素化物の一種である水素化ホウ素リチウムや水素化ホウ素ナトリウム、水素化アルミニウムリチウム、水素化アルミニウムナトリウムがある。   As a method of obtaining hydrogen with low energy when using hydrogen gas as a fuel, a method of hydrolyzing a metal hydride called chemical hydride is known. Examples of the chemical hydride include lithium borohydride, sodium borohydride, lithium aluminum hydride, and sodium aluminum hydride, which are a kind of metal hydride.

金属水素化物を加水分解して水素を得る場合、反応で生成される金属含有物や泡等の生成物が存在し、生成物が金属水素化物を覆い、金属水素化物と水の接触を阻害する。これにより、水素発生反応の反応速度が低下し、最終的には反応が停止してしまう。   When hydrolyzing a metal hydride to obtain hydrogen, products such as metal inclusions and bubbles generated by the reaction are present, and the product covers the metal hydride and inhibits contact between the metal hydride and water. . As a result, the reaction rate of the hydrogen generation reaction decreases, and the reaction eventually stops.

このため、金属水素化物に供給する水を高圧で噴き付けることにより、生成物を除去する技術が知られている。(例えば、特許文献1参照)金属水素化物に供給する水を高圧で噴き付けることにより、生成物を除去するので反応速度の低下を抑制することができる。
特開2002−137903号公報
For this reason, the technique of removing a product by spraying the water supplied to a metal hydride at a high pressure is known. (For example, refer patent document 1) Since the product is removed by spraying the water supplied to a metal hydride at a high pressure, a decrease in reaction rate can be suppressed.
JP 2002-137903 A

しかし従来の技術では、水素発生量を維持するために、高圧で大量の水を供給しなければならない。大量の水を供給するため、水の供給を停止した後においてもそれまでに供給した水により水素発生反応が継続して起こり、過剰な水素が発生する。よって、必要時以外にも水素が発生することとなり、無駄に水素を放出してしまう。   However, in the conventional technology, in order to maintain the hydrogen generation amount, a large amount of water must be supplied at a high pressure. Since a large amount of water is supplied, even after the supply of water is stopped, the hydrogen generation reaction continues to occur with the water supplied up to that point, and excessive hydrogen is generated. Therefore, hydrogen is generated when it is not necessary, and hydrogen is wasted.

本発明は上記状況に鑑みてなされたものであり、生成物による反応速度の低下の影響を抑制するとともに、必要時に所望量の水素を発生させることができ、安定した電力の供給を可能とする水素発生装置及び燃料電池システムを提供することを目的とする。   The present invention has been made in view of the above situation, and suppresses the influence of a decrease in reaction rate due to a product, and can generate a desired amount of hydrogen when necessary, thereby enabling a stable power supply. An object of the present invention is to provide a hydrogen generator and a fuel cell system.

上記目的を達成するための本発明の第1の水素発生装置は、水素発生物質が収容されるとともに水素発生物質と反応用溶液とを反応させて水素を生成する反応容器と、反応用溶液を流通する溶液流路と、反応用溶液を溶液流路に導入する溶液送液手段と、反応用溶液を第1の水素発生物質に導入する第1の溶液導入路と、反応用溶液を第2の水素発生物質に導入する第2の溶液導入路と、反応容器内で発生した水素を排出する水素導出流路と、第1の溶液導入路及び第2の溶液導入路のいずれか一方から他方に反応用溶液の送液を切り換える制御弁とを備え、制御弁は、第1の水素発生物質の消費に伴って第1の溶液導入路から第2の溶液導入路に送液を切り換える送液切り換え部とを備えることを特徴とする。   In order to achieve the above object, a first hydrogen generating apparatus of the present invention comprises a reaction vessel that contains a hydrogen generating substance and generates hydrogen by reacting the hydrogen generating substance with a reaction solution, and a reaction solution. A flowing solution channel, a solution feeding means for introducing the reaction solution into the solution channel, a first solution introduction channel for introducing the reaction solution into the first hydrogen generating material, and a second solution for the reaction. A second solution introduction path for introducing hydrogen into the hydrogen generating material, a hydrogen outlet path for discharging hydrogen generated in the reaction vessel, and one of the first solution introduction path and the second solution introduction path to the other. And a control valve for switching the liquid delivery of the reaction solution. The control valve switches the liquid delivery from the first solution introduction path to the second solution introduction path as the first hydrogen generating substance is consumed. And a switching unit.

かかる特徴によれば、水素発生物質の消費に伴い反応用溶液の送液を第1の溶液導入路から第2の溶液導入路に切り換えることができ、第1の水素発生物質に生成物が付着して水素生成反応が阻害された場合においても生成物が付着していない第2の水素発生物質に反応用溶液を供給するため、生成物が反応を阻害し反応速度を低下させることを抑制することが可能である。このため、余分な水を水素発生物質に供給することなく、安定的に必要量の水素を発生させることが可能となる。   According to such a feature, the solution solution for reaction can be switched from the first solution introduction path to the second solution introduction path as the hydrogen generation substance is consumed, and the product adheres to the first hydrogen generation substance. Even when the hydrogen generation reaction is inhibited, the reaction solution is supplied to the second hydrogen generating material to which the product is not attached, so that the product inhibits the reaction and reduces the reaction rate. It is possible. Therefore, it is possible to stably generate a necessary amount of hydrogen without supplying extra water to the hydrogen generating material.

本発明の第2の水素発生装置は、送液切り換え部は、第1の溶液導入路への反応用溶液の供給量が所定量に達した際に、第1の溶液導入路から第2の溶液導入路に送液を切り換えることを特徴とする。   In the second hydrogen generator of the present invention, the liquid feed switching unit is configured so that when the supply amount of the reaction solution to the first solution introduction path reaches a predetermined amount, The liquid feeding is switched to the solution introduction path.

かかる特徴によれば、第1の水素発生物質に反応に必要な反応用溶液を供給すると、反応用溶液の送液を第1の溶液導入路から第2の溶液導入路に切り換えることができ、反応用溶液を供給する溶液導入路の切り換えの応答性が良くなるため、生成物の阻害による反応速度の低下が抑制され、安定的に一定量の水素を供給することが可能となる。   According to such a feature, when the reaction solution necessary for the reaction is supplied to the first hydrogen generating material, the reaction solution solution can be switched from the first solution introduction path to the second solution introduction path. Since the responsiveness of switching the solution introduction path for supplying the reaction solution is improved, a decrease in the reaction rate due to the inhibition of the product is suppressed, and a certain amount of hydrogen can be stably supplied.

本発明の第3の水素発生装置は、制御弁は、水素発生物質が反応するに従って水素発生物質を押圧する押圧部を備え、送液切り換え部は、水素発生物質の減少とともに押圧部により押圧され、第1の溶液導入路から第2の溶液導入路に送液を切り換えることを特徴とする。   In the third hydrogen generator of the present invention, the control valve includes a pressing portion that presses the hydrogen generating material as the hydrogen generating material reacts, and the liquid feeding switching portion is pressed by the pressing portion as the hydrogen generating material decreases. The liquid feeding is switched from the first solution introduction path to the second solution introduction path.

かかる特徴によれば、水素発生物質は反応するに従って押圧され、水素発生物質を溶液導入路の開口部付近に押し付けることができるため、より水素発生物質は反応用溶液と反応し易くなる。また、送液切り換え部は水素発生物質の減少とともに押圧部により押圧され、それに伴い送液を第1の溶液導入路から第2の溶液導入路に切り換えることができるため、簡素な構造により安定的に水素を発生させることができる。   According to this feature, the hydrogen generating substance is pressed as it reacts, and the hydrogen generating substance can be pressed near the opening of the solution introduction path, so that the hydrogen generating substance is more likely to react with the reaction solution. In addition, the liquid feeding switching unit is pressed by the pressing unit along with the decrease of the hydrogen generating substance, and accordingly, the liquid feeding can be switched from the first solution introduction path to the second solution introduction path. Hydrogen can be generated.

本発明の第4の水素発生装置は、送液切り換え部は、第1の溶液導入路を塞ぐ閉状態と第1の溶液導入路を開放する開状態のいずれか一方の状態に切り換わる第1弁体と、第2の溶液導入路を塞ぐ閉状態と第2の溶液導入路を開放する開状態のいずれか一方の状態に切り換わる第2弁体と、第1弁体と第2弁体とを連結し、押圧部の変位に伴って第1弁体を閉状態にするとともに第2弁体を開状態にするロッド部とを備えることを特徴とする。   In the fourth hydrogen generator of the present invention, the liquid feed switching unit is switched to either a closed state in which the first solution introduction path is closed or an open state in which the first solution introduction path is opened. A valve body, a second valve body that switches between a closed state that closes the second solution introduction path and an open state that opens the second solution introduction path, and a first valve body and a second valve body And a rod portion that closes the first valve body and opens the second valve body in accordance with the displacement of the pressing portion.

かかる特徴によれば、第1弁体と第2弁体、及び第1弁体と第2弁体を連結するロッド部を備え、押圧部の変位に伴いロッド部が押圧されることにより、第1弁体及び第2弁体を変位させ、反応用溶液の送液を第1の溶液導入路から第2の溶液導入路へ容易に切り換えることができるため、構造が簡素化され、効率よく反応用溶液の送液を行うことが可能となる。   According to this feature, the first valve body and the second valve body, and the rod portion that connects the first valve body and the second valve body are provided, and the rod portion is pressed in accordance with the displacement of the pressing portion. Displacement of the 1 valve body and the 2nd valve body enables easy transfer of the solution for reaction from the first solution introduction path to the second solution introduction path, thus simplifying the structure and allowing efficient reaction It becomes possible to feed the solution for use.

本発明の第5の水素発生装置は、制御弁は、反応容器内の変動に伴って変位する受圧変位部を備え、送液切り換え部は、反応容器内の圧力の低下に伴う受圧変位部の変位により、第1の溶液導入路から第2の溶液導入路に送液を切り換えることを特徴とする。   In the fifth hydrogen generator of the present invention, the control valve includes a pressure receiving displacement portion that is displaced in accordance with fluctuations in the reaction vessel, and the liquid feed switching portion is provided in the pressure receiving displacement portion that accompanies a decrease in the pressure in the reaction vessel. The liquid feeding is switched from the first solution introduction path to the second solution introduction path by the displacement.

かかる特徴によれば、反応容器内の圧力の低下に伴い、つまり、反応容器内での水素の発生量の減少に伴い反応用溶液の送液を第1の溶液導入路から第2の溶液導入路に切り換えることができるため、安定的に一定量の水素を供給することが可能となる。   According to this feature, as the pressure in the reaction vessel decreases, that is, as the amount of hydrogen generated in the reaction vessel decreases, the reaction solution is fed from the first solution introduction path to the second solution introduction. Since it is possible to switch to a path, it becomes possible to supply a certain amount of hydrogen stably.

本発明の第6の水素発生装置は、送液切り換え部は、第1の溶液導入路を開放し第2の溶液導入路を塞ぐ第1状態と、第1の溶液導入路を塞ぎ第2の溶液導入路を開放する第2状態の、いずれか一方の状態に切り換わる第3弁体と、第3弁体と連結し、受圧変位部の変位に伴って第3弁体を第1状態から第2状態へ切り換える連結部とを備えることを特徴とする。   In the sixth hydrogen generator of the present invention, the liquid feed switching unit is configured to open the first solution introduction path and close the second solution introduction path, and to close the first solution introduction path and close the second solution introduction path. The third valve body that is switched to one of the second states that open the solution introduction path and the third valve body are connected, and the third valve body is moved from the first state in accordance with the displacement of the pressure receiving displacement portion. And a connecting portion for switching to the second state.

かかる特徴によれば、第3弁体、及び第3弁体と連結した連結部を備え、圧力の低下に伴う受圧変位部の変位により連結部が移動し、第3弁体を変位させ、反応用溶液の送液を第1の溶液導入路から第2の溶液導入路へ容易に切り換えることができるため、構造が簡素化され、効率よく反応用溶液の送液を行うことが可能となる。   According to this feature, the third valve body and the connection portion connected to the third valve body are provided, and the connection portion moves due to the displacement of the pressure receiving displacement portion accompanying the decrease in pressure, and the third valve body is displaced to react. Since the solution supply solution can be easily switched from the first solution introduction path to the second solution introduction path, the structure is simplified and the reaction solution can be efficiently fed.

本発明の第7の水素発生装置は、第1の水素発生物質と第2の水素発生物質との間を仕切る仕切り部を備えることを特徴とする。   A seventh hydrogen generating apparatus according to the present invention includes a partition portion that partitions between the first hydrogen generating material and the second hydrogen generating material.

かかる特徴によれば、第1の水素発生物質の反応により生成した生成物が第2の水素発生物質を覆い、第2の水素発生物質の反応を阻害することを防ぐことができ、また、反応容器の姿勢が変化した場合においても未反応の水素発生物質に反応用溶液が供給されることがない。よって、水素発生物質と反応用溶液の反応が効率よく起こり、より安定した水素供給ができる。   According to such a feature, it is possible to prevent the product generated by the reaction of the first hydrogen generating material from covering the second hydrogen generating material and inhibiting the reaction of the second hydrogen generating material. Even when the posture of the container changes, the reaction solution is not supplied to the unreacted hydrogen generating substance. Therefore, the reaction between the hydrogen generating substance and the reaction solution occurs efficiently, and more stable hydrogen supply can be achieved.

また、本発明の燃料電池システムは、本発明の第1乃至第7のいずれかの水素発生装置の水素導出流路が燃料電池の燃料極室に接続され、発生した水素が燃料極に供給されることを特徴とする。   In the fuel cell system of the present invention, the hydrogen outlet flow path of any one of the first to seventh hydrogen generators of the present invention is connected to the fuel electrode chamber of the fuel cell, and the generated hydrogen is supplied to the fuel electrode. It is characterized by that.

かかる特徴によれば、生成物による反応速度の低下の影響が抑制され安定的に水素を供給することができる水素発生装置を備え、安定した電力を発電させることができる燃料電池システムを提供することができる。   According to such a feature, there is provided a fuel cell system that is provided with a hydrogen generator capable of stably supplying hydrogen while suppressing the influence of a reduction in reaction rate due to a product, and capable of generating stable power. Can do.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施形態1)
図1は、実施形態1に係る水素発生装置の概略図である。
(Embodiment 1)
1 is a schematic diagram of a hydrogen generator according to Embodiment 1. FIG.

図1に示すように、本実施形態に係る水素発生装置1は、反応器としての反応容器2を備え、反応容器2内には水素発生反応の反応物としての水素発生物質9が複数個収容されている。複数個の水素発生物質にはそれぞれ溶液導入路7が接続されている。   As shown in FIG. 1, the hydrogen generator 1 according to this embodiment includes a reaction vessel 2 as a reactor, and a plurality of hydrogen generating substances 9 as reactants of a hydrogen generation reaction are accommodated in the reaction vessel 2. Has been. A solution introduction path 7 is connected to each of the plurality of hydrogen generating substances.

図示していないが、反応容器2に隣接して反応用溶液貯蔵用の容器が備えられ、容器には反応用溶液が貯蔵されている。   Although not shown, a reaction solution storage container is provided adjacent to the reaction container 2, and the reaction solution is stored in the container.

溶液流路4には溶液送液手段3が設けられ、溶液送液手段3により反応用溶液の送液と停止が制御される。溶液送液手段3は溶液流路4に反応用溶液を導入流通させるものであれば、構成は限定されない。例えば、ポンプ等の圧送機構を適用した送液手段を用いることができ、水素の消費量(燃料電池の場合は消費電力等)により送液量が制御されるものが適用される。また、反応容器2内の内圧を利用して開閉される弁を使用した送液手段を用いることができ、反応容器2の内圧が低くなった時に送液を行って水素を発生させるものが適用される。   The solution flow path 4 is provided with a solution feeding means 3, and the solution feeding means 3 controls the feeding and stopping of the reaction solution. The configuration of the solution delivery means 3 is not limited as long as the solution for reaction is introduced and circulated through the solution flow path 4. For example, a liquid feeding means to which a pumping mechanism such as a pump is applied can be used, and a liquid feeding amount controlled by the amount of hydrogen consumed (power consumption in the case of a fuel cell) is applied. In addition, liquid feeding means using a valve that is opened and closed using the internal pressure in the reaction vessel 2 can be used, and a device that generates hydrogen by feeding the liquid when the internal pressure of the reaction vessel 2 becomes low is applied. Is done.

溶液送液手段3により供給された反応用溶液は、送液切換制御部5により流通を制御される制御弁6を介し、各溶液導入路7に送られ各水素発生物質と反応し、水素を発生する。反応容器2で生成された水素は水素導出流路10から図示されていない水素消費部に供給される。   The reaction solution supplied by the solution delivery means 3 is sent to each solution introduction path 7 via a control valve 6 whose flow is controlled by the solution feed switching control unit 5 to react with each hydrogen generating substance, and to supply hydrogen. appear. Hydrogen generated in the reaction vessel 2 is supplied from the hydrogen outlet channel 10 to a hydrogen consumption unit (not shown).

制御弁6の詳細な構造について図2に示す。   The detailed structure of the control valve 6 is shown in FIG.

図2に示すように、制御弁6は、第1の溶液導入路21への反応用溶液の供給量が所定量に達すると第1の溶液導入路21から第2の溶液導入路22へ送液を切り換える送液切り換え部24を備える(a)。第1の溶液導入路21より供給された反応用溶液と第1の溶液導入路21の開口部付近に配置された第1の水素発生物質28が反応し、水素が発生する。所定量に相当する反応用溶液が第1の水素発生物質に供給されたと送液切換制御部5が判断すると、送液切り換え部24は第2の溶液導入路22へ反応用溶液が供給されるように変位し(b)、第2の水素発生物質が反応用溶液と反応し水素を発生する。この繰り返しにより、複数の水素発生物質に反応用溶液が供給され、安定的に水素が発生する
なお、図2において、第1の溶液導入路21の開口部は送液切り換え部24に対して右側に形成されているが、この位置に限られることはなく、反応用溶液を第1の水素発生物質28へ供給することができれば、送液切り換え部24の上側、左側等に形成されても構わない。
As shown in FIG. 2, when the supply amount of the reaction solution to the first solution introduction path 21 reaches a predetermined amount, the control valve 6 sends the first solution introduction path 21 to the second solution introduction path 22. A liquid feed switching unit 24 for switching the liquid is provided (a). The reaction solution supplied from the first solution introduction path 21 reacts with the first hydrogen generating substance 28 disposed in the vicinity of the opening of the first solution introduction path 21 to generate hydrogen. When the liquid feed switching control unit 5 determines that a reaction solution corresponding to a predetermined amount has been supplied to the first hydrogen generating material, the liquid feed switching unit 24 supplies the reaction solution to the second solution introduction path 22. (B), the second hydrogen generating substance reacts with the reaction solution to generate hydrogen. By repeating this, the reaction solution is supplied to a plurality of hydrogen generating substances, and hydrogen is stably generated. In FIG. 2, the opening of the first solution introduction path 21 is on the right side with respect to the liquid feeding switching unit 24. However, the present invention is not limited to this position, and may be formed on the upper side, the left side, or the like of the liquid feed switching unit 24 as long as the reaction solution can be supplied to the first hydrogen generating substance 28. Absent.

また、図1には示されていないが、反応容器2は各水素発生物質の間を仕切る仕切り部を有していると良い。これにより、第1の水素発生物質の反応により生成した生成物が第2の水素発生物質を覆い、第2の水素発生物質の反応を阻害することを防ぐことができ、且つ反応容器の姿勢が変化した場合においても未反応の水素発生物質に反応用溶液が供給されることがない。よって、水素発生物質と反応用溶液の反応が効率よく起こり、より安定した水素供給が可能となる。   Although not shown in FIG. 1, the reaction vessel 2 may have a partition for partitioning each hydrogen generating material. Thereby, it is possible to prevent the product generated by the reaction of the first hydrogen generating material from covering the second hydrogen generating material and hindering the reaction of the second hydrogen generating material, and the posture of the reaction vessel is Even in the case of change, the reaction solution is not supplied to the unreacted hydrogen generating substance. Therefore, the reaction between the hydrogen generating substance and the reaction solution occurs efficiently, and more stable hydrogen supply is possible.

水素発生物質としては、例えば、水素化ホウ素塩、水酸化アルミニウム塩、水酸化ホウ素ナトリウム、水酸化ホウ素リチウム、水酸化アルミニウムリチウム等が挙げられ、特に、水酸化ホウ素ナトリウムが好ましい。水素発生触媒としては、例えば、硫酸、リンゴ酸、クエン酸水等が挙げられ、特に、リンゴ酸が好ましい。これら水素発生物質及び水素発生触媒は、特に限定されるものではなく、水素発生物質は加水分解型の金属水素化物であれば全て適用可能であり、水素発生触媒は、例えば、有機酸および無機酸あるいはルテニウム等、水素発生触媒であれば全て適用可能である。さらに、水素発生物質が水素化ホウ素ナトリウム水溶液で水素発生触媒がリンゴ酸というように、水素発生物質と水素発生触媒の組み合わせは、混合することによって水素を発生する物質であれば全て適用可能である。また、金属と塩基性あるいは酸性水溶液との反応によって水素を得るものであってもよい。   Examples of the hydrogen generating substance include borohydride salt, aluminum hydroxide salt, sodium borohydride, lithium borohydride, lithium aluminum hydroxide and the like, and sodium borohydride is particularly preferable. Examples of the hydrogen generation catalyst include sulfuric acid, malic acid, and citric acid water, and malic acid is particularly preferable. These hydrogen generating substance and hydrogen generating catalyst are not particularly limited, and any hydrogen generating substance can be applied as long as it is a hydrolyzed metal hydride. Examples of the hydrogen generating catalyst include organic acids and inorganic acids. Alternatively, any hydrogen generation catalyst such as ruthenium is applicable. Further, any combination of a hydrogen generating material and a hydrogen generating catalyst, such as sodium hydrogen borohydride aqueous solution and malic acid as a hydrogen generating material, can be applied as long as they are substances that generate hydrogen by mixing. . Alternatively, hydrogen may be obtained by a reaction between a metal and a basic or acidic aqueous solution.

ここで、溶液導入路への反応用溶液の供給量の所定量とは、予め決められた各溶液導入路に供給される反応用溶液の量である。図3で示す様に反応用溶液と水素発生物質9との反応による水素発生流量は、水素発生反応により生成される反応生成物が反応用溶液と水素発生物質9との接触を阻害するため、低下する。水素発生流量が、必要水素流量を下回る時点の反応用溶液の供給量を反応用溶液の水素発生物質との反応量v0とする。   Here, the predetermined amount of the supply amount of the reaction solution to the solution introduction path is a predetermined amount of the reaction solution supplied to each solution introduction path. As shown in FIG. 3, the hydrogen generation flow rate due to the reaction between the reaction solution and the hydrogen generating substance 9 is such that the reaction product generated by the hydrogen generation reaction inhibits the contact between the reaction solution and the hydrogen generating substance 9. descend. The supply amount of the reaction solution when the hydrogen generation flow rate is lower than the necessary hydrogen flow rate is defined as the reaction amount v0 of the reaction solution with the hydrogen generation substance.

図4に基づいて送液切換制御部5での処理の具体的な流れを説明する。   A specific flow of processing in the liquid feeding switching control unit 5 will be described with reference to FIG.

ステップ2で反応用溶液を供給する溶液導入路が決められる。初期値は、ステップ1でX=1と設定される為、溶液導入路1に反応用溶液が供給される。次いで、ステップ3で溶液導入路1への反応用溶液の供給量を積算しv1とする。ステップ4で積算反応用溶液量v1と反応用溶液の水素発生物質との反応量v0との比較を行う。ここでv0は、図3で示す、水素発生反応により生成される反応生成物により反応用溶液と水素発生物質9との反応が阻害されることにより、反応用溶液と水素発生物質9との反応による水素発生流量が低下し、必要水素流量を下回る時点の反応用溶液の供給量v0である。積算反応溶液量v1が、所定量v0に達していない(v1<v0)場合は、溶液導入路1への反応用溶液の供給を継続し、ステップ3の反応用溶液の供給量の積算を継続する。積算反応用溶液量v1が、v0に達した(v1>v0)場合は、ステップ5でXが設定した溶液導入路数Zに達したかの判断を行う。設定した溶液導入路数Zに達した場合、すなわちX=Zの場合は、反応用溶液の供給を停止する。設定した溶液導入路数Zに達していない場合は、ステップ6で溶液導入路2への反応用溶液の供給を開始する。同時にXの値は、1加算され、ステップ3での反応用溶液の供給量の積算対象は溶液導入路2への反応用溶液の供給量v2となる。この繰り返しにより、設定した溶液導入路数Z全てへの反応用溶液の供給がなされる。   In step 2, a solution introduction path for supplying the reaction solution is determined. Since the initial value is set to X = 1 in Step 1, the reaction solution is supplied to the solution introduction path 1. Next, in step 3, the supply amount of the reaction solution to the solution introduction path 1 is integrated to obtain v1. In step 4, the cumulative reaction solution amount v1 is compared with the reaction amount v0 of the hydrogen generating substance in the reaction solution. Here, v0 is a reaction between the reaction solution and the hydrogen generating substance 9 because the reaction between the reaction solution and the hydrogen generating substance 9 is inhibited by the reaction product generated by the hydrogen generating reaction shown in FIG. This is the supply amount v0 of the reaction solution at the time when the hydrogen generation flow rate due to the pressure decreases and falls below the required hydrogen flow rate. If the integrated reaction solution amount v1 does not reach the predetermined amount v0 (v1 <v0), the supply of the reaction solution to the solution introduction path 1 is continued, and the integration of the supply amount of the reaction solution in step 3 is continued. To do. If the cumulative reaction solution amount v1 has reached v0 (v1> v0), it is determined whether X has reached the solution introduction path number Z set in step 5. When the set number of solution introduction paths Z is reached, that is, when X = Z, the supply of the reaction solution is stopped. If the set number Z of solution introduction paths has not been reached, supply of the reaction solution to the solution introduction path 2 is started in step 6. At the same time, the value of X is incremented by 1, and the target for integrating the supply amount of the reaction solution in Step 3 is the supply amount v2 of the reaction solution to the solution introduction path 2. By repeating this, the reaction solution is supplied to all the set solution introduction path numbers Z.

従って、溶液導入路毎に、所定量の反応用溶液を供給することができ、所定量に達した際には次の溶液導入路へ反応用溶液を供給することができる。このため、常に必要水素流量を確保することができる。   Therefore, a predetermined amount of the reaction solution can be supplied to each solution introduction path, and when the predetermined amount is reached, the reaction solution can be supplied to the next solution introduction path. For this reason, a necessary hydrogen flow rate can always be ensured.

(実施形態2)
図5に、実施形態2に係る水素発生装置の概略図を示す。尚、図1に示した第1実施形態例と同一部材には同一符号を付して重複する説明は省略する。図5と図1に示した水素発生装置では、図1では水素発生物質9は小分けにされていたが、図5では水素発生物質9は一体となっている点で異なる。図5のように水素発生物質を一体とした場合であっても、各溶液導入路から各開口部付近の水素発生物質に反応用溶液を供給するため、生成物が反応用溶液と水素発生物質の反応を阻害し反応速度を低下させることなく、安定的に水素を供給することができる。
(Embodiment 2)
In FIG. 5, the schematic of the hydrogen generator which concerns on Embodiment 2 is shown. Note that the same members as those in the first embodiment shown in FIG. In the hydrogen generator shown in FIGS. 5 and 1, the hydrogen generating substance 9 is divided into small parts in FIG. 1, but is different in that the hydrogen generating substance 9 is integrated in FIG. 5. Even when the hydrogen generating material is integrated as shown in FIG. 5, the reaction solution and the hydrogen generating material are supplied to supply the reaction solution from each solution introduction path to the hydrogen generating material in the vicinity of each opening. Thus, hydrogen can be stably supplied without inhibiting the above reaction and reducing the reaction rate.

(実施形態3)
図6に、本発明の第3実施形態例に係る水素発生装置の概略構成を示す。
(Embodiment 3)
FIG. 6 shows a schematic configuration of the hydrogen generator according to the third embodiment of the present invention.

尚、図1に示した第1実施形態例と同一部材には同一符号を付して重複する説明は省略する。   In addition, the same code | symbol is attached | subjected to the same member as 1st Embodiment shown in FIG. 1, and the overlapping description is abbreviate | omitted.

図6に示した水素発生装置は、水素発生物質9の量が減少し規定量に達したことを検知し、制御弁6に切換の信号を出力する水素発生物質残量検知部11を備える。切換信号を受け取った制御弁6は、反応用溶液を供給する溶液導入路を第1の溶液導入路から第2の溶液導入路へと切り換える。実施形態1と同様に、水素発生物質9が小分けに設置されている。また、同様に、各水素発生物質9の量は、図3の反応用溶液の供給量v0で反応できる水素発生物質の量である。   The hydrogen generating apparatus shown in FIG. 6 includes a hydrogen generating material remaining amount detecting unit 11 that detects that the amount of the hydrogen generating material 9 has decreased and has reached a specified amount, and outputs a switching signal to the control valve 6. Upon receiving the switching signal, the control valve 6 switches the solution introduction path for supplying the reaction solution from the first solution introduction path to the second solution introduction path. As in the first embodiment, the hydrogen generating substance 9 is installed in small portions. Similarly, the amount of each hydrogen generating substance 9 is the amount of the hydrogen generating substance that can react with the supply amount v0 of the reaction solution in FIG.

この構成により、各水素発生物質9の残量を検知し、水素発生物質9の量が規定量に達したことを検知した際に制御弁6に切換の信号が出力されることにより、制御弁の切り換えを行うことができるため、各水素発生物質に安定した水素を供給することができる。   With this configuration, the remaining amount of each hydrogen generating substance 9 is detected, and when it is detected that the amount of the hydrogen generating substance 9 has reached a specified amount, a switching signal is output to the control valve 6, thereby Therefore, stable hydrogen can be supplied to each hydrogen generating material.

なお、本実施形態3においても、実施形態2のように水素発生物質を一体としても構わない。   In the third embodiment, the hydrogen generating material may be integrated as in the second embodiment.

(実施形態4)
図7に、本発明の第4実施形態例に係る水素発生装置に係る制御弁の構成を示す。
(Embodiment 4)
FIG. 7 shows a configuration of a control valve according to the hydrogen generator according to the fourth embodiment of the present invention.

水素発生物質28に押しバネ29で押し付けられ水素発生物質28の消費に伴い水素発生物質28を押圧する押圧部30を備える。   A pressing portion 30 is provided that is pressed against the hydrogen generating material 28 by a pressing spring 29 and presses the hydrogen generating material 28 as the hydrogen generating material 28 is consumed.

送液切り換え部24は、押圧部30により押圧され動作するロッド部33と、ロッド部33に固定され第1の溶液導入路21を塞ぐ閉状態と開放する開状態のいずれか一方の状態に切り換わる第1弁体31と、ロッド部33に固定され、第1弁体31が開状態の場合は第2の溶液導入路22を塞ぐ閉状態となり、第1弁体31が閉状態となると第2の溶液導入路22を開放する開状態となる第2弁体32とを備える。   The liquid feeding switching unit 24 is switched to one of a rod part 33 that is pressed and operated by the pressing part 30, and a closed state that is fixed to the rod part 33 and closes the first solution introduction path 21 and an open state that opens. When the first valve body 31 is fixed to the rod portion 33 and the first valve body 31 is open, the second solution introduction path 22 is closed, and when the first valve body 31 is closed, the first valve body 31 is closed. And a second valve body 32 in an open state that opens the second solution introduction path 22.

具体的な動作の状態を詳細に説明する。   A specific operation state will be described in detail.

水素発生物質28に押しバネ29で押し付けられ水素発生物質28の消費に伴い変位する押圧部30は、水素発生物質28の消費に伴いロッド部33を図の下方向に押圧する。ロッド部33に固定されている第1弁体31と第2弁体32は、ロッド部33の移動に伴い図の下方向に移動する。   The pressing portion 30 that is pressed against the hydrogen generating material 28 by the pressing spring 29 and is displaced as the hydrogen generating material 28 is consumed presses the rod portion 33 in the downward direction of the drawing as the hydrogen generating material 28 is consumed. The first valve body 31 and the second valve body 32 fixed to the rod portion 33 move downward in the drawing as the rod portion 33 moves.

図7の(a)は、水素発生物質28の残量は充分であり、押圧部30はロッド部33から離れた位置にある。このときロッド部33は、ロッドバネ25により図の上方向に押し上げられており、ロッド部33に固定された第1弁体31は、第1の溶液導入路21を開放する開状態の位置にあり、第2弁体32は、第2の溶液導入路22を塞ぐ閉状態の位置にある。このため、反応用溶液は、第1の溶液導入路21に供給される。図7の(b)は、水素発生物質28の残量が減少した場合を示す。このときロッド部33は、押圧部30により図の下方向に押し下げられ、ロッド部33に固定された第1弁体31は、第1の溶液導入路21を塞ぐ閉状態の位置に移動し、第2弁体32は、第2の溶液導入路22を開放する開状態の位置に移動する。このとき、反応用液体の送液は、第1の溶液導入路21から第2の溶液導入路22に切り換わる。   In FIG. 7A, the remaining amount of the hydrogen generating material 28 is sufficient, and the pressing portion 30 is located away from the rod portion 33. At this time, the rod portion 33 is pushed upward in the figure by the rod spring 25, and the first valve body 31 fixed to the rod portion 33 is in an open position where the first solution introduction path 21 is opened. The second valve body 32 is in a closed position that closes the second solution introduction path 22. For this reason, the reaction solution is supplied to the first solution introduction path 21. FIG. 7B shows a case where the remaining amount of the hydrogen generating substance 28 is reduced. At this time, the rod part 33 is pushed downward in the figure by the pressing part 30, and the first valve body 31 fixed to the rod part 33 moves to a closed position that closes the first solution introduction path 21, The second valve body 32 moves to an open position where the second solution introduction path 22 is opened. At this time, the feeding of the reaction liquid is switched from the first solution introduction path 21 to the second solution introduction path 22.

これにより、第1弁体、第2弁体、及び第1弁体と第2弁体を連結するロッド部を有することにより反応用溶液の送液の切り換えを容易に行うことができる。また、水素発生物質を、反応するに従って溶液導入路の開口部付近に押圧することができるため、水素発生物質が反応用溶液と反応し易くなる。よって、センサーや電気的な制御を必要としない簡単な構造により、安定した水素供給ができる。
(実施形態5)
図8に、本発明の第5実施形態例に係る水素発生装置に係る制御弁の構成を示す。
As a result, the first valve body, the second valve body, and the rod portion that connects the first valve body and the second valve body can be used to easily switch the liquid supply of the reaction solution. Further, since the hydrogen generating material can be pressed near the opening of the solution introduction path as it reacts, the hydrogen generating material easily reacts with the reaction solution. Therefore, stable hydrogen supply can be achieved with a simple structure that does not require a sensor or electrical control.
(Embodiment 5)
FIG. 8 shows the configuration of a control valve according to the hydrogen generator according to the fifth embodiment of the present invention.

本実施形態の制御弁50は、送液切り換え部55と駆動部54とで構成される。   The control valve 50 according to this embodiment includes a liquid feed switching unit 55 and a drive unit 54.

送液切り換え部55は、連結部51と、連結部51に固定され、第1の溶液導入路21を開放し第2の溶液導入路22を塞ぐ第1状態と、第1の溶液導入路21を塞ぎ第2の溶液導入路22を開放する第2状態の、いずれか一方の状態に切り換わる第3弁体52と、第3弁体に固定された連結バネ521とを備える。   The liquid feed switching unit 55 is fixed to the connecting unit 51 and the connecting unit 51, opens the first solution introduction path 21 and closes the second solution introduction path 22, and the first solution introduction path 21. A third valve body 52 that switches to one of the second states in which the second solution introduction path 22 is opened and a connection spring 521 that is fixed to the third valve body.

駆動部54は、受圧変位部57と、受圧変位部57とシール部53とで仕切られた駆動部空間58と、連結部51に押し当てられるように配置されたストッパ体56とを備える。   The drive unit 54 includes a pressure receiving displacement portion 57, a drive portion space 58 partitioned by the pressure receiving displacement portion 57 and the seal portion 53, and a stopper body 56 disposed so as to be pressed against the connecting portion 51.

制御弁50は、図8における受圧変位部57の上面が水素発生装置の反応容器2内の圧力を受ける様に設置される。受圧変位部57は、反応容器2内の圧力による下方向の力、連結バネ521により連結部51が押し上げられる上方向の力、駆動部空間58内の圧力による上方向の力、を受けて変形する、いわゆるダイヤフラム構造の隔壁である。また、上下方向に移動する、ピストン構造の隔壁であってもよい。   The control valve 50 is installed so that the upper surface of the pressure receiving displacement portion 57 in FIG. 8 receives the pressure in the reaction vessel 2 of the hydrogen generator. The pressure receiving displacement portion 57 is deformed by receiving a downward force due to the pressure in the reaction vessel 2, an upward force by which the connecting portion 51 is pushed up by the connecting spring 521, and an upward force due to the pressure in the drive portion space 58. This is a diaphragm having a so-called diaphragm structure. Moreover, the partition of a piston structure which moves to an up-down direction may be sufficient.

受圧変位部57の具体的な動作について詳細に説明する。   A specific operation of the pressure receiving displacement portion 57 will be described in detail.

水素発生装置の反応容器2内の圧力による下方向の力をFi、連結バネ521により連結部51が押し上げられる上方向の力をFs、駆動部空間58内の圧力による上方向の力をFaとすると、Fi>Fs+Faのとき図8(A)の状態となり、Fi<Fs+Faのとき図8(B)の状態となる。図8(A)の状態とは上記の第1状態のことであり、図8(B)の状態とは上記の第2状態のことである。   The downward force due to the pressure in the reaction vessel 2 of the hydrogen generator is Fi, the upward force by which the connecting portion 51 is pushed up by the connecting spring 521 is Fs, and the upward force due to the pressure in the drive space 58 is Fa. Then, when Fi> Fs + Fa, the state shown in FIG. 8A is obtained, and when Fi <Fs + Fa, the state shown in FIG. 8B is obtained. The state of FIG. 8 (A) is the first state described above, and the state of FIG. 8 (B) is the second state described above.

従って、図8(A)状態から(B)に切り換わる際の反応容器2内の圧力値(切換動作圧力)は、連結バネ521の強さと駆動部空間58内の圧力により調節することが可能である。また、受圧変位部57と連結部51を連結し、駆動部空間58内の圧力による上方向の力を利用して連結部33を移動させる構造とすることにより、連結バネ521を必要としない構造とすることも可能である。この場合、切換動作圧力の設定は駆動部空間58内の圧力のみで行う。   Therefore, the pressure value (switching operation pressure) in the reaction vessel 2 when switching from the state of FIG. 8 (A) to (B) can be adjusted by the strength of the coupling spring 521 and the pressure in the drive unit space 58. It is. Further, the structure in which the pressure receiving displacement portion 57 and the connecting portion 51 are connected and the connecting portion 33 is moved by using the upward force due to the pressure in the driving portion space 58 does not require the connecting spring 521. It is also possible. In this case, the switching operation pressure is set only by the pressure in the drive unit space 58.

駆動部54の拡大図を図9(a)に示す。A−A面において駆動部54を上面から見た図を(b)に示す。   An enlarged view of the drive unit 54 is shown in FIG. A view of the drive unit 54 as viewed from the top in the AA plane is shown in FIG.

ストッパ体56は、側面から連結部51に押し当てられるように配置される。例えば、図9(b)に示すように、ねじりばね60等を用いてストッパ体56を連結部51に押し当てると良い。連結部51の側面には、切欠き部59が設けられ、反応容器2内の圧力が低下し図8(B)状態となる、つまり、連結部51が上方向に押し上げられると、反応用溶液の送液が、第1の溶液導入路21から第2の溶液導入路22に切り換わると同時に、切欠き部59にストッパ体56が挿入され、連結部51は固定される。これにより、反応用溶液が、第2の溶液導入路を介し第2の水素発生物質に供給され、水素発生速度が回復し反応容器2内の圧力が上昇した際においても、連結部51は固定されているため、連結部51と連結した第3弁体52が下方向に移動し再び第1の溶液導入路21を開放することなく、第2の溶液導入路22への送液を継続することができる。   The stopper body 56 is disposed so as to be pressed against the connecting portion 51 from the side surface. For example, as shown in FIG. 9B, the stopper body 56 may be pressed against the connecting portion 51 using a torsion spring 60 or the like. A cutout portion 59 is provided on the side surface of the connecting portion 51, and the pressure in the reaction vessel 2 is reduced to a state shown in FIG. 8B. That is, when the connecting portion 51 is pushed upward, the reaction solution At the same time that the liquid supply is switched from the first solution introduction path 21 to the second solution introduction path 22, the stopper body 56 is inserted into the notch 59, and the connecting portion 51 is fixed. As a result, the reaction solution is supplied to the second hydrogen generating material via the second solution introduction path, and the connecting portion 51 is fixed even when the hydrogen generation speed is recovered and the pressure in the reaction vessel 2 is increased. Therefore, the third valve body 52 connected to the connecting portion 51 moves downward, and the liquid supply to the second solution introduction path 22 is continued without opening the first solution introduction path 21 again. be able to.

次に、図8の(A)状態から(B)状態に切り換わる際の反応容器2内の圧力値、切換動作圧力の設定方法を説明する。   Next, a method for setting the pressure value in the reaction vessel 2 and the switching operation pressure when switching from the (A) state to the (B) state in FIG. 8 will be described.

図10に、水素発生装置運転時における反応容器2の内圧の推移の一例を示す。   FIG. 10 shows an example of the transition of the internal pressure of the reaction vessel 2 during operation of the hydrogen generator.

反応容器2内の圧力が設定値(送液設定圧力)まで低くなった時に反応用溶液を送液する送液手段を使用した例である。この場合、一の水素発生物質に対して一回以上、反応用溶液を供給することとなる。このとき、送液設定圧力より低く、使用する燃料電池の発電特性によって規定される最低必要圧力より高い圧力値を切換動作圧力として設定する。   This is an example using a liquid feeding means for feeding a reaction solution when the pressure in the reaction vessel 2 is lowered to a set value (liquid feeding set pressure). In this case, the reaction solution is supplied once or more for one hydrogen generating substance. At this time, a pressure value lower than the liquid supply set pressure and higher than the minimum required pressure defined by the power generation characteristics of the fuel cell to be used is set as the switching operation pressure.

第1の溶液導入路21から第2の溶液導入路22への送液の切り換え動作について説明する。   The operation of switching the liquid feeding from the first solution introduction path 21 to the second solution introduction path 22 will be described.

まず、第1の溶液導入路21を介し第1の水素発生物質に一定量の反応用溶液を供給すると水素が発生し、反応容器2内の圧力は上昇する。発生した水素が消費されると反応容器2内の圧力は低下するが、当該圧力が送液設定圧力まで低下すると、再び第1の水素発生物質へ反応用溶液を供給することにより、当該圧力は再び上昇する。この動作を繰り返し、第1の水素発生物質より水素を発生させる。そして、第1の水素発生物質へ反応用溶液を供給しても反応容器2内の圧力が上昇せず、切換動作圧力まで低下すると、図8(A)の状態から(B)の状態となる。つまり、受圧変位部57は上方向に変位し、第3弁体52は、第1の溶液導入路21を開放し第2の溶液導入路22を塞ぐ第1状態から、第1の溶液導入路21を塞ぎ第2の溶液導入路22を開放する第2状態へと切り換わり、反応用溶液は第2の溶液導入路22を介し第2の水素発生物質へ送液され、水素発生速度は回復する。   First, when a certain amount of reaction solution is supplied to the first hydrogen generating material via the first solution introduction path 21, hydrogen is generated and the pressure in the reaction vessel 2 rises. When the generated hydrogen is consumed, the pressure in the reaction vessel 2 decreases, but when the pressure decreases to the liquid feed set pressure, the pressure is reduced by supplying the reaction solution to the first hydrogen generating material again. Rise again. This operation is repeated to generate hydrogen from the first hydrogen generating material. Then, even if the reaction solution is supplied to the first hydrogen generating substance, the pressure in the reaction vessel 2 does not increase, and when the pressure decreases to the switching operation pressure, the state shown in FIG. . That is, the pressure receiving displacement portion 57 is displaced upward, and the third valve body 52 is moved from the first state in which the first solution introduction path 21 is opened and the second solution introduction path 22 is closed to the first solution introduction path. Then, the second solution introduction path 22 is opened and the second solution introduction path 22 is opened, and the reaction solution is sent to the second hydrogen generating material via the second solution introduction path 22 to recover the hydrogen generation speed. To do.

この動作の繰り返しにより、複数設置された各水素発生物質に順次送液され、水素発生装置内の圧力を送液設定圧力付近に継続維持することが可能である。また、反応容器のセンサーや電気的な制御を必要としない簡単な構造により、安定した水素供給ができる。   By repeating this operation, liquid is sequentially fed to each of the plurality of hydrogen generating substances installed, and the pressure in the hydrogen generator can be continuously maintained near the liquid feeding set pressure. Moreover, a stable hydrogen supply can be achieved by a simple structure that does not require a reaction vessel sensor or electrical control.

なお、本実施形態5においても、実施形態2のように水素発生物質を一体としても構わない。   In the fifth embodiment, the hydrogen generating material may be integrated as in the second embodiment.

(実施形態6)
図11に基づいて燃料電池システムを説明する。
(Embodiment 6)
The fuel cell system will be described based on FIG.

図11に、本発明の一実施形態例に係る燃料電池システムの概略構成を示す。本実施形態例は、図1に示した水素発生装置1を適用したものであるので、図1に示した部材と同一部材には同一符号を付して重複する説明は省略する。   FIG. 11 shows a schematic configuration of a fuel cell system according to an embodiment of the present invention. In this embodiment, since the hydrogen generator 1 shown in FIG. 1 is applied, the same members as those shown in FIG.

図11に示した燃料電池システムは、図1に示した水素発生装置1を燃料電池40に接続したシステムである。即ち、燃料電池40には燃料極室42が備えられ、燃料極室42は燃料電池セル41の燃料極に接する空間を構成している。燃料極室42には水素発生装置1の水素導出流路10が接続されている。   The fuel cell system shown in FIG. 11 is a system in which the hydrogen generator 1 shown in FIG. That is, the fuel cell 40 is provided with a fuel electrode chamber 42, and the fuel electrode chamber 42 constitutes a space in contact with the fuel electrode of the fuel cell 41. A hydrogen outlet channel 10 of the hydrogen generator 1 is connected to the fuel electrode chamber 42.

また、水素発生装置1の溶液流路4は溶液容器43に接続され、溶液容器43内の反応用溶液44が溶液送液手段3によって水素発生装置1に送られる。   The solution flow path 4 of the hydrogen generator 1 is connected to the solution container 43, and the reaction solution 44 in the solution container 43 is sent to the hydrogen generator 1 by the solution feeding means 3.

水素発生装置1で発生した水素は水素導出流路10から燃料極室42に供給され、燃料極での燃料電池反応で消費される。燃料極室42の燃料極での水素の消費量は燃料電池40の出力に応じて決定される。   The hydrogen generated in the hydrogen generator 1 is supplied from the hydrogen outlet channel 10 to the fuel electrode chamber 42 and consumed by the fuel cell reaction at the fuel electrode. The amount of hydrogen consumed at the fuel electrode of the fuel electrode chamber 42 is determined according to the output of the fuel cell 40.

尚、水素発生装置として、図5、図6の水素発生装置、及び図2、図7、図8の機構を用いた水素発生装置を適用することも可能である。   As the hydrogen generator, the hydrogen generators shown in FIGS. 5 and 6 and the hydrogen generator using the mechanisms shown in FIGS. 2, 7, and 8 can be applied.

上述した燃料電池設システムは、生成物による反応速度の低下の影響を抑制し、安定的に水素を供給する水素発生装置を備えた燃料電池システムとなる。   The fuel cell installation system described above is a fuel cell system including a hydrogen generator that suppresses the influence of a decrease in reaction rate due to a product and stably supplies hydrogen.

本発明の第1実施形態例に係る水素発生装置の概略構成図である。1 is a schematic configuration diagram of a hydrogen generator according to a first embodiment of the present invention. 本発明の第1実施形態例に係る制御弁の概略構成図である。1 is a schematic configuration diagram of a control valve according to a first embodiment of the present invention. 本発明の反応用溶液供給量と水素発生流量の一例を表すグラフである。It is a graph showing an example of the solution supply amount for reaction of this invention, and a hydrogen generation flow rate. 本発明の送液切換制御部での処理の一例を表すフローチャートである。It is a flowchart showing an example of the process in the liquid feeding switching control part of this invention. 本発明の第2実施形態例に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on the 2nd Example of this invention. 本発明の第3実施形態例に係る水素発生装置の概略構成図である。It is a schematic block diagram of the hydrogen generator which concerns on the example of 3rd Embodiment of this invention. 本発明の第4実施形態例に係る制御弁の概略構成図である。It is a schematic block diagram of the control valve which concerns on the 4th Embodiment of this invention. 本発明の第5実施形態例に係る制御弁の概略構成図である。It is a schematic block diagram of the control valve which concerns on the example of 5th Embodiment of this invention. 本発明の第5実施形態例に係る制御弁の拡大図である。It is an enlarged view of the control valve which concerns on the example of 5th Embodiment of this invention. 本発明の反応容器内の圧力の一例を表すグラフである。It is a graph showing an example of the pressure in the reaction container of this invention. 本発明の第6実施形態例に係る燃料電池システムの概略構成図である。It is a schematic block diagram of the fuel cell system which concerns on the 6th Example of this invention.

符号の説明Explanation of symbols

1 水素発生装置
2 反応容器
3 溶液送液手段
4 溶液流路
5 送液切換制御部
6 制御弁
7 溶液導入路
9、28 水素発生物質
10 水素導出流路
11 水素発生物質残量検知部
21 第1の溶液導入路
22 第2の溶液導入路
24 送液切り換え部
25 ロッドバネ
29 押しバネ
30 押圧部
31 第1弁体
32 第2弁体
33 ロッド部
40 燃料電池
41 燃料電池セル
42 燃料極室
43 溶液容器
44 反応用溶液
50 制御弁
51 連結部
52 第3弁体
521連結バネ
53 シール部
54 駆動部
55 送液切り換え部
56 ストッパ体
57 受圧変位部
58 駆動部空間
59 切欠き部
60 ストッパ押しバネ
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2 Reaction container 3 Solution liquid delivery means 4 Solution flow path 5 Liquid feed switching control part 6 Control valve 7 Solution introduction path 9, 28 Hydrogen generating substance 10 Hydrogen outlet flow path 11 Hydrogen generating substance residual quantity detection part 21 1st 1 solution introduction path 22 second solution introduction path 24 liquid feed switching section 25 rod spring 29 push spring 30 pressing section 31 first valve body 32 second valve body 33 rod section 40 fuel cell 41 fuel cell 42 fuel electrode chamber 43 Solution container 44 Reaction solution 50 Control valve 51 Connection portion 52 Third valve body 521 Connection spring 53 Seal portion 54 Drive portion 55 Liquid feed switching portion 56 Stopper body 57 Pressure receiving displacement portion 58 Drive portion space 59 Notch portion 60 Stopper push spring

Claims (8)

水素発生物質が収容されるとともに、前記水素発生物質と反応用溶液とを反応させて水素を生成する反応容器と、
前記反応用溶液を流通する溶液流路と、
前記反応用溶液を前記溶液流路に導入する溶液送液手段と、
前記反応用溶液を第1の水素発生物質に導入する第1の溶液導入路と、
前記反応用溶液を第2の水素発生物質に導入する第2の溶液導入路と、
前記反応容器内で発生した水素を排出する水素導出流路と、
前記第1の溶液導入路及び前記第2の溶液導入路のいずれか一方から他方に前記反応用溶液の送液を切り換える制御弁とを備え、
前記制御弁は、前記第1の水素発生物質の消費に伴って、前記第1の溶液導入路から前記第2の溶液導入路に送液を切り換える送液切り換え部を備えることを特徴とする水素発生装置。
A hydrogen generating substance is contained, and a reaction vessel for generating hydrogen by reacting the hydrogen generating substance and a reaction solution;
A solution flow path for circulating the reaction solution;
Solution feeding means for introducing the reaction solution into the solution flow path;
A first solution introduction path for introducing the reaction solution into the first hydrogen generating material;
A second solution introduction path for introducing the reaction solution into the second hydrogen generating material;
A hydrogen outlet passage for discharging hydrogen generated in the reaction vessel;
A control valve for switching the feeding of the reaction solution from one of the first solution introduction path and the second solution introduction path to the other;
The control valve includes a liquid feed switching unit that switches the liquid feed from the first solution introduction path to the second solution introduction path as the first hydrogen generating substance is consumed. Generator.
前記送液切り換え部は、前記第1の溶液導入路への前記反応用溶液の供給量が所定量に達した際に、前記第1の溶液導入路から前記第2の溶液導入路に送液を切り換えることを特徴とする請求項1に記載の水素発生装置。   The liquid feed switching unit feeds liquid from the first solution introduction path to the second solution introduction path when the supply amount of the reaction solution to the first solution introduction path reaches a predetermined amount. The hydrogen generator according to claim 1, wherein: 前記制御弁は、前記水素発生物質が反応するに従って前記水素発生物質を押圧する押圧部を備え、
前記送液切り換え部は、前記水素発生物質の減少とともに前記押圧部により押圧され、前記第1の溶液導入路から前記第2の溶液導入路に送液を切り換えることを特徴とする請求項1に記載の水素発生装置。
The control valve includes a pressing portion that presses the hydrogen generating material as the hydrogen generating material reacts,
The liquid feeding switching unit is pressed by the pressing unit as the hydrogen generating material decreases, and switches the liquid feeding from the first solution introduction path to the second solution introduction path. The hydrogen generator described.
前記送液切り換え部は、
前記第1の溶液導入路を塞ぐ閉状態と前記第1の溶液導入路を開放する開状態のいずれか一方の状態に切り換わる第1弁体と、
前記第2の溶液導入路を塞ぐ閉状態と前記第2の溶液導入路を開放する開状態のいずれか一方の状態に切り換わる第2弁体と、
前記第1弁体と前記第2弁体とを連結し、前記押圧部の変位に伴って前記第1弁体を閉状態にするとともに前記第2弁体を開状態にするロッド部とを備えることを特徴とする請求項3に記載の水素発生装置。
The liquid feeding switching unit is
A first valve body that switches to one of a closed state that closes the first solution introduction path and an open state that opens the first solution introduction path;
A second valve body that switches to one of a closed state that closes the second solution introduction path and an open state that opens the second solution introduction path;
A rod portion that connects the first valve body and the second valve body, and closes the first valve body and displaces the second valve body in accordance with the displacement of the pressing portion; The hydrogen generator according to claim 3.
前記制御弁は、前記反応容器内の圧力の変動に伴って変位する受圧変位部を備え、
前記送液切り換え部は、前記反応容器内の圧力の低下に伴う前記受圧変位部の変位により、前記第1の溶液導入路から前記第2の溶液導入路に送液を切り換えることを特徴とする請求項1に記載の水素発生装置。
The control valve includes a pressure receiving displacement portion that is displaced with a change in pressure in the reaction vessel,
The liquid feeding switching unit switches the liquid feeding from the first solution introduction path to the second solution introduction path according to the displacement of the pressure receiving displacement part as the pressure in the reaction vessel decreases. The hydrogen generator according to claim 1.
前記送液切り換え部は、
前記第1の溶液導入路を開放し前記第2の溶液導入路を塞ぐ第1状態と、前記第1の溶液導入路を塞ぎ前記第2の溶液導入路を開放する第2状態の、いずれか一方の状態に切り換わる第3弁体と、
前記第3弁体と連結し、前記受圧変位部の変位に伴って前記第3弁体を前記第1状態から前記第2状態へ切り換える連結部とを備えることを特徴とする請求項5に記載の水素発生装置。
The liquid feeding switching unit is
One of a first state in which the first solution introduction path is opened and the second solution introduction path is closed, and a second state in which the first solution introduction path is closed and the second solution introduction path is opened. A third valve body that switches to one state;
6. A connecting portion that is connected to the third valve body and switches the third valve body from the first state to the second state in accordance with the displacement of the pressure receiving displacement portion. Hydrogen generator.
前記第1の水素発生物質と前記第2の水素発生物質との間を仕切る仕切り部を備えることを特徴とする請求項1乃至請求項6のいずれかに記載の水素発生装置。   The hydrogen generator according to any one of claims 1 to 6, further comprising a partition portion that partitions the first hydrogen generating material and the second hydrogen generating material. 請求項1乃至請求項7のいずれかに記載の水素発生装置の前記水素導出流路が燃料電池の燃料極室に接続され、発生した水素が燃料極に供給されることを特徴とする燃料電池システム。   8. The fuel cell, wherein the hydrogen outlet flow path of the hydrogen generator according to claim 1 is connected to a fuel electrode chamber of a fuel cell, and the generated hydrogen is supplied to the fuel electrode. system.
JP2008260343A 2007-11-21 2008-10-07 Apparatus for generating hydrogen and fuel battery system Withdrawn JP2009143791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008260343A JP2009143791A (en) 2007-11-21 2008-10-07 Apparatus for generating hydrogen and fuel battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007301279 2007-11-21
JP2008260343A JP2009143791A (en) 2007-11-21 2008-10-07 Apparatus for generating hydrogen and fuel battery system

Publications (1)

Publication Number Publication Date
JP2009143791A true JP2009143791A (en) 2009-07-02

Family

ID=40914868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260343A Withdrawn JP2009143791A (en) 2007-11-21 2008-10-07 Apparatus for generating hydrogen and fuel battery system

Country Status (1)

Country Link
JP (1) JP2009143791A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087470A (en) * 2002-06-21 2004-03-18 Hewlett-Packard Development Co Lp Hydrogen generator
JP2005011753A (en) * 2003-06-20 2005-01-13 Yazaki Corp Method and device for supplying fuel gas to fuel cell system
JP2005206459A (en) * 2003-12-26 2005-08-04 Itec Co Ltd Hydrogen gas generator and hydrogen gas generating method
JP2005243617A (en) * 2004-01-28 2005-09-08 Kawaken Fine Chem Co Ltd Hydrogen supply method, its device, and portable equipment mounting fuel cell
JP2006056753A (en) * 2004-08-20 2006-03-02 Materials & Energy Research Institute Tokyo Ltd Method and apparatus for generating hydrogen and fuel cell system
JP2007063113A (en) * 2005-08-03 2007-03-15 Seiko Instruments Inc Hydrogen generation apparatus and fuel cell system
JP2008081381A (en) * 2006-09-29 2008-04-10 Hitachi Maxell Ltd Hydrogen producing apparatus and fuel cell
JP2008544453A (en) * 2005-06-13 2008-12-04 ソシエテ ビック Hydrogen generating fuel cell cartridge
JP2009023857A (en) * 2007-07-18 2009-02-05 Toyota Central R&D Labs Inc Hydrogen generation apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087470A (en) * 2002-06-21 2004-03-18 Hewlett-Packard Development Co Lp Hydrogen generator
JP2005011753A (en) * 2003-06-20 2005-01-13 Yazaki Corp Method and device for supplying fuel gas to fuel cell system
JP2005206459A (en) * 2003-12-26 2005-08-04 Itec Co Ltd Hydrogen gas generator and hydrogen gas generating method
JP2005243617A (en) * 2004-01-28 2005-09-08 Kawaken Fine Chem Co Ltd Hydrogen supply method, its device, and portable equipment mounting fuel cell
JP2006056753A (en) * 2004-08-20 2006-03-02 Materials & Energy Research Institute Tokyo Ltd Method and apparatus for generating hydrogen and fuel cell system
JP2008544453A (en) * 2005-06-13 2008-12-04 ソシエテ ビック Hydrogen generating fuel cell cartridge
JP2007063113A (en) * 2005-08-03 2007-03-15 Seiko Instruments Inc Hydrogen generation apparatus and fuel cell system
JP2008081381A (en) * 2006-09-29 2008-04-10 Hitachi Maxell Ltd Hydrogen producing apparatus and fuel cell
JP2009023857A (en) * 2007-07-18 2009-02-05 Toyota Central R&D Labs Inc Hydrogen generation apparatus

Similar Documents

Publication Publication Date Title
EP2280441B1 (en) Fuel cell system
JP5610791B2 (en) Fuel circulation device
JPWO2006101214A1 (en) Hydrogen generating method, hydrogen generating apparatus and fuel cell equipment
US10177390B2 (en) Fuel cell system and method for controlling the same
US20210180197A1 (en) Water electrolysis system and control method thereof
JP4706982B2 (en) Pressure regulating valve, fuel cell system using the same, and hydrogen generation facility
JP2007063113A (en) Hydrogen generation apparatus and fuel cell system
KR101008427B1 (en) Fuel Cell System
EP2827421B1 (en) Fuel cell system
US8900762B2 (en) Fuel cell with recovering unit and method for driving the same
JP2008037699A (en) Hydrogen generating apparatus, fuel cell equipment, and hydrogen generating method
JP2009143791A (en) Apparatus for generating hydrogen and fuel battery system
JP2013193937A (en) Hydrogen generator and fuel cell
KR101039848B1 (en) Fuel cartridge and fuel cell power generation system having the same
JP5117827B2 (en) Hydrogen generator and fuel cell system
US20090263690A1 (en) Apparatus for generating hydrogen and fuel cell power generation system having the same
JP2005032608A (en) Fuel tank and fuel cell system using it
JP5135627B2 (en) Hydrogen generator and fuel cell equipment
JP5827101B2 (en) Hydrogen generator and fuel cell
JP4995435B2 (en) Fuel cell system
JP2008105878A (en) Hydrogen generator
JP5245567B2 (en) Fuel cell system
JP5868121B2 (en) Hydrogen generator and fuel cell
JP2008103090A (en) Fuel supply container, and fuel cell system
JP5653732B2 (en) Fuel supply method and fuel cell vehicle

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140206