JP2013085384A - Controller for electric vehicle and method therefor - Google Patents

Controller for electric vehicle and method therefor Download PDF

Info

Publication number
JP2013085384A
JP2013085384A JP2011223944A JP2011223944A JP2013085384A JP 2013085384 A JP2013085384 A JP 2013085384A JP 2011223944 A JP2011223944 A JP 2011223944A JP 2011223944 A JP2011223944 A JP 2011223944A JP 2013085384 A JP2013085384 A JP 2013085384A
Authority
JP
Japan
Prior art keywords
control device
motor
drive command
vehicle
motor drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011223944A
Other languages
Japanese (ja)
Other versions
JP5345192B2 (en
Inventor
Kazuyuki Tanaka
一幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011223944A priority Critical patent/JP5345192B2/en
Publication of JP2013085384A publication Critical patent/JP2013085384A/en
Application granted granted Critical
Publication of JP5345192B2 publication Critical patent/JP5345192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controller for an electric vehicle and a method therefor, capable of detecting a drive state of a motor by a simple and low-cost means, in a state where communication failure has occurred.SOLUTION: Upon detecting communication failure with a motor controller in a communication channel, a vehicle controller 1 as a second controller for outputting a motor drive command via a communication channel CAN to the motor controller 2 as a first controller for drive-controlling a travel motor 3 according to the motor drive command estimates a drive state of the travel motor from the output from a third controller 8 connected through the communication channel, which detects change according to the drive state of the travel motor, and compares the estimation result with the motor drive command to determine whether or not the motor is operated according to the motor drive command.

Description

この発明は、駆動源としてモータ(電動機、回転電機)を搭載した電動車両の制御装置、特に車両制御装置において車載通信路(CAN)で接続されたモータ制御装置との間で通信異常が発生した際の、モータの駆動状態検出に関する。   In the present invention, a communication abnormality has occurred between a control device for an electric vehicle equipped with a motor (electric motor, rotating electric machine) as a drive source, in particular, a motor control device connected by an in-vehicle communication path (CAN) in the vehicle control device. It relates to the detection of the driving state of the motor.

一般に車両の駆動源としてモータを備える電気自動車、あるいはハイブリッド自動車では、車両制御装置から目標トルクや回転数などの指令値を、例えばCAN(Controller Area Network)等の車載通信路によってモータ制御装置へ送信し、モータ制御装置が指令値に従ってモータ制御を行う構成となっている。車両制御装置とモータ制御装置間で通信異常が発生すると、モータを制御できなくなるため速やかに通信異常を検出する必要がある。   In general, in an electric vehicle equipped with a motor as a driving source of a vehicle or a hybrid vehicle, a command value such as a target torque and a rotation speed is transmitted from the vehicle control device to the motor control device through an in-vehicle communication path such as a CAN (Controller Area Network). The motor control device performs the motor control according to the command value. If a communication abnormality occurs between the vehicle control device and the motor control device, the motor cannot be controlled, and it is necessary to detect the communication abnormality promptly.

一般に通信異常対策として通信路の多重化が行われる。例えば下記特許文献1では、CANとは別にREADY信号を制御機間に接続し、異常検出を行う構成が示されている。車両制御機(HCU)とモータ制御機(MCU)間では、HCUのREADY信号をMCUに、MCUのREADY信号をHCUに接続し、HCUがMCUの異常を、またMCUがHCUの異常を検出できる構成としている。   In general, communication channels are multiplexed as a countermeasure against communication abnormality. For example, Patent Document 1 below shows a configuration in which a READY signal is connected between controllers separately from CAN to detect an abnormality. Between the vehicle controller (HCU) and the motor controller (MCU), the HCU READY signal can be connected to the MCU, the MCU READY signal can be connected to the HCU, and the HCU can detect the MCU abnormality and the MCU can detect the HCU abnormality. It is configured.

また、特許文献1ではHCUとMCU間の通信異常が発生した場合に、モータの使用を禁止し、MCUからのREADY信号がフェイルの場合には、MCUにハイブリッド運転モード機能を禁止し、HCUとエンジン制御機による駆動制御を行う提案が示されている。   Further, in Patent Document 1, when a communication abnormality occurs between the HCU and the MCU, the use of the motor is prohibited. When the READY signal from the MCU is failed, the hybrid operation mode function is prohibited for the MCU. A proposal for drive control by an engine controller is shown.

特開2007−131293号公報JP 2007-131293 A

上記特許文献1で提示された構成では、制御機間の通信状態を検出することしかできず、モータ制御機の動作状態は検知できないという問題がある。
また、モータ制御機の動作状態を検知するためにはCANあるいは、CANと同様の情報を伝送するための通信路を二重に備える必要があり、配線の増加、制御機の複雑化という問題点がある。
また、特許文献1ではモータの駆動を停止しても、CAN通信に異常がある状況で、正常にモータの駆動停止ができたか確認する手段がないという問題点がある。
The configuration presented in Patent Document 1 has a problem that only the communication state between the controllers can be detected, and the operation state of the motor controller cannot be detected.
In addition, in order to detect the operation state of the motor controller, it is necessary to provide a CAN or a communication path for transmitting the same information as CAN, and there are problems of increased wiring and complicated controller. There is.
Further, in Patent Document 1, there is a problem that even if the motor drive is stopped, there is no means for confirming whether the motor drive can be stopped normally in a situation where CAN communication is abnormal.

上記の課題に鑑み、この発明は、通信異常が発生した状態において、簡便かつ低コストな手段でモータの駆動状態を検出可能な電動車両用制御装置およびその方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an electric vehicle control apparatus and method that can detect a driving state of a motor with simple and low-cost means in a state where communication abnormality has occurred.

この発明は、モータ駆動指令に従い走行用モータを駆動制御する第1の制御装置であるモータ制御装置に通信路を介して前記モータ駆動指令を出力する第2の制御装置である車両制御装置が、前記通信路の前記モータ制御装置との通信異常を検出すると、前記走行用モータの駆動状態に応じた変化を検出する前記通信路で接続された第3の制御装置からの出力から前記走行用モータの駆動状態を推定し、推定結果と前記モータ駆動指令を比較してモータ駆動指令に従って動作しているか否かを判定することを特徴とする電動車両用制御装置にある。   According to the present invention, a vehicle control device that is a second control device that outputs a motor drive command via a communication path to a motor control device that is a first control device that drives and controls a traveling motor according to a motor drive command. When a communication abnormality with the motor control device on the communication path is detected, the traveling motor is detected from an output from a third control device connected on the communication path that detects a change according to a driving state of the traveling motor. And the motor drive command is compared to determine whether or not the vehicle is operating in accordance with the motor drive command.

この発明では、通信異常が発生した状態において、簡便かつ低コストな手段でモータの駆動状態を検出可能な電動車両用制御装置およびその方法を提供できる。   According to the present invention, it is possible to provide an electric vehicle control apparatus and method capable of detecting the driving state of a motor with simple and low-cost means in a state where communication abnormality has occurred.

この発明の一実施の形態による電動車両用制御装置の全体的な概略構成図である。1 is an overall schematic configuration diagram of an electric vehicle control device according to an embodiment of the present invention. この発明による車両制御装置での通信異常検出時の動作フローチャートである。It is an operation | movement flowchart at the time of the communication abnormality detection in the vehicle control apparatus by this invention.

以下、この発明による電動車両用制御装置およびその方法を実施の形態に従って図面を用いて説明する。なお、各図において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。   Hereinafter, an electric vehicle control apparatus and method according to the present invention will be described with reference to the drawings in accordance with embodiments. In addition, in each figure, the same or an equivalent part is shown with the same code | symbol, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、この発明の一実施の形態による電動車両としての電気自動車のための電動車両用制御装置の全体的な概略構成図である。図1において車両制御装置1(第2の制御装置)には各種センサ7が接続され、各状態量を検知する。ここでは例えば、ドライバのアクセルペダルの踏み込み量を検知するアクセルポジションセンサ、ブレーキペダルの踏み込み量を検知するブレーキポジションセンサ、車両の速度を検知する車速センサ(共に図示せず)が接続され、車両制御装置1ではこれらのドライバからのアクセルやブレーキの入力量と車速に応じて、走行用モータ3へのトルク指令値(モータ駆動指令)を決定する。
Embodiment 1 FIG.
FIG. 1 is an overall schematic configuration diagram of an electric vehicle control apparatus for an electric vehicle as an electric vehicle according to an embodiment of the present invention. In FIG. 1, various sensors 7 are connected to the vehicle control device 1 (second control device) to detect each state quantity. Here, for example, an accelerator position sensor that detects the amount of depression of the driver's accelerator pedal, a brake position sensor that detects the amount of depression of the brake pedal, and a vehicle speed sensor (both not shown) that detects the speed of the vehicle are connected to control the vehicle. The device 1 determines a torque command value (motor drive command) to the traveling motor 3 according to the accelerator and brake input amounts from these drivers and the vehicle speed.

車両制御装置1にはモータ制御装置2がCAN(車載通信路)で接続され、一定の周期、例えば10ミリ秒周期で双方向に通信を行うよう構成し、トルク指令値はCAN経由で車両制御装置1からモータ制御装置2(第1の制御装置)へと送信される。モータ制御装置2は正常にトルク指令値を受信したことを通知するため、車両制御装置1に受信したトルク指令値をCAN経由でフィードバックを行う。   A motor control device 2 is connected to the vehicle control device 1 via a CAN (vehicle communication channel), and is configured to perform bidirectional communication at a constant cycle, for example, a 10 millisecond cycle, and the torque command value is controlled by the vehicle via the CAN. The data is transmitted from the device 1 to the motor control device 2 (first control device). In order to notify that the motor control device 2 has normally received the torque command value, the motor control device 2 feeds back the torque command value received to the vehicle control device 1 via CAN.

モータ制御装置2は受信したトルク指令値に従って走行用モータ3を駆動するようにコントローラ11からインバータ12に制御信号を出力し、インバータ12は駆動用バッテリ9からの直流電流を交流電流に変換して出力(駆動電流)する。走行用モータ3はトランスミッション(T/M)5を介して駆動輪6に接続され、駆動輪6は走行用モータ3のトルクによって回転され地面からの反力によって車両は推進力を得る。なお、コントローラ11は走行用モータ3のインバータ制御のためにモータ角度センサ4からの信号を受ける。   The motor control device 2 outputs a control signal from the controller 11 to the inverter 12 so as to drive the traveling motor 3 according to the received torque command value, and the inverter 12 converts the direct current from the drive battery 9 into an alternating current. Output (drive current). The traveling motor 3 is connected to driving wheels 6 via a transmission (T / M) 5, and the driving wheels 6 are rotated by the torque of the traveling motor 3, and the vehicle obtains a propulsive force by a reaction force from the ground. The controller 11 receives a signal from the motor angle sensor 4 for inverter control of the traveling motor 3.

また、車両制御装置1はCANによるトルク指令とは別にモータ停止信号13を備え、インバータ12はコントローラ11の制御信号よりモータ停止信号13を優先し、交流電流を停止する。   Further, the vehicle control device 1 includes a motor stop signal 13 separately from the torque command by CAN, and the inverter 12 gives priority to the motor stop signal 13 over the control signal of the controller 11 and stops the alternating current.

バッテリ制御装置8(第3の制御装置)は駆動用バッテリ9の充電および放電の制御を行ない、制御に必要な電圧、電流、温度などの情報(バッテリ情報)を駆動用バッテリ9周辺に取り付けた各センサから取得する。図1では電流センサ10が一例として示されている。また、バッテリ制御装置8は車両制御装置1およびモータ制御装置2と同一のCANに接続され、一定の周期で取得したバッテリ情報を車両制御装置1に通知する。   The battery control device 8 (third control device) controls the charging and discharging of the driving battery 9 and attaches information (battery information) such as voltage, current, and temperature necessary for the control around the driving battery 9. Obtain from each sensor. In FIG. 1, a current sensor 10 is shown as an example. The battery control device 8 is connected to the same CAN as the vehicle control device 1 and the motor control device 2, and notifies the vehicle control device 1 of battery information acquired at a constant cycle.

この実施の形態における電気自動車は上記の構成により、ドライバのアクセル又はブレーキ操作に応じた各種センサ7からの信号により走行用モータ3の出力トルクが変化し、同時に駆動用バッテリ9から供給される電流も出力トルクに応じて変化する。電流センサ10はこれを検出する。車両制御装置1は、バッテリ制御装置8から取得したバッテリ電流値と、モータ制御装置2に送信したトルク指令値によって走行用モータ3が正常に動作しているかを推定する。例えば、走行用モータ3の出力を高めるようにトルク指令値を増加させた場合に、電流値が増加すれば正常動作、電流値が増加しない場合は異常動作という推定結果を得ることができる。   In the electric vehicle according to this embodiment, the output torque of the traveling motor 3 is changed by signals from various sensors 7 according to the driver's accelerator or brake operation, and the current supplied from the driving battery 9 has the above configuration. Also changes according to the output torque. The current sensor 10 detects this. The vehicle control device 1 estimates whether the traveling motor 3 is operating normally based on the battery current value acquired from the battery control device 8 and the torque command value transmitted to the motor control device 2. For example, when the torque command value is increased so as to increase the output of the traveling motor 3, it is possible to obtain an estimation result of normal operation if the current value increases and abnormal operation if the current value does not increase.

図2は、図1の車両制御装置1が通信異常を検出した時の動作を示すフローチャートである。車両制御装置1はモータ制御装置2およびバッテリ制御装置8からのCAN通信の間隔を個別に測定する(そのよう構成している)(STEP1)。最後にCAN受信を完了した時点から計測を開始し、次にCAN受信を正常に完了するまでの時間が規定の時間(第1の所定時間)、例えば200ミリ秒を超えた場合に通信異常が発生していると判定する(STEP2)。ここでモータ制御装置2とのCAN通信異常を検出した場合には(モータ制御装置2のみ通信異常)、モータ出力を制限する第1の動作(制限)モード(低トルクモード)に動作を切り替え、その他の通信異常を検出した場合には第2の動作(制限)モード(トルク禁止モード)に切り替える(STEP3、STEP9)。   FIG. 2 is a flowchart showing an operation when the vehicle control device 1 of FIG. 1 detects a communication abnormality. The vehicle control device 1 individually measures the interval of CAN communication from the motor control device 2 and the battery control device 8 (configured as such) (STEP 1). Measurement starts when CAN reception is completed at the end, and when a time until the CAN reception is normally completed exceeds a specified time (first predetermined time), for example, 200 milliseconds, a communication error occurs. It is determined that it has occurred (STEP 2). If a CAN communication abnormality with the motor control device 2 is detected (communication abnormality only in the motor control device 2), the operation is switched to the first operation (restriction) mode (low torque mode) for restricting the motor output. When other communication abnormality is detected, the mode is switched to the second operation (restriction) mode (torque prohibition mode) (STEP3, STEP9).

低トルクモードは、モータ制御装置2へのトルク指令を低減する。この実施の形態では通常時のトルク指令の50%に制限するよう構成する(STEP4)。車両制御装置1は低減したトルク指令値(モータ駆動指令)をモータ制御装置2へ送信する(STEP5)。送信したトルク指令値に応じたモータ動作であるか推定結果を確認し、推定結果が低減したトルク指令値と一致しない異常動作の場合は、一致しない状態、すなわち第1の動作モードが規定時間(第2の所定時間)以上時間が経過していないかの確認に移行し(STEP7)、推定結果が低減したトルク指令値と一致する正常動作である場合は、通信の回復を確認(STEP8)に移行する(STEP6)。   The low torque mode reduces the torque command to the motor control device 2. In this embodiment, the torque command is limited to 50% of the normal torque command (STEP 4). The vehicle control device 1 transmits the reduced torque command value (motor drive command) to the motor control device 2 (STEP 5). The estimation result is confirmed whether the motor operation is in accordance with the transmitted torque command value, and in the case of an abnormal operation where the estimation result does not match the reduced torque command value, the state does not match, that is, the first operation mode is the specified time ( The second predetermined time) shifts to confirmation of whether or not the time has passed (STEP 7). If the estimated result is a normal operation that matches the reduced torque command value, the communication recovery is confirmed (STEP 8). Transition (STEP 6).

STEP7では、規定時間(第2の所定時間)を経過していない場合もSTEP8に移行し、また規定時間(第2の所定時間)を経過した場合は第2の動作(制限)モードに移行する。STEP8では通信状態の回復を確認し、回復していれば通常動作に移行し(STEP11)、通信状態が回復していない場合は低トルクモードを継続する。   In STEP7, when the specified time (second predetermined time) has not elapsed, the process proceeds to STEP8, and when the specified time (second predetermined time) has elapsed, the process proceeds to the second operation (limitation) mode. . In STEP 8, the recovery of the communication state is confirmed. If the communication state is recovered, the normal operation is performed (STEP 11). If the communication state is not recovered, the low torque mode is continued.

STEP9では第2の動作モードに動作を切り替える。この実施の形態では走行用モータ3の出力を停止する(トルク禁止モード)。車両制御装置1はモータ停止信号13を制御し、インバータ12の出力を停止し、走行用モータ3の駆動を停止する(STEP10)。   In STEP 9, the operation is switched to the second operation mode. In this embodiment, the output of the traveling motor 3 is stopped (torque inhibition mode). The vehicle control device 1 controls the motor stop signal 13, stops the output of the inverter 12, and stops the driving of the traveling motor 3 (STEP 10).

なお、上述の例では、車両制御装置1が、CAN(通信路)のモータ制御装置2との通信異常を検出すると、モータ出力を制限する第1の動作モード(低トルクモード)に動作を切り替え、その後にバッテリ制御装置8からの出力から走行用モータ3の駆動状態を推定し、推定結果とトルク指令値を比較してトルク指令値に従って動作しているか否かを判定しているが、通信異常検出後、第1の動作モードへの切り替え無しに、バッテリ制御装置8からの出力から走行用モータ3の駆動状態の推定を行うようにしてもよい。   In the above example, when the vehicle control device 1 detects an abnormality in communication with the motor control device 2 in the CAN (communication path), the operation is switched to the first operation mode (low torque mode) for limiting the motor output. Thereafter, the driving state of the traveling motor 3 is estimated from the output from the battery control device 8, and the estimation result and the torque command value are compared to determine whether or not the operation is in accordance with the torque command value. After the abnormality is detected, the driving state of the traveling motor 3 may be estimated from the output from the battery control device 8 without switching to the first operation mode.

以上の動作によってこの実施の形態における電動車両は、車両制御装置1とモータ制御装置2との間のCAN通信異常が発生した場合においても、バッテリ制御装置8が取得するバッテリ情報により走行用(駆動用)モータ3の動作状態を推定可能となり、これにより、通信異常時におけるモータ制御を適切に行うことができる。   With the above operation, the electric vehicle according to the present embodiment is for driving (driving) according to the battery information acquired by the battery control device 8 even when the CAN communication abnormality between the vehicle control device 1 and the motor control device 2 occurs. For example, it is possible to estimate the operation state of the motor 3, and thus it is possible to appropriately perform motor control when communication is abnormal.

すなわち、駆動用バッテリの電流値から走行用モータの出力トルクを推定し、車両制御装置から送信されたトルク指令値に従ってモータ制御装置が走行用モータを駆動しているか否かを判定できる。また、モータ制御装置に通信異常が発生した時にモータ駆動の即時停止が不要な状態を検出でき、通信異常の回復を待機することができる。   That is, it is possible to estimate the output torque of the traveling motor from the current value of the driving battery and determine whether the motor control device is driving the traveling motor according to the torque command value transmitted from the vehicle control device. Further, when a communication abnormality occurs in the motor control device, it is possible to detect a state that does not require an immediate stop of the motor drive, and to wait for the recovery of the communication abnormality.

以上、この発明の実施の形態を詳述したが、この発明は前記実施の形態に限定されるものではなく、種々の設計変更を行うことが可能である。例えば、モータ制御装置との通信異常の際の走行用モータの駆動状態を推定するためのCANを介して得られるフィードバック信号として、バッテリ制御装置(第3の制御装置)からのバッテリ電流を示す信号を使用しているが、走行用モータの駆動状態に応じて俊敏に変化を示す信号であればCANに接続された他の制御装置からのフィードバック信号でも使用することが可能であり、同様の効果を奏する。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various design changes can be made. For example, a signal indicating the battery current from the battery control device (third control device) as a feedback signal obtained via the CAN for estimating the driving state of the traveling motor at the time of communication abnormality with the motor control device However, as long as it is a signal that changes quickly depending on the driving state of the driving motor, it can also be used with a feedback signal from another control device connected to CAN, and the same effect Play.

1 車両制御装置、2 モータ制御装置、3 走行用モータ、4 モータ角度センサ、5 トランスミッション(T/M)、6 駆動輪、7 各種センサ、8 バッテリ制御装置、9 駆動用バッテリ、10 電流センサ、11 コントローラ、12 インバータ、13 モータ停止信号、CAN 通信路、T/M トランスミッション。   DESCRIPTION OF SYMBOLS 1 Vehicle control apparatus, 2 Motor control apparatus, 3 Driving motor, 4 Motor angle sensor, 5 Transmission (T / M), 6 Drive wheel, 7 Various sensors, 8 Battery control apparatus, 9 Drive battery, 10 Current sensor, 11 Controller, 12 Inverter, 13 Motor stop signal, CAN communication path, T / M transmission.

この発明は、モータ駆動指令に従い走行用モータを駆動制御する第1の制御装置であるモータ制御装置に通信路を介して前記モータ駆動指令を出力する第2の制御装置である車両制御装置が、前記通信路の前記モータ制御装置との通信異常を検出すると、前記走行用モータの駆動状態に応じた変化を検出する前記通信路で接続された第3の制御装置からの出力から前記走行用モータの駆動状態を推定し、推定結果と前記モータ駆動指令を比較してモータ駆動指令に従って動作しているか否かを判定し、前記第3の制御装置がバッテリ電流を検出するセンサを含むバッテリ制御装置であり、前記車両制御装置が、バッテリ電流から前記走行用モータの駆動状態を推定する、ことを特徴とする電動車両用制御装置にある。 According to the present invention, a vehicle control device that is a second control device that outputs a motor drive command via a communication path to a motor control device that is a first control device that drives and controls a traveling motor according to a motor drive command. When a communication abnormality with the motor control device on the communication path is detected, the traveling motor is detected from an output from a third control device connected on the communication path that detects a change according to a driving state of the traveling motor. A battery control device including a sensor for detecting a battery current by estimating a drive state of the motor, comparing the estimation result with the motor drive command to determine whether or not the motor is operating according to the motor drive command , and the said vehicle control device estimates the driving state of the traction motor from the battery current, in the electric vehicle control device or the like, characterized in that.

Claims (6)

モータ駆動指令に従い走行用モータを駆動制御する第1の制御装置であるモータ制御装置に通信路を介して前記モータ駆動指令を出力する第2の制御装置である車両制御装置が、前記通信路の前記モータ制御装置との通信異常を検出すると、前記走行用モータの駆動状態に応じた変化を検出する前記通信路で接続された第3の制御装置からの出力から前記走行用モータの駆動状態を推定し、推定結果と前記モータ駆動指令を比較してモータ駆動指令に従って動作しているか否かを判定することを特徴とする電動車両用制御装置。   A vehicle control device that is a second control device that outputs the motor drive command via a communication path to a motor control device that is a first control device that drives and controls the traveling motor according to the motor drive command. When a communication abnormality with the motor control device is detected, a driving state of the traveling motor is determined from an output from a third control device connected through the communication path that detects a change according to a driving state of the traveling motor. A control apparatus for an electric vehicle characterized by estimating and comparing the estimation result and the motor drive command to determine whether or not the vehicle is operating in accordance with the motor drive command. 前記第3の制御装置がバッテリ電流を検出するセンサを含むバッテリ制御装置であり、前記車両制御装置が、バッテリ電流から前記走行用モータの駆動状態を推定することを特徴とする請求項1に記載の電動車両用制御装置。   2. The battery control device according to claim 1, wherein the third control device includes a sensor that detects a battery current, and the vehicle control device estimates a driving state of the travel motor from the battery current. Electric vehicle control device. 前記車両制御装置が、前記通信路の前記モータ制御装置との通信異常を検出すると、前記走行用モータの出力を制限するように前記モータ駆動指令を設定する第1の制限モードに移行することを特徴とする請求項1または2に記載の電動車両用制御装置。   When the vehicle control device detects a communication abnormality with the motor control device on the communication path, the vehicle control device shifts to a first restriction mode in which the motor drive command is set so as to restrict the output of the traveling motor. The control device for an electric vehicle according to claim 1, wherein the control device is an electric vehicle. 前記車両制御装置が、前記第1の制限モードにおいて、所定時間未満の間に前記判定結果がモータ駆動指令に従った動作であると判定が変化した場合には前記第1の制限モードを解除し、前記所定時間以上継続した場合には、第2の制限モードに移行することを特徴とする請求項3に記載の電動車両用制御装置。   The vehicle control device cancels the first limit mode when the determination changes in the first limit mode that the determination result is an operation according to a motor drive command within a predetermined time. 4. The electric vehicle control device according to claim 3, wherein, when the operation continues for the predetermined time or longer, the operation mode shifts to a second restriction mode. 前記第2の制限モードが、前記走行用モータの駆動を停止するものであることを特徴とする請求項4に記載の電動車両用制御装置。   5. The electric vehicle control device according to claim 4, wherein the second restriction mode is to stop driving of the travel motor. 6. モータ駆動指令に従い走行用モータを駆動制御する第1の制御装置であるモータ制御装置に通信路を介して前記モータ駆動指令を出力する第2の制御装置である車両制御装置において、前記通信路の前記モータ制御装置との通信異常を検出した時に、前記走行用モータの駆動状態に応じた変化を検出する前記通信路で接続された第3の制御装置からの出力から前記走行用モータの駆動状態を推定して、推定結果と前記モータ駆動指令を比較してモータ駆動指令に従って動作しているか否かを判定することを特徴とする電動車両の制御方法。   In a vehicle control device that is a second control device that outputs the motor drive command via a communication path to a motor control device that is a first control device that drives and controls the travel motor in accordance with the motor drive command, When a communication abnormality with the motor control device is detected, the driving state of the traveling motor is detected from an output from the third control device connected through the communication path that detects a change according to the driving state of the traveling motor. And determining whether or not the vehicle is operating according to the motor drive command by comparing the estimation result with the motor drive command.
JP2011223944A 2011-10-11 2011-10-11 Control device and method for electric vehicle Active JP5345192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223944A JP5345192B2 (en) 2011-10-11 2011-10-11 Control device and method for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223944A JP5345192B2 (en) 2011-10-11 2011-10-11 Control device and method for electric vehicle

Publications (2)

Publication Number Publication Date
JP2013085384A true JP2013085384A (en) 2013-05-09
JP5345192B2 JP5345192B2 (en) 2013-11-20

Family

ID=48530010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223944A Active JP5345192B2 (en) 2011-10-11 2011-10-11 Control device and method for electric vehicle

Country Status (1)

Country Link
JP (1) JP5345192B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086505A (en) * 2014-10-24 2016-05-19 トヨタ自動車株式会社 Automobile
JP2017005981A (en) * 2015-06-09 2017-01-05 三菱自動車工業株式会社 Control device of electric vehicle
JP2017017962A (en) * 2015-07-06 2017-01-19 株式会社デンソー Control device of inverter
JP2017017888A (en) * 2015-07-02 2017-01-19 株式会社デンソー Control device of inverter
JP2017061259A (en) * 2015-09-25 2017-03-30 トヨタ自動車株式会社 Hybrid vehicle
CN112109690A (en) * 2019-07-17 2020-12-22 上汽通用五菱汽车股份有限公司 Automatic parking control method, device and computer readable storage medium
CN112440746A (en) * 2019-08-29 2021-03-05 北京新能源汽车股份有限公司 Vehicle-mounted terminal communication fault control method, device and system and vehicle
JPWO2022201596A1 (en) * 2021-03-23 2022-09-29

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1761284B1 (en) 2004-06-23 2012-08-29 Ashland Licensing and Intellectual Property LLC Device and method for treating fluids utilized in electrocoating processes with ultrasound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172721A (en) * 1994-12-19 1996-07-02 Yamaha Motor Co Ltd Abnormality detection apparatus of motor output system
JPH09107602A (en) * 1995-10-09 1997-04-22 Hitachi Ltd Controller of electric vehicle
JP2003061206A (en) * 2001-08-10 2003-02-28 Aisin Aw Co Ltd Hybrid vehicle drive and control device, hybrid vehicle drive and control method and program therefor
JP2004208368A (en) * 2002-12-24 2004-07-22 Daihatsu Motor Co Ltd Hybrid vehicle
JP2007168564A (en) * 2005-12-21 2007-07-05 Nissan Motor Co Ltd Controller for responding to failure of communication of hybrid car
JP2011101542A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp Power control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172721A (en) * 1994-12-19 1996-07-02 Yamaha Motor Co Ltd Abnormality detection apparatus of motor output system
JPH09107602A (en) * 1995-10-09 1997-04-22 Hitachi Ltd Controller of electric vehicle
JP2003061206A (en) * 2001-08-10 2003-02-28 Aisin Aw Co Ltd Hybrid vehicle drive and control device, hybrid vehicle drive and control method and program therefor
JP2004208368A (en) * 2002-12-24 2004-07-22 Daihatsu Motor Co Ltd Hybrid vehicle
JP2007168564A (en) * 2005-12-21 2007-07-05 Nissan Motor Co Ltd Controller for responding to failure of communication of hybrid car
JP2011101542A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp Power control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086505A (en) * 2014-10-24 2016-05-19 トヨタ自動車株式会社 Automobile
JP2017005981A (en) * 2015-06-09 2017-01-05 三菱自動車工業株式会社 Control device of electric vehicle
JP2017017888A (en) * 2015-07-02 2017-01-19 株式会社デンソー Control device of inverter
JP2017017962A (en) * 2015-07-06 2017-01-19 株式会社デンソー Control device of inverter
JP2017061259A (en) * 2015-09-25 2017-03-30 トヨタ自動車株式会社 Hybrid vehicle
CN112109690A (en) * 2019-07-17 2020-12-22 上汽通用五菱汽车股份有限公司 Automatic parking control method, device and computer readable storage medium
CN112440746A (en) * 2019-08-29 2021-03-05 北京新能源汽车股份有限公司 Vehicle-mounted terminal communication fault control method, device and system and vehicle
JPWO2022201596A1 (en) * 2021-03-23 2022-09-29
WO2022201596A1 (en) * 2021-03-23 2022-09-29 日立Astemo株式会社 In-vehicle control device

Also Published As

Publication number Publication date
JP5345192B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5345192B2 (en) Control device and method for electric vehicle
US9944280B2 (en) Vehicle control system
EP2444293B1 (en) Vehicle creep control device
US9037331B2 (en) Two-wheeled inverted pendulum vehicle and control method therefor
US11643095B2 (en) Electronic control device, control system, and reset determination method
JP4961278B2 (en) Electric vehicle control device
US8849498B2 (en) Method and system for detecting fail of steering angle sensor in electric power steering apparatus
US20150081192A1 (en) Method and device for monitoring a drive of a motor vehicle
US8267834B2 (en) Self-propelled vehicle for conveyance and method of controlling stop thereof
JP5741591B2 (en) Electric vehicle steering device
EP3103669B1 (en) Control device for electric vehicle
KR101888454B1 (en) Apparatus and method for controlling fail-safe of intergrated electronic unit
JP6589492B2 (en) Inverter control device
US11820444B2 (en) Control device for vehicle-mounted equipment
JP5652622B2 (en) Vehicle abnormality diagnosis device
JP6641332B2 (en) Vehicle control device and vehicle control method
JP6801111B2 (en) How to locate a rack in a steering system with an electric servomotor
CN109421792B (en) EPS control apparatus and method for solving vehicle power supply problem
JP6859767B2 (en) Drive control device
US20190077443A1 (en) Method and apparatus for fail-safe electric power steering
US9209716B2 (en) Method and control unit for detecting a blocked electric machine in an electric vehicle
JP2016063597A (en) Drive control device
JP4947997B2 (en) Braking force control system
KR102555514B1 (en) Motor control apparatus in parallel hybrid vehicle and method for diagnosing motor failure thereof
US20240140427A1 (en) Method for stopping undesired continuation in a current direction of travel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5345192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250