JP2013080969A - Light-emitting device and light irradiation apparatus including the same - Google Patents

Light-emitting device and light irradiation apparatus including the same Download PDF

Info

Publication number
JP2013080969A
JP2013080969A JP2013016191A JP2013016191A JP2013080969A JP 2013080969 A JP2013080969 A JP 2013080969A JP 2013016191 A JP2013016191 A JP 2013016191A JP 2013016191 A JP2013016191 A JP 2013016191A JP 2013080969 A JP2013080969 A JP 2013080969A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
led chip
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013016191A
Other languages
Japanese (ja)
Other versions
JP5394583B2 (en
Inventor
Toshio Hata
俊雄 幡
Shinji Ozaki
信二 尾崎
Toyonori Uemura
豊徳 植村
Shinya Ishizaki
真也 石崎
Hitoshi Matsushita
仁士 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013016191A priority Critical patent/JP5394583B2/en
Publication of JP2013080969A publication Critical patent/JP2013080969A/en
Application granted granted Critical
Publication of JP5394583B2 publication Critical patent/JP5394583B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device which requires only a small installation area and is excellent in mixture of a plurality of colors, and to provide a light irradiation apparatus.SOLUTION: A light-emitting device 1 includes a surface-mounted light-emitting unit 10a, a lens part 30 arranged on the light emission side of the surface-mounted light-emitting unit 10a, and a frame body part 40 for fixing the periphery of the lens part 30. Since a resin layer 17 containing a red phosphor 17b covers at least one blue LED chip 14a, the surface-mounted light-emitting unit 10a emits light corresponding to respective peak wavelengths in a short wavelength region and a long wavelength region.

Description

本発明は、配線基板の表面に実装された表面実装型発光部を備えた発光装置、およびこの発光装置を備えた光照射装置に関するものである。   The present invention relates to a light-emitting device including a surface-mounted light-emitting unit mounted on a surface of a wiring board, and a light irradiation device including the light-emitting device.

近年、人工光源による植物育成が盛んに研究されている。特に、単色性に優れており、省エネルギー、長寿命および小型化が可能な発光装置(例えば発光ダイオード:LED)による照明を用いた栽培方法が注目されている。   In recent years, plant research using artificial light sources has been actively studied. In particular, a cultivation method using illumination by a light-emitting device (for example, a light-emitting diode: LED) that is excellent in monochromaticity and can save energy, has a long life, and can be miniaturized has attracted attention.

生物の栽培または培養などの育成を行う工場等に使用することができる従来の発光装置の一例として、例えば植物伸長装置が、下掲の特許文献1に開示されている。   As an example of a conventional light-emitting device that can be used in a plant that grows or grows organisms, for example, a plant extending device is disclosed in Patent Document 1 listed below.

特許文献1に開示された植物伸長装置100は、図10に示すように、植物伸長のための光を射出する光射出部110と、その光射出部110に対して射出される光のスペクトルを変更可能に電力を供給する電力供給部120と、育成対象となる植物101の種類を判別する判別部131と、その判別部131で判別した植物101の種類に応じて上記電力供給部120を制御することにより、光のスペクトルを設定する育成光設定部132とを備えている。   As shown in FIG. 10, the plant stretching apparatus 100 disclosed in Patent Document 1 has a light emitting unit 110 that emits light for plant stretching, and a spectrum of light emitted to the light emitting unit 110. The power supply unit 120 that supplies power in a changeable manner, the determination unit 131 that determines the type of the plant 101 to be grown, and the power supply unit 120 that is controlled according to the type of the plant 101 determined by the determination unit 131 By doing so, a growth light setting unit 132 for setting the light spectrum is provided.

また、図11に示すように、上記光射出部110は、平板状の基板111を備え、基板111の一方の面には、異なるスペクトル光を発する複数種類のLED112が多数敷設されている。LED112から射出される光は、図10に示すように、植物101に照射される。LED112の形態は、例えば砲弾型である。   As shown in FIG. 11, the light emitting unit 110 includes a flat substrate 111, and a plurality of types of LEDs 112 that emit different spectrum lights are laid on one surface of the substrate 111. The light emitted from the LED 112 irradiates the plant 101 as shown in FIG. The form of the LED 112 is, for example, a cannonball type.

また、下掲の特許文献2には、植物栽培用LED光源および個別LED光源装着型植物培養容器が開示されている。具体的には、図12に示すように、赤色LED210と青色LED220を1枚のプリント基板(10cm×10cm、厚み1.6mm)上に配置し、これを図示のように培養容器の蓋200(11cm×11cm、高さ17mm)に取り付けて、蓋200そのものを光源とした。また、容器全体は、図13に示すように、プラスチックフレーム240と、通気性を備え且つ透明な樹脂フィルム230とで構成され、内部にロックウール培地250が収容されている。蓋200は、固定レバー260によりプラスチックフレーム240に装着される。   Patent Document 2 listed below discloses an LED light source for plant cultivation and a plant culture container equipped with an individual LED light source. Specifically, as shown in FIG. 12, the red LED 210 and the blue LED 220 are arranged on one printed circuit board (10 cm × 10 cm, thickness 1.6 mm), and this is arranged as shown in FIG. 11 cm × 11 cm, height 17 mm), and the lid 200 itself was used as a light source. Further, as shown in FIG. 13, the entire container is composed of a plastic frame 240 and a transparent and transparent resin film 230, and a rock wool medium 250 is accommodated therein. The lid 200 is attached to the plastic frame 240 by a fixing lever 260.

特開2004−344114号公報(2004年12月9日公開)JP 2004-344114 A (released on December 9, 2004) 特開平9−252651号公報(1997年9月30日公開)Japanese Patent Laid-Open No. 9-252651 (published on September 30, 1997) 特開2011−80248号公報(2011年4月21日公開)JP 2011-80248 A (released on April 21, 2011)

しかしながら、特許文献1および2に記載された構成では、生物の栽培または培養などの育成に適した光源を実現するためには、青LEDと赤LEDとを基板上に二次元的に配置する必要があるので、光源の面積が大きくなるという課題がある。   However, in the configurations described in Patent Documents 1 and 2, it is necessary to arrange the blue LED and the red LED two-dimensionally on the substrate in order to realize a light source suitable for growing organisms such as cultivation or culture. Therefore, there is a problem that the area of the light source becomes large.

また、基板上に二次元的に配置された青LEDと赤LEDは、個々の距離が互いに離れており、このために混色が良好ではない。つまり、被照射体において色ムラ(青色光と赤色光を合成した光の強度ムラ)が生じる。これにより、例えば、光合成光量子束の比が、所望の比にならないという問題が生じる。   In addition, the blue LED and the red LED that are two-dimensionally arranged on the substrate are separated from each other, and thus color mixing is not good. That is, color unevenness (intensity unevenness of light combining blue light and red light) occurs in the irradiated object. Thereby, for example, there arises a problem that the ratio of the photosynthetic photon flux does not become a desired ratio.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、設置面積を増大させることなく、青色光および赤色光の混色が良好な発光装置、および発光装置を備えた光照射装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light emitting device having a good color mixture of blue light and red light without increasing the installation area, and light irradiation including the light emitting device. To provide an apparatus.

本発明の参考に係る発光装置は、上記課題を解決するために、配線基板の表面に実装された表面実装型発光部と、上記表面実装型発光部の光出射側に配されたレンズ部と、上記レンズ部の周囲を固定する枠体部とを備え、上記表面実装型発光部は、生育に光を必要とする生物によって吸収される光の複数のピーク波長のうち、相対的に短波長域の第1のピーク波長に対応した第1光を発する、少なくとも1個の第1のLEDチップと、上記第1のLEDチップを覆う蛍光体含有封止樹脂とを備え、上記蛍光体含有封止樹脂に含有された蛍光体は、上記第1のLEDチップが出射する第1光を吸収することにより、上記複数のピーク波長のうち、相対的に長波長域のピーク波長に対応した第3光を発し、上記表面実装型発光部を含む複数の表面実装型発光部が、行列状に配置され、上記枠体部は、上記複数の表面実装型発光部に対応して、格子状の形状を備え、格子状の上記枠体部の1マス毎に、上記レンズ部が設けられており、上記複数の表面実装型発光部のうち、列方向に沿って隣接する表面実装型発光部の各間に、上記枠体部に対して、光出射側に立ち上がる立壁部が、上記列方向と交差する行方向に連続して設けられており、上記立壁部は、上記配線基板の表面に対して、垂直な状態と傾斜した状態との間で回動可能に構成されていることを特徴としている。   In order to solve the above problems, a light-emitting device according to the present invention includes a surface-mounted light-emitting unit mounted on the surface of a wiring board, and a lens unit disposed on the light-emitting side of the surface-mounted light-emitting unit. A frame body portion that fixes the periphery of the lens portion, and the surface mount light emitting portion is a relatively short wavelength among a plurality of peak wavelengths of light absorbed by a living organism that requires light for growth. Comprising at least one first LED chip that emits first light corresponding to the first peak wavelength of the region, and a phosphor-containing sealing resin that covers the first LED chip, the phosphor-containing sealing The phosphor contained in the stop resin absorbs the first light emitted from the first LED chip, so that the third corresponding to the peak wavelength in the relatively long wavelength region among the plurality of peak wavelengths. A plurality of surfaces that emit light and include the surface-mounted light emitting unit. The mounted light emitting portions are arranged in a matrix, and the frame body portion has a lattice shape corresponding to the plurality of surface-mounted light emitting portions, and is provided for each square of the lattice-shaped frame body portion. The lens unit is provided, and among the plurality of surface-mounted light-emitting units, between each of the surface-mounted light-emitting units adjacent along the column direction, on the light emission side with respect to the frame body unit The standing wall portion is continuously provided in the row direction intersecting with the column direction, and the standing wall portion can be rotated between a vertical state and an inclined state with respect to the surface of the wiring board. It is characterized by being configured.

上記構成によれば、本発明の参考に係る発光装置は、表面実装型発光部と、上記表面実装型発光部の光出射側に配されたレンズ部と、上記レンズ部の周囲を固定する枠体部とからなっている。さらに、上記表面実装型発光部は、少なくとも1個のLEDチップとこのLEDチップを覆う蛍光体を分散した蛍光体含有封止樹脂とからなっている。そして、この構成において、当該LEDチップにて短波長域(例えば、青色域)の第1のピーク波長に対応した第1光を発光する。そして、蛍光体は、上記LEDチップが出射する第1光により、長波長域(例えば、赤色域)のピーク波長に対応した第3光を発光する。さらに、上記第1光および第3光を、レンズ正面での光度を向上させるように上記レンズにて集光させて、出力することができる。   According to the above configuration, the light-emitting device according to the reference of the present invention includes a surface-mounted light emitting unit, a lens unit disposed on the light emitting side of the surface-mounted light emitting unit, and a frame that fixes the periphery of the lens unit It consists of a body part. Further, the surface-mounted light emitting unit is composed of at least one LED chip and a phosphor-containing sealing resin in which a phosphor covering the LED chip is dispersed. In this configuration, the LED chip emits the first light corresponding to the first peak wavelength in the short wavelength region (for example, the blue region). The phosphor emits third light corresponding to the peak wavelength in the long wavelength region (for example, red region) by the first light emitted from the LED chip. Further, the first light and the third light can be condensed and output by the lens so as to improve the light intensity in front of the lens.

この結果、独立した青色LEDチップと、独立した赤色LEDチップとの2種類のLEDチップを使用しなくても、1種類のLEDチップにて生物の生育に必要な短波長域の第1のピーク波長と長波長域のピーク波長とに対応する光(第1光および第3光)を出射することができる。このため、以下の効果を奏することができる。
(1)1種類のLEDチップのみを使用するため、従来の2種類のLEDチップを使用したときに比べて、表面実装型発光部の面積が小さくて済む。
(2)蛍光体は蛍光体含有封止樹脂に分散され、かつ、第1のLEDチップを覆っていることから、従来に比べて、第1光および第3光の混色が良好である。この結果、従来の各種のLEDチップの個々の距離が離れているために、被照射体において色ムラ(第1光および第3光を合成した光の強度ムラ)が生じることを効果的に抑えることができる。例えば、光合成光量子束の比が求めた比にならないという問題を容易に解決できる。
(3)蛍光体を樹脂に所定の配合比にて分散させることが可能であり、その配合比に応じて短波長域と長波長域における光量を変化させることができる。
As a result, the first peak in the short wavelength region necessary for growth of organisms with one type of LED chip can be used without using two types of LED chips, an independent blue LED chip and an independent red LED chip. Light (first light and third light) corresponding to the wavelength and the peak wavelength in the long wavelength region can be emitted. For this reason, the following effects can be produced.
(1) Since only one type of LED chip is used, the area of the surface-mounted light emitting unit can be reduced as compared with the case where two conventional types of LED chips are used.
(2) Since the phosphor is dispersed in the phosphor-containing sealing resin and covers the first LED chip, the color mixture of the first light and the third light is better than the conventional one. As a result, since the individual distances of various conventional LED chips are separated, it is possible to effectively suppress the occurrence of color unevenness (light intensity unevenness combining the first light and the third light) in the irradiated object. be able to. For example, it is possible to easily solve the problem that the ratio of the photosynthetic photon flux is not the calculated ratio.
(3) The phosphor can be dispersed in the resin at a predetermined blending ratio, and the light amount in the short wavelength region and the long wavelength region can be changed according to the blending ratio.

また、本発明の参考に係る発光装置は、レンズを備え、上記第1光および第3光を上記レンズにて集光させて出力することができる。この結果、レンズ表面での光度を向上させることができ、従来の発光装置では正面での光度が不十分という問題を解決できる。   In addition, the light emitting device according to the reference of the present invention includes a lens, and can collect and output the first light and the third light by the lens. As a result, the luminous intensity at the lens surface can be improved, and the problem that the luminous intensity at the front is insufficient in the conventional light emitting device can be solved.

したがって、設定面積を増大させることなく、簡単な構成で青色光および赤色光の混色が良好な発光装置および発光装置を備えた光照射装置を提供することができる。   Therefore, it is possible to provide a light emitting device and a light emitting device including the light emitting device with a simple configuration and good color mixing of blue light and red light without increasing the set area.

また、上記構成によれば、表面実装型発光部の面積は、従来より小さいという利点があるので、このような表面実装型発光部を行列状に配置して得られる発光装置は、小型化されるという効果を奏する。   Further, according to the above configuration, since the area of the surface-mounted light emitting unit is smaller than the conventional one, the light emitting device obtained by arranging such surface mounted light emitting units in a matrix is downsized. There is an effect that.

また、上記構成において、「列方向に沿って隣接する表面実装型発光部」とは、例えば、1列目の1行目に配置された表面実装型発光部と、1列目の2行目に配置された表面実装型発光部のことである。これら2つの表面実装型発光部は、列方向に隣接している。   In the above configuration, “surface mounted light emitting units adjacent in the column direction” means, for example, a surface mounted light emitting unit arranged in the first row of the first column and the second row of the first column. It is a surface-mounting type light emitting part disposed on the surface. These two surface mount light emitting units are adjacent to each other in the column direction.

上記立壁部は、列方向に沿って隣接する表面実装型発光部の各間に、行方向に連続して設けられている。これにより、例えば、上記列方向が鉛直方向に平行になるように、発光装置を設置する場合、上記行方向は水平方向に平行になる。この場合、上記立壁部は、各行方向に配列された表面実装型発光部に対して、ひさし状の構造物となる。   The standing wall portion is continuously provided in the row direction between the surface-mounted light emitting portions adjacent in the column direction. Thereby, for example, when the light-emitting device is installed so that the column direction is parallel to the vertical direction, the row direction is parallel to the horizontal direction. In this case, the standing wall portion is an eaves-like structure with respect to the surface-mounted light emitting portion arranged in each row direction.

すなわち、上記立壁部は、発光装置の正面方向に光をより多く出射させ、正面方向に対する光の指向性を高める役割をする。   That is, the standing wall portion plays a role of emitting more light in the front direction of the light emitting device and increasing the directivity of the light with respect to the front direction.

なお、上記列方向が鉛直方向に平行になる場合を例として説明したが、上記列方向が任意の方向に平行になるように、発光装置を設けてもよい。発光装置をどのように設けたとしても、発光装置の正面方向に対する光の指向性を高めることができるという効果を奏する。   Although the case where the row direction is parallel to the vertical direction has been described as an example, a light emitting device may be provided so that the row direction is parallel to an arbitrary direction. Regardless of how the light emitting device is provided, the light directivity with respect to the front direction of the light emitting device can be improved.

また、上記構成によれば、立壁部は垂直な状態と傾斜した状態との間で角度を調整できる。この結果、光の照射角度を、例えば植物の立体的な成長に合わせて適宜調整することができる。よって、植物の成長の各段階のいずれにおいても、光の照射強度を向上させる効果を期待できる。   Moreover, according to the said structure, an angle can adjust an upright wall part between a perpendicular | vertical state and the inclined state. As a result, the light irradiation angle can be appropriately adjusted according to, for example, the three-dimensional growth of the plant. Therefore, the effect of improving the light irradiation intensity can be expected at any stage of plant growth.

また、育成対象の複数の生物を水平面に多数並べた状態で、光を照射する場合にも、生物の配置のレイアウトに応じて、光の照射角度を適宜調整することができる。   Moreover, also when irradiating light in the state where many living organisms to be cultivated are arranged in a horizontal plane, the light irradiation angle can be appropriately adjusted according to the layout of the arrangement of the organisms.

本発明の参考に係る発光装置では、上記表面実装型発光部は、上記複数のピーク波長のうち、上記短波長域の第2のピーク波長であって、上記第1のピーク波長とは異なる第2のピーク波長に対応した第2光を発する、少なくとも1個の第2のLEDチップを備えていることが好ましい。   In the light emitting device according to the reference of the present invention, the surface mounted light emitting unit is a second peak wavelength in the short wavelength region out of the plurality of peak wavelengths, and is different from the first peak wavelength. It is preferable that at least one second LED chip that emits second light corresponding to the peak wavelength of 2 is provided.

生育に光を必要とする生物の中でも、例えば、クロロフィルaとクロロフィルbとを有した生物が知られている。クロロフィルaとクロロフィルbとは短波長域(例えば、青色域)における光吸収特性がそれぞれ異なっている。具体的には、例えば、クロロフィルaは短波長域において第2のピーク波長に吸収ピークを有し、クロロフィルbは短波長域において第1のピーク波長に吸収ピークを有している。   Among organisms that require light for growth, for example, organisms having chlorophyll a and chlorophyll b are known. Chlorophyll a and chlorophyll b have different light absorption characteristics in a short wavelength region (for example, a blue region). Specifically, for example, chlorophyll a has an absorption peak at the second peak wavelength in the short wavelength region, and chlorophyll b has an absorption peak at the first peak wavelength in the short wavelength region.

上記構成によれば、これらのクロロフィルaとクロロフィルbとの短波長域における2種類の光吸収特性にそれぞれ対応するように、上記第1のピーク波長に対応した第1光を発するとともに、上記第1のピーク波長とは異なる第2のピーク波長に対応した第2光を発することができる。   According to the above configuration, the first light corresponding to the first peak wavelength is emitted so as to respectively correspond to the two types of light absorption characteristics in the short wavelength region of the chlorophyll a and the chlorophyll b, and the first The second light corresponding to the second peak wavelength different from the first peak wavelength can be emitted.

この結果、一例として、クロロフィルaおよびクロロフィルbを有する生物を育成するために、より適した発光装置を提供することができる。   As a result, as an example, a more suitable light-emitting device can be provided for growing an organism having chlorophyll a and chlorophyll b.

以上の例示を一般化して言い換えると、光を吸収して生育する生物の中でも、短波長域に複数の吸収ピークを示す生物に、より適した発光装置を提供することができる。   Generalizing the above examples, in other words, among living organisms that grow by absorbing light, it is possible to provide a light-emitting device that is more suitable for living organisms that exhibit a plurality of absorption peaks in the short wavelength region.

本発明の参考に係る発光装置では、上記レンズ部と上記枠体部とは、レンズモジュールとして一体的に構成されていることが好ましい。   In the light emitting device according to the reference of the present invention, it is preferable that the lens portion and the frame body portion are integrally configured as a lens module.

上記構成によれば、レンズ部と枠体部とは、一体になっている。この結果、接続構造を簡単にすることができる。よって、接続(実装)またはメンテナンスのための交換の作業性を向上させることができる。また、接続作業が簡単であることから、誤操作の可能性を低減させることができ、信頼性を向上させることができるという効果を奏する。   According to the said structure, the lens part and the frame part are united. As a result, the connection structure can be simplified. Therefore, the workability of replacement for connection (mounting) or maintenance can be improved. In addition, since the connection work is simple, the possibility of erroneous operation can be reduced, and the reliability can be improved.

本発明の参考に係る発光装置では、上記第1のピーク波長に対応した第1光の波長は、400nm以上480nm以下の範囲を有し、上記長波長域のピーク波長に対応した第3光の波長は、620nm以上700nm以下の範囲を有していることが好ましい。   In the light emitting device according to the reference of the present invention, the wavelength of the first light corresponding to the first peak wavelength has a range of not less than 400 nm and not more than 480 nm, and the third light corresponding to the peak wavelength in the long wavelength range is used. The wavelength preferably has a range of 620 nm to 700 nm.

クロロフィルの青色域吸収ピークに対応すべく波長が400nm〜480nmの範囲で、上記第1のLEDチップは発光ピークを有する。また、クロロフィルの赤色域吸収ピークに対応すべく波長が620nm〜700nmの範囲で、上記蛍光体は発光ピークを有する。   The first LED chip has a light emission peak in the wavelength range of 400 nm to 480 nm to correspond to the blue region absorption peak of chlorophyll. In addition, the phosphor has an emission peak in the wavelength range of 620 nm to 700 nm to correspond to the red region absorption peak of chlorophyll.

上記構成によれば、本発明の参考に係る発光装置は、クロロフィルを有する生物の成長に必要な光、すなわちクロロフィルの青色域吸収ピークと赤色域吸収ピークとに対応する光を出射することができる。   According to the above configuration, the light-emitting device according to the reference of the present invention can emit light necessary for the growth of an organism having chlorophyll, that is, light corresponding to the blue region absorption peak and the red region absorption peak of chlorophyll. .

本発明の参考に係る発光装置では、上記第2のピーク波長に対応した第2光の波長は、400nm以上450nm以下の範囲を有していることが好ましい。   In the light emitting device according to the reference of the present invention, it is preferable that the wavelength of the second light corresponding to the second peak wavelength has a range of 400 nm to 450 nm.

クロロフィルaは青色域において400nm〜450nmに吸収ピークを有し、クロロフィルbは青色域において400nm〜480nmに吸収ピークを有する。   Chlorophyll a has an absorption peak at 400 nm to 450 nm in the blue region, and chlorophyll b has an absorption peak at 400 nm to 480 nm in the blue region.

上記構成によれば、クロロフィルaと、クロロフィルbとの青色域における2種類の光吸収特性にそれぞれ対応する光を発することができる。この結果、クロロフィルaおよびクロロフィルbを有する生物の育成に、より適した発光装置を提供することができる。   According to the said structure, the light respectively corresponding to two types of light absorption characteristics in the blue region of chlorophyll a and chlorophyll b can be emitted. As a result, it is possible to provide a light-emitting device that is more suitable for growing organisms having chlorophyll a and chlorophyll b.

本発明の参考に係る発光装置では、上記表面実装型発光部において、上記第1光および第3光を含む光が出射される開口部は、短辺および長辺を有した長方形の形状を有することが好ましい。   In the light emitting device according to the reference of the present invention, in the surface mounted light emitting unit, the opening from which the light including the first light and the third light is emitted has a rectangular shape having a short side and a long side. It is preferable.

上記構成によれば、長辺に平行な方向の光量が増え、かつ長辺に平行な方向の光の混色も良好になる。例えば、長辺に平行な方向が、鉛直方向に平行になるように、発光装置を設けた場合、光が照射される植物の上下に、光量が多く、混色の良い光を照射することができるので、植物の成長に有利になるという効果を奏する。   According to the above configuration, the amount of light in the direction parallel to the long side increases, and the color mixing of the light in the direction parallel to the long side also improves. For example, when the light emitting device is provided so that the direction parallel to the long side is parallel to the vertical direction, light with a large amount of light and good color mixing can be irradiated above and below the plant to which the light is irradiated. Therefore, it has an effect that it is advantageous for plant growth.

本発明の参考に係る光照射装置は、上記課題を解決するために、上記記載の発光装置を、栽培または培養を含む生物育成用の光源として備えていることを特徴としている。   In order to solve the above-described problems, a light irradiation apparatus according to the present invention is characterized by including the above-described light-emitting device as a light source for organism growth including cultivation or culture.

上記構成によれば、設置面積を増大させることなく、簡単な構成で青色光および赤色光の混色が良好な発光装置を備えた光照射装置を提供することができる。   According to the above configuration, it is possible to provide a light irradiating device including a light emitting device that has a simple configuration and excellent color mixing of blue light and red light without increasing the installation area.

本発明の参考に係る発光装置は、以上のように、配線基板の表面に実装された表面実装型発光部と、上記表面実装型発光部の光出射側に配されたレンズ部と、上記レンズ部の周囲を固定する枠体部とを備え、上記表面実装型発光部は、植物の光合成によって吸収される光の複数のピーク波長のうち、短波長域の第1のピーク波長に対応した第1光を発する、少なくとも1個の第1のLEDチップと、上記第1のLEDチップを覆う蛍光体含有封止樹脂とを備え、上記蛍光体含有封止樹脂に含有された蛍光体は、上記第1のLEDチップが出射する第1光を吸収することにより、上記複数のピーク波長のうち、長波長域のピーク波長に対応した第3光を発し、上記表面実装型発光部を含む複数の表面実装型発光部が、行列状に配置され、上記枠体部は、上記複数の表面実装型発光部に対応して、格子状の形状を備え、格子状の上記枠体部の1マス毎に、上記レンズ部が設けられており、上記複数の表面実装型発光部のうち、列方向に沿って隣接する表面実装型発光部の各間に、上記枠体部に対して、光出射側に立ち上がる立壁部が、上記列方向と交差する行方向に連続して設けられており、上記立壁部は、上記配線基板の表面に対して、垂直な状態と傾斜した状態との間で回動可能に構成されているものである。   As described above, the light-emitting device according to the reference of the present invention includes a surface-mounted light emitting unit mounted on the surface of a wiring board, a lens unit disposed on a light emitting side of the surface-mounted light emitting unit, and the lens. The surface-mounted light-emitting unit is a first peak wavelength corresponding to a first peak wavelength in a short wavelength region among a plurality of peak wavelengths of light absorbed by plant photosynthesis. The phosphor included in the phosphor-containing sealing resin includes at least one first LED chip that emits one light and a phosphor-containing sealing resin that covers the first LED chip. By absorbing the first light emitted from the first LED chip, a third light corresponding to a peak wavelength in a long wavelength region is emitted among the plurality of peak wavelengths, and a plurality of light sources including the surface-mounted light emitting unit are emitted. Surface mount type light emitting parts are arranged in a matrix, and the frame Corresponding to the plurality of surface-mounted light emitting units, and has a grid shape, and the lens unit is provided for each square of the grid-shaped frame body unit, and the plurality of surface mount types Between the surface-mounted light emitting units adjacent to each other in the column direction among the type light emitting units, the standing wall portion rising on the light emitting side is continuous in the row direction intersecting the column direction with respect to the frame body portion. The standing wall portion is configured to be rotatable between a vertical state and an inclined state with respect to the surface of the wiring board.

本発明の参考に係る光照射装置は、以上のように、上記記載の発光装置を、栽培または培養を含む生物育成用の光源として備えているものである。   As described above, the light irradiation apparatus according to the reference of the present invention includes the light-emitting device described above as a light source for biological growth including cultivation or culture.

それゆえ、設置面積を増大させることなく、簡単な構成で青色光および赤色光の混色が良好な発光装置および発光装置を備えた光照射装置を提供することができるという効果を奏する。   Therefore, there is an effect that it is possible to provide a light emitting device and a light emitting device including the light emitting device with a simple configuration and good color mixing of blue light and red light without increasing the installation area.

また、表面実装型発光部の面積は、従来より小さいという利点があるので、このような表面実装型発光部を行列状に配置して得られる発光装置は、小型化されるという効果を奏する。   Further, since the area of the surface-mounted light emitting unit is smaller than the conventional area, the light-emitting device obtained by arranging such surface-mounted light emitting units in a matrix has the effect of being downsized.

また、発光装置をどのように設けたとしても、発光装置の正面方向に対する光の指向性を高めることができるという効果を奏する。   Moreover, no matter how the light emitting device is provided, the light directivity with respect to the front direction of the light emitting device can be improved.

また、立壁部は垂直な状態と傾斜した状態との間で角度を調整できる。この結果、光の照射角度を、例えば植物の立体的な成長に合わせて適宜調整することができる。よって、植物の成長の各段階のいずれにおいても、光の照射強度を向上させる効果を期待できる。   Further, the angle of the standing wall portion can be adjusted between a vertical state and an inclined state. As a result, the light irradiation angle can be appropriately adjusted according to, for example, the three-dimensional growth of the plant. Therefore, the effect of improving the light irradiation intensity can be expected at any stage of plant growth.

また、育成対象の複数の生物を水平面に多数並べた状態で、光を照射する場合にも、生物の配置のレイアウトに応じて、光の照射角度を適宜調整することができる。   Moreover, also when irradiating light in the state where many living organisms to be cultivated are arranged in a horizontal plane, the light irradiation angle can be appropriately adjusted according to the layout of the arrangement of the organisms.

実施の形態1に係る発光装置の構成を示す説明図であって、(a)は要部構成を示す正面図であり、(b)は(a)の矢符B方向から見た側面図であり、(c)は(a)の矢符C方向から見た側面図である。It is explanatory drawing which shows the structure of the light-emitting device which concerns on Embodiment 1, Comprising: (a) is a front view which shows a principal part structure, (b) is the side view seen from the arrow B direction of (a). (C) is a side view seen from the direction of arrow C in (a). 実施の形態1に係る表面実装型発光部の構成を示す説明図であって、(a)は要部構成を示す平面図であり、(b)は要部構成を示す透視側面図である。It is explanatory drawing which shows the structure of the surface mount type light emission part which concerns on Embodiment 1, Comprising: (a) is a top view which shows a principal part structure, (b) is a see-through | perspective side view which shows a principal part structure. 上記表面実装型発光部の発光スペクトルを示すグラフであり、(a)は、配合比を樹脂:赤蛍光体=1:0.05としたときの発光スペクトルを示し、(b)は、配合比を樹脂:赤蛍光体=1:0.10としたときの発光スペクトルを示す。It is a graph which shows the emission spectrum of the said surface mount type light emission part, (a) shows the emission spectrum when a compounding ratio is resin: red fluorescent substance = 1: 0.05, (b) is a compounding ratio. Shows a light emission spectrum when resin: red phosphor = 1: 0.10. 上記表面実装型発光部の発光スペクトルを示すグラフであり、(a)は、配合比を樹脂:赤蛍光体=1:0.15としたときの発光スペクトルを示し、(b)は、配合比を樹脂:赤蛍光体=1:0.20としたときの発光スペクトルを示す。It is a graph which shows the emission spectrum of the said surface mount type light emission part, (a) shows the emission spectrum when a compounding ratio is resin: red fluorescent substance = 1: 0.15, (b) is a compounding ratio. Shows a light emission spectrum when resin: red phosphor = 1: 0.20. クロロフィルの光吸収特性と実施の形態1に係る表面実装型発光部の発光スペクトルを示す図である。It is a figure which shows the light absorption characteristic of chlorophyll, and the emission spectrum of the surface mount type light emission part which concerns on Embodiment 1. FIG. 実施の形態1に係る表面実装型発光部を配線基板に実装した状態の一例を部分的に拡大して示す部分拡大断面図である。It is a partial expanded sectional view which expands and shows an example of the state which mounted the surface mount type light emission part which concerns on Embodiment 1 on the wiring board partially. 変形例に係る表面実装型発光部の一例を示す平面図である。It is a top view which shows an example of the surface mount type light emission part which concerns on a modification. 実施の形態2に係る発光装置の概要を示す正面図である。FIG. 6 is a front view illustrating an outline of a light emitting device according to a second embodiment. 実施の形態2に係る表面実装型発光部の平面図である。6 is a plan view of a surface-mounted light emitting unit according to Embodiment 2. FIG. 従来の植物伸長装置を示す模式的構成図である。It is a typical block diagram which shows the conventional plant extending | stretching apparatus. 上記植物伸長装置における光照射部を示す平面図である。It is a top view which shows the light irradiation part in the said plant extending | stretching apparatus. 従来の植物栽培用LED光源を示す平面図である。It is a top view which shows the conventional LED light source for plant cultivation. 上記植物栽培用LED光源を装着した培養容器を示す斜視図である。It is a perspective view which shows the culture container equipped with the said LED light source for plant cultivation. 従来の可動ルーバー装置の構成を示す説明図であって、(a)は室外側から見た正面図であり、(b)は(a)のX−X線断面図であり、(c)は(a)のY−Y線断面図であり、(d)は(a)の矢印Zで示す部分の拡大詳細図である。It is explanatory drawing which shows the structure of the conventional movable louver apparatus, Comprising: (a) is the front view seen from the outdoor side, (b) is XX sectional drawing of (a), (c) is It is the YY sectional view taken on the line of (a), (d) is an enlarged detail drawing of the part shown by the arrow Z of (a).

〔実施の形態1〕
本発明の一実施形態について図1〜3に基づいて説明すれば、以下のとおりである。
[Embodiment 1]
One embodiment of the present invention is described below with reference to FIGS.

(発光装置)
本実施の形態の発光装置1の構成について、図1に基づいて説明する。図1は、本実施の形態に係る発光装置1の構成を示す説明図である。図1の(a)は本実施の形態に係る発光装置1の要部構成を示す正面図である。また、図1の(b)は図1の(a)の矢符B方向から見た側面図である。また、図1の(c)は図1の(a)の矢符C方向から見た側面図である。
(Light emitting device)
The structure of the light-emitting device 1 of this Embodiment is demonstrated based on FIG. FIG. 1 is an explanatory diagram showing a configuration of a light emitting device 1 according to the present embodiment. (A) of FIG. 1 is a front view which shows the principal part structure of the light-emitting device 1 which concerns on this Embodiment. FIG. 1B is a side view as seen from the direction of the arrow B in FIG. FIG. 1C is a side view seen from the direction of the arrow C in FIG.

本実施の形態に係る発光装置1は、一般的な表面実装型の発光装置の形状(例えば、四角形など)を有している。発光装置1は、図示のように、表面実装型発光部10aと、配線基板20と、レンズ部30と、枠体部40と、筐体50と、立壁部(ひさし部)60とを備えている。   The light-emitting device 1 according to the present embodiment has the shape of a general surface-mount type light-emitting device (for example, a quadrangle). As illustrated, the light emitting device 1 includes a surface-mounted light emitting unit 10a, a wiring board 20, a lens unit 30, a frame body unit 40, a housing 50, and a standing wall unit (eave portion) 60. Yes.

配線基板20には、複数の表面実装型発光部10aが行列状に配置されて実装されている。   A plurality of surface-mounted light emitting units 10a are arranged and mounted on the wiring board 20 in a matrix.

レンズ部30は、各表面実装型発光部10aの光出射側(正面側)に(すわなち、各表面実装型発光部10aに対向して)配置される。光がレンズ部30に入り、表面実装型発光部10aの正面方向に集光されてレンズ部30から照射される。よって、発光装置1は、表面実装型発光部10aから発光された光を集光して、レンズ部30の正面での光度を向上させることができるという効果を奏する。したがって、発光装置1は、点灯、非点灯を明瞭に区別して照射することが可能となる。   The lens unit 30 is disposed on the light emitting side (front side) of each surface-mounted light emitting unit 10a (that is, facing each surface-mounted light emitting unit 10a). Light enters the lens unit 30, is condensed in the front direction of the surface-mounted light emitting unit 10 a, and is irradiated from the lens unit 30. Therefore, the light-emitting device 1 has an effect that the light emitted from the surface-mounted light-emitting unit 10 a can be collected and the luminous intensity in front of the lens unit 30 can be improved. Therefore, the light emitting device 1 can irradiate with distinction of lighting and non-lighting.

枠体部40は、複数の表面実装型発光部10aに対応して、格子状の形状を有し、レンズ部30の周囲を囲んで固定するように配置される。また、枠体部40の1マス毎に、レンズ部30が設けられている。   The frame body portion 40 has a lattice shape corresponding to the plurality of surface-mounted light emitting portions 10 a and is disposed so as to surround and fix the periphery of the lens portion 30. Further, a lens unit 30 is provided for each square of the frame body unit 40.

なお、レンズ部30と、枠体部40とは、レンズモジュールとして一体的に構成されてもよい。これによって、接続構造を簡単にすることができ、接続(実装)またはメンテナンスのための交換の作業性させ、信頼性を向上させることができる。   In addition, the lens part 30 and the frame part 40 may be comprised integrally as a lens module. As a result, the connection structure can be simplified, workability of connection (mounting) or replacement for maintenance can be improved, and reliability can be improved.

ここで、レンズ部30と枠体部40とが一体的に構成される方式としては、特に限定されず、レンズモジュールとして構成されればよく、例えば、レンズ部30と枠体部40とを同一の樹脂材料の一体成型によって形成してもよいし、枠体部40の各マスごとに、レンズ部30を個々に嵌め込むようにしてもよい。   Here, the system in which the lens unit 30 and the frame body unit 40 are integrally configured is not particularly limited, and may be configured as a lens module. For example, the lens unit 30 and the frame body unit 40 are the same. These resin materials may be formed by integral molding, or the lens portions 30 may be fitted individually for each mass of the frame body portion 40.

筐体50には、配線基板20が取り付けられる。   The wiring board 20 is attached to the housing 50.

立壁部60は、上記枠体部40に対して、光出射側に立ち上がった薄板状の構造体である。また、立壁部60は、複数の表面実装型発光部10aのうち、列方向に沿って隣接する表面実装型発光部10aの各間に、枠体部40に対して、光出射側(レンズ部30の正面側)に配置され、上記列方向と交差する行方向に連続して設けられている。また、立壁部60は、配線基板20の表面に対して、垂直な状態と傾斜した状態との間で回動可能に配置される(図14を参照、詳細は後述する)。したがって、例えば、植物の立体的な成長に合わせて、照射する光の角度を調整することができる。これによって、植物の成長の各段階のいずれにおいても、光の照射強度を向上させる効果を期待できる。また、育成対象の複数の生物を水平面に多数並べた状態で、光を照射する場合にも、生物の配置のレイアウトに応じて、光の照射角度を適宜調整することができる。なお、立壁部60の角度の調整方式については、特に限定されず、植物の成長特徴に基づいて手動で調整してもよい。また、数日単位くらいで角度を変更することが好ましい。   The standing wall portion 60 is a thin plate-like structure that stands on the light emitting side with respect to the frame body portion 40. In addition, the standing wall portion 60 has a light emitting side (lens portion) with respect to the frame body portion 40 between the surface-mounted light emitting portions 10a adjacent to each other in the column direction among the plurality of surface-mounted light emitting portions 10a. 30 on the front side) and provided continuously in the row direction intersecting the column direction. Further, the standing wall portion 60 is disposed so as to be rotatable between a vertical state and an inclined state with respect to the surface of the wiring board 20 (see FIG. 14, details will be described later). Therefore, for example, the angle of the irradiated light can be adjusted according to the three-dimensional growth of the plant. As a result, the effect of improving the light irradiation intensity can be expected at any stage of plant growth. Moreover, also when irradiating light in the state where many living organisms to be cultivated are arranged in a horizontal plane, the light irradiation angle can be appropriately adjusted according to the layout of the arrangement of the organisms. In addition, about the adjustment method of the angle of the standing wall part 60, it is not specifically limited, You may adjust manually based on the growth characteristic of a plant. Further, it is preferable to change the angle in units of several days.

さらに、筐体50は、発光装置1が設置される電子機器への取り付けを容易にする係合部(不図示)を備えてもよい。   Furthermore, the housing 50 may include an engaging portion (not shown) that facilitates attachment to an electronic device in which the light emitting device 1 is installed.

なお、表面実装型発光部10aの詳細については、後述する。   The details of the surface-mounted light emitting unit 10a will be described later.

図1の(a)に示すように、本実施の形態では、表面実装型発光部10aは、縦16個(16行)、横16個(16列)のドットマトリックス状に配置され、合計で256個の表面実装型発光部10aが配線基板20に実装されている。また、立壁部60は、1行目に配列された表面実装型発光部10aの外側の端部に設けられているとともに、各行間に1つずつ配置されている。したがって、立壁部60は、全体として、16行に対応させて16個配置されている。   As shown in FIG. 1 (a), in the present embodiment, the surface-mounted light-emitting portions 10a are arranged in a dot matrix of 16 vertically (16 rows) and 16 horizontally (16 columns) in total. 256 surface mount light emitting units 10 a are mounted on the wiring board 20. Further, the standing wall portion 60 is provided at an outer end portion of the surface-mounted light emitting unit 10a arranged in the first row, and is disposed one by one between the rows. Therefore, 16 standing wall portions 60 are arranged in association with 16 rows as a whole.

なお、本発明においては、表面実装型発光部10aの個数は必ずしも複数に限らず、1個でもよく、また、複数においても256個に限らない。さらに、複数個における並べ方についても、ドットマトリックス状に限らず、適用される発光装置の照射仕様に応じて任意のパターンとすることができる。   In the present invention, the number of surface-mounted light emitting units 10a is not necessarily plural, and may be one, and the plural is not limited to 256. Further, the arrangement method in a plurality is not limited to the dot matrix shape, and can be an arbitrary pattern according to the irradiation specification of the applied light emitting device.

(表面実装型発光部)
次に、発光装置1が備える本実施の形態の表面実装型発光部10aについて、図2に基づいて説明する。
(Surface mount type light emitting part)
Next, the surface mounted light emitting unit 10a of the present embodiment provided in the light emitting device 1 will be described with reference to FIG.

図2は、本実施の形態に係る表面実装型発光部10aの構成を示す説明図であって、(a)は要部構成を示す平面図であり、(b)は要部構成を示す透視側面図である。   2A and 2B are explanatory views showing the configuration of the surface-mounted light emitting unit 10a according to the present embodiment, in which FIG. 2A is a plan view showing the main configuration, and FIG. 2B is a perspective view showing the main configuration. It is a side view.

表面実装型発光部10aは、図示のように、表面実装用の外部端子としてのカソード電極ランド11aと、表面実装用の外部端子としてのアノード電極ランド11bと、(表面実装型発光部10aの形状と後述の凹部13の開口形状とに合わせて)適宜の形状に形成されたパッケージ部16と、パッケージ部16に形成された凹部13と、凹部13に搭載された、赤蛍光体17b(蛍光体)を含有したシリコーンの樹脂17aからなる樹脂層17(蛍光体含有封止樹脂)と、同じスペクトルの青色光を発光する複数(例えば3個)の青色LEDチップ14a(第1のLEDチップ)とを備えている。前記樹脂層17は、凹部13の内側に充填されて、前記複数の青色LEDチップ14aの上側を被覆している。   As shown in the figure, the surface-mounted light emitting unit 10a includes a cathode electrode land 11a as an external terminal for surface mounting, an anode electrode land 11b as an external terminal for surface mounting, and a shape of the surface-mounted light emitting unit 10a. Package portion 16 formed in an appropriate shape (according to the opening shape of recess 13 described later), recess 13 formed in package portion 16, and red phosphor 17b (phosphor) mounted in recess 13 ) Containing a silicone resin 17a (phosphor-containing sealing resin), and a plurality of (for example, three) blue LED chips 14a (first LED chips) that emit blue light of the same spectrum; It has. The resin layer 17 is filled inside the recess 13 and covers the upper side of the plurality of blue LED chips 14a.

青色LEDチップ14aは、植物の光合成によって吸収される光の複数のピーク波長のうち、短波長域400nm〜480nmのピーク波長(第1のピーク波長)に対応した第1光を発生する。当該第1光は、クロロフィルの青色域吸収ピークに対応する。一方、赤蛍光体17bは、青色LEDチップ14aが出射する光を吸収して、複数のピーク波長のうち、長波長域620nm〜700nmのピーク波長(発光ピーク)に対応した第3光を発生する。当該第3光がクロロフィルの赤色域吸収ピークに対応する。   The blue LED chip 14a generates first light corresponding to a peak wavelength (first peak wavelength) in a short wavelength range of 400 nm to 480 nm among a plurality of peak wavelengths of light absorbed by plant photosynthesis. The first light corresponds to the blue region absorption peak of chlorophyll. On the other hand, the red phosphor 17b absorbs light emitted from the blue LED chip 14a and generates third light corresponding to a peak wavelength (emission peak) in the long wavelength region 620 nm to 700 nm among the plurality of peak wavelengths. . The third light corresponds to the red region absorption peak of chlorophyll.

よって、表面実装型発光部10aにて、クロロフィルの吸収ピークに対応できる発光装置が実現可能となった。   Therefore, it is possible to realize a light-emitting device that can cope with the absorption peak of chlorophyll in the surface-mounted light emitting unit 10a.

この結果、独立した青色LEDチップと、独立した赤色LEDチップとの2種類のLEDチップを使用しなくても、1種類のLEDチップにて植物の成長に必要な短波長域の第1のピーク波長と長波長域のピーク波長とに対応する光(第1光および第3光)を出射することができる。このため、以下の効果を奏することができる。
(1)1種類のLEDチップのみを使用するため、従来の2種類のLEDチップを使用したときに比べて、表面実装型発光部の面積が小さくて済む。
(2)蛍光体は蛍光体含有封止樹脂に分散され、かつ、第1のLEDチップを覆っていることから、従来に比べて、第1光および第3光の混色が良好である。この結果、従来の各種のLEDチップの個々の距離が離れているために、被照射体において色ムラ(第1光および第3光を合成した光の強度ムラ)が生じることを効果的に抑えることができる。例えば、光合成光量子束の比が求めた比にならないという問題を容易に解決できる。
(3)蛍光体を樹脂に所定の配合比にて分散させることが可能であり、その配合比に応じて短波長域と長波長域における光量を変化させることができる。
As a result, the first peak of the short wavelength region necessary for plant growth with one type of LED chip can be used without using two types of LED chips, an independent blue LED chip and an independent red LED chip. Light (first light and third light) corresponding to the wavelength and the peak wavelength in the long wavelength region can be emitted. For this reason, the following effects can be produced.
(1) Since only one type of LED chip is used, the area of the surface-mounted light emitting unit can be reduced as compared with the case where two conventional types of LED chips are used.
(2) Since the phosphor is dispersed in the phosphor-containing sealing resin and covers the first LED chip, the color mixture of the first light and the third light is better than the conventional one. As a result, since the individual distances of various conventional LED chips are separated, it is possible to effectively suppress the occurrence of color unevenness (light intensity unevenness combining the first light and the third light) in the irradiated object. be able to. For example, it is possible to easily solve the problem that the ratio of the photosynthetic photon flux is not the calculated ratio.
(3) The phosphor can be dispersed in the resin at a predetermined blending ratio, and the light amount in the short wavelength region and the long wavelength region can be changed according to the blending ratio.

なお、青色LEDチップ14aは、青色域吸収ピークに対応する、400nm〜480nmの範囲でのピーク波長に対応した第1光を発生するのみでなく、紫外色を含む青紫外色領域まで出力するものであってもよい。   The blue LED chip 14a not only generates the first light corresponding to the peak wavelength in the range of 400 nm to 480 nm corresponding to the blue region absorption peak, but also outputs to the blue ultraviolet region including the ultraviolet color. It may be.

また、前記の説明では、表面実装型発光部10aには、青色LEDチップ14aが、3個搭載されているが、必ずしもこれに限らず、少なくとも1個の青色LEDチップ14aが搭載されればよい。   In the above description, three blue LED chips 14a are mounted on the surface-mounted light emitting unit 10a. However, the present invention is not limited to this, and it is sufficient that at least one blue LED chip 14a is mounted. .

さらに、表面実装型発光部10aにおいて、上記第1光および第3光を含む光が出射される開口部としての凹部13の開口形状は、図示したようにやや縦長(短辺および長辺を備えた長方形)の形状を有することが好ましい。縦長の形状にすることにより、凹部13の開口形状を正方形または円形のような等方性の高い形状とした場合に比較して、長辺に平行な方向の光量が増え、かつ長辺に平行な方向の光の混色も良好になるという効果を奏する。また、光取り出し効率を向上させることもできる。   Further, in the surface-mounted light emitting unit 10a, the opening shape of the recess 13 as the opening from which the light including the first light and the third light is emitted is slightly vertically long (having a short side and a long side) as illustrated. (Rectangle) is preferable. By using a vertically long shape, the amount of light in the direction parallel to the long side is increased and parallel to the long side compared to the case where the opening shape of the recess 13 is a highly isotropic shape such as a square or a circle. There is an effect that the color mixture of light in any direction becomes good. In addition, the light extraction efficiency can be improved.

これにより、例えば、長辺に平行な方向が、鉛直方向に平行になるように、発光装置1を設けた場合、光を照射する植物の上下に、光量が多く、混色の良い光を照射することができるので、植物の成長に有利になる。   Thereby, for example, when the light emitting device 1 is provided so that the direction parallel to the long side is parallel to the vertical direction, light with a large amount of light and good color mixing is irradiated above and below the plant that irradiates light. Can be advantageous to plant growth.

(青色域と赤色域との光量割合の調整)
本実施の形態の表面実装型発光部10aにおける青色域と赤色域との光量割合の調整について、図3および図4に基づいて説明する。
(Adjustment of light intensity ratio between blue and red)
The adjustment of the light amount ratio between the blue region and the red region in the surface-mounted light emitting unit 10a of the present embodiment will be described with reference to FIGS.

図3は、表面実装型発光部10aの発光スペクトルを示すグラフであり、(a)は、配合比を樹脂:赤蛍光体=1:0.05としたときの発光スペクトルを示し、(b)は、配合比を樹脂:赤蛍光体=1:0.10としたときの発光スペクトルを示す。   FIG. 3 is a graph showing an emission spectrum of the surface-mounted light emitting unit 10a. (A) shows an emission spectrum when the blending ratio is resin: red phosphor = 1: 0.05, and (b). Shows the emission spectrum when the blending ratio is resin: red phosphor = 1: 0.10.

図4は、表面実装型発光部10aの発光スペクトルを示すグラフであり、(a)は、配合比を樹脂:赤蛍光体=1:0.15としたときの発光スペクトルを示し、(b)は、配合比を樹脂:赤蛍光体=1:0.20としたときの発光スペクトルを示す。   FIG. 4 is a graph showing an emission spectrum of the surface-mounted light emitting unit 10a. (A) shows an emission spectrum when the compounding ratio is resin: red phosphor = 1: 0.15, and (b). Shows the emission spectrum when the compounding ratio is resin: red phosphor = 1: 0.20.

なお、各グラフの縦軸は、発光強度の相対的な比率を表している。   In addition, the vertical axis | shaft of each graph represents the relative ratio of emitted light intensity.

前記図2に示すように、本実施の形態の表面実装型発光部10aでは、樹脂層17は樹脂としてのシリコーン樹脂からなる樹脂17aに赤蛍光体17bが含有されたものからなっている。したがって、この樹脂17aに対する赤蛍光体17bの割合を変更することによって、互いに異なる波長の光が出射できるものとなる。   As shown in FIG. 2, in the surface-mounted light emitting unit 10a of the present embodiment, the resin layer 17 is composed of a resin 17a made of a silicone resin as a resin and a red phosphor 17b. Therefore, by changing the ratio of the red phosphor 17b to the resin 17a, light having different wavelengths can be emitted.

例えば、赤蛍光体17bとして、CaAlSiN:Euを使用する。前述したように、青色LEDチップ14aから波長が400〜480nmの範囲でピーク波長を有する第1光を出射する。また、赤蛍光体17bの割合を調整することによって、波長620〜700nmの範囲でピーク波長を有する第3光を出射する。尚、CaAlSiN:Euは、2価のユーロピウム(Eu)を賦活材とする窒化物赤色蛍光体であり、温度特性が安定かつ高発光効率の蛍光体の1つである。 For example, CaAlSiN 3 : Eu is used as the red phosphor 17b. As described above, the first light having the peak wavelength in the range of 400 to 480 nm is emitted from the blue LED chip 14a. Moreover, the 3rd light which has a peak wavelength in the range of wavelength 620-700 nm is radiate | emitted by adjusting the ratio of the red fluorescent substance 17b. CaAlSiN 3 : Eu is a nitride red phosphor that uses divalent europium (Eu) as an activator, and is one of phosphors having stable temperature characteristics and high luminous efficiency.

具体的には、図3の(a)に示すように、配合比を樹脂17a:赤蛍光体17b=1:0.05とした表面実装型発光部10aの場合には、波長440nmに発光強度1.0のピーク波長と波長640nmに発光強度0.3のピーク波長とを有する発光スペクトルが得られる。   Specifically, as shown in FIG. 3A, in the case of the surface-mounted light emitting unit 10a in which the blending ratio is resin 17a: red phosphor 17b = 1: 0.05, the emission intensity at a wavelength of 440 nm. An emission spectrum having a peak wavelength of 1.0 and a peak wavelength of emission intensity 0.3 at a wavelength of 640 nm is obtained.

配合比を樹脂17a:赤蛍光体17b=1:0.10とした表面実装型発光部10aの場合には、図3の(b)に示すように、波長440nmに発光強度1.0のピーク波長と波長640nmに発光強度0.8のピーク波長とを有する発光スペクトルが得られる。   In the case of the surface mount type light emitting part 10a in which the blending ratio is resin 17a: red phosphor 17b = 1: 0.10, as shown in FIG. 3B, the peak of emission intensity 1.0 at a wavelength of 440 nm. An emission spectrum having a wavelength and a peak wavelength with an emission intensity of 0.8 at a wavelength of 640 nm is obtained.

また、配合比を樹脂17a:赤蛍光体17b=1:0.15とした表面実装型発光部10aの場合には、図4の(a)に示すように、波長440nmに発光強度0.56のピーク波長と波長640nmに発光強度1.0のピーク波長とを有する発光スペクトルが得られる。   Further, in the case of the surface mount type light emitting portion 10a in which the blending ratio is resin 17a: red phosphor 17b = 1: 0.15, as shown in FIG. 4A, the emission intensity is 0.56 at a wavelength of 440 nm. And an emission spectrum having a peak wavelength with an emission intensity of 1.0 at a wavelength of 640 nm.

そして、図4の(b)に示すように、配合比を樹脂17a:赤蛍光体17b=1:0.20とした表面実装型発光部10aとした場合には、波長440nmに発光強度0.4のピーク波長と波長640nmに発光強度1.0のピーク波長とを有する発光スペクトルが得られる。   As shown in FIG. 4B, in the case of the surface-mounted light emitting unit 10a in which the blending ratio is resin 17a: red phosphor 17b = 1: 0.20, the emission intensity is set to 0. 0 nm at a wavelength of 440 nm. An emission spectrum having a peak wavelength of 4 and a peak wavelength of emission intensity 1.0 at a wavelength of 640 nm is obtained.

表面実装型発光部10aは、配合比を樹脂17a:赤蛍光体17b=1:0.05とした場合には、発光スペクトルはクロロフィルの青色域吸収ピークに対応しているので、発芽・育苗用に使用するのが好ましい。ただし、必ずしもこれに限らず、例えば、樹脂17aと赤蛍光体17bとの配合比が1:0.10〜1:0.15とした表面実装型発光部10aを採用することも可能である。   In the surface mount type light emitting part 10a, when the blending ratio is resin 17a: red phosphor 17b = 1: 0.05, the emission spectrum corresponds to the blue region absorption peak of chlorophyll. It is preferable to use for. However, the present invention is not necessarily limited thereto, and for example, a surface-mounted light emitting unit 10a in which the blending ratio of the resin 17a and the red phosphor 17b is 1: 0.10 to 1: 0.15 can be employed.

また、表面実装型発光部10aは、配合比を樹脂17a:赤蛍光体17b=1:0.20とした場合には、発光スペクトルはクロロフィルの赤色域吸収ピークに対応しているので、栽培用に使用するのが好ましい。ただし、必ずしもこれに限らず、例えば、樹脂17aと赤蛍光体17bとの配合比が1:0.40とした表面実装型発光部10aを採用することも可能である。   Moreover, since the light emission spectrum respond | corresponds to the red region absorption peak of chlorophyll, when the compounding ratio is set to resin 17a: red fluorescent substance 17b = 1: 0.20, the surface mounting type light emission part 10a is for cultivation. It is preferable to use for. However, the present invention is not necessarily limited thereto, and for example, a surface-mounted light emitting unit 10a in which the compounding ratio of the resin 17a and the red phosphor 17b is 1: 0.40 can be employed.

このように樹脂17aと赤蛍光体17bとの配合比を変更することによって、容易に青色域と赤色域との光量割合を調整することが可能となる。   Thus, by changing the blending ratio of the resin 17a and the red phosphor 17b, it is possible to easily adjust the light quantity ratio between the blue region and the red region.

(植物の成長において必要な光の波長)
次に、植物の成長においてどのような波長の光を照射すればよいのかについて、図5に基づいて説明する。図5は、クロロフィルの光吸収特性と本実施の形態の表面実装型発光部10aの発光スペクトルを示す図である。
(Wavelength of light required for plant growth)
Next, what kind of wavelength light should be irradiated in the growth of a plant is demonstrated based on FIG. FIG. 5 is a diagram showing the light absorption characteristics of chlorophyll and the emission spectrum of the surface-mounted light emitting unit 10a of the present embodiment.

まず、植物の光合成において中心的な役割を担う葉緑素(クロロフィル)は、光を一様に吸収するのではなく、図5に示すように、赤色660nm付近と青色450nm付近とに明確な吸収ピークを示し、これに関係して、光合成の波長特性は660nm付近に第一のピークを有すると共に、450nm付近に第二のピークを有している。   First, chlorophyll (chlorophyll), which plays a central role in plant photosynthesis, does not absorb light uniformly, but has clear absorption peaks around red 660 nm and blue 450 nm as shown in FIG. In relation to this, the wavelength characteristic of photosynthesis has a first peak near 660 nm and a second peak near 450 nm.

これに対して、本実施の形態の表面実装型発光部10aにおいては、図5に示すように、クロロフィルの青色域吸収帯には本実施の形態の配合比を樹脂17a:赤蛍光体17b=1:0.05とした表面実装型発光部10a(図3の(a)を参照)が適していると共に、クロロフィルの赤色域吸収帯には本実施の形態の配合比を樹脂17a:赤蛍光体17b=1:0.20とした表面実装型発光部10a(図4の(b)を参照)が適していることが分かる。なお、上記はあくまでも一例であり、ほかの適用する例としては、例えば、図3および図4に示すように、クロロフィルの青色域吸収帯に対して、図3の(a)に示す表面実装型発光部10aのほかに、図3の(b)に示す表面実装型発光部10a(配合比は樹脂17a:赤蛍光体17b=1:0.10)も適していることが分かる。また、クロロフィルの赤色域吸収帯に対して、図4の(b)に示す表面実装型発光部10aのほかに、図3の(b)および図4の(a)に示す表面実装型発光部10a(配合比は樹脂17a:赤蛍光体17b=1:0.10〜0.15)も適していることが分かる。   On the other hand, in the surface-mounted light emitting unit 10a of the present embodiment, as shown in FIG. 5, the mixing ratio of the present embodiment is set to resin 17a: red phosphor 17b = in the blue region absorption band of chlorophyll. The surface-mounted light emitting part 10a (see FIG. 3A) having a ratio of 1: 0.05 is suitable, and the mixing ratio of the present embodiment is set to the resin 17a: red fluorescence in the red region absorption band of chlorophyll. It can be seen that the surface-mounted light emitting unit 10a (see FIG. 4B) with the body 17b = 1: 0.20 is suitable. Note that the above is merely an example, and other examples to be applied include, for example, as shown in FIG. 3 and FIG. 4, the surface mount type shown in FIG. In addition to the light emitting portion 10a, the surface-mounted light emitting portion 10a shown in FIG. 3B (mixing ratio is resin 17a: red phosphor 17b = 1: 0.10) is also suitable. In addition to the surface-mounted light-emitting portion 10a shown in FIG. 4B, the surface-mounted light-emitting portion shown in FIG. 3B and FIG. 10a (compounding ratio is resin 17a: red phosphor 17b = 1: 0.10 to 0.15) is also suitable.

このように、本実施の形態の表面実装型発光部10aにおいては、樹脂17aと赤蛍光体17bとの配合比を変更するのみでクロロフィルの光吸収特性に容易に合わせることができることが分かる。   Thus, it can be seen that the surface-mounted light emitting unit 10a of the present embodiment can be easily matched to the light absorption characteristics of chlorophyll only by changing the blending ratio of the resin 17a and the red phosphor 17b.

ところで、光の分野では、光量の単位として例えば光量子束密度が用いられる。ここで、光量子束密度は、ある物質を太陽の光が照射している場合に、1秒間に照射される光子の数をその物質の受光面積で割った値をいう。しかし、光量子束密度という場合には、光子の数を数えるので、赤外光または紫外光のいずれが来ても1個は1個である。   By the way, in the field of light, for example, photon flux density is used as a unit of light quantity. Here, the photon flux density refers to a value obtained by dividing the number of photons irradiated in one second by the light receiving area of the material when solar light is applied to the material. However, in the case of the photon flux density, since the number of photons is counted, one is one regardless of whether infrared light or ultraviolet light comes.

一方、光化学反応は、色素が吸収できる光子が来たときだけに引き起こされる。例えば、植物の場合、クロロフィルに吸収されない光がいくら来ても、それは存在しないのと同じである。   On the other hand, the photochemical reaction is triggered only when photons that can be absorbed by the dye come. For example, in the case of plants, no matter how much light is not absorbed by chlorophyll, it is the same as it does not exist.

そこで、光合成の分野では、クロロフィルが吸収できる400nm〜700nmまでの波長領域だけの光合成有効光量子束密度または光合成光量子束が定義されている。   Therefore, in the field of photosynthesis, photosynthesis effective photon flux density or photosynthesis photon flux only in the wavelength region from 400 nm to 700 nm that can be absorbed by chlorophyll is defined.

なお、光合成光量子束とは、光合成有効光量子束密度(PPFD:photosynthetic photon flux density)に光照射面積をかけたものをいう。この値は、単にクロロフィルの赤色域および青色域の吸収ピーク波長のエネルギーで表現した値ではなく、植物の成長に必要な光強度を求めるために、赤色域および青色域の各吸収スペクトルに対応するエネルギー(すなわち、光合成に必要なエネルギー)を光量子の量で表現した値である。また、光合成光量子束は、表面実装型発光部10aからのスペクトル特性と、各波長の光量子1個のエネルギーとから求めることができる。   In addition, a photosynthetic photon flux means a photosynthesis effective photon flux density (PPFD) multiplied by a light irradiation area. This value is not simply a value expressed by the energy of the absorption peak wavelength in the red and blue regions of chlorophyll, but corresponds to each absorption spectrum in the red and blue regions in order to determine the light intensity necessary for plant growth. It is a value expressing energy (that is, energy necessary for photosynthesis) by the amount of photons. The photosynthetic photon flux can be obtained from the spectral characteristics from the surface-mounted light emitting unit 10a and the energy of one photon of each wavelength.

したがって、光合成光量子束を用いて表面実装型発光部10aを表すと、図3の(a)に示す表面実装型発光部10aについては、光合成光量子束が波長400nm〜480nmの青色域では、1μmol/sであり、波長620nm〜700nmの赤色域では、1.3μmol/sとなっている。尚、この値は、波長400nm〜480nmおよび波長620nm〜700nmの発光スペクトルのグラフの面積から求める値である。そして、これを比率で表すと、波長400nm〜480nmの青色域における光合成光量子束と、波長620nm〜700nmの赤色域における光合成光量子束との比が、1:1.3となる。   Therefore, when the surface-mounted light emitting unit 10a is expressed using the photosynthetic photon flux, the surface-mounted light emitting unit 10a shown in FIG. 3A has a 1 μmol / s in the blue region where the photosynthesis photon flux has a wavelength of 400 nm to 480 nm. In the red region with a wavelength of 620 nm to 700 nm, it is 1.3 μmol / s. In addition, this value is a value calculated | required from the area of the graph of the emission spectrum of wavelength 400nm -480nm and wavelength 620nm -700nm. When expressed as a ratio, the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 1.3.

また、図4の(b)に示す表面実装型発光部10aについては、光合成光量子束が波長400nm〜480nmの青色域では、0.2μmol/sであり、波長620nm〜700nmの赤色域では、2.0μmol/sとなっている。そして、これを比率で表すと、波長400nm〜480nmの青色域における光合成光量子束と、波長620nm〜700nmの赤色域における光合成光量子束との比が、1:10となる。この場合には、表面実装型発光部10aは赤の多い光を発生し、藻類の生長促進に適している。   For the surface-mounted light emitting unit 10a shown in FIG. 4B, the photosynthesis photon flux is 0.2 μmol / s in the blue region having a wavelength of 400 nm to 480 nm, and 2 in the red region having a wavelength of 620 nm to 700 nm. 0.0 μmol / s. When expressed as a ratio, the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1:10. In this case, the surface-mounted light emitting unit 10a generates a lot of red light and is suitable for promoting the growth of algae.

尚、図3の(b)に示す表面実装型発光部10aについては、波長400nm〜480nmの青色域における光合成光量子束と、波長620nm〜700nmの赤色域における光合成光量子束との比が、1:3.5となる。また、図4の(a)に示す表面実装型発光部10aについては、波長400nm〜480nmの青色域における光合成光量子束と、波長620nm〜700nmの赤色域における光合成光量子束との比が、1:7.5となる。   3B, the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 3.5. 4A, the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 7.5.

したがって、本実施の形態では、波長400nm〜480nmの青色域における光合成光量子束と、波長620nm〜700nmの赤色域における光合成光量子束との比が、1:1.3〜1:10となっている。この結果、植物の発芽・育苗および栽培に適した表面実装型発光部10aとすることができる。   Therefore, in this embodiment, the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 1.3 to 1:10. . As a result, it is possible to obtain a surface-mounted light emitting unit 10a suitable for plant germination, seedling and cultivation.

(実装例)
次に、図6に基づいて、表面実装型発光部10aを配線基板20に実装する一例について説明する。
(Implementation example)
Next, an example of mounting the surface-mounted light emitting unit 10a on the wiring board 20 will be described with reference to FIG.

図6は、表面実装型発光部10aを配線基板20に実装した状態の一例を部分的に拡大して示す部分拡大断面図である。   FIG. 6 is a partially enlarged cross-sectional view showing an example of a state in which the surface-mounted light emitting unit 10 a is mounted on the wiring board 20.

(1.表面実装型発光部10a)
表面実装型発光部10aは、図2に示すように、表面実装用の外部端子であるカソード電極ランド11aおよびアノード電極ランド11bを有するので、配線基板20の表面にそのまま載置され実装(接続)される。したがって、接続構造を簡単にすることができ、接続(実装)の作業性、信頼性を向上させることができる。
(1. Surface mount light emitting unit 10a)
As shown in FIG. 2, the surface-mounted light emitting unit 10a has cathode electrode lands 11a and anode electrode lands 11b, which are external terminals for surface mounting, and thus is mounted on the surface of the wiring board 20 and mounted (connected). Is done. Therefore, the connection structure can be simplified, and the workability and reliability of connection (mounting) can be improved.

また、表面実装型発光部10aは、表面実装型であるので、配線基板20での表面実装型発光部10aの高さは、表面実装型発光部10aのパッケージ部16(図2の(b)を参照)の高さとなる。したがって、薄型化が可能となる。   Further, since the surface mounted light emitting unit 10a is a surface mounted type, the height of the surface mounted light emitting unit 10a on the wiring board 20 is set to the package unit 16 of the surface mounted light emitting unit 10a (FIG. 2B). )). Therefore, the thickness can be reduced.

一例として、表面実装型発光部10aの高さは、例えば1.4mmとされている。したがって、表面実装型発光部10aを配線基板20に搭載したときの基板表面からの高さは、1.4mmとすることができる。つまり、表面実装型発光部10aを採用することによって、発光装置1を薄型化することができる。   As an example, the height of the surface-mounted light emitting unit 10a is 1.4 mm, for example. Therefore, the height from the substrate surface when the surface-mounted light emitting unit 10a is mounted on the wiring substrate 20 can be 1.4 mm. That is, the light-emitting device 1 can be thinned by adopting the surface-mounted light emitting unit 10a.

また、表面実装型発光部10aの重量は、例えば0.025g(グラム)である。つまり、表面実装型発光部10aを採用することによって発光装置1を軽量化することができる。   Further, the weight of the surface-mounted light emitting unit 10a is, for example, 0.025 g (gram). That is, the light emitting device 1 can be reduced in weight by adopting the surface mount type light emitting unit 10a.

また、後述の表1に示すように、表面実装型発光部10aは、コストメリットがあるため、発光装置1を低価格化することが可能となる。よって、発光装置1を発光装置として採用した場合は、発光装置に関する設置費を低減することができる。   Further, as shown in Table 1 to be described later, the surface-mounted light emitting unit 10a has a cost merit, so that the price of the light emitting device 1 can be reduced. Therefore, when the light-emitting device 1 is adopted as the light-emitting device, the installation cost relating to the light-emitting device can be reduced.

なお、図6において、配線基板20は、各表面実装型発光部10aごとに分離しているわけではなく、発光装置1の全体にわたって連続した一体物である。   In FIG. 6, the wiring board 20 is not separated for each surface-mounted light emitting unit 10 a, but is an integrated object continuous over the entire light emitting device 1.

(2.配線基板20)
配線基板20の平面形状は、例えば160mm×160mmの矩形である。また、配線基板20の厚さは、例えば1mmである。また、16行×16列のドットマトリックス状に配置された表面実装型発光部10aは、列方向の配置ピッチが10mm、行方向の配置ピッチが10mmである。
(2. Wiring board 20)
The planar shape of the wiring board 20 is a rectangle of 160 mm × 160 mm, for example. Moreover, the thickness of the wiring board 20 is 1 mm, for example. Further, the surface-mounted light emitting units 10a arranged in a dot matrix of 16 rows × 16 columns have an arrangement pitch in the column direction of 10 mm and an arrangement pitch in the row direction of 10 mm.

配線基板20は、表面実装型発光部10aを配列して固定(接続)するための配線パターン(不図示)を有する。つまり、表面実装型発光部10aの外部端子であるカソード電極ランド11aおよびアノード電極ランド11bは、半田などの導電性部材により、配線基板20(配線パターン)に対して電気的および機械的に接続される。また、表面実装型発光部10aへ配線パターンを介して電力を供給する駆動回路(不図示)が照射面の反対側の裏面20cに実装される。   The wiring board 20 has a wiring pattern (not shown) for arranging and fixing (connecting) the surface-mounted light emitting units 10a. That is, the cathode electrode land 11a and the anode electrode land 11b, which are external terminals of the surface-mounted light emitting unit 10a, are electrically and mechanically connected to the wiring board 20 (wiring pattern) by a conductive member such as solder. The In addition, a drive circuit (not shown) that supplies power to the surface-mounted light emitting unit 10a via a wiring pattern is mounted on the back surface 20c opposite to the irradiation surface.

また、発光装置1の全体にわたって連続した格子形状となっている枠体部40を配線基板20に固定するためには、ネジ80を用いることができる。なお、より確実にかつ安定して固定するためには、図6に示すように、ネジ80を用いた固定方法に加えて、嵌め込み部90を配線基板20に嵌め込むようにしてもよい。   Further, a screw 80 can be used to fix the frame body portion 40 having a lattice shape continuous over the entire light emitting device 1 to the wiring board 20. In addition, in order to fix more reliably and stably, as shown in FIG. 6, in addition to the fixing method using the screw | thread 80, you may make it insert the fitting part 90 in the wiring board 20. As shown in FIG.

配線基板20は、機械的強度が高く熱変形の少ないものが好ましい。具体的には絶縁性合成樹脂、セラミックス、ガラス、アルミニウム合金等を用いたプリント基板、すなわち、リジッド基板を好適に利用することができる。   The wiring board 20 preferably has high mechanical strength and little thermal deformation. Specifically, a printed board using an insulating synthetic resin, ceramics, glass, aluminum alloy or the like, that is, a rigid board can be suitably used.

(3.レンズ部30)
また、本実施の形態に係るレンズ部30は、凸レンズとしての集光特性を有する曲面部(曲面を有する部材)30aと、曲面部30aから枠体部40まで延長され曲面部30aを保持する保持部30bとを備えている。図6に示す例では、保持部30bが、曲面部30aの周囲に突出して形成され、枠体部40の1マス毎に、矩形の輪状に形成された溝部に嵌め込まれるようになっている。
(3. Lens part 30)
Further, the lens unit 30 according to the present embodiment includes a curved surface part (a member having a curved surface) 30a having a condensing characteristic as a convex lens, and a holder that extends from the curved surface part 30a to the frame body part 40 and holds the curved surface part 30a. Part 30b. In the example shown in FIG. 6, the holding portion 30 b is formed so as to protrude around the curved surface portion 30 a, and is fitted into a groove portion formed in a rectangular ring shape for each square of the frame body portion 40.

レンズ部30のレンズ材質は、例えば、ポリカーボネート(Polycarbonate)樹脂である。なお、これに限定されず、レンズ材質としては、アクリル等の成形加工が可能な樹脂材料を用いることが可能である。また、前述したように、レンズ部30と枠体部40とを、同じ樹脂材料の成型によって、一体物として形成してもよい。   The lens material of the lens unit 30 is, for example, polycarbonate (Polycarbonate) resin. The lens material is not limited to this, and a resin material that can be molded such as acrylic can be used. Further, as described above, the lens portion 30 and the frame body portion 40 may be formed as a single body by molding the same resin material.

ポリカーボネートは、耐候性タイプのポリカーボネートを適用することが好ましい。   The polycarbonate is preferably a weather-resistant type polycarbonate.

(4.立壁部60)
各表面実装型発光部10a(より具体的には、各表面実装型発光部10aと、レンズ部30と、枠体部40と)に対応させて立壁部60が配置される。立壁部60は、枠体部40の行方向に対応させて配置されている。つまり、立壁部60は、図1で示したとおり、発光装置1が備える表面実装型発光部10aの16行に対応させて16個配置されている。
(4. Standing wall 60)
The standing wall portion 60 is disposed in correspondence with each surface mount type light emitting portion 10a (more specifically, each surface mount type light emitting portion 10a, the lens portion 30, and the frame body portion 40). The standing wall portion 60 is disposed in correspondence with the row direction of the frame body portion 40. That is, as shown in FIG. 1, 16 standing wall portions 60 are arranged corresponding to 16 rows of the surface-mounted light emitting portion 10 a included in the light emitting device 1.

なお、立壁部60を行方向に対応させて配置することに限られず、列方向に対応させて配置してもよい。いずれの形態であっても、発光装置1の正面方向の照度を向上させることができる。ただし、後述するように、立壁部60を回動可能に構成した場合、立壁部60の先端が向く方向の照度を向上させることができる。したがって、立壁部60を行方向に対応させて配置すると、例えば、植物の高さ方向(上下方向)の照度を、部位によって変化させることができる。一方、立壁部60を列方向に対応させて配置すると、例えば、植物の幅方向(左右方向)の照度を、部位によって変化させることができる。   In addition, it is not restricted to arrange | positioning the standing wall part 60 corresponding to a row direction, You may arrange | position corresponding to a column direction. In any form, the illuminance in the front direction of the light emitting device 1 can be improved. However, as described later, when the standing wall portion 60 is configured to be rotatable, the illuminance in the direction in which the tip of the standing wall portion 60 faces can be improved. Therefore, when the standing wall part 60 is arranged corresponding to the row direction, for example, the illuminance in the height direction (vertical direction) of the plant can be changed depending on the part. On the other hand, if the standing wall part 60 is arrange | positioned corresponding to a row direction, the illumination intensity of the width direction (left-right direction) of a plant can be changed with a site | part, for example.

立壁部60は、照射効率を向上させるために、反射率を高める表面処理、例えば白色系などで着色することが好ましく、白色ポリカーボネート樹脂を適用することもできる。   In order to improve the irradiation efficiency, the standing wall 60 is preferably colored with a surface treatment that increases the reflectance, such as white, and a white polycarbonate resin can also be applied.

また、図6に示すように、立壁部60の高さhは10mmとしている。したがって、発光装置1は、広い範囲を照射することが可能となる。   Moreover, as shown in FIG. 6, the height h of the standing wall 60 is 10 mm. Therefore, the light emitting device 1 can irradiate a wide range.

立壁部60は、枠体部40に嵌め込まれるように突出した突起部60aが設けられ、突起部60aは、枠体部40に回動可能に固定されている。   The standing wall portion 60 is provided with a protruding portion 60 a protruding so as to be fitted into the frame body portion 40, and the protruding portion 60 a is fixed to the frame body portion 40 so as to be rotatable.

なお、立壁部60を回動可能にする構成としては、一般的なルーバーと同様な構成を用いることができる。例えば、前記特許文献3に記載された可動ルーバー装置を立壁部60に適用することができる。以下では、図14に基づいて、前記特許文献3に記載された可動ルーバー装置について簡単に説明する。   In addition, as a structure which enables the standing wall part 60 to rotate, the structure similar to a general louver can be used. For example, the movable louver device described in Patent Document 3 can be applied to the standing wall portion 60. Below, based on FIG. 14, the movable louver apparatus described in the said patent document 3 is demonstrated easily.

図14に示すように、特許文献3に記載された可動ルーバー装置は、左右の縦枠301,301間にルーバー302を多段状に配している。そのルーバー302の両端部を支軸303を介して両縦枠301,301に回転可能に取り付けている。また、各ルーバー302の一端面に固着したアームプレート304をルーバー302の幅方向一端部から所要長さ突出させている。その突出端部をルーバー連動杆305に枢支連結している。ルーバー連動杆305の下端側所要位置には、把手部306oが室内側へ延出したルーバー回転操作用ハンドル306を枢着している。さらに、ハンドル306の先端部をルーバー302の支軸303より室外側へ寄った位置で縦枠301に枢着している。   As shown in FIG. 14, the movable louver device described in Patent Document 3 has louvers 302 arranged in multiple stages between left and right vertical frames 301, 301. Both ends of the louver 302 are rotatably attached to both vertical frames 301, 301 via a support shaft 303. Further, the arm plate 304 fixed to one end surface of each louver 302 is projected from the one end in the width direction of the louver 302 to a required length. The protruding end portion is pivotally connected to the louver interlocking rod 305. At a required position on the lower end side of the louver interlocking rod 305, a handle 306o for rotating the louver extending to the indoor side is pivotally attached to a handle portion 306o. Furthermore, the front end of the handle 306 is pivotally attached to the vertical frame 301 at a position closer to the outdoor side than the support shaft 303 of the louver 302.

ハンドル306を先端枢着部307を中心に上下方向に回動させることにより、ルーバー302を一斉に回転させることができる。なお、ハンドル306と縦枠301との間に、ハンドル306を所要角度回動させた位置に固定するロック手段を設けている。   The louver 302 can be rotated all at once by rotating the handle 306 in the vertical direction around the tip pivoting portion 307. In addition, a lock unit is provided between the handle 306 and the vertical frame 301 to fix the handle 306 to a position rotated by a required angle.

〔変形例〕
なお、本実施の形態に記載された発光装置1が備える表面実装型発光部は、前記表面実装型発光部10aに限定することなく、例えば、図7に記載された表面実装型発光部10bに置き換えてもよい。
[Modification]
In addition, the surface mount type light emission part with which the light emitting device 1 described in this Embodiment is provided is not limited to the said surface mount type light emission part 10a, For example, in the surface mount type light emission part 10b described in FIG. It may be replaced.

本変形例では、表面実装型発光部10aを表面実装型発光部10bに置き換えたこと以外は、すべて実施の形態1と同様である。なお、本変形例において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。   In this modification, everything is the same as in the first embodiment except that the surface-mounted light emitting unit 10a is replaced with the surface-mounted light emitting unit 10b. The configuration other than that described in the present modification is the same as that of the first embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and explanation thereof is omitted.

(表面実装型発光部)
前記実施の形態1にて説明した表面実装型発光部10aは、クロロフィルの青色域吸収ピークに対応すべく短波長域400nm〜480nmの範囲でピーク波長を有する少なくとも1個の青色LEDチップ14aを有していた。
(Surface mount type light emitting part)
The surface-mounted light emitting unit 10a described in the first embodiment has at least one blue LED chip 14a having a peak wavelength in the short wavelength range of 400 nm to 480 nm in order to correspond to the blue absorption peak of chlorophyll. Was.

これに対して、本変形例の表面実装型発光部10bでは、植物の光合成によって吸収される光の複数のピーク波長のうち、短波長域において、互いに異なるピーク波長を有した少なくとも2種類の青色LEDチップを用いている。すなわち、青色LEDチップ14aは、クロロフィルbの青色域吸収ピークに対応すべく、短波長域400nm〜480nmの範囲でピーク波長(第1のピーク波長)を有する第1光を発生する。クロロフィルa用青色LEDチップ14bは、クロロフィルaの青色域吸収ピークに対応すべく、短波長域400〜450nmの範囲でピーク波長(第2のピーク波長)を有する第2光を発生する。   On the other hand, in the surface-mounted light emitting unit 10b of the present modification, at least two types of blue having different peak wavelengths in a short wavelength region among a plurality of peak wavelengths of light absorbed by plant photosynthesis. LED chip is used. That is, the blue LED chip 14a generates first light having a peak wavelength (first peak wavelength) in a short wavelength range of 400 nm to 480 nm in order to correspond to a blue range absorption peak of chlorophyll b. The blue LED chip 14b for chlorophyll a generates second light having a peak wavelength (second peak wavelength) in the short wavelength range of 400 to 450 nm in order to correspond to the blue range absorption peak of chlorophyll a.

次に、図7に基づいて、表面実装型発光部10bの一例について説明する。   Next, an example of the surface-mounted light emitting unit 10b will be described with reference to FIG.

図7は、表面実装型発光部10bの一例を示す平面図である。図7に示すように、表面実装型発光部10bは、表面実装用の外部端子であるカソード電極ランド11aおよびアノード電極ランド11bと、(表面実装型発光部10bの形状と凹部13の開口形状とに合わせて)適宜の形状に形成されたパッケージ部16と、パッケージ部16に形成された凹部13と、凹部13に搭載された、赤蛍光体17bを含有したシリコーン樹脂17aからなる樹脂層17(蛍光体含有封止樹脂)と、青色LEDチップ14aが2個と、青色LEDチップ14bが1個とを備える。前記樹脂層17は、凹部13の内側に充填されて前記3個の青色LEDチップ14aおよび14bの上側を被覆する。   FIG. 7 is a plan view showing an example of the surface-mounted light emitting unit 10b. As shown in FIG. 7, the surface-mounted light emitting unit 10b includes a cathode electrode land 11a and an anode electrode land 11b, which are external terminals for surface mounting, and (the shape of the surface-mounted light emitting unit 10b and the opening shape of the recess 13). A resin layer 17 made of a silicone resin 17a containing a red phosphor 17b mounted on the concave portion 13 and a concave portion 13 formed in the package portion 16; Phosphor-containing sealing resin), two blue LED chips 14a, and one blue LED chip 14b. The resin layer 17 is filled inside the recess 13 and covers the upper side of the three blue LED chips 14a and 14b.

また、赤蛍光体17bは、青色LEDチップ14aおよび青色LEDチップ14bの光を吸収して、複数のピーク波長のうち、長波長域620nm〜700nmのピーク波長に対応した第3光を発生する。当該第3光は、クロロフィルbおよびクロロフィルaの赤色域吸収ピークに対応する。   Further, the red phosphor 17b absorbs the light of the blue LED chip 14a and the blue LED chip 14b, and generates third light corresponding to the peak wavelength of the long wavelength region 620 nm to 700 nm among the plurality of peak wavelengths. The said 3rd light respond | corresponds to the red region absorption peak of chlorophyll b and chlorophyll a.

なお、前記の説明では、表面実装型発光部10bには、青色LEDチップ14aが2個搭載され、青色LEDチップ14bが1個搭載されているが、必ずしもこれに限らず、上述のように、少なくとも1個の青色LEDチップ14aと、1個の青色LEDチップ14bとが搭載されればよい。   In the above description, two blue LED chips 14a and one blue LED chip 14b are mounted on the surface-mounted light emitting unit 10b. However, the present invention is not limited to this, as described above. It is sufficient that at least one blue LED chip 14a and one blue LED chip 14b are mounted.

次に、前記クロロフィルaおよびクロロフィルbについて説明する。   Next, the chlorophyll a and chlorophyll b will be described.

植物は、クロロフィルaとクロロフィルbとを有している。具体的には、クロロフィルの青色域にはクロロフィルaとクロロフィルbとがあり、赤色域にもクロロフィルaとクロロフィルbとがある。   The plant has chlorophyll a and chlorophyll b. Specifically, chlorophyll a and chlorophyll b are present in the blue region of chlorophyll, and chlorophyll a and chlorophyll b are also present in the red region.

ここで、図5に示すように、クロロフィルaとクロロフィルbとは、青色域における光吸収特性がそれぞれ異なっている。具体的には、クロロフィルaは、400〜450nmにおいて、420nm付近で最大となる吸収ピークを有し、クロロフィルbは、400〜480nmにおいて、460nm付近で最大となる吸収ピークを有している。青色LEDの波長スペクトルは鋭いので、青色LED1種類では青色吸収域をカバーできない。そこで、青色域のクロロフィルaとクロロフィルbとに対応する2種類の青色LEDを(第1光および第2光を発するものとして)形成することが好ましい。   Here, as shown in FIG. 5, chlorophyll a and chlorophyll b have different light absorption characteristics in the blue region. Specifically, chlorophyll a has an absorption peak that is maximum near 420 nm at 400 to 450 nm, and chlorophyll b has an absorption peak that is maximum near 460 nm at 400 to 480 nm. Since the wavelength spectrum of a blue LED is sharp, one type of blue LED cannot cover the blue absorption region. Therefore, it is preferable to form two types of blue LEDs (assuming that the first light and the second light are emitted) corresponding to chlorophyll a and chlorophyll b in the blue region.

また、クロロフィルaおよびクロロフィルbは、赤色域においては、620〜700nmに、互いに異なる吸収ピークを有している。なお、蛍光体のスペクトルはブロードなので赤色吸収域をカバーすることができる。   Chlorophyll a and chlorophyll b have absorption peaks different from each other at 620 to 700 nm in the red region. Since the spectrum of the phosphor is broad, the red absorption range can be covered.

以上のことから、表面実装型発光素子10bにてクロロフィルの吸収ピークに、一層適合した発光装置が実現可能となった。   From the above, it has become possible to realize a light-emitting device that is more suitable for the absorption peak of chlorophyll in the surface-mounted light-emitting element 10b.

〔実施の形態2〕
本発明の他の実施の形態について、図8および図9に基づいて説明すれば、以下のとおりである。なお、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIG. 8 and FIG. Configurations other than those described in the present embodiment are the same as those in the first embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and explanation thereof is omitted.

(発光装置)
図8は、本発明の実施の形態2に係る発光装置1’の概要を示す正面図である。
(Light emitting device)
FIG. 8 is a front view showing an outline of the light-emitting device 1 ′ according to Embodiment 2 of the present invention.

図示のように、本実施の形態に係る発光装置1’では、二次元的に配置された複数の表面実装型発光部10aの一部を置き換えるように、表面実装型発光部10c(詳細は図9を参照)が分散して配置されている。この点以外の構成は、すべて図1に示した発光装置1と同様である。   As shown in the figure, in the light emitting device 1 ′ according to the present embodiment, the surface mounted light emitting unit 10c (details are shown in FIG. 9) are distributed. The configuration other than this point is the same as that of the light emitting device 1 shown in FIG.

(表面実装型発光部)
発光装置1’が備える表面実装型発光部10aの構成は、実施の形態1に説明したものと同様であるため、その説明を省略する。ここで、図9に基づいて、表面実装型発光部10cの構成についてのみ説明する。
(Surface mount type light emitting part)
Since the configuration of the surface-mounted light emitting unit 10a included in the light emitting device 1 ′ is the same as that described in the first embodiment, the description thereof is omitted. Here, based on FIG. 9, only the configuration of the surface-mounted light emitting unit 10c will be described.

図9は、本発明の実施の形態2に係る発光装置1’に実装される表面実装型発光部10cの平面図である。   FIG. 9 is a plan view of the surface-mounted light emitting unit 10c mounted on the light emitting device 1 'according to Embodiment 2 of the present invention.

表面実装型発光部10cは、図示のように、表面実装用の外部端子であるカソード電極ランド11aおよびアノード電極ランド11bと、(表面実装型発光部10aおよび10bの形状と凹部13の開口形状とに合わせて)適宜の形状に形成されたパッケージ部16と、パッケージ部16に形成された凹部13と、凹部13に搭載された、シリコーン樹脂からなる封止樹脂44と、3個の青色光を発生する青色LEDチップ14bとを備える。前記封止樹脂44は、凹部13の内側に充填されて前記3個の青色LEDチップ14bの上側を被覆する。   As shown in the figure, the surface-mounted light emitting unit 10c includes cathode electrode lands 11a and anode electrode lands 11b, which are external terminals for surface mounting, The package part 16 formed in an appropriate shape), the recess 13 formed in the package part 16, the sealing resin 44 made of silicone resin mounted in the recess 13, and three blue lights And a blue LED chip 14b to be generated. The sealing resin 44 is filled inside the recess 13 and covers the upper side of the three blue LED chips 14b.

青色LEDチップ14bは、既に説明したとおり、複数のピーク波長のうち、短波長域400nm〜450nmのピーク波長に対応した第2光を発生する。当該第2光は、クロロフィルaの青色域吸収ピークに対応する。したがって、青色域400nm〜450nmの範囲用の青色LEDチップ14bは、本発明のクロロフィルa用青色LEDチップとして機能している。   As already described, the blue LED chip 14b generates the second light corresponding to the peak wavelength in the short wavelength range of 400 nm to 450 nm among the plurality of peak wavelengths. The second light corresponds to the blue region absorption peak of chlorophyll a. Therefore, the blue LED chip 14b for the blue range of 400 nm to 450 nm functions as the blue LED chip for chlorophyll a of the present invention.

また、生物(植物等)によって青色域の吸収ピーク(吸収効率)が異なる。本実施形態において、その補間としての第2光を発する青色LEDチップ14bを独立させることによって、青色域においてクロロフィルaとクロロフィルbとの吸収ピークに合わせて第2光を容易に調整することができるという効果を奏する。   Moreover, the absorption peak (absorption efficiency) of a blue region changes with living organisms (plants etc.). In the present embodiment, the second light can be easily adjusted in accordance with the absorption peaks of chlorophyll a and chlorophyll b in the blue region by making the blue LED chip 14b emitting the second light as the interpolation independent. There is an effect.

よって、表面実装型発光部10aおよび表面実装型発光部10cにて、クロロフィルの吸収ピークに適切に対応できる発光装置が実現可能となった。   Therefore, it is possible to realize a light emitting device that can appropriately cope with the absorption peak of chlorophyll in the surface mounted light emitting unit 10a and the surface mounted light emitting unit 10c.

なお、前記の説明では、表面実装型発光部10cには、青色LEDチップ14bが3個搭載されているが、必ずしもこれに限らず、少なくとも1個の青色LEDチップ14bが搭載されればよい。   In the above description, three blue LED chips 14b are mounted on the surface-mounted light emitting unit 10c. However, the present invention is not limited to this, and at least one blue LED chip 14b may be mounted.

〔従来技術との比較〕
特許文献1および2に記載された光源の構成では、光源の正面における照度が不十分になるという問題が有る。
[Comparison with conventional technology]
In the structure of the light source described in Patent Documents 1 and 2, there is a problem that the illuminance in front of the light source becomes insufficient.

また、特許文献1に記載の植物伸長装置は、光照射対象となる植物の種類を判別し、判別した植物の種類に応じて射出される光のスペクトルを設定するものである。また、各種類の植物に対して、適切な光のスペクトルを設定するために、複数種類のLEDを備えることが開示されている。よって、LEDの搭載数が多くなり、設置面積が大きくなり、コストが高くなってしまう。   Moreover, the plant extending | stretching apparatus of patent document 1 discriminate | determines the kind of plant used as light irradiation object, and sets the spectrum of the light inject | emitted according to the identified kind of plant. In addition, it is disclosed that a plurality of types of LEDs are provided in order to set an appropriate light spectrum for each type of plant. Therefore, the number of LEDs mounted increases, the installation area increases, and the cost increases.

特許文献2に記載の植物栽培用LED光源は、赤色LEDと青色LEDとを備えている。   The LED light source for plant cultivation described in Patent Document 2 includes a red LED and a blue LED.

そして、特許文献2においては、青色LEDの光量は、赤色LEDの光量における50%以下の割合となるように用いられている。通常、青色LED光の光量を赤色LED光の光量における50%以下の割合とするには、
(A)赤色LEDを高輝度発光させる(駆動電流を増加する)か、
(B)各LEDに搭載する赤LEDチップ数を増やすか、
(C)赤色LEDの個数を増やすか、
等の措置が必要となる。
And in patent document 2, the light quantity of blue LED is used so that it may become a ratio of 50% or less in the light quantity of red LED. Usually, in order to make the light quantity of blue LED light 50% or less in the light quantity of red LED light,
(A) Make the red LED emit light with high brightness (increase the drive current),
(B) Increase the number of red LED chips mounted on each LED,
(C) Increase the number of red LEDs,
Measures such as these are necessary.

よって、以下の課題を有している。   Therefore, it has the following problems.

(1)青色LEDと赤色LEDとの個別の素子を複数使用する場合に、所定の光量割合を満足し、かつ同時に空間的に色むらなく一様な混色光を実現するのは非常に難しく、植物栽培に必要な混合色を得ることは困難である。   (1) When using a plurality of individual elements of the blue LED and the red LED, it is very difficult to realize a uniform mixed color light satisfying a predetermined light quantity ratio and at the same time without spatial color unevenness, It is difficult to obtain a mixed color necessary for plant cultivation.

また、従来の発光装置では、発光装置の正面での光度が不十分という課題があった。   Moreover, in the conventional light-emitting device, there existed a subject that the luminous intensity in the front of a light-emitting device was inadequate.

つまり、従来の発光装置では、照射性がよくない。   That is, in the conventional light emitting device, the irradiation property is not good.

(2)前記(A)の場合には、青/赤LEDチップ間の劣化特性差が助長され、長期的な駆動時に、赤色LEDが劣化しやすくなる。   (2) In the case of the above (A), the deterioration characteristic difference between the blue / red LED chips is promoted, and the red LED tends to deteriorate during long-term driving.

また、青色域と赤色域との光量割合を調整する必要があるが、青色LEDまたは赤色LEDの個数の調整によって光量割合を合わせる場合には、長期的な駆動を考慮すると劣化特性の違いにより光量割合のずれが生じる。   In addition, it is necessary to adjust the light quantity ratio between the blue area and the red area. However, when adjusting the light quantity ratio by adjusting the number of blue or red LEDs, considering the long-term driving, the light quantity ratio varies depending on the deterioration characteristics. Deviations in proportion occur.

つまり、従来の発光装置では、耐候性がよくない。   That is, the conventional light emitting device has poor weather resistance.

(3)前記(B)または(C)の場合には、赤LEDチップまたは赤色LEDを多く設置する必要がある。しかし、赤LEDチップは、コストが高く、また、温度特性がよくないため、発光効率が温度によって変わり、温度が高いほど効率が悪くなる。   (3) In the case of (B) or (C), it is necessary to install many red LED chips or red LEDs. However, the red LED chip is expensive and has poor temperature characteristics. Therefore, the light emission efficiency varies depending on the temperature, and the higher the temperature, the worse the efficiency.

さらに、短波長の光は、樹脂透過率が劣化するため、エポキシ樹脂レンズを備える特許文献2に記載の植物栽培用LED光源は、短波長の光(例えば、青色光)に対して劣化する。   Furthermore, since the resin transmittance of the short wavelength light is deteriorated, the LED light source for plant cultivation described in Patent Document 2 including the epoxy resin lens is deteriorated with respect to the short wavelength light (for example, blue light).

つまり、従来の発光装置では、信頼性がよくない。   That is, the conventional light emitting device is not reliable.

以下では、本発明が従来技術に比べて優れた点について説明する。まず、前記各実施の形態に係る表面実装型発光部10a、10b、10cと、従来の赤色砲弾型LEDランプと青色砲弾型LEDランプとを組み合わせたもの(例えば、LED112(図10および図11を参照)、LED210およびLED220(図12および図13を参照))との比較を、表1に基づいて説明する。   Hereinafter, the advantages of the present invention over the prior art will be described. First, a combination of the surface-mounted light emitting units 10a, 10b, and 10c according to each of the embodiments described above and a conventional red bullet-type LED lamp and blue bullet-type LED lamp (for example, LED 112 (see FIGS. 10 and 11). Comparison with LED 210 and LED 220 (see FIGS. 12 and 13)) will be described based on Table 1.

Figure 2013080969
Figure 2013080969

表1に示すように、前記各実施の形態に係る表面実装型発光部10a、10b、10cは、従来の赤色砲弾型LEDランプと青色砲弾型LEDランプとを組み合わせたものと比べて、信頼性、コスト、特性、設置面積、寿命の全ての点で優れていることが把握される。   As shown in Table 1, the surface-mounted light emitting units 10a, 10b, and 10c according to each of the embodiments are more reliable than a combination of a conventional red bullet-type LED lamp and a blue bullet-type LED lamp. It is understood that it is excellent in all points of cost, characteristics, installation area, and lifetime.

具体的には、信頼性については、エポキシ樹脂を使わないため、樹脂劣化が少ないという効果がある。   Specifically, with respect to reliability, since no epoxy resin is used, there is an effect that resin degradation is small.

また、コストについても、本実施の形態の表面実装型発光部10a、10b、10cでは、表1に示すように、従来に比べてコストメリットがあることが明らかである。   Further, as shown in Table 1, it is clear that the surface mounted light emitting units 10a, 10b, and 10c of the present embodiment have a cost merit as compared with the conventional cost.

特性については、赤色LEDチップを使用しないため、温度特性を約10%改善することができる。   Regarding the characteristics, since the red LED chip is not used, the temperature characteristics can be improved by about 10%.

また、設置面積については、従来技術である青色砲弾型LEDランプと赤色砲弾型LEDランプとを組み合わせたときの設置面積を1とすると、表面実装型発光部10a、10b、10cでは1/6となる。このため、本実施の形態の表面実装型発光部10a、10b、10cでは、設置面積が少なくてすむという特徴がある。   Further, regarding the installation area, when the installation area when combining the conventional artillery-type LED lamp and the red artillery-type LED lamp is 1, the surface-mounted light emitting units 10a, 10b, and 10c are 1/6. Become. For this reason, the surface-mounted light emitting units 10a, 10b, and 10c of the present embodiment have a feature that an installation area is small.

さらに、寿命については、表面実装型発光部10a、10b、10cの寿命は3〜4万時間なので、電熱型ランプ(電球)はいうまでもなく、蛍光灯ランプに比べても十倍以上も長寿命である。   Furthermore, the lifetime of the surface-mounted light emitting units 10a, 10b, and 10c is 3 to 40,000 hours, so it goes without saying that they are electric heating lamps (bulbs), and are ten times longer than fluorescent lamps. It is a lifetime.

〔補足〕
ここで、色素クロロフィルについて記載したがそれに限定することなく、光合成色素であればよく、例えば、カロテノイド、フィコピリンなどが挙げられる。さらに生物、植物としてラン藻類、紅藻類、ケイ藻類、褐藻類、緑藻類、種子植物(コケ、シダ)、光合成細菌などの光従属栄養的生物全般が挙げられる。
[Supplement]
Although the pigment chlorophyll has been described here, the photosynthetic pigment is not limited thereto, and examples thereof include carotenoids and phycopyrine. Furthermore, examples of organisms and plants include photoheterotrophic organisms such as cyanobacteria, red algae, diatoms, brown algae, green algae, seed plants (moss, fern), and photosynthetic bacteria.

なお、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.

本発明に係る発光装置は、枠体部とレンズ部とは、一体に形成されてレンズアレイモジュールとされることが好ましい。   In the light emitting device according to the present invention, it is preferable that the frame body portion and the lens portion are formed integrally to form a lens array module.

また、本発明に係る発光装置では、前記レンズ部はドットマトリックス状に配置され、前記枠体部は格子状に形成されることが好ましい。   In the light emitting device according to the present invention, it is preferable that the lens portions are arranged in a dot matrix shape and the frame body portions are formed in a lattice shape.

また、本発明に係る発光装置は、前記枠体部に対応するように配置された立壁部を備え、前記立壁部の突起部が前記枠体部に嵌め込まれ、前記立壁部は可変にすることが好ましい。   Moreover, the light emitting device according to the present invention includes a standing wall portion disposed so as to correspond to the frame body portion, and a projection portion of the standing wall portion is fitted into the frame body portion, and the standing wall portion is variable. Is preferred.

また、本発明に係る表面実装型発光部は、表面実装型発光部内にクロロフィルの青色域吸収ピークに対応すべく波長が400〜450nmの範囲でピーク波長を有する少なくとも1個の青色LEDチップと、クロロフィルの青色域吸収ピークに対応すべく波長が400〜480nmの範囲でピーク波長を有する少なくとも1個の青色LEDチップと、上記青色LEDチップからの励起光により、クロロフィルの赤色域吸収ピークに対応すべくピーク波長が波長620〜700nmの光を発光する赤蛍光体と、上記赤蛍光体を分散して上記少なくとも1個の青色LEDチップを覆う樹脂層とが設けられることが好ましい。   Further, the surface-mounted light emitting unit according to the present invention includes at least one blue LED chip having a peak wavelength in the range of 400 to 450 nm in order to correspond to a blue region absorption peak of chlorophyll in the surface-mounted light emitting unit, Corresponding to the red region absorption peak of chlorophyll by at least one blue LED chip having a peak wavelength in the range of 400 to 480 nm and excitation light from the blue LED chip to correspond to the blue region absorption peak of chlorophyll. Preferably, a red phosphor that emits light having a peak wavelength of 620 to 700 nm and a resin layer that disperses the red phosphor and covers the at least one blue LED chip are preferably provided.

さらに、本発明に係る表面実装型発光部は、表面実装型発光部内に透光性封止樹脂で覆われたクロロフィルの青色域吸収ピークに対応すべく波長が400〜450nmの青色LEDチップと赤蛍光体が異なることが好ましい。   Furthermore, the surface-mounted light emitting unit according to the present invention includes a blue LED chip having a wavelength of 400 to 450 nm and a red LED corresponding to a blue region absorption peak of chlorophyll covered with a light-transmitting sealing resin in the surface-mounted light emitting unit. It is preferable that the phosphors are different.

また、本発明に係る表面実装型発光部は、波長400nm〜480nmの青色域における光合成光量子束と、波長620nm〜700nmの赤色域における光合成光量子束との比が、1:1.3〜1:10となっていることが好ましい。この結果、植物の発芽・育苗および栽培に適した表面実装型発光部とすることが可能となる。   In the surface-mounted light emitting unit according to the present invention, the ratio of the photosynthetic photon flux in the blue region having a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region having a wavelength of 620 nm to 700 nm is 1: 1.3 to 1: 10 is preferable. As a result, it is possible to obtain a surface-mounted light emitting unit suitable for plant germination, seedling and cultivation.

また、本発明に係る表面実装型発光部は、ピーク波長である波長400〜480nmの第1光と波長620〜700nmの第3光とが出射されることが好ましい。   Moreover, it is preferable that the surface-mounted light emitting unit according to the present invention emits first light having a peak wavelength of 400 to 480 nm and third light having a wavelength of 620 to 700 nm.

また、本発明に係る表面実装型発光部は、植物の光合成によって吸収される光の複数のピーク波長のうち、短波長域400〜450nmのピーク波長に対応した第2光を発する、少なくとも1個のLEDチップと、上記LEDチップを覆う封止樹脂とを備えてもよい。なお、上記封止樹脂は、シリコーン樹脂からなってもよい。   In addition, the surface-mounted light emitting unit according to the present invention emits at least one second light corresponding to a peak wavelength in a short wavelength region of 400 to 450 nm among a plurality of peak wavelengths of light absorbed by plant photosynthesis. The LED chip and a sealing resin that covers the LED chip may be provided. The sealing resin may be made of a silicone resin.

また、本発明に係る発光装置は、配線基板の表面に実装された、少なくとも1個の第1光および第3光を発する表面実装型発光部と、少なくとも1個の第2光を発する表面実装型発光部と、上記表面実装型発光部の光出射側に配されたレンズ部と、上記レンズ部の周囲を固定する枠体部とを備えてもよい。   The light-emitting device according to the present invention includes at least one surface-mounted light emitting unit that emits first light and third light, and surface mounting that emits at least one second light, which are mounted on the surface of the wiring board. There may be provided a mold light emitting part, a lens part arranged on the light emitting side of the surface mount light emitting part, and a frame body part for fixing the periphery of the lens part.

なお、本発明に係る発光装置を栽培または培養を含む生物育成用の光源として備えている光照射装置についても、本発明の技術的範囲に含まれる。   In addition, the light irradiation apparatus provided with the light-emitting device according to the present invention as a light source for organism growth including cultivation or culture is also included in the technical scope of the present invention.

なお、光照射装置として、図10または図13に示す構成を採用することができるが、高さのある植物に対し、側面から光を照射するように光照射装置を構成するなどの様々な変形が可能である。   Although the configuration shown in FIG. 10 or FIG. 13 can be adopted as the light irradiation device, various modifications such as configuring the light irradiation device to irradiate light from the side to a plant with a height. Is possible.

本発明は、真核生物栽培工場、光合成細菌栽培工場等に使用することができる栽培または培養などの育成用光照射装置に適用することができる。   The present invention can be applied to a light irradiation apparatus for cultivation such as cultivation or culture that can be used in a eukaryotic plant or a photosynthetic bacteria plant.

1、1’ 発光装置
10a、10b、10c 表面実装型発光部
14a 青色LEDチップ(第1のLEDチップ)
14b 青色LEDチップ(第2のLEDチップ)
17 樹脂層(蛍光体含有封止樹脂)
17b 赤蛍光体(蛍光体)
20 配線基板
30 レンズ部
40 枠体部
60 立壁部
1, 1 'light emitting device 10a, 10b, 10c surface mount type light emitting part 14a blue LED chip (first LED chip)
14b Blue LED chip (second LED chip)
17 Resin layer (phosphor-containing sealing resin)
17b Red phosphor (phosphor)
20 Wiring board 30 Lens part 40 Frame part 60 Standing wall part

Claims (7)

配線基板の表面に実装された表面実装型発光部と、
上記表面実装型発光部の光出射側に配されたレンズ部と、
上記レンズ部の周囲を固定する枠体部とを備え、
上記表面実装型発光部は、
生育に光を必要とする生物によって吸収される光の複数のピーク波長のうち、相対的に短波長域の第1のピーク波長に対応した第1光を発する、少なくとも1個の第1のLEDチップと、
上記第1のLEDチップを覆う蛍光体含有封止樹脂とを備え、
上記蛍光体含有封止樹脂に含有された蛍光体は、上記第1のLEDチップが出射する第1光を吸収することにより、上記複数のピーク波長のうち、相対的に長波長域のピーク波長に対応した第3光を発し、
上記表面実装型発光部を含む複数の表面実装型発光部が、1行状に配置され、
上記枠体部に対して、光出射側に立ち上がる立壁部が、上記複数の表面実装型発光部が1行状に配置された方向と平行な方向に連続して設けられており、
上記立壁部は、上記配線基板の表面に対して、垂直な状態と傾斜した状態との間で回動可能に構成されていること
を特徴とする発光装置。
A surface-mounted light emitting part mounted on the surface of the wiring board;
A lens unit disposed on the light emitting side of the surface-mounted light emitting unit;
A frame portion for fixing the periphery of the lens portion;
The surface mount light emitting part is
At least one first LED that emits a first light corresponding to a first peak wavelength in a relatively short wavelength region among a plurality of peak wavelengths of light absorbed by an organism that requires light for growth. Chips,
A phosphor-containing sealing resin that covers the first LED chip,
The phosphor contained in the phosphor-containing sealing resin absorbs the first light emitted from the first LED chip, so that the peak wavelength in a relatively long wavelength region among the plurality of peak wavelengths. Emits a third light corresponding to
A plurality of surface-mounted light-emitting parts including the surface-mounted light-emitting part are arranged in one row,
With respect to the frame body part, the standing wall part rising on the light emitting side is continuously provided in a direction parallel to the direction in which the plurality of surface-mounted light emitting parts are arranged in a row,
The light emitting device, wherein the upright wall portion is configured to be rotatable between a vertical state and an inclined state with respect to a surface of the wiring board.
上記表面実装型発光部は、
上記複数のピーク波長のうち、上記短波長域の第2のピーク波長であって、上記第1のピーク波長とは異なる第2のピーク波長に対応した第2光を発する、少なくとも1個の第2のLEDチップを備えていること
を特徴とする請求項1に記載の発光装置。
The surface mount light emitting part is
Among the plurality of peak wavelengths, at least one second wavelength that emits second light corresponding to a second peak wavelength that is a second peak wavelength in the short wavelength region and is different from the first peak wavelength. The light emitting device according to claim 1, comprising two LED chips.
上記第1のLEDチップは、表面実装型発光部内に生物によって吸収される青色域吸収ピークに対応すべく波長が400〜480nmの範囲でピーク波長を有する青色LEDチップであり、
上記第2のLEDチップは、青色域吸収ピークに対応すべく波長が400〜450nmの範囲でピーク波長を有する青色LEDチップであり、
上記蛍光体は、上記第1のLEDチップおよび第2のLEDチップからの励起光により、赤色域吸収ピークに対応すべくピーク波長が波長620〜700nmの光を発光する赤蛍光体であり、
上記蛍光体含有封止樹脂は、上記赤蛍光体を分散して上記第1のLEDチップおよび第2のLEDチップを覆う樹脂層であること
を特徴とする請求項2に記載の発光装置。
The first LED chip is a blue LED chip having a peak wavelength in a range of 400 to 480 nm to correspond to a blue region absorption peak absorbed by living organisms in the surface-mounted light emitting unit,
The second LED chip is a blue LED chip having a peak wavelength in a range of 400 to 450 nm in order to correspond to a blue region absorption peak,
The phosphor is a red phosphor that emits light having a peak wavelength of 620 to 700 nm so as to correspond to a red region absorption peak by excitation light from the first LED chip and the second LED chip.
3. The light emitting device according to claim 2, wherein the phosphor-containing sealing resin is a resin layer that disperses the red phosphor and covers the first LED chip and the second LED chip.
上記立壁部は手動で光の照射角度を調整できること
を特徴とする請求項1〜3のいずれか1項に記載の発光装置。
The light emitting device according to any one of claims 1 to 3, wherein the standing wall portion can manually adjust an irradiation angle of light.
上記立壁部は、上記枠体部に対応するように配置され、上記立壁部の突起部が上記枠体部に嵌め込まれること
を特徴とする請求項1〜4のいずれか1項に記載の発光装置。
5. The light emitting device according to claim 1, wherein the standing wall portion is disposed so as to correspond to the frame body portion, and a protruding portion of the standing wall portion is fitted into the frame body portion. apparatus.
上記1行状に配置された表面実装型発光部を含む筐体は、電子機器への取り付け用の係合部を備えていること
を特徴とする請求項1〜5のいずれか1項に記載の発光装置。
6. The housing according to claim 1, wherein the housing including the surface-mounted light-emitting portions arranged in a single row includes an engaging portion for attachment to an electronic device. Light emitting device.
請求項1〜6のいずれか1項に記載の発光装置を、栽培または培養を含む生物育成用の光源として備えていることを特徴とする光照射装置。   A light irradiation apparatus comprising the light-emitting device according to claim 1 as a light source for organism growth including cultivation or culture.
JP2013016191A 2013-01-30 2013-01-30 Light emitting device and light irradiation device including light emitting device Expired - Fee Related JP5394583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016191A JP5394583B2 (en) 2013-01-30 2013-01-30 Light emitting device and light irradiation device including light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016191A JP5394583B2 (en) 2013-01-30 2013-01-30 Light emitting device and light irradiation device including light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011203663A Division JP5192068B2 (en) 2011-09-16 2011-09-16 Light emitting device and light irradiation device including light emitting device

Publications (2)

Publication Number Publication Date
JP2013080969A true JP2013080969A (en) 2013-05-02
JP5394583B2 JP5394583B2 (en) 2014-01-22

Family

ID=48527056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016191A Expired - Fee Related JP5394583B2 (en) 2013-01-30 2013-01-30 Light emitting device and light irradiation device including light emitting device

Country Status (1)

Country Link
JP (1) JP5394583B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102673133B1 (en) 2016-12-22 2024-06-10 헨켈 아게 운트 코. 카게아아 Reaction products of catechol compounds and functionalized co-reactive compounds for metal pretreatment applications

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349822A (en) * 1991-01-30 1992-12-04 Iwasaki Electric Co Ltd Plant growing device
JPH0552882U (en) * 1991-12-20 1993-07-13 タキロン株式会社 Surface condensing plate for dot matrix light emitting display
JP2004344114A (en) * 2003-05-23 2004-12-09 Ccs Inc Method and apparatus for elongating plant
JP2005027521A (en) * 2003-07-08 2005-02-03 Nippon Keiki Works Ltd Mobile light emitting diode (led) lighting system
JP2006339047A (en) * 2005-06-02 2006-12-14 Sony Corp Backlight device and liquid crystal display equipped with it
JP2007068416A (en) * 2005-09-05 2007-03-22 Hidekazu Kubota Mushroom culturing device
JP2009011232A (en) * 2007-07-04 2009-01-22 Spread:Kk Lighting equipment for plant cultivation
JP2010004869A (en) * 2008-05-28 2010-01-14 Mitsubishi Chemicals Corp Apparatus and method for raising organism
JP2010281825A (en) * 2010-07-09 2010-12-16 Ccs Inc Line light irradiating device
JP2011119248A (en) * 2009-11-06 2011-06-16 Mitsubishi Electric Corp Light emitting device, lighting system, and color conversion converter
JP2011155948A (en) * 2010-02-03 2011-08-18 Seiwa Electric Mfg Co Ltd Light-emitting device for raising plant
JP2011180440A (en) * 2010-03-02 2011-09-15 Sharp Corp Display device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349822A (en) * 1991-01-30 1992-12-04 Iwasaki Electric Co Ltd Plant growing device
JPH0552882U (en) * 1991-12-20 1993-07-13 タキロン株式会社 Surface condensing plate for dot matrix light emitting display
JP2004344114A (en) * 2003-05-23 2004-12-09 Ccs Inc Method and apparatus for elongating plant
JP2005027521A (en) * 2003-07-08 2005-02-03 Nippon Keiki Works Ltd Mobile light emitting diode (led) lighting system
JP2006339047A (en) * 2005-06-02 2006-12-14 Sony Corp Backlight device and liquid crystal display equipped with it
JP2007068416A (en) * 2005-09-05 2007-03-22 Hidekazu Kubota Mushroom culturing device
JP2009011232A (en) * 2007-07-04 2009-01-22 Spread:Kk Lighting equipment for plant cultivation
JP2010004869A (en) * 2008-05-28 2010-01-14 Mitsubishi Chemicals Corp Apparatus and method for raising organism
JP2011119248A (en) * 2009-11-06 2011-06-16 Mitsubishi Electric Corp Light emitting device, lighting system, and color conversion converter
JP2011155948A (en) * 2010-02-03 2011-08-18 Seiwa Electric Mfg Co Ltd Light-emitting device for raising plant
JP2011180440A (en) * 2010-03-02 2011-09-15 Sharp Corp Display device
JP2010281825A (en) * 2010-07-09 2010-12-16 Ccs Inc Line light irradiating device

Also Published As

Publication number Publication date
JP5394583B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5450559B2 (en) LED light source for plant cultivation, plant factory and light emitting device
US11089737B2 (en) Light emission source LED component, horticultural light, and horticultural lighting fixture
JP5173004B1 (en) Light emitting device for plant cultivation and method for producing the same
US8568009B2 (en) Compact high brightness LED aquarium light apparatus, using an extended point source LED array with light emitting diodes
JP5192068B2 (en) Light emitting device and light irradiation device including light emitting device
JP6330063B2 (en) Light source module
JP5363985B2 (en) Plant growth equipment
JP5651302B2 (en) Light source for plant cultivation
US20120043907A1 (en) Compact high brightness led grow light apparatus, using an extended point source led array with light emitting diodes
US20150327446A1 (en) Led light source for plant cultivation
US11154039B2 (en) LED terrarium light for reptiles, amphibians, and birds, using an extended point source LED array with light emitting diodes of multiple wavelengths
JP5813621B2 (en) Light emitting device for plant cultivation
JP5917482B2 (en) LED light source for plant cultivation
JP2018019667A (en) Lighting system, lighting control method and plant cultivation container
JP2013059350A (en) Light-emitting device for plant cultivation
JP5394583B2 (en) Light emitting device and light irradiation device including light emitting device
CN205227030U (en) Dull and stereotyped light source of LED for vegetation
KR101290801B1 (en) A light source and apparatus for plant cultivation using it
JP5653764B2 (en) Lighting device for plant cultivation and plant cultivation device
JP2015000036A (en) Illumination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130130

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5394583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees