JP2013071865A - Method for producing artificial lightweight aggregate - Google Patents

Method for producing artificial lightweight aggregate Download PDF

Info

Publication number
JP2013071865A
JP2013071865A JP2011211903A JP2011211903A JP2013071865A JP 2013071865 A JP2013071865 A JP 2013071865A JP 2011211903 A JP2011211903 A JP 2011211903A JP 2011211903 A JP2011211903 A JP 2011211903A JP 2013071865 A JP2013071865 A JP 2013071865A
Authority
JP
Japan
Prior art keywords
raw material
firing
mixed
heat
lightweight aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011211903A
Other languages
Japanese (ja)
Other versions
JP5490768B2 (en
Inventor
Motoi Hikasa
基 日笠
Takuya Miyamura
拓哉 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Corp
Original Assignee
Daiken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Corp filed Critical Daiken Corp
Priority to JP2011211903A priority Critical patent/JP5490768B2/en
Publication of JP2013071865A publication Critical patent/JP2013071865A/en
Application granted granted Critical
Publication of JP5490768B2 publication Critical patent/JP5490768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing fine-grain balloons having undispersed size with excellent yield by ensuring homogeneous distribution of a firing raw material and by suppressing generation of clinker, concerning a method for producing artificial lightweight aggregate for obtaining the artificial lightweight aggregate by firing the firing raw material such as crushed ore or shirasu (volcanic soil) in a firing chamber of a vertical firing furnace.SOLUTION: The firing raw material comprising shirasu raw stone or the like and heat-resistant particles comprising silica sand or the like are mixed uniformly by a mixer 93 to obtain a mixed raw material. The obtained mixed raw material is charged from the lower end of a furnace body 1 into the firing chamber 2 together with compressed air. The firing raw material contained in the charged mixed raw material is fired and foamed in the firing chamber 2 to obtain the artificial lightweight aggregate. The firing raw material and the heat-resistant particles constituting the mixed raw material are mixed at the ratio of 10:0.5 to 10:2 in terms of the weight ratio.

Description

本発明は、破砕鉱石やシラス等の焼成原料を焼成して人工軽量骨材を製造する人工軽量骨材の製造方法に関するものである。   The present invention relates to a method for manufacturing an artificial lightweight aggregate in which an artificial lightweight aggregate is manufactured by firing a firing raw material such as crushed ore or shirasu.

従来より、破砕鉱石やシラス等の焼成原料を焼成して軽量骨材等の微粒バルーンを製造する場合に、焼成原料を構成する微粒子同士が凝集して焼成炉内に融着し、クリンカー(焼塊)が形成され、焼成炉内が閉塞或いは狭小化することによって歩留まりが低下する等の生産効率の低下が問題であった。この問題を解決すべく、これまで種々の工夫がなされてきた。   Conventionally, when producing a fine balloon such as a lightweight aggregate by firing a fired raw material such as crushed ore or shirasu, fine particles constituting the fired raw material are aggregated and fused in a firing furnace, and clinker (fired) A decrease in production efficiency, such as a decrease in yield due to blockage or narrowing of the firing furnace, was a problem. Various solutions have been made so far to solve this problem.

例えば、特許文献1には、直立バーナのノズル口よりも下方にある供給口から原料細粒を投入すると共に、焼成炉本体の側部にある吹込み口から原料細粒よりも大きい粒径の固体粒子を投入することによって、原料細粒の過度の温度上昇を防ぐと共に、原料細粒の均一分散化を実現し、焼成炉内の狭小化及びクリンカーの生成の抑制を図る竪型焼成炉が開示されている。   For example, in Patent Document 1, raw material fine particles are introduced from a supply port located below the nozzle port of an upright burner, and a particle diameter larger than that of the raw material fine particles is injected from a blowing port at a side of the firing furnace body. By introducing solid particles, a vertical firing furnace that prevents excessive temperature rise of the raw material fine particles, achieves uniform dispersion of the raw material fine particles, and narrows the inside of the firing furnace and suppresses the generation of clinker. It is disclosed.

特開平11−51570号公報JP 11-51570 A

しかしながら、特許文献1の竪型焼成炉では、焼成条件を検討及び調整する場合において、上記固体粒子の投入量によっては原料細粒が受ける炉内温度が安定せず、形成された微粒バルーンのサイズにバラつきが生じ易くなる虞がある。   However, in the vertical firing furnace of Patent Document 1, when examining and adjusting the firing conditions, the furnace temperature received by the raw material fine particles is not stable depending on the amount of solid particles charged, and the size of the formed fine balloon There is a risk that variations will easily occur.

また、特許文献1の竪型焼成炉では、原料細粒が焼成炉内を上昇しながら発泡する途中で固体粒子のみが炉本体側部から一方に投入されるため、炉内気流が乱れ易くなり、均一分散化やクリンカー抑制効果が十分とは言えない。   Further, in the vertical firing furnace of Patent Document 1, since only the solid particles are introduced from one side of the furnace body to the other side while the raw material fine particles are foaming while rising in the firing furnace, the air flow in the furnace is easily disturbed. Therefore, it cannot be said that the uniform dispersion and the clinker suppressing effect are sufficient.

本発明は、斯かる点に鑑みてなされたもので、その目的は、焼成原料の均一分散化をより確実にすると共にクリンカーの発生を抑制して、生産性良くサイズにバラつきのない微粒バルーンを製造する方法を提供することにある。   The present invention has been made in view of such a point, and the object thereof is to make a fine balloon with good productivity and a uniform size by ensuring the uniform dispersion of the firing raw material and suppressing the generation of clinker. It is to provide a method of manufacturing.

上記の目的を達成するために、この発明では、予め焼成原料が耐熱粒子と混合されて均一分散化された混合原料を焼成室に投入して焼成発泡させるようにした。尚、上記の耐熱粒子は、珪砂、セラミック粒子、アルミナボール等であって、焼成温度以上でも物質変化せず、且つ、耐衝撃性を有する粒子である。つまり、耐熱粒子は、竪型焼成炉において生成したバルーンと共に吹き上げられ、その後、ふるい分けて回収されて再度利用されるため、熱に耐えて変質せず、更に強度の劣化しない粒子である。   In order to achieve the above object, according to the present invention, a mixed raw material in which a calcined raw material is previously mixed with heat-resistant particles and uniformly dispersed is put into a calcining chamber to be calcined and foamed. The above heat-resistant particles are silica sand, ceramic particles, alumina balls, etc., and are particles that do not change the substance even at a firing temperature or higher and have impact resistance. In other words, the heat-resistant particles are particles that are blown up together with the balloon generated in the vertical firing furnace, and are then collected after being screened and reused, so that they are resistant to heat and do not deteriorate and the strength is not deteriorated.

すなわち、この請求項1の発明では、破砕鉱石、シラス等の焼成原料を竪型焼成炉の焼成室で焼成して人工軽量骨材を得る人工軽量骨材の製造方法であって、上記焼成原料と耐熱粒子とを混合して混合原料を得る工程と、上記混合原料を圧縮空気と共に上記焼成室内に投入する工程と、投入された上記混合原料に含まれる上記焼成原料を焼成して発泡させる工程と、を含むことを特徴とする。   That is, the invention of claim 1 is a method for producing an artificial lightweight aggregate by firing a firing raw material such as crushed ore and shirasu in a firing chamber of a vertical firing furnace to obtain an artificial lightweight aggregate, the firing raw material And a step of mixing the heat-resistant particles to obtain a mixed raw material, a step of introducing the mixed raw material together with compressed air into the baking chamber, and a step of baking and foaming the baking raw material contained in the input mixed raw material It is characterized by including these.

請求項1の発明によれば、予め焼成原料と耐熱粒子とを混合して均一分散化させた混合原料を投入して焼成発泡させるので、炉内において焼成原料を確実に均一分散化させて焼成発泡させることができ、焼成原料の微粒子同士が溶融してクリンカーとなるようなことがなく、且つ、サイズにバラつきのない微粒なバルーンを形成できる。   According to the first aspect of the present invention, since the mixed raw material obtained by mixing and preliminarily mixing the firing raw material and the heat-resistant particles is added and fired and foamed, the firing raw material is surely uniformly dispersed and fired in the furnace. It can be foamed, fine particles of the firing raw material are not melted to form a clinker, and a fine balloon with no variation in size can be formed.

また、請求項1の発明によれば、焼成原料と同時にその焼成原料に混合された耐熱粒子を投入しているので、仮に焼成原料を構成する微粒子が溶融して焼成炉の壁面に付着したとしても、この耐熱粒子が当該壁面に付着した溶融焼成原料に衝突してショット効果により壁面から剥がすようになり、このことにより、クリンカーの生成を防止することができる。尚、耐熱粒子も混合原料内で均一分散しているので、該耐熱粒子を炉内においても均一分散させて、上記壁面に均一に万遍なく接触(衝突)させることができる。   According to the invention of claim 1, since the heat-resistant particles mixed with the firing raw material are introduced at the same time as the firing raw material, it is assumed that the fine particles constituting the firing raw material melt and adhere to the wall surface of the firing furnace. However, the heat-resistant particles collide with the melt-fired raw material adhering to the wall surface and are peeled off from the wall surface due to the shot effect, thereby preventing the generation of clinker. In addition, since the heat-resistant particles are also uniformly dispersed in the mixed raw material, the heat-resistant particles can be uniformly dispersed in the furnace and uniformly contacted (collised) with the wall surface.

請求項2の発明の人工軽量骨材の製造方法では、上記第1の発明の人工軽量骨材の製造方法において、上記焼成原料と上記耐熱粒子とは、重量比で10:0.5乃至10:2の割合で混合されていることを特徴とする。   In the method for manufacturing an artificial lightweight aggregate according to the second aspect of the present invention, in the method for manufacturing an artificial lightweight aggregate according to the first aspect of the present invention, the calcined raw material and the heat-resistant particles are 10: 0.5 to 10 in a weight ratio. : Mixed at a ratio of 2:

この請求項2の発明によれば、焼成原料と耐熱粒子とを重量比で10:0.5乃至10:2の割合で混合した混合原料を焼成発泡させるので、サイズにバラつきのない安定した微粒なバルーンを生産性良く得ることができる。耐熱粒子が焼成原料に対して重量比で2割を超えると、焼成原料が相対的に少なくなり、生産性が低下する一方、0.5割を下回ると、耐熱粒子が相対的に少なくなり、上記請求項1の発明の効果を得られないからである。   According to the second aspect of the present invention, since the mixed raw material in which the calcined raw material and the heat-resistant particles are mixed at a weight ratio of 10: 0.5 to 10: 2 is calcined and foamed, stable fine particles having no variation in size are obtained. Can be obtained with good productivity. When the heat-resistant particles exceed 20% by weight with respect to the calcined raw material, the calcined raw material is relatively less and the productivity is lowered. This is because the effect of the invention of claim 1 cannot be obtained.

以上説明したように、請求項1の発明の人工軽量骨材の製造方法によると、予め焼成原料と耐熱粒子とを混合して均一分散化させた混合原料を投入して焼成発泡するので、炉内において確実に均一分散化させて焼成発泡させることができ、焼成原料を構成する粒子同士が溶融してクリンカーとなるようなことがなく、且つ、サイズにバラつきのない微粒なバルーンを形成できる。また、焼成原料と同時に耐熱粒子を投入しているので、焼成原料が溶融して焼成炉の壁面に付着したとしても、耐熱粒子が該壁面に付着した溶融原料に衝突して該壁面から剥がすことにより、クリンカーの生成を防止することができる。尚、耐熱粒子も混合原料内で均一分散しているので、該耐熱粒子を炉内においても均一分散させて、上記壁面に均一に万遍なく接触させることができる。   As described above, according to the method for manufacturing an artificial lightweight aggregate according to the first aspect of the present invention, since the mixed raw material in which the calcined raw material and the heat-resistant particles are previously mixed and uniformly dispersed is added and calcined and foamed, It is possible to surely uniformly disperse and baked and foamed inside, so that particles constituting the baked raw material are not melted to form a clinker, and a fine balloon with no variation in size can be formed. In addition, since the heat-resistant particles are introduced at the same time as the baking raw material, even if the baking raw material melts and adheres to the wall surface of the baking furnace, the heat-resistant particles collide with the molten raw material attached to the wall surface and peel off from the wall surface. Thus, the production of clinker can be prevented. In addition, since the heat-resistant particles are also uniformly dispersed in the mixed raw material, the heat-resistant particles can be uniformly dispersed in the furnace and can be uniformly and uniformly contacted with the wall surface.

請求項2の発明の人工軽量骨材の製造方法によると、焼成原料と耐熱粒子とを重量比で10:0.5乃至10:2の割合で混合した混合原料を焼成発泡させるので、サイズにバラつきのない安定した微粒なバルーンを生産性良く得ることができる。   According to the method for producing an artificial lightweight aggregate of the invention of claim 2, since the mixed raw material in which the calcined raw material and the heat-resistant particles are mixed at a weight ratio of 10: 0.5 to 10: 2 is calcined and foamed, A stable and fine balloon without variation can be obtained with high productivity.

本発明の実施形態で使用する竪型焼成炉の要部を概略的に示す断面図である。It is sectional drawing which shows schematically the principal part of the vertical baking furnace used by embodiment of this invention. インジェクションフィダーの構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of an injection feeder. 焼成室下端でのノズル開口部の構造を示す平面図である。It is a top view which shows the structure of the nozzle opening part in a baking chamber lower end. シラスバルーン製造後の竪型焼成炉内部の写真であって、同図(a)は実施例における写真であり、同図(b)は比較例における写真である。It is the photograph inside the vertical baking furnace after manufacture of Shirasu balloon, The figure (a) is a photograph in an Example, The figure (b) is a photograph in a comparative example.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the following description of the preferred embodiment is merely illustrative in nature.

図1は本発明の実施形態において使用する竪型焼成炉の一例を示し、1は円筒状の炉本体であって、該炉本体1は、垂直に配置された垂直部1aと、該垂直部1aの上端に一端が接続され、水平に配置された水平部1bとからなり、内部には焼成室2が形成されている。上記炉本体1の水平部1bの他端は燃焼ガス中から焼成後の軽量骨材を分離除去するためのサイクロン6が接続されている。   FIG. 1 shows an example of a vertical firing furnace used in an embodiment of the present invention, wherein 1 is a cylindrical furnace body, and the furnace body 1 includes a vertically arranged vertical portion 1a and a vertical portion. One end is connected to the upper end of 1a, and it consists of the horizontal part 1b arrange | positioned horizontally, The baking chamber 2 is formed in the inside. The other end of the horizontal portion 1b of the furnace body 1 is connected to a cyclone 6 for separating and removing the fired lightweight aggregate from the combustion gas.

上記炉本体1の垂直部1aの下端側壁部には火炎口3が焼成室2に臨んで開口され、この火炎口3は燃焼ガス流路4を経てバーナ5に連通されている。このバーナ5には図示していないが、連通管を介して送風機及び燃料供給装置が接続されており、燃料供給装置から送られた燃料を送風機から送られた空気(1次空気)とバーナ5で混合して燃焼させて燃焼炎5a及び燃焼ガスを生成し、その高温の燃焼ガスを燃焼炎5aと共に燃焼ガス流路4及び火炎口3を介して焼成室2内にその下端部から供給するようになされている。   A flame port 3 is opened at the lower end side wall portion of the vertical portion 1 a of the furnace body 1 so as to face the firing chamber 2, and the flame port 3 communicates with the burner 5 through the combustion gas flow path 4. Although not shown in the figure, a blower and a fuel supply device are connected to the burner 5 through a communication pipe. The fuel sent from the fuel supply device is sent from the blower (primary air) and the burner 5. Are mixed and burned to generate a combustion flame 5a and combustion gas, and the high-temperature combustion gas is supplied from the lower end portion into the firing chamber 2 through the combustion gas flow path 4 and the flame port 3 together with the combustion flame 5a. It is made like that.

上記炉本体1の垂直部1a下端には、垂直部1a下端の底壁を貫通して垂直方向に延びる1本のノズル7の一端(下流端)が開口されている。このノズル7は、焼成室2に真珠岩、ヒル石、ケツ岩等の破砕鉱石やシラス等よりなる細粒の焼成原料と、珪砂等よりなる耐熱粒子とを均一に混合した混合原料を投入するものである。ここで、耐熱粒子とは、珪砂、セラミック粒子、アルミナボール等であって、800℃以上でも物質変化がなく、且つ、耐衝撃性を有する粒子のことである。図3に示すように、ノズル7の炉本体1の垂直部1a内に突出した部分は、耐火煉瓦からなる耐火壁8により間隔をあけて同心状に覆われている。この耐火壁8により、火炎口3からのバーナ燃焼炎5aが直接ノズル7に当たって該ノズル7が劣化するのを防ぐようになっている。   One end (downstream end) of one nozzle 7 that extends in the vertical direction through the bottom wall of the lower end of the vertical portion 1 a is opened at the lower end of the vertical portion 1 a of the furnace body 1. This nozzle 7 feeds into the firing chamber 2 a mixed raw material in which finely-fired raw materials made of crushed ore such as pearlite, leechite, and shale or shirasu, and heat-resistant particles made of silica sand or the like are uniformly mixed. Is. Here, the heat-resistant particles are particles such as silica sand, ceramic particles, alumina balls, etc., which have no material change even at 800 ° C. or higher and have impact resistance. As shown in FIG. 3, the part which protruded in the perpendicular | vertical part 1a of the furnace main body 1 of the nozzle 7 is covered concentrically at intervals by the fireproof wall 8 which consists of fireproof bricks. The fire wall 8 prevents the burner combustion flame 5a from the flame port 3 from directly hitting the nozzle 7 and deteriorating the nozzle 7.

上記ノズル7の他端(上流端)は、炉本体1の垂直部1a下方に配置した原料槽10内の上部に連通されている。この原料槽10は基本的に密閉状のもので、その内部は原料を圧送する原料供給装置9に配管11を介して接続されており、原料供給装置9から圧送された原料を一時的に原料槽10に溜めるようになっている。   The other end (upstream end) of the nozzle 7 communicates with an upper portion in the raw material tank 10 disposed below the vertical portion 1 a of the furnace body 1. This raw material tank 10 is basically hermetically sealed, and the inside thereof is connected to a raw material supply device 9 for pumping the raw material via a pipe 11, and the raw material pumped from the raw material supply device 9 is temporarily used as a raw material. It can be stored in the tank 10.

原料供給装置9は、図1に示すように、原石ホッパー91と、耐熱粒子ホッパー92と、混合機93と、を備えている。原石ホッパー91及び耐熱粒子ホッパー92は、混合機93の上に配置され、各底部がそれぞれ配管94,94を介して混合機93と接続されている。原石ホッパー91及び耐熱粒子ホッパー92にそれぞれ投入された焼成原料及び耐熱粒子は、配管94,94を通じて混合機93にそれぞれ供給され、該混合機93によって混合されて混合原料となる。混合されて均一分散化された混合原料は、配管11を通じて原料槽10に供給される。   As shown in FIG. 1, the raw material supply device 9 includes a raw stone hopper 91, a heat-resistant particle hopper 92, and a mixer 93. The raw stone hopper 91 and the heat-resistant particle hopper 92 are disposed on the mixer 93, and each bottom portion is connected to the mixer 93 via pipes 94 and 94, respectively. The calcined raw material and the heat-resistant particles charged into the raw stone hopper 91 and the heat-resistant particle hopper 92 are respectively supplied to the mixer 93 through the pipes 94 and 94 and mixed by the mixer 93 to become a mixed raw material. The mixed raw material mixed and uniformly dispersed is supplied to the raw material tank 10 through the pipe 11.

上記ノズル7の中間部には圧縮空気作動のインジェクションフィダー12が設けられている。このインジェクションフィダー12は、図2に拡大詳示するように、ノズル7の壁部に周方向に略等間隔をあけて貫通配置された複数の空気吐出孔13,13,…を有している。この各吐出孔13は、ノズル7の外周面側から内周面側に向かって上方、つまりノズル7下流側に向かうように傾斜状態に形成されている。また、ノズル7外周部において各吐出孔13に対応する部分には、ノズル7よりも大径のカバー部14が各吐出孔13の開口を覆うように同心状に配置され、このカバー部14の上下端部は中心側に折り曲げられてノズル7外周部に気密状に接続されており、このカバー部14とその内側のノズル7との間に各吐出孔13と連通する圧力室15が形成されている。そして、カバー部14には、圧力室15と連通する空気導入口16が貫通形成され、この空気導入口16は、図外の圧縮空気供給装置に配管17を介して接続されており、この圧縮空気供給装置からの圧縮空気を圧力室15に供給してノズル7の各吐出孔13からノズル7内に噴出させることにより、そのノズル7の上流端部及びその上流端部が配置された原料槽10内を負圧として、その原料槽10内の混合原料を後述の排熱ガスと共にノズル7に吸い上げ、その混合原料をノズル7により圧縮空気と共に炉本体1の焼成室2下端部に供給して燃焼炎5aないし燃焼ガス中に投入し、該燃焼炎5aないし燃焼ガスによって混合原料に含まれる焼成原料を加熱して焼成発泡により人工軽量骨材を生成し、この人工軽量骨材を燃焼ガス流ないしノズル7からの空気流によって上方に圧送して水平部1bに送られ、その後、サイクロン6により燃焼ガスと分離される。   A compressed air-operated injection feeder 12 is provided at an intermediate portion of the nozzle 7. 2, the injection feeder 12 has a plurality of air discharge holes 13, 13,... That are disposed through the wall of the nozzle 7 at substantially equal intervals in the circumferential direction. . Each discharge hole 13 is formed in an inclined state so as to go upward from the outer peripheral surface side of the nozzle 7 toward the inner peripheral surface side, that is, toward the downstream side of the nozzle 7. Further, a cover portion 14 having a diameter larger than that of the nozzle 7 is concentrically disposed at a portion corresponding to each discharge hole 13 in the outer peripheral portion of the nozzle 7 so as to cover the opening of each discharge hole 13. The upper and lower end portions are bent to the center side and connected to the outer peripheral portion of the nozzle 7 in an airtight manner, and a pressure chamber 15 communicating with each discharge hole 13 is formed between the cover portion 14 and the nozzle 7 inside thereof. ing. An air introduction port 16 communicating with the pressure chamber 15 is formed through the cover portion 14, and this air introduction port 16 is connected to a compressed air supply device (not shown) via a pipe 17. The raw material tank in which the upstream end of the nozzle 7 and the upstream end thereof are arranged by supplying compressed air from the air supply device to the pressure chamber 15 and ejecting the compressed air from the discharge holes 13 of the nozzle 7 into the nozzle 7. 10 is set to a negative pressure, and the mixed raw material in the raw material tank 10 is sucked into the nozzle 7 together with exhaust heat gas to be described later, and the mixed raw material is supplied together with compressed air to the lower end of the firing chamber 2 of the furnace body 1 by the nozzle 7. An artificial lightweight aggregate is produced by firing and foaming by charging the combustion flame 5a or combustion gas into the combustion flame 5a or heating the firing raw material contained in the mixed raw material with the combustion flame 5a or combustion gas. Or It is sent to the horizontal portion 1b is pumped upwardly by the air flow from the nozzle 7 and is then separated from the combustion gases by cyclone 6.

また、上記炉本体1の焼成室2内で得られた排熱ガスを原料槽10に吹き込む排熱ガス供給装置19が設けられている。この排熱ガス供給装置19は、一端(下流端)が上記原料槽10内の空間部に開口された排熱ガス供給管20を有し、この排熱ガス供給管20の他端(上流端)は上記サイクロン6よりも燃焼ガス流での下流側部分に接続されており、サイクロン6下流部と原料槽10内の空間との差圧により、焼成室2で生成される排熱ガスを排熱ガス供給管20を介して原料槽10内にその内部の混合原料が吹き上げられるように供給する。   Further, an exhaust heat gas supply device 19 for blowing exhaust heat gas obtained in the firing chamber 2 of the furnace body 1 into the raw material tank 10 is provided. The exhaust heat gas supply device 19 has an exhaust heat gas supply pipe 20 having one end (downstream end) opened in the space in the raw material tank 10, and the other end (upstream end) of the exhaust heat gas supply pipe 20. ) Is connected to the downstream portion of the combustion gas flow with respect to the cyclone 6, and exhaust heat gas generated in the firing chamber 2 is exhausted by the differential pressure between the downstream portion of the cyclone 6 and the space in the raw material tank 10. It supplies so that the mixed raw material of the inside may be blown up in the raw material tank 10 via the hot gas supply pipe | tube 20. FIG.

さらに、炉本体1の垂直部1a外周部には、その内部の焼成室2壁面を所定温度になるように冷却する冷却装置23が設置されている。従って、加熱されて溶融した溶融焼成原料が生成されたとしても、その溶融焼成原料は冷却された焼成室2壁面に衝突すると瞬時にその表面が冷却されて固化するため、溶融焼成原料の炉壁への付着を抑制できる。   Furthermore, a cooling device 23 is installed on the outer peripheral portion of the vertical portion 1a of the furnace body 1 to cool the inner firing chamber 2 wall surface to a predetermined temperature. Therefore, even if a molten and fired raw material is produced by heating, when the molten and fired raw material collides with the wall surface of the cooled firing chamber 2, the surface is instantly cooled and solidified. Adhesion to can be suppressed.

−人工軽量骨材の製造方法−
次に、上記竪型焼成炉を用いて人工軽量骨材を製造する方法について説明する。この人工軽量骨材の製造方法は、(1)焼成原料と耐熱粒子とを均一に混合して混合原料を得る原料混合工程と、(2)この混合原料を圧縮空気と共に焼成室2内に投入する原料投入工程と、(3)投入された混合原料に含まれる焼成原料を焼成して発泡させる焼成発泡工程と、を含む。以下、各工程について説明する。
-Manufacturing method of artificial lightweight aggregate-
Next, a method for producing an artificial lightweight aggregate using the vertical firing furnace will be described. This artificial lightweight aggregate manufacturing method includes (1) a raw material mixing step of uniformly mixing a calcined raw material and heat-resistant particles to obtain a mixed raw material, and (2) putting the mixed raw material into the calcining chamber 2 together with compressed air. A raw material charging step, and (3) a firing foaming step of firing and foaming the firing raw material contained in the input mixed raw material. Hereinafter, each step will be described.

(1)原料混合工程
先ず、上記原石ホッパー91及び耐熱粒子ホッパー92にそれぞれ焼成原料及び耐熱粒子を投入し、混合機93で両者を混合して均一分散化された混合原料を得る。
(1) Raw Material Mixing Step First, the calcined raw material and the heat-resistant particles are charged into the raw hopper 91 and the heat-resistant particle hopper 92, respectively, and both are mixed by a mixer 93 to obtain a uniformly dispersed mixed material.

焼成原料として平均粒径が10μm以下のシラス原石を用いると、平均粒径20μmの微粒なシラスバルーンが得られる。   When a rough Shirasu stone having an average particle diameter of 10 μm or less is used as a firing raw material, a fine shirasu balloon having an average particle diameter of 20 μm can be obtained.

また、耐熱粒子の平均粒径は80μm〜800μmが好ましく、特に150μm〜600μmが好ましい。耐熱粒子の平均粒径が80μmより小さいと分級し難く、その回収が困難となり、800μmより大きいと竪型焼成炉において耐熱粒子の吹き上げが困難となって分散性が低下し、本発明の効果が得られず、更に、耐熱粒子の回収が困難となるからである。   The average particle diameter of the heat resistant particles is preferably 80 μm to 800 μm, and particularly preferably 150 μm to 600 μm. If the average particle size of the heat-resistant particles is less than 80 μm, it is difficult to classify and recovery is difficult, and if it is more than 800 μm, it is difficult to blow up the heat-resistant particles in a vertical firing furnace, resulting in a decrease in dispersibility, and the effect of the present invention is improved. This is because it is difficult to collect the heat-resistant particles.

更に、混合原料を構成する焼成原料と耐熱粒子との割合は、重量比で10:0.5乃至10:2が好ましい。耐熱粒子が焼成原料に対して重量比で2割を超えると、焼成原料が相対的に少なくなり、生産性が低下する一方、0.5割を下回ると耐熱粒子が相対的に少なくなり、本発明の効果が得難くなるからである。従って、例えば、焼成原料として平均粒径10μm以下のシラス原石を用いると共に、耐熱粒子として150μm〜600μmの珪砂を用いる場合、シラス原石と珪砂とを重量比で10:1の割合で混合するとよい。   Furthermore, the ratio of the fired raw material and the heat-resistant particles constituting the mixed raw material is preferably 10: 0.5 to 10: 2 by weight. If the heat-resistant particles exceed 20% by weight with respect to the calcined raw material, the calcined raw material will be relatively less and productivity will be reduced. This is because the effects of the invention are difficult to obtain. Therefore, for example, when a shirasu rough having an average particle size of 10 μm or less is used as the firing raw material and a silica sand having a particle size of 150 μm to 600 μm is used as the heat-resistant particles, the shirasu rough and the silica sand may be mixed at a weight ratio of 10: 1.

(2)原料投入工程
次に、混合機93から負圧の原料槽10内に供給された上記混合原料をノズル7で吸い上げ、該混合原料を該ノズル7によって上記圧縮空気供給装置からの圧縮空気と共に焼成室2下端部に投入する。
(2) Raw material charging step Next, the mixed raw material supplied into the negative pressure raw material tank 10 from the mixer 93 is sucked up by the nozzle 7, and the mixed raw material is compressed by the nozzle 7 from the compressed air supply device. At the same time, it is put into the lower end of the firing chamber 2.

このとき、インジェクションフィダー12の作動により、圧縮空気供給装置からの圧縮空気がカバー部14の空気導入口16を介して圧力室15に供給され、この圧力室15からノズル7中間部の各吐出孔13を経てノズル7内に噴出される。この各吐出孔13は、ノズル7の内周面側に向かって上方に向かうように傾斜されているので、この圧縮空気のノズル7内への噴出に伴い、その圧縮空気がノズル7内を上方に向かって高速で流れ、その上端開口部から焼成室2の下端部に2次空気として供給される。また、ノズル7の下端は原料槽10内に連通しているので、上記圧縮空気のノズル7内への噴出に伴い、そのノズル7の吐出孔13の位置よりも下側部及びその下端部が配置された原料槽10内は負圧となり、この負圧によって原料槽10内の混合原料をノズル7に吸い上げる。そして、このノズル7内に吸い上げられた混合原料を、上記ノズル7内に噴出される圧縮空気と合流させて焼成室2下端部に投入する。   At this time, the operation of the injection feeder 12 causes compressed air from the compressed air supply device to be supplied to the pressure chamber 15 via the air inlet 16 of the cover portion 14, and each discharge hole in the middle portion of the nozzle 7 from the pressure chamber 15. 13 is ejected into the nozzle 7. Since each of the discharge holes 13 is inclined upward toward the inner peripheral surface of the nozzle 7, the compressed air is moved upward in the nozzle 7 as the compressed air is ejected into the nozzle 7. And is supplied as secondary air from the upper end opening to the lower end of the baking chamber 2. Further, since the lower end of the nozzle 7 communicates with the raw material tank 10, the lower side portion and the lower end portion of the nozzle 7 are lower than the position of the discharge hole 13 of the nozzle 7 as the compressed air is jetted into the nozzle 7. The inside of the arranged raw material tank 10 becomes negative pressure, and the mixed raw material in the raw material tank 10 is sucked up by the nozzle 7 by this negative pressure. Then, the mixed raw material sucked into the nozzle 7 is merged with the compressed air ejected into the nozzle 7 and introduced into the lower end of the firing chamber 2.

このように、混合原料がノズル7により圧縮空気と共に焼成室2下端に供給され、従来のように固体粒子のみが炉本体側部から一方に投入されないので、焼成室2内で気流が乱れることがない。   Thus, since the mixed raw material is supplied to the lower end of the firing chamber 2 together with the compressed air by the nozzle 7 and only the solid particles are not introduced into one side from the side of the furnace body as in the prior art, the air flow may be disturbed in the firing chamber 2. Absent.

(3)焼成発泡工程
続いて、上記焼成室2下端部に投入した上記混合原料に含まれる焼成原料を、上記バーナ5の燃焼炎5aないし燃焼ガスによって加熱して焼成し、発泡させて人工軽量骨材を生成する。最後に、上記サイクロン6で燃焼ガスと分離して人工軽量骨材を得る。
(3) Firing Foaming Step Subsequently, the firing raw material contained in the mixed raw material charged into the lower end of the firing chamber 2 is heated and fired by the combustion flame 5a or combustion gas of the burner 5, and foamed to produce artificial light weight. Produce aggregate. Finally, it is separated from the combustion gas by the cyclone 6 to obtain an artificial lightweight aggregate.

このように、混合原料を圧縮空気と共に焼成室2内に投入することにより、焼成原料が焼成室2内で偏在することなく確実に均一分散化されて焼成発泡するので、焼成原料を構成する微粒子同士が溶融してクリンカーとならず、且つ、サイズにバラつきのない微粒なバルーンを形成することができる。   Thus, by introducing the mixed raw material into the firing chamber 2 together with the compressed air, the firing raw material is surely uniformly dispersed and fired and foamed without being unevenly distributed in the firing chamber 2, so that the fine particles constituting the firing raw material They can be melted to form a clinker, and a fine balloon with no variation in size can be formed.

また、焼成原料と同時に耐熱粒子を焼成室2内に投入し、焼成しているので、焼成原料を構成する微粒子が溶融して焼成室2壁面に付着したとしても、上記耐熱粒子が該壁面に衝突するショット効果によって該壁面に付着した溶融焼成原料を剥がすようになり、このことにより、クリンカーの発生を防止することができる。   In addition, since the heat-resistant particles are put into the firing chamber 2 at the same time as the firing raw material and fired, even if the fine particles constituting the fired raw material melt and adhere to the wall surface of the firing chamber 2, the heat-resistant particles adhere to the wall surface. Due to the colliding shot effect, the molten and fired raw material adhering to the wall surface is peeled off, thereby preventing the generation of clinker.

また、焼成原料だけでなく耐熱粒子も混合原料内で均一分散しているので、耐熱粒子を焼成室2壁面に均一に万遍なく接触(衝突)させることができる。   Moreover, since not only the firing raw material but also the heat resistant particles are uniformly dispersed in the mixed raw material, the heat resistant particles can be uniformly contacted (collised) with the wall surface of the firing chamber 2 uniformly.

また、焼成室2に対し、ノズル7により2次空気を供給しながらその2次空気中に混合原料を混入して投入するので、その混合原料に含まれる焼成原料は焼成室2内でバーナ5からの燃焼ガスに直接接触して焼成されることになる。しかも、ノズル7による2次空気及び焼成原料の供給が同時に行われるので、焼成原料の加熱が不均一になって加熱不足による未発泡焼成原料が焼成室2内に滞在することがなく、焼成が安定して行われ、その効率が向上する。   Further, since the mixed raw material is mixed and introduced into the secondary air while supplying the secondary air from the nozzle 7 to the firing chamber 2, the fired raw material contained in the mixed raw material is burner 5 in the firing chamber 2. It is baked in direct contact with the combustion gas from. Moreover, since the secondary air and the firing raw material are supplied simultaneously by the nozzle 7, the firing raw material is not uniformly heated, and the unfoamed firing raw material due to insufficient heating does not stay in the firing chamber 2, and firing is performed. It is performed stably and its efficiency is improved.

更に、上記のように焼成室2内で気流が乱れることがないため、焼成原料が均一に分散され、それによって、クリンカーの発生が抑制される。   Furthermore, since the airflow is not disturbed in the firing chamber 2 as described above, the firing raw material is uniformly dispersed, thereby suppressing the generation of clinker.

(その他の実施形態)
上記実施形態では、混合原料を構成する焼成原料と耐熱粒子とは、重量比で10:0.5乃至10:2の割合で混合されていたが、これに限定されず、両者の重量比が当該範囲外の比であってもよい。但し、サイズにバラつきのない安定した微粒なバルーンを生産性良く得るためには、両者の重量比が上記範囲内にあるのが望ましい。
(Other embodiments)
In the above embodiment, the firing raw material and the heat-resistant particles constituting the mixed raw material are mixed in a weight ratio of 10: 0.5 to 10: 2, but the present invention is not limited to this, and the weight ratio of both is The ratio may be outside the range. However, in order to obtain a stable and fine balloon with no variation in size with good productivity, it is desirable that the weight ratio of the two is in the above range.

本発明は、実施形態に限定されず、その精神又は主要な特徴から逸脱することなく他の色々な形で実施することができる。   The present invention is not limited to the embodiments, and can be implemented in various other forms without departing from the spirit or main features thereof.

このように、上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書には何ら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   As described above, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is defined by the claims, and is not limited by the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

次に、具体的に実施した実施例について説明する。   Next, specific examples will be described.

(実施例)
本発明の実施例として、上記竪型焼成炉を使用してシラスバルーンの生成を行った。本実施例で使用した竪型焼成炉の詳細は上記実施形態で説明した通りなので説明を省く。
(Example)
As an example of the present invention, a shirasu balloon was produced using the above-mentioned vertical firing furnace. The details of the vertical firing furnace used in this example are the same as those described in the above embodiment, so that the description thereof is omitted.

先ず、焼成原料として平均粒径が10μm以下のシラス原石を用意した。また、耐熱粒子として平均粒径が150μm〜600μmの珪砂を用意した。そして、原石ホッパー及び耐熱粒子ホッパーにそれぞれ上記シラス原石及び上記珪砂を入れて、混合機でシラス原石と珪砂とを重量比で10:1の割合で混合して混合原料を得た。得られた混合原料を圧縮空気と共に焼成室内に投入し、焼成温度800℃で焼成発泡させ、シラスバルーンを得た。投入速度は10kg/hrであり、連続投入時間は4時間であった。得られたシラスバルーンを確認したところ、シラスバルーンは確実に発泡していた。また、シラスバルーン製造後の竪型焼成炉内部を確認した。シラスバルーン製造後の竪型焼成炉内部の写真を図4(a)に示す。この図4(a)から分かるように、発生したクリンカーは極めて少量しか認められず、また、クリンカーによる炉本体内部の狭小化及び閉塞は認められなかった。従って、シラスバルーンが確実に発泡すると共に炉本体内部におけるクリンカーの発生はなかった。   First, Shirasu rough having an average particle size of 10 μm or less was prepared as a firing raw material. In addition, silica sand having an average particle diameter of 150 μm to 600 μm was prepared as heat resistant particles. And the above-mentioned Shirasu rough stone and the above-mentioned quartz sand were put into a rough stone hopper and a heat-resistant particle hopper, respectively, and Shirasu rough stone and quartz sand were mixed in a ratio of 10: 1 by weight ratio with a mixer, and a mixed material was obtained. The obtained mixed raw material was put into a firing chamber together with compressed air and fired and foamed at a firing temperature of 800 ° C. to obtain a shirasu balloon. The charging speed was 10 kg / hr, and the continuous charging time was 4 hours. When the obtained shirasu balloon was confirmed, the shirasu balloon was surely foamed. In addition, the inside of the vertical firing furnace after the manufacture of the shirasu balloon was confirmed. FIG. 4A shows a photograph of the inside of the vertical firing furnace after the manufacture of the shirasu balloon. As can be seen from FIG. 4A, only a very small amount of clinker was generated, and neither narrowing nor blockage of the inside of the furnace body due to the clinker was observed. Therefore, the shirasu balloon surely foamed and no clinker was generated inside the furnace body.

(比較例)
上記実施例と比較するための比較例として、以下の手順でシラスバルーンの生成を行った。本比較例で使用した竪型焼成炉の詳細は上記実施形態で説明した通りなので説明を省く。
(Comparative example)
As a comparative example for comparison with the above example, a shirasu balloon was generated by the following procedure. Since the details of the vertical firing furnace used in this comparative example are as described in the above embodiment, the description is omitted.

先ず、焼成原料として平均粒径が10μm以下のシラス原石を用意した。そして、このシラス原石を原石ホッパーに入れた。このシラス原石を圧縮空気と共に焼成室内に投入し、上記実施例と同じく焼成温度800℃で焼成発泡させ、シラスバルーンを得た。投入速度は10kg/hrであり、連続投入時間は4時間であった。シラスバルーン製造後の竪型焼成炉内部を確認した。シラスバルーン製造後の竪型焼成炉内部の写真を図4(b)に示す。この図4(b)から分かるように、大きなクリンカーの発生が認められ、クリンカーによる炉本体内部の狭小化が認められた。上記実施例及び比較例により、予め焼成原料と耐熱粒子とを混合して均一分散化された混合原料を焼成室に投入して焼成発泡するようにしたことにより、クリンカーの生成が抑制されることが確認できた。   First, Shirasu rough having an average particle size of 10 μm or less was prepared as a firing raw material. This Shirasu rough was put into a rough hopper. This shirasu ore was put into a firing chamber together with compressed air and fired and foamed at a firing temperature of 800 ° C. in the same manner as in the above example to obtain a shirasu balloon. The charging speed was 10 kg / hr, and the continuous charging time was 4 hours. The inside of the vertical firing furnace after the manufacture of the shirasu balloon was confirmed. FIG. 4B shows a photograph of the inside of the vertical firing furnace after the manufacture of the shirasu balloon. As can be seen from FIG. 4B, generation of a large clinker was observed, and narrowing of the inside of the furnace main body due to the clinker was recognized. According to the above-mentioned examples and comparative examples, the mixture raw material previously mixed with the firing raw material and the heat-resistant particles is introduced into the firing chamber and fired and foamed to suppress the generation of clinker. Was confirmed.

以上説明したように、本発明に係る人工軽量骨材の製造方法は、焼成原料の均一分散化をより確実にすると共にクリンカーの発生を抑制して、生産性良くサイズにバラつきのない微粒バルーンを製造することが必要な用途等に適用することができる。   As described above, the method for producing an artificial lightweight aggregate according to the present invention makes it possible to more uniformly disperse the calcined raw material and suppress the generation of clinker, and to produce a fine balloon with good productivity and no size variation. The present invention can be applied to uses that need to be manufactured.

1 炉本体
2 焼成室
3 火炎口
5 バーナ
7 ノズル
9 原料供給装置
91 原石ホッパー
92 耐熱粒子ホッパー
93 混合機
10 原料槽
12 インジェクションフィダー
13 空気吐出孔
19 排熱ガス供給装置
23 冷却装置
DESCRIPTION OF SYMBOLS 1 Furnace body 2 Firing chamber 3 Flame outlet 5 Burner 7 Nozzle 9 Raw material supply device 91 Rough hopper 92 Heat resistant particle hopper 93 Mixer 10 Raw material tank 12 Injection feeder 13 Air discharge hole 19 Exhaust heat gas supply device 23 Cooling device

Claims (2)

破砕鉱石、シラス等の焼成原料を竪型焼成炉の焼成室で焼成して人工軽量骨材を得る人工軽量骨材の製造方法であって、
上記焼成原料と耐熱粒子とを混合して混合原料を得る工程と、
上記混合原料を圧縮空気と共に上記焼成室内に投入する工程と、
投入された上記混合原料に含まれる上記焼成原料を焼成して発泡させる工程と、
を含むことを特徴とする人工軽量骨材の製造方法。
A method for producing an artificial lightweight aggregate by firing a firing raw material such as crushed ore and shirasu in a firing chamber of a vertical firing furnace to obtain an artificial lightweight aggregate,
A step of mixing the firing raw material and heat-resistant particles to obtain a mixed raw material;
Introducing the mixed raw material into the baking chamber together with compressed air;
A step of firing the foamed raw material contained in the input mixed raw material to foam;
The manufacturing method of the artificial lightweight aggregate characterized by including this.
請求項1記載の人工軽量骨材の製造方法において、
上記焼成原料と上記耐熱粒子とは、重量比で10:0.5乃至10:2の割合で混合されていることを特徴とする人工軽量骨材の製造方法。
In the manufacturing method of the artificial lightweight aggregate of Claim 1,
The method for producing an artificial lightweight aggregate, wherein the fired raw material and the heat-resistant particles are mixed at a weight ratio of 10: 0.5 to 10: 2.
JP2011211903A 2011-09-28 2011-09-28 Manufacturing method of artificial lightweight aggregate Expired - Fee Related JP5490768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211903A JP5490768B2 (en) 2011-09-28 2011-09-28 Manufacturing method of artificial lightweight aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211903A JP5490768B2 (en) 2011-09-28 2011-09-28 Manufacturing method of artificial lightweight aggregate

Publications (2)

Publication Number Publication Date
JP2013071865A true JP2013071865A (en) 2013-04-22
JP5490768B2 JP5490768B2 (en) 2014-05-14

Family

ID=48476638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211903A Expired - Fee Related JP5490768B2 (en) 2011-09-28 2011-09-28 Manufacturing method of artificial lightweight aggregate

Country Status (1)

Country Link
JP (1) JP5490768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956779A (en) * 2022-06-17 2022-08-30 潮州市煜日陶瓷制作有限公司 Preparation process and production equipment of raw ore heat-resistant soil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397643A (en) * 1989-09-07 1991-04-23 Uchiyama Concrete Kogyo Kk Method and device for producing super-lightweight aggregate
JPH06279079A (en) * 1993-03-29 1994-10-04 Onoda Cement Co Ltd Addition of fusion-preventing material to artificial light-weight aggregate and device for addition
JPH08261657A (en) * 1995-03-27 1996-10-11 Daiken Trade & Ind Co Ltd Vertical burning furnace
JPH1151570A (en) * 1997-07-29 1999-02-26 Yasuo Hatate Vertical kiln

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397643A (en) * 1989-09-07 1991-04-23 Uchiyama Concrete Kogyo Kk Method and device for producing super-lightweight aggregate
JPH06279079A (en) * 1993-03-29 1994-10-04 Onoda Cement Co Ltd Addition of fusion-preventing material to artificial light-weight aggregate and device for addition
JPH08261657A (en) * 1995-03-27 1996-10-11 Daiken Trade & Ind Co Ltd Vertical burning furnace
JPH1151570A (en) * 1997-07-29 1999-02-26 Yasuo Hatate Vertical kiln

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956779A (en) * 2022-06-17 2022-08-30 潮州市煜日陶瓷制作有限公司 Preparation process and production equipment of raw ore heat-resistant soil
CN114956779B (en) * 2022-06-17 2023-08-01 潮州市煜日陶瓷制作有限公司 Preparation process and production equipment of raw ore heat-resistant soil

Also Published As

Publication number Publication date
JP5490768B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
US8393892B2 (en) Burner for production of inorganic spheroidized particle
US20110135775A1 (en) Burner for producing inorganic spherical particles
CN204747507U (en) Be suitable for preparation 3D to print spray nozzle device with metal powder
JPH1171107A (en) Production of inorganic spherical particles and apparatus therefor
JP2007292379A (en) Manufacturing method and device of heat treated particle
CN106315647B (en) A kind of high-purity heat conduction ball-aluminium oxide preparation method
JP5490768B2 (en) Manufacturing method of artificial lightweight aggregate
EP1203754B1 (en) Process and vertical furnace for producing glass beads
CN204747508U (en) Gaseous atomization preparation metal powder prevents blockking up spray nozzle device
JP2007083112A (en) Powder manufacturing apparatus and powder manufacturing method
CN203794774U (en) High-strength low-density closed-pore hollow glass microsphere sphere-forming furnace
JP2013202603A (en) Device and method for manufacturing spherical particles
CN201250178Y (en) Hollow glass microballoon burner
JP2008286443A (en) Burner for manufacturing inorganic spheroidized particle
JP5335478B2 (en) Metal particle manufacturing apparatus and manufacturing method
JP5469938B2 (en) Manufacturing apparatus and manufacturing method of inorganic spheroidized particles
JP2746853B2 (en) Vertical firing furnace
TWM608559U (en) Equipment for producing spherical particles
TW201516365A (en) Powder producing apparatus
CN207760219U (en) Gas turbine liquid-fuel burner under high speed synthetic quartz glass production multiple spot
DK2732228T3 (en) CHAKING OVEN FOR THE HEAT CONDITION Foaming of Particles of a Bulk Material
TWI744067B (en) Equipment for producing spherical particles
CN202246391U (en) Air flow type powder conveying device for producing hollow glass beads
CN202072604U (en) Glass cenosphere forming furnace
JP5367471B2 (en) Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5490768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees