JP2013084981A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2013084981A
JP2013084981A JP2012287482A JP2012287482A JP2013084981A JP 2013084981 A JP2013084981 A JP 2013084981A JP 2012287482 A JP2012287482 A JP 2012287482A JP 2012287482 A JP2012287482 A JP 2012287482A JP 2013084981 A JP2013084981 A JP 2013084981A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
conductive film
emitting device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012287482A
Other languages
Japanese (ja)
Inventor
Tadao Hayashi
忠雄 林
Akira Suzuki
亮 鈴木
Masahiko Sano
雅彦 佐野
Keiji Enomura
恵滋 榎村
Takashi Nasuno
孝 那須野
Atsushi Takechi
篤 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2012287482A priority Critical patent/JP2013084981A/en
Publication of JP2013084981A publication Critical patent/JP2013084981A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable light emitting device.SOLUTION: A light emitting device comprises: a light emitting element; conductive films distributed and provided on a surface of electrodes of the light emitting element; and a supporter having a wiring pattern. The conductive films are joined with the wiring pattern, and junction area of the electrode and the conductive film is made larger than junction area of the conductive film and the wiring pattern. The light emitting element comprises positive and negative electrodes with different flat areas on the same surface side, and the conductive film is preferably formed on at least surface of the electrode having a larger flat area from the positive and negative electrodes.

Description

本発明は、発光素子の導通接続が最適化された発光装置に関するものである。   The present invention relates to a light emitting device in which conductive connection of light emitting elements is optimized.

近年、発光素子の光取り出し効率を向上させることを目的として、同一面側に正電極と
負電極とを有する発光素子を、配線パターンが形成された支持基板上にフリップチップで
接合した構造を有する発光装置が開発されている。
In recent years, for the purpose of improving the light extraction efficiency of a light-emitting element, it has a structure in which a light-emitting element having a positive electrode and a negative electrode on the same surface side is joined on a support substrate on which a wiring pattern is formed by flip chip. Light emitting devices have been developed.

例えば、特開2003−304003号公報に記載の発光装置は、絶縁基板上に形成され
た一対の電極の所定の位置にAu−Sn半田を塗布し、Auバンプ付きLED素子をフリ
ップチップ実装して接合した後、リフローすることにより半田溶融して電気的導通をとっ
ている。また、LED素子を保護する目的として、LED素子およびバンプの周辺を透光
性の封止樹脂で封止している。
For example, in a light emitting device described in Japanese Patent Application Laid-Open No. 2003-304003, Au-Sn solder is applied to predetermined positions of a pair of electrodes formed on an insulating substrate, and LED elements with Au bumps are flip-chip mounted. After joining, the solder is melted by reflowing to establish electrical continuity. Further, for the purpose of protecting the LED element, the periphery of the LED element and the bump is sealed with a translucent sealing resin.

特開2003−304003号公報。JP2003-304003A.

上記発光装置は、LED素子と配線パターンとがある程度の高さを有するAuバンプにて
接合されていることから、接合強度が強く、優れた信頼性を有している。
In the above light emitting device, the LED element and the wiring pattern are bonded by Au bumps having a certain height, and therefore, the bonding strength is high and the reliability is excellent.

しかしながら、Auバンプの高さのため、LED素子と配線パターンとの間に多くの封止
樹脂が介在しており、この介在部の樹脂が熱ストレスを受けると、配線パターン側からL
ED素子側へ応力が発生する。この応力は、前記介在部の樹脂量が多い場合、または、上
記発光装置を厳しい温度変化を伴う環境下にて使用する場合、LED素子と封止樹脂との
密着性やLED素子と配線パターンとの接合性に悪影響を与えるほど大きくなり、水分の
吸収による信頼性の低下やLED素子の接合不良の発生による不灯が生じる場合がある。
However, due to the height of the Au bump, a large amount of sealing resin is interposed between the LED element and the wiring pattern.
Stress is generated on the ED element side. This stress is caused when the amount of resin in the interposition part is large, or when the light emitting device is used in an environment with severe temperature changes, the adhesion between the LED element and the sealing resin, the LED element and the wiring pattern, It may become so large that it adversely affects the bondability of the LED, resulting in a decrease in reliability due to moisture absorption and non-lighting due to defective bonding of the LED elements.

そこで本発明は、上記課題を解決し、使用環境に左右されない優れた信頼性を有する発光
装置を提供することを目的とする。
Accordingly, an object of the present invention is to solve the above-described problems and provide a light-emitting device having excellent reliability that is not affected by the use environment.

以上の目的を達成するために、本発明に係る発光装置は、発光素子と、前記発光素子の
電極の表面に分配して設けられた導電膜と、配線パターンを有する支持体と、を有し、前
記導電膜は、前記配線パターンと接合しており、前記電極と前記導電膜との接合面積は、
前記導電膜と前記配線パターンとの接合面積より大きいことを特徴とする。
In order to achieve the above object, a light-emitting device according to the present invention includes a light-emitting element, a conductive film distributed on the surface of the electrode of the light-emitting element, and a support having a wiring pattern. The conductive film is bonded to the wiring pattern, and the bonding area between the electrode and the conductive film is
The bonding area between the conductive film and the wiring pattern is larger.

また、前記発光素子は、同一面側に平面積が異なる正負の電極を有し、前記導電膜は、前
記正負の電極のうち少なくとも平面積の大きい電極の表面に形成されていることが好まし
い。
Moreover, it is preferable that the light emitting element has positive and negative electrodes having different plane areas on the same surface side, and the conductive film is formed on a surface of an electrode having a large plane area among the positive and negative electrodes.

また、前記導電膜の膜厚は、前記発光素子の平面積の平方根の0.1%〜0.5%である
ことが好ましい。
Moreover, it is preferable that the film thickness of the said electrically conductive film is 0.1 to 0.5% of the square root of the planar area of the said light emitting element.

また、前記導電膜は、内部に空隙を有することが好ましい。 Moreover, it is preferable that the said electrically conductive film has a space | gap inside.

本発明の発光装置によれば、発光素子の電極と配線パターンとの接合を、複数の支点で膜
厚の薄い導電膜にて行い、かつ、その導電膜と各部材との接合面積の割合を特定すること
により、信頼性の高い薄型発光装置を実現している。
According to the light emitting device of the present invention, the electrode of the light emitting element and the wiring pattern are bonded with a thin conductive film at a plurality of supporting points, and the ratio of the bonding area between the conductive film and each member is determined. By specifying, a highly reliable thin light emitting device is realized.

本発明を実施するための最良の形態を、以下に図面を参照しながら説明する。ただし、
以下に示す形態は、本発明の技術思想を具体化するための半導体装置を例示するものであ
って、本発明は半導体装置を以下に限定するものではない。また、本明細書は特許請求の
範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に、実施の
形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記
載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎ
ない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張して
いることがある。さらに以下の説明において、同一の名称、符号については同一もしくは
同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は
、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよい
し、逆に一の部材の機能を複数の部材で分担して実現することもできる。
The best mode for carrying out the present invention will be described below with reference to the drawings. However,
The following embodiments exemplify a semiconductor device for embodying the technical idea of the present invention, and the present invention does not limit the semiconductor device to the following. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention only to a specific description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

実施の形態1.
図1は、本発明に係る実施の形態1の発光装置100の模式的平面図であり、図2は図
1のX−X線における模式的断面図である。本実施の形態1の発光装置100は、同一面
側に正電極111aおよび負電極111bを有する発光素子110と、表面に正極の導電
配線131aと負極の導電配線131bとからなる配線パターンを有するサブマウント基
板130と、を有し、前記発光素子100が前記サブマウント基板130上に導電膜12
0a,120bを介してフリップチップ実装され、透光性樹脂140にて封止されている
Embodiment 1 FIG.
FIG. 1 is a schematic plan view of a light emitting device 100 according to Embodiment 1 of the present invention, and FIG. 2 is a schematic cross-sectional view taken along line XX of FIG. The light emitting device 100 of the first embodiment has a light emitting element 110 having a positive electrode 111a and a negative electrode 111b on the same surface side, and a sub pattern having a wiring pattern composed of a positive conductive wiring 131a and a negative conductive wiring 131b on the surface. A light emitting element 100 on the submount substrate 130.
Flip-chip mounting is performed via 0a and 120b, and sealing is performed with a translucent resin 140.

[発光素子110]
本発明に用いられる発光素子110は、特に限定されないが、ここでは発光ダイオードチ
ップ(以下、LEDチップという)について説明する。LEDチップを構成する半導体発
光素子としては、ZnSeやGaNなど種々の半導体を使用したものを挙げることができ
るが、蛍光物質を使用する場合には、その蛍光物質を効率良く励起できる短波長が発光可
能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が好
適に挙げられる。半導体の構造としては、MIS接合、PIN接合やpn接合などを有す
るホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。半導体層の材料
やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子
効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる
[Light emitting element 110]
Although the light emitting element 110 used in the present invention is not particularly limited, a light emitting diode chip (hereinafter referred to as an LED chip) will be described here. Examples of semiconductor light-emitting elements that constitute LED chips include those using various semiconductors such as ZnSe and GaN. When a fluorescent material is used, a short wavelength that can excite the fluorescent material efficiently is emitted. possible nitride semiconductor (in X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is preferably exemplified. Examples of the semiconductor structure include a homostructure having a MIS junction, a PIN junction, and a pn junction, a heterostructure, and a double heterostructure. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed in a thin film in which a quantum effect is generated can be used.

窒化物半導体を使用した場合、半導体用基板にはサファイア、スピネル、SiC、Si
、ZnO等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させ
るためにはサファイア基板を用いることが好ましい。このサファイア基板上にMOCVD
法などを用いて窒化物半導体を形成させることができる。サファイア基板上にGaN、A
lN、GaAlN等のバッファ層を形成し、その上にpn接合を有する窒化物半導体を形
成させる。
When nitride semiconductor is used, sapphire, spinel, SiC, Si are used for semiconductor substrates.
A material such as ZnO is preferably used. In order to form a nitride semiconductor with good crystallinity with high productivity, it is preferable to use a sapphire substrate. MOCVD on this sapphire substrate
A nitride semiconductor can be formed using a method or the like. GaN, A on sapphire substrate
A buffer layer such as 1N or GaAlN is formed, and a nitride semiconductor having a pn junction is formed thereon.

窒化物半導体を使用したpn接合を有する発光素子の例として、バッファ層上に、n型
窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成さ
せた第1のクラッド層、窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニ
ウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタ
クト層を順に積層させたダブルへテロ構成などが挙げられる。
As an example of a light emitting device having a pn junction using a nitride semiconductor, a first contact layer formed of n-type gallium nitride, a first clad layer formed of n-type aluminum nitride / gallium on a buffer layer, Examples include a double hetero structure in which an active layer formed of indium / gallium nitride, a second cladding layer formed of p-type aluminum nitride / gallium, and a second contact layer formed of p-type gallium nitride are sequentially stacked. .

窒化物半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させ
るなど所望のn型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、
Se、Te、C等を適宜導入することが好ましい。一方、p型窒化物半導体を形成させる
場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。
窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパン
ト導入後に、炉による加熱やプラズマ照射等により低抵抗化させることが好ましい。
Nitride semiconductors exhibit n-type conductivity without being doped with impurities. When forming a desired n-type nitride semiconductor such as improving luminous efficiency, Si, Ge,
It is preferable to introduce Se, Te, C or the like as appropriate. On the other hand, when forming a p-type nitride semiconductor, the p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped.
Since nitride semiconductors are not easily converted to p-type by simply doping with a p-type dopant, it is preferable to reduce resistance by heating in a furnace or plasma irradiation after introducing the p-type dopant.

[正電極111a、負電極111b]
本実施の形態に用いられる発光素子110は、同一面側に正電極111aおよび負電極1
11bを有している。具体的には、エッチング等の方法により、p型半導体層側からn型
半導体層の一部を露出した後、p型半導体層上および露出されたn型半導体層上にそれぞ
れ正電極111aおよび負電極111bを蒸着法やスパッタリング法により形成している
。本実施の形態では、n型半導体層を互いに平行なストライプ状となるように露出させて
負電極111bを形成し、正電極111aおよび負電極111bとの間を流れる電流が均
一になるように構成されている。
[Positive electrode 111a, negative electrode 111b]
The light emitting element 110 used in this embodiment has a positive electrode 111a and a negative electrode 1 on the same surface side.
11b. Specifically, after a part of the n-type semiconductor layer is exposed from the p-type semiconductor layer side by a method such as etching, the positive electrode 111a and the negative electrode 111a and the negative electrode are respectively exposed on the p-type semiconductor layer and the exposed n-type semiconductor layer. The electrode 111b is formed by vapor deposition or sputtering. In this embodiment, the negative electrode 111b is formed by exposing the n-type semiconductor layer so as to be parallel stripes, and the current flowing between the positive electrode 111a and the negative electrode 111b is uniform. Has been.

また、正電極111aの表面積は、負電極111bの表面積より大きく構成されている。
具体的には、正電極111aと負電極111bは、ストライプ状に交互に配置されており
、正電極111aの幅は負電極111bの幅より広い。このように、発光素子110の発
光に寄与しないn型半導体の露出領域を減らし、p型半導体の領域および正電極111a
の領域を相対的に増やすことで発光素子110の出力を向上させることができる。
Further, the surface area of the positive electrode 111a is configured to be larger than the surface area of the negative electrode 111b.
Specifically, the positive electrodes 111a and the negative electrodes 111b are alternately arranged in a stripe shape, and the width of the positive electrode 111a is wider than the width of the negative electrode 111b. Thus, the exposed region of the n-type semiconductor that does not contribute to the light emission of the light-emitting element 110 is reduced, and the p-type semiconductor region and the positive electrode 111a are reduced.
The output of the light emitting element 110 can be improved by relatively increasing the area.

正電極111aは、発光素子110の出光を発光素子110の透光性基板方向へ反射さ
せる材料にて形成することが好ましく、例えば、Ag、Al、Rh、Rh/Irが挙げら
れる。その他、p型半導体層の全面にITO(インジウム(In)とスズ(Sn)の複合
酸化物)、ZnOのような酸化物導電膜や、Ni/Au等の金属薄膜を透光性の拡散電極
として形成させることができる。なお、本明細書中において、記号「A/B」は、金属A
および金属Bが順にスパッタリングあるいは蒸着のような方法により積層されることを示
す。また、n型窒化物半導体層の露出面に形成するn電極には、Ti−Al−Ni−Au
あるいはW−Al−W−Pt−Auの多層電極を用いることができる。n電極の厚さは、
0.1〜1.5μmが好ましい。また、n電極以外の露出面を覆うように、SiO、A
、ZrO、TiO等の絶縁性の保護膜を設けることが好ましい。
The positive electrode 111a is preferably formed of a material that reflects light emitted from the light emitting element 110 toward the light transmissive substrate of the light emitting element 110, and examples thereof include Ag, Al, Rh, and Rh / Ir. In addition, an oxide conductive film such as ITO (complex oxide of indium (In) and tin (Sn)), ZnO, or a metal thin film such as Ni / Au is formed on the entire surface of the p-type semiconductor layer. Can be formed. In the present specification, the symbol “A / B” represents the metal A
And metal B are sequentially laminated by a method such as sputtering or vapor deposition. Further, the n-electrode formed on the exposed surface of the n-type nitride semiconductor layer has a Ti-Al-Ni-Au
Alternatively, a multilayer electrode of W—Al—W—Pt—Au can be used. The thickness of the n electrode is
0.1-1.5 micrometers is preferable. Also, SiO 2 , A so as to cover the exposed surface other than the n-electrode
It is preferable to provide an insulating protective film such as l 2 O 3 , ZrO 2 , or TiO 2 .

なお、本発明に用いられる発光素子は、窒化物半導体素子の一方の主面に正電極が、他
方の主面に負電極が形成されていてもよい。それらの電極の大きさや形状は特に限定され
ないが、両電極が窒化物半導体層の積層方向から見て、互いに重ならないように対向配置
されていることが好ましい。これにより、発光した光を電極により遮られることなく効率
良く取出すことができる。例えば、正電極をp型窒化物半導体層の概ね全面に形成した場
合、負電極をn型窒化物半導体層の隅部の2つ又は4つに形成しても良く、格子状に全面
に形成しても良く、さらには、隅部に格子状に形成することもできる。
In the light emitting device used in the present invention, a positive electrode may be formed on one main surface of the nitride semiconductor device, and a negative electrode may be formed on the other main surface. The size and shape of these electrodes are not particularly limited, but it is preferable that the two electrodes are arranged to face each other so as not to overlap each other when viewed from the stacking direction of the nitride semiconductor layers. Thereby, the emitted light can be taken out efficiently without being blocked by the electrodes. For example, when the positive electrode is formed on almost the entire surface of the p-type nitride semiconductor layer, the negative electrode may be formed on two or four corners of the n-type nitride semiconductor layer, or formed on the entire surface in a lattice shape. Further, it may be formed in a grid at the corners.

[支持体130]
本形態における支持体130とは、少なくとも半導体素子の電極と対向する面に配線パタ
ーン131a,131bが施されており、発光素子110を固定・支持するための部材で
ある。
[Support 130]
The support body 130 in this embodiment is a member for fixing and supporting the light emitting element 110, on which wiring patterns 131a and 131b are provided at least on the surface facing the electrode of the semiconductor element.

支持体130の材料は、Al、SiC、GaAs、BN、C(ダイヤモンド)、
AlN、SiN、Siなどが使用される。特に、発光素子110と熱膨張係数差が小さい
材料を用いることが好ましく、製造時や使用時に支持体130と発光素子110との間に
発生する熱応力の影響を緩和することができる。例えば、窒化物半導体発光素子を用いる
場合、窒化アルミニウム(AlN)を有する材料にて構成することが好ましい。また、静
電保護素子の機能を備えたものを用いることもでき、安価でもあるSi(シリコン)を有
する材料が好適に用いられる。特にSiCは、高い熱伝導率を有していることから、発光
に伴う発光素子からの発熱を効率よく回路基板などの実装基板側へ逃がすことができ、好
ましい。
The material of the support 130 is Al 2 O 3 , SiC, GaAs, BN, C (diamond),
AlN, SiN, Si, etc. are used. In particular, a material having a small difference in thermal expansion coefficient from that of the light-emitting element 110 is preferably used, and the influence of thermal stress generated between the support 130 and the light-emitting element 110 during manufacturing or use can be reduced. For example, when a nitride semiconductor light emitting element is used, it is preferable to use a material containing aluminum nitride (AlN). A material having a function of an electrostatic protection element can also be used, and a material having Si (silicon) which is inexpensive is preferably used. In particular, since SiC has high thermal conductivity, heat generated from the light emitting element due to light emission can be efficiently released to the mounting substrate side such as a circuit board, and is preferable.

[配線パターン131a,131b]
支持体130表面には、正極の導電配線131aと負極の導電配線131bとがパター
ン形成されている。これらの材料は、導電性を有しているものであれば特に限定されず、
Auや銀白色の金属、特に、反射率の高いAg、Alなどとされる。反射率の高い銀白色
の金属とすることにより、発光素子110からの光が支持基板と反対側の方向に反射され
、発光装置の光取り出し効率が向上するため好ましい。ここで、導体配線の材料とする金
属は、金属相互間の接着性の良さ、いわゆる濡れ性等を考慮して選択されることが好まし
い。導体配線は、支持体表面上に、配線を形成しない領域にホトレジストパターンを形成
し、電子ビーム蒸着、あるいはスパッタ、あるいは鍍金などの方法により、例えば厚さ1
0nmのTi層、厚さ1000nm(1μm)のAu層を堆積する。その後、レジストパ
ターンを除去し、その上に堆積した金属層をリフトオフする。配線層は、Ti/Auの他
、Ni/Au,Al/Au等を用いることもできる。
[Wiring patterns 131a and 131b]
On the surface of the support 130, a positive electrode conductive wire 131a and a negative electrode conductive wire 131b are patterned. These materials are not particularly limited as long as they have conductivity,
Au or silver-white metal, particularly Ag or Al having high reflectivity is used. A silver-white metal with high reflectivity is preferable because light from the light-emitting element 110 is reflected in a direction opposite to the support substrate and light extraction efficiency of the light-emitting device is improved. Here, the metal used as the material of the conductor wiring is preferably selected in consideration of good adhesion between the metals, so-called wettability. For the conductor wiring, a photoresist pattern is formed on the support surface in a region where no wiring is formed, and the thickness of the conductor wiring is, for example, 1 by a method such as electron beam evaporation, sputtering, or plating.
A Ti layer having a thickness of 0 nm and an Au layer having a thickness of 1000 nm (1 μm) are deposited. Thereafter, the resist pattern is removed, and the metal layer deposited thereon is lifted off. As the wiring layer, Ni / Au, Al / Au, etc. can be used in addition to Ti / Au.

また、支持体130の厚さ方向に少なくとも一つ以上の貫通孔を設け、前記貫通孔の内
壁面に前記配線パターン131a,131bを延在させると、放熱性機能を高めることが
でき、好ましい。特に、支持体の表面に形成された配線パターン131a,131bを、
前記貫通孔の内壁面および前記表面との対向面にまで延材させると、支持体を前記対向面
側にて回路基板などの実装基板に電気的および機械的に接合することが可能な発光装置が
得られる。
In addition, it is preferable to provide at least one or more through holes in the thickness direction of the support 130 and extend the wiring patterns 131a and 131b on the inner wall surfaces of the through holes because the heat dissipation function can be improved. In particular, the wiring patterns 131a and 131b formed on the surface of the support are
A light emitting device capable of electrically and mechanically bonding a support to a mounting substrate such as a circuit board on the opposite surface side when the material is extended to the inner wall surface of the through hole and the surface facing the surface. Is obtained.

[導電膜120a,120b]
本発明の発光装置は、発光素子110と支持体130上の配線パターン131a,131
bとが、導電膜120a,120bを介してフリップチップ実装されている。本実施の形
態の発光装置は、発光素子110の正電極111aの表面に分配して設けられた導電膜1
20aを有し、正電極111aと前記導電膜120aとの接合面積は、前記導電膜120
aと前記配線パターン131aとの接合面積より大きいことを特徴とする。このように、
導電膜120a,120bと各接合部材との接合面積の割合を特定することにより、導電
膜120a,120bの膜厚が薄くとも高い接合強度を得ることができる。これにより、
リークや電気接合部のオープンが生じない安定した導電性を有する発光装置が得られる。
また、本発明の発光装置は、前記発光素子110と前記支持体130との間に、樹脂など
熱ストレスにより膨張する部材が介在したとしても、その介在部の厚みは薄いことから、
熱ストレスを瞬時に支持体130側へ逃がすことができる。このように本発明の発光装置
は、発光装置の一体性を損なうほどの応力が発生することがなく、使用環境に左右されな
い高い信頼性を有している。
[Conductive films 120a and 120b]
The light emitting device of the present invention includes the light emitting element 110 and the wiring patterns 131 a and 131 on the support 130.
b is flip-chip mounted via the conductive films 120a and 120b. In the light emitting device of this embodiment, the conductive film 1 distributed on the surface of the positive electrode 111a of the light emitting element 110 is provided.
20a, and the bonding area between the positive electrode 111a and the conductive film 120a is the conductive film 120a.
It is characterized by being larger than the bonding area between a and the wiring pattern 131a. in this way,
By specifying the ratio of the bonding area between the conductive films 120a and 120b and each bonding member, high bonding strength can be obtained even if the conductive films 120a and 120b are thin. This
A light-emitting device having stable conductivity that does not cause a leak or an open electrical junction can be obtained.
Further, in the light emitting device of the present invention, even if a member such as a resin that expands due to thermal stress is interposed between the light emitting element 110 and the support 130, the thickness of the interposed portion is thin.
Thermal stress can be instantaneously released to the support 130 side. As described above, the light-emitting device of the present invention does not generate stress that impairs the integrity of the light-emitting device, and has high reliability that is not affected by the use environment.

本実施の形態の発光素子110は、同一面側に正電極111aと負電極111bを有して
おり、前記正電極111aの平面積は前記負電極111bの平面積より大きい。このよう
な発光素子110の正電極111aおよび負電極111bの各全面に形成された導電膜と
、配線パターンとを、溶融接合すると、平面積の小さい負電極111b側の導電膜と配線
パターンとの接合に不良が生じる場合がある。これは、平面積の大きい電極全面に設けら
れた導電膜が、溶融した際に中央側へ凝集し、平面積の小さい電極全面に設けられた導電
膜より最大膜厚が高くなるからだと考えられる。そこで本発明は、平面積の大きい電極側
に設ける導電膜を分配することにより、導電膜の凝集による最大膜厚の変化を抑制し、両
電極の接合性を高めている。ここで、本明細書において、平面積とは、発光素子を電極形
成面側からみた平面積を示す。
The light emitting element 110 of this embodiment has a positive electrode 111a and a negative electrode 111b on the same surface side, and the plane area of the positive electrode 111a is larger than the plane area of the negative electrode 111b. When the conductive film formed on the entire surface of each of the positive electrode 111a and the negative electrode 111b of the light emitting element 110 and the wiring pattern are melt-bonded, the conductive film and the wiring pattern on the negative electrode 111b side having a small planar area are connected. Defects may occur in joining. This is thought to be because the conductive film provided on the entire surface of the electrode having a large planar area aggregates toward the center when melted, and the maximum film thickness is higher than that of the conductive film provided on the entire surface of the electrode having a small planar area. . Therefore, in the present invention, by distributing the conductive film provided on the electrode side having a large plane area, the change in the maximum film thickness due to the aggregation of the conductive film is suppressed, and the bonding property of both electrodes is improved. Here, in this specification, the planar area indicates a planar area when the light emitting element is viewed from the electrode formation surface side.

本発明の導電膜は、導電性を有していれば特に限定されず、導電ペースト、ハンダ材料、
焼結性Ag粒子ペースト、異方導電性ペースト、などが挙げられる。特に、発光素子11
0の各電極および支持体の配線パターンとの濡れ性および密着性を考慮すると、AuSn
、AuSi、SnAgBi、SnAgCu、SnAgBiCu、SnCu、SnBi、P
bSn、Inからなる群から選択される少なくとも1種を含む共晶材料を用いることが好
ましい。また、導電膜120a,120bの膜厚は前記発光素子110の平面積の平方根
の0.1%〜0.5%とであることが好ましく、これにより、経済的で安定した接合が得
られる。この範囲より膜厚が少なすぎると接合不良が発生し、安定した導電性および強度
が得られない。この範囲より膜厚が厚い場合は、導電膜120a,120bが隣接する電
極に接触する可能性が高まり、リークによる不良原因となる。また、成膜コストが上昇す
る、リフトオフが困難になる等の理由により経済的でない。また、前記導電膜120a,
120bは、内部に空隙を有することが好ましく、これにより導電膜120a,120b
に対する熱応力が緩和され、導電膜120a,120b自体へのクラックの発生を抑制し
、また発生したクラックの進展を抑制することができる。
The conductive film of the present invention is not particularly limited as long as it has conductivity, conductive paste, solder material,
Examples thereof include sinterable Ag particle paste and anisotropic conductive paste. In particular, the light emitting element 11
In consideration of wettability and adhesion between each electrode of 0 and the wiring pattern of the support, AuSn
, AuSi, SnAgBi, SnAgCu, SnAgBiCu, SnCu, SnBi, P
It is preferable to use a eutectic material containing at least one selected from the group consisting of bSn and In. In addition, the film thickness of the conductive films 120a and 120b is preferably 0.1% to 0.5% of the square root of the plane area of the light emitting element 110, whereby an economical and stable bonding can be obtained. If the film thickness is less than this range, poor bonding occurs and stable conductivity and strength cannot be obtained. When the film thickness is larger than this range, the possibility that the conductive films 120a and 120b are in contact with the adjacent electrodes is increased, which causes a failure due to leakage. Further, it is not economical for reasons such as an increase in film formation cost and difficulty in lift-off. The conductive film 120a,
It is preferable that 120b has a space | gap inside, and, thereby, the electrically conductive films 120a and 120b.
The thermal stress with respect to is reduced, the occurrence of cracks in the conductive films 120a and 120b themselves can be suppressed, and the progress of the generated cracks can be suppressed.

また、発光素子110の発光に寄与する半導体層上に形成される正電極111aと導電膜
120aとの間に、正電極側から密着層やバリア層を設けることが好ましい。密着層は、
正電極との間に高い密着性を確保する層であり、Ti、Ni、W及びMoのいずれかの金
属が好ましい。また、バリア層は、導電膜120aを構成する金属が発光素子110側へ
拡散するのを防止する層であり、PtあるいはWが好ましい。さらに、導電膜120aの
金属が発光素子110側へ拡散するのをさらに防止するため、バリア層と導電膜120a
との間に、Au膜を形成しても良い。また、導電膜120aと支持体130上の配線パタ
ーン131aとの間に、熱応力緩衝層を設けても良く、具体的には、Au、Cu、Sn、
Ag、In膜を形成することができ、苛酷なヒートサイクル試験にも耐えうる良好な密着
性をもっためっきを実現することができる。
In addition, an adhesion layer or a barrier layer is preferably provided from the positive electrode side between the positive electrode 111a and the conductive film 120a formed over the semiconductor layer that contributes to light emission of the light-emitting element 110. The adhesion layer
It is a layer that ensures high adhesion to the positive electrode, and any one of Ti, Ni, W, and Mo is preferable. Further, the barrier layer is a layer that prevents the metal constituting the conductive film 120a from diffusing to the light emitting element 110 side, and Pt or W is preferable. Furthermore, in order to further prevent the metal of the conductive film 120a from diffusing to the light emitting element 110 side, the barrier layer and the conductive film 120a.
An Au film may be formed between the two. Further, a thermal stress buffer layer may be provided between the conductive film 120a and the wiring pattern 131a on the support 130. Specifically, Au, Cu, Sn,
Ag and In films can be formed, and plating with good adhesion that can withstand severe heat cycle tests can be realized.

[封止部材140]
本実施の形態の発光装置において、発光素子110は、外部環境からの外力、塵芥や水分
などから保護するために封止部材140にて被覆されている。特に、本形態における封止
部材140は、発光素子110と支持体130との間にも介在している。その介在部と支
持体130との接触面積は、発光素子110との接触面積より大きい。このような構成に
より、介在部が受けた熱ストレスは、支持体130側へ効率よく逃がすことが可能となる
ことから、厳しい使用環境下においても発光装置の一体性を保持することができる。
[Sealing member 140]
In the light-emitting device of this embodiment, the light-emitting element 110 is covered with a sealing member 140 in order to protect it from external force, dust, moisture, and the like from the external environment. In particular, the sealing member 140 in this embodiment is also interposed between the light emitting element 110 and the support 130. The contact area between the interposition part and the support 130 is larger than the contact area with the light emitting element 110. With such a configuration, the thermal stress received by the intervening portion can be efficiently released to the support 130 side, so that the integrity of the light emitting device can be maintained even under severe use environment.

本実施の形態の封止部材140は、発光素子110の外周から封止部材140の外周の
距離をほぼ等しくすることで、発光面を小さくでき、かつ均一な発光が得られる。封止部
材の形状はこれに限定されず、目的に合わせて種々の形状とすることができる。即ち、封
止部材の形状を凸レンズ形状、凹レンズ形状とすることによってレンズ効果をもたすこと
ができる。そのため、所望に応じて、ドーム型、発光観測面側から見て楕円状、立方体、
三角柱など種々の形状を選択することができる。
In the sealing member 140 of the present embodiment, the distance from the outer periphery of the light emitting element 110 to the outer periphery of the sealing member 140 can be made substantially equal, whereby the light emitting surface can be reduced and uniform light emission can be obtained. The shape of the sealing member is not limited to this, and can be various shapes according to the purpose. That is, the lens effect can be obtained by making the shape of the sealing member a convex lens shape or a concave lens shape. Therefore, as desired, a dome shape, an ellipse when viewed from the light emission observation surface side, a cube,
Various shapes such as a triangular prism can be selected.

具体的な封止部材140の材料として、耐光性、透光性に優れたエポキシ樹脂、アクリ
ル樹脂、イミド樹脂、シリコーン樹脂などの有機物や硝子など無機物があげられる。また
、封止部材140に発光素子110からの光を拡散させる目的で酸化アルミニウム、酸化
バリウム、チタン酸バリウム、酸化珪素などを含有させることもできる。同様に外来光や
発光素子110からの不要な波長をカットするフィルター効果を持たすために各種着色剤
を添加させることもできる。さらに、発光素子110からの発光波長によって励起され蛍
光を発する蛍光物質を含有さ、色変換部材とすることもできる。また、封止樹脂の内部応
力を緩和させる各種フィラーを含有させることもできる。
Specific examples of the material of the sealing member 140 include organic substances such as epoxy resin, acrylic resin, imide resin, and silicone resin excellent in light resistance and translucency, and inorganic substances such as glass. The sealing member 140 may contain aluminum oxide, barium oxide, barium titanate, silicon oxide, or the like for the purpose of diffusing light from the light emitting element 110. Similarly, various colorants can be added in order to have a filter effect for cutting extraneous light and unnecessary wavelengths from the light emitting element 110. Furthermore, it can also be used as a color conversion member containing a fluorescent material that is excited by the emission wavelength from the light emitting element 110 and emits fluorescence. Moreover, various fillers that relieve internal stress of the sealing resin can also be contained.

発光素子110からの光がエネルギーの高い短波長の可視光の場合、アルミニウム酸化
物系蛍光体の一種であるYAG:Ce蛍光体やCaSi蛍光体が好適に用いられ
る。特に、YAG:Ce蛍光体は、その含有量によってLEDチップからの青色系の光を
一部吸収して補色となる黄色系の光を発するため、白色系の混色光を発する高出力な発光
ダイオードを、比較的簡単に形成することができる。これらのYAG系蛍光体および窒化
物系蛍光体は、混合して封止部材中に含有させてもよいし、複数の層から構成される波長
変換部材中に別々に含有させてもよい。
When the light from the light emitting element 110 is high-energy short-wavelength visible light, a YAG: Ce phosphor or a Ca 2 Si 5 N 8 phosphor, which is a kind of aluminum oxide phosphor, is preferably used. In particular, the YAG: Ce phosphor absorbs part of the blue light from the LED chip depending on its content and emits yellow light that is a complementary color. Can be formed relatively easily. These YAG phosphors and nitride phosphors may be mixed and contained in the sealing member, or may be separately contained in the wavelength conversion member composed of a plurality of layers.

以下、本発明に係る実施例を本発明の製造方法にそって詳述する。なお、本発明は以下
に示す実施例のみに限定されないことは言うまでもない。
Hereinafter, examples according to the present invention will be described in detail according to the production method of the present invention. Needless to say, the present invention is not limited to the following examples.

実施例1として、図1および図2に示す発光装置を製造する。
(第一の工程)
As Example 1, the light emitting device shown in FIGS. 1 and 2 is manufactured.
(First step)

以下、本発明に係る一実施例について詳述する。なお、本発明は、以下に示す発光装置
の実施例のみに限定されることなく、受光装置など他の半導体装置に適用できることは言
うまでもない。
Hereinafter, an embodiment according to the present invention will be described in detail. Needless to say, the present invention is not limited to the embodiments of the light emitting device described below, but can be applied to other semiconductor devices such as a light receiving device.

図1は、本実施例における発光装置の模式的な平面図を示す。また、図2は、本実施例
における発光装置の模式的な断面図を示す。なお、図2は、図1のX−X線における断面
図である。本実施例における発光装置は、2つの半導体発光素子110が同一の支持体(
本実施例では、「サブマウント」と呼ぶこととする。)にフリップチップ実装され、封止
部材にて被覆されてなる。
FIG. 1 is a schematic plan view of a light emitting device in this example. FIG. 2 is a schematic cross-sectional view of the light emitting device in this example. FIG. 2 is a cross-sectional view taken along line XX in FIG. In the light emitting device in this embodiment, two semiconductor light emitting elements 110 are the same support (
In this embodiment, this is called “submount”. ) And flip-chip mounted and covered with a sealing member.

発光素子110として、平面形状が1mm角の略直方体からなり、上面に正および負の電
極をそれぞれ2対有する発光ダイオードを用いる。前記発光素子110は、青色系に発光
する窒化物系半導体からなり、前記正および負電極の表面高さは、略平行となるように調
整されている。
As the light emitting element 110, a light emitting diode having a substantially rectangular parallelepiped shape with a 1 mm square plane and having two pairs of positive and negative electrodes on the upper surface is used. The light emitting element 110 is made of a nitride semiconductor that emits blue light, and the surface heights of the positive and negative electrodes are adjusted to be substantially parallel.

発光素子110の電極形成面側に、各正電極表面には平面視が略楕円形状となるよう3
つに分離されたAu−Sn膜を、各負電極表面には分離されていない楕円形状のAu−S
n膜を形成することが可能となるように開口パターンを有するマスクを載置し、Au−S
n膜を2μmの厚みでスパッタ形成する。
The surface of each positive electrode on the electrode forming surface side of the light emitting element 110 is substantially elliptical in plan view.
The separated Au—Sn film is formed into an elliptical Au—S that is not separated on the surface of each negative electrode.
A mask having an opening pattern is placed so that an n film can be formed, and Au-S
An n film is sputtered to a thickness of 2 μm.

次に、AlNからなる支持基板130上に形成された配線パターン131a,131b上
に、フラックスを塗布する。ここで、フラックスの厚みは、前記導電膜120a,120
bの厚みより厚く塗布することが好ましい。このようにフラックスが形成された支持基板
130上に発光素子110の電極形成面側を対向させ、前記フラックス中に前記Au−S
n膜を埋没させて仮固定する。
Next, a flux is applied on the wiring patterns 131a and 131b formed on the support substrate 130 made of AlN. Here, the thickness of the flux depends on the conductive films 120a and 120.
It is preferable to apply thicker than b. The electrode forming surface side of the light emitting element 110 is opposed to the support substrate 130 on which the flux is thus formed, and the Au—S is included in the flux.
The n film is buried and temporarily fixed.

次に、上記支持基板と、340℃のリフロー炉に通しAu−Sn膜120a,120bの
表面を溶融し、それぞれ配線パターン130a,130bの表面に接着融接合させる。
Next, the surfaces of the Au—Sn films 120a and 120b are melted through the support substrate and a reflow furnace at 340 ° C., and bonded and bonded to the surfaces of the wiring patterns 130a and 130b, respectively.

その後、グリコールエーテルにてフラックスを洗浄する。 Thereafter, the flux is washed with glycol ether.

次に、発光素子100を封止するようにシリコーン樹脂をスクリーン印刷し、封止部材
140を形成する。
Next, a silicone resin is screen-printed so as to seal the light emitting element 100, thereby forming the sealing member 140.

このようにして得られた発光装置は、熱による各部材間の結合の破壊や変形が生じない
、優れた信頼性を有している。
The light-emitting device thus obtained has excellent reliability that does not cause breakage or deformation of the connection between the members due to heat.

封止部材140として、中心粒径が8μmである(Y0.995Gd0.0052.
750Al12:Ce0.250蛍光物質が20wt%含有されたシリコーン樹脂を
用いる以外は、実施例1と同様にして発光装置を形成すると、実施例1と同様の効果が得
られる。
As the sealing member 140, the center particle diameter is 8 μm (Y 0.995 Gd 0.005 ) .
When a light emitting device is formed in the same manner as in Example 1 except that a silicone resin containing 20 wt% of 750 Al 5 O 12 : Ce 0.250 fluorescent material is used, the same effect as in Example 1 is obtained.

図3に示すように、正電極120a上に形成する導電膜121aの形状を、複数の溝部
によって平面視が略四角形に分離された形状とする以外は、実施例1と同様にして発光装
置を形成すると、実施例1より導電安定性の高い発光装置が得られる。
As shown in FIG. 3, the light emitting device is formed in the same manner as in Example 1 except that the shape of the conductive film 121a formed on the positive electrode 120a is a shape in which the planar view is separated into a substantially square shape by a plurality of grooves. When formed, a light emitting device having higher conductivity stability than that of Example 1 can be obtained.

図4に示すように、正電極120a上に形成する導電膜121aの形状を、 平面視が略
楕円形状となるよう14個に分離されたAu−Sn膜を形状とする以外は、実施例1と同
様にして発光装置を形成すると、さらに信頼性の高い発光装置が得られる。
As shown in FIG. 4, the shape of the conductive film 121a formed on the positive electrode 120a is the same as that of Example 1 except that the shape is an Au—Sn film separated into 14 pieces so that the plan view is substantially elliptical. When a light emitting device is formed in the same manner as described above, a more reliable light emitting device can be obtained.

本発明にかかる発光装置は、封止部材の熱変形に伴う機能劣化がなく、信頼性の高い半
導体装置として、高出力かつ高信頼性発光が求められる車両用灯具などに利用可能である
The light emitting device according to the present invention does not deteriorate in function due to thermal deformation of the sealing member, and can be used as a highly reliable semiconductor device for a vehicular lamp that requires high output and highly reliable light emission.

図1は、本発明の一実施例における発光装置を示す模式的な平面図である。FIG. 1 is a schematic plan view showing a light emitting device according to an embodiment of the present invention. 図2は、本発明の一実施例における発光装置を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing a light emitting device in one embodiment of the present invention. 図3は、本発明の他の実施例における導電膜が形成された発光素子を示す模式的な上面図である。FIG. 3 is a schematic top view showing a light emitting device on which a conductive film is formed according to another embodiment of the present invention. 図4は、本発明の他の実施例における導電膜が形成された発光素子を示す模式的な上面図である。FIG. 4 is a schematic top view showing a light emitting device on which a conductive film is formed according to another embodiment of the present invention.

100・・・発光装置
110・・・発光素子
111a・・・正電極
111b・・・負電極
120a,120b・・・導電膜
130・・・支持体
131・・・配線パターン
131a・・・正極の導電配線
131b・・・負極の導電配線
140・・・封止部材
DESCRIPTION OF SYMBOLS 100 ... Light-emitting device 110 ... Light emitting element 111a ... Positive electrode 111b ... Negative electrode 120a, 120b ... Conductive film 130 ... Support body 131 ... Wiring pattern 131a ... Positive electrode Conductive wiring 131b ... negative conductive wiring 140 ... sealing member

Claims (4)

発光素子と、前記発光素子の電極の表面に分配して設けられた導電膜と、配線パターン
を有する支持体と、を有し、前記導電膜は、前記配線パターンと接合しており、前記電極
と前記導電膜との接合面積は、前記導電膜と前記配線パターンとの接合面積より大きいこ
とを特徴とする発光装置。
A light-emitting element, a conductive film distributed on the surface of the electrode of the light-emitting element, and a support having a wiring pattern, wherein the conductive film is bonded to the wiring pattern, and the electrode The light emitting device is characterized in that a bonding area between the conductive film and the conductive film is larger than a bonding area between the conductive film and the wiring pattern.
前記発光素子は、同一面側に平面積が異なる正負の電極を有し、前記導電膜は、前記正負
の電極のうち少なくとも平面積の大きい電極の表面に形成されていることを特徴とする請
求項1に記載の発光装置。
The light emitting element has positive and negative electrodes having different plane areas on the same surface side, and the conductive film is formed on a surface of an electrode having a large plane area among the positive and negative electrodes. Item 4. The light emitting device according to Item 1.
前記導電膜の膜厚は、前記発光素子の平面積の平方根の0.1%〜0.5%であることを
特徴とする請求項1乃至2に記載の発光装置。
3. The light emitting device according to claim 1, wherein a thickness of the conductive film is 0.1% to 0.5% of a square root of a planar area of the light emitting element.
前記導電膜は、内部に空隙を有することを特徴とする請求項1乃至3に記載の発光装置。 The light emitting device according to claim 1, wherein the conductive film has a gap inside.
JP2012287482A 2012-12-28 2012-12-28 Light emitting device Pending JP2013084981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287482A JP2013084981A (en) 2012-12-28 2012-12-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287482A JP2013084981A (en) 2012-12-28 2012-12-28 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006074995A Division JP5272287B2 (en) 2006-03-17 2006-03-17 Light emitting device

Publications (1)

Publication Number Publication Date
JP2013084981A true JP2013084981A (en) 2013-05-09

Family

ID=48529778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287482A Pending JP2013084981A (en) 2012-12-28 2012-12-28 Light emitting device

Country Status (1)

Country Link
JP (1) JP2013084981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018500755A (en) * 2014-12-03 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Radiation emitting optoelectronic semiconductor component and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129371A (en) * 1991-11-07 1993-05-25 Sharp Corp Method of connecting semiconductor device
JPH09270445A (en) * 1995-10-30 1997-10-14 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
JPH1167821A (en) * 1997-08-08 1999-03-09 Sharp Corp Flip chip mounting structure
JP2005109434A (en) * 2003-09-11 2005-04-21 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
JP2005142236A (en) * 2003-11-04 2005-06-02 Nichia Chem Ind Ltd Light emitting device
WO2005091387A1 (en) * 2004-03-24 2005-09-29 Toshiba Lighting & Technology Corporation Light-emitting device and illuminating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129371A (en) * 1991-11-07 1993-05-25 Sharp Corp Method of connecting semiconductor device
JPH09270445A (en) * 1995-10-30 1997-10-14 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
JPH1167821A (en) * 1997-08-08 1999-03-09 Sharp Corp Flip chip mounting structure
JP2005109434A (en) * 2003-09-11 2005-04-21 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
JP2005142236A (en) * 2003-11-04 2005-06-02 Nichia Chem Ind Ltd Light emitting device
WO2005091387A1 (en) * 2004-03-24 2005-09-29 Toshiba Lighting & Technology Corporation Light-emitting device and illuminating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018500755A (en) * 2014-12-03 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Radiation emitting optoelectronic semiconductor component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8735934B2 (en) Semiconductor light-emitting apparatus and method of fabricating the same
JP6056920B2 (en) Light emitting device and method for manufacturing light emitting device
JP5634003B2 (en) Light emitting device
US7683396B2 (en) High power light emitting device assembly utilizing ESD protective means sandwiched between dual sub-mounts
JP5272287B2 (en) Light emitting device
TWI543399B (en) Semiconductor light emitting device
KR102227769B1 (en) Semiconductor light emitting diode and semiconductor light emitting diode package using the same
JP2007103917A (en) Solid state element device
TW201724554A (en) Light-emitting device, integrated light-emitting device, and light-emitting module
US20120138995A1 (en) Light emitting device
US20150295139A1 (en) Light-emitting diode package
JP5034342B2 (en) Light emitting device
KR20130059875A (en) Light emitting diode package
US10811566B2 (en) Light emitting device, method for producing light emitting device, and light emitting module
JP2013084981A (en) Light emitting device
KR102343872B1 (en) Light emitting device and package including the same
JP6565895B2 (en) Package for semiconductor device and semiconductor device
CN113659061B (en) Flip-chip light emitting diode and light emitting device
CN110544703B (en) Light emitting device package
KR102572515B1 (en) Semiconductive device and lighting apparatus having the same
JP2017050420A (en) Semiconductor light emitting device and manufacturing method for the same
KR20210017280A (en) Light emitting device and light emitting device package including the same
KR20190010352A (en) Light emitting device package and manufacturing method of light emitting device package
KR20190010353A (en) Light emitting device package
KR20160132658A (en) Light emitting diode and light emitting diode package

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401