JP2013065496A - Method for manufacturing silicon secondary battery amorphous electrode by high-frequency atmospheric pressure plasma cvd - Google Patents

Method for manufacturing silicon secondary battery amorphous electrode by high-frequency atmospheric pressure plasma cvd Download PDF

Info

Publication number
JP2013065496A
JP2013065496A JP2011204170A JP2011204170A JP2013065496A JP 2013065496 A JP2013065496 A JP 2013065496A JP 2011204170 A JP2011204170 A JP 2011204170A JP 2011204170 A JP2011204170 A JP 2011204170A JP 2013065496 A JP2013065496 A JP 2013065496A
Authority
JP
Japan
Prior art keywords
electrode
plasma
film
amorphous
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011204170A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nagaura
善昭 長浦
Kazutake Imani
和武 今仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011204170A priority Critical patent/JP2013065496A/en
Publication of JP2013065496A publication Critical patent/JP2013065496A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a high-speed and low-cost method for forming a film of amorphous (non-crystal) silicon carbide for an anode and a film of amorphous silicon nitride for a cathode for a solid electrolyte type secondary battery such that silicon compounds are adopted for the anode and cathode.SOLUTION: Adopted as a method for forming, at a high speed, a film of amorphous(non-crystal) SiC for an anode, and a film of amorphous(non-crystal) SiNfor a cathode on a substrate 6 having electrode leads of metal is a high-frequency(UHF band>300 MHz) film formation method by means of an atmospheric pressure plasma CVD(chemical vapor deposition). According to the method, an RF power source 10 of e.g. 550 MHz(UHF band) higher than a power source frequency generally used for plasma excitation is used to generate stable glow plasma 4, whereby high-density reaction species are produced and used. In this way, it becomes possible to generate high-density plasma in a small gap between the electrode 3 and the substrate 7 and thus, high-speed film formation can be achieved.

Description

本発明は、正極及び負極においてシリコン化合物を採用し、かつ双方の電極間に非水電解質を採用した固体型二次電池において、正極及び負極としてのシリコン化合物電極の高周波大気圧プラズマ化学蒸着CVD 法(以下、略して、CPD 法とする)による製膜方法に関するものである。 The present invention relates to a high-frequency atmospheric pressure plasma chemical vapor deposition CVD method for a silicon compound electrode as a positive electrode and a negative electrode in a solid-state secondary battery that employs a silicon compound in a positive electrode and a negative electrode and a non-aqueous electrolyte between both electrodes. (Hereinafter abbreviated as CPD method).

近年、パーソナルコンピューター及び携帯電話等のポータブル機器、及び自動車やスマートグリッドの普及に伴い、当該機器の電源である二次電池の需要が急速に増大していて、このような二次電池の典型例はリチウム(Li)を負極として、フッ化炭素等を正極とするリチウム電池であり、正極と負極との間に非水電解質を介在させることによって、金属リチウムの摘出を防止することが可能となったことを原因として、リチウム電池は広範に普及しているが、リチウムは希少高価であり、廃棄した場合にはリチウムが流出し環境上好ましくない。 In recent years, with the widespread use of portable devices such as personal computers and mobile phones, and automobiles and smart grids, the demand for secondary batteries serving as power sources for such devices has increased rapidly, and typical examples of such secondary batteries. Is a lithium battery using lithium (Li) as a negative electrode and carbon fluoride as a positive electrode. By interposing a nonaqueous electrolyte between the positive electrode and the negative electrode, it becomes possible to prevent extraction of metallic lithium. For this reason, lithium batteries are widely used. However, lithium is rare and expensive, and when it is discarded, lithium flows out, which is not preferable in the environment.

これに対し、本来半導体であるケイ素(Si)を電極の素材とする場合には、リチウム
に比較して安価であると共に、ケイ素は金属リチウムの流出のような環境上の問題を生じない。ケイ素を二次電池の電極の素材として採用することが試みられ、特許文献1の特許第4685192によると、シリコン(ケイ素)を使った二次電池は、リチウムイオン電池に比べて、シリコンの特性を生かすと大容量で耐久性が実現できる可能性があり、二次電池の電極として使われるリチウムなどの金属に代わりに、シリコンを採用し、正極に炭化ケイ素、負極に窒化ケイ素を使い、電解質にイオン交換樹脂を取りいれた。
On the other hand, when silicon (Si), which is originally a semiconductor, is used as an electrode material, it is cheaper than lithium and silicon does not cause environmental problems such as outflow of metallic lithium. Attempts have been made to employ silicon as a material for electrodes of secondary batteries. According to Patent No. 4658192 of Patent Document 1, a secondary battery using silicon (silicon) has characteristics of silicon as compared with a lithium ion battery. If utilized, there is a possibility that durability can be realized with a large capacity. Instead of metal such as lithium used as an electrode of a secondary battery, silicon is used, silicon carbide is used for the positive electrode, silicon nitride is used for the negative electrode, and the electrolyte is used. Ion exchange resin was incorporated.

しかし、特許文献1の特許第4685192によると、基盤に対する金属スパッタリングによる正極集電層の形成した後、正極集電層に対する炭化ケイ素の真空蒸着による正極層を形成した後、正極層に対するコーティングによる非水電解質層を形成してから、非水電解質層に対する窒化ケイ素の真空蒸着による負極層を形成していたため、真空蒸着では強固なアモルファス(非晶質)電極の生成が困難であるとともに、製膜時間とコストがかかっていた。 However, according to Japanese Patent No. 4658192 of Patent Document 1, after the positive electrode current collector layer is formed by metal sputtering on the substrate, the positive electrode layer is formed by vacuum deposition of silicon carbide on the positive electrode current collector layer, and then the positive electrode layer is not coated by coating. Since the negative electrode layer was formed by vacuum deposition of silicon nitride on the non-aqueous electrolyte layer after forming the water electrolyte layer, it was difficult to produce a strong amorphous (amorphous) electrode by vacuum deposition, and film formation It took time and money.

従来の物理蒸着法PVDには、真空蒸着、スパッタリング、イオンプレーティングなどの手法があり、真空度、基板温度、ターゲットの組成、電力を制御し、目的の薄膜を得ることができ、真空蒸着法は物理蒸着法の一態様であり、減圧された空間の中で、蒸着すべき金属を加熱し基材表面に付着させるために、およそ10-3〜10-5Pa(パスカル=N/m2)程度の圧力にまで真空排気ができるようなベルジャー容器に収められ、蒸発源には、Moなどの融点の高い皿状金属板ボートの上に蒸着したい材料をのせ、ボートに50A程度以上の大きな電流を流して1000℃以上に加熱し、上にのせた試料を融かし蒸発させている。スパッタリングも物理蒸着法の一態様であり、低温で高融点物質の膜が得られ、大面積にわたって均一な膜が成形できる、合金組成に対応できる、応答性が速く制御しやすい、などの特徴を有し普及が進んでいて、通常10-0〜10-2Pa程度の真空中で、アルゴンなどの希ガスをグロー放電させ、生じたイオンを電場中で加速してターゲット金属に衝突させ、ターゲット金属原子を対象基材に付着させる。 Conventional physical vapor deposition PVD includes vacuum vapor deposition, sputtering, ion plating, and other techniques, and the desired thin film can be obtained by controlling the degree of vacuum, substrate temperature, target composition, and power. Is an embodiment of the physical vapor deposition method, and in order to heat and deposit the metal to be deposited on the substrate surface in a decompressed space, approximately 10 −3 to 10 −5 Pa (Pascal = N / m 2 ) It is housed in a bell jar that can be evacuated to a level of pressure, and the evaporation source is placed on a plate-like metal plate boat with a high melting point such as Mo. An electric current is applied and heated to 1000 ° C. or more, and the sample placed on top is melted and evaporated. Sputtering is also an aspect of physical vapor deposition, and it is possible to obtain a film of a high melting point material at a low temperature, to form a uniform film over a large area, to cope with an alloy composition, and to be fast and easy to control. It is widely used, and in rare cases, a rare gas such as argon is glow-discharged in a vacuum of about 10 −0 to 10 −2 Pa, and the generated ions are accelerated in an electric field to collide with the target metal. Metal atoms are attached to the target substrate.

化学蒸着法CVDは、半導体製造工程で汎用されている成膜技術であり、低温で気化した金属塩と高温に加熱された固体との接触において、熱分解反応、水素還元反応、高温不均化反応等によって、目的とする金属又は金属化合物を析出させる方法である。ケイ素イオン(Si及びSi)の生成を伴う充放電を容易かつ円滑に推進するためには、前記各化合物が結晶構造ではなく、非晶状態、即ちアモルファス構造であることが好ましく、前記正極及び負極を共に、従来は真空蒸着によって積層する方法が採用されていた。 Chemical vapor deposition (CVD) is a film formation technique that is widely used in semiconductor manufacturing processes. In contact between a metal salt vaporized at a low temperature and a solid heated to a high temperature, thermal decomposition reaction, hydrogen reduction reaction, and high temperature disproportionation In this method, the target metal or metal compound is precipitated by reaction or the like. In order to easily and smoothly promote charge / discharge accompanied by generation of silicon ions (Si + and Si ), it is preferable that each of the compounds has an amorphous state, that is, an amorphous structure instead of a crystal structure. Conventionally, a method of laminating both the negative electrode and the negative electrode by vacuum deposition has been adopted.

プラズマCVD(plasma-enhanced chemical vapor deposition, PECVD)は、プラズマを援用する型式の化学気相成長(CVD)の一種であり、さまざまな物質の薄膜を形成する蒸着法のひとつである。化学反応を活性化させるため、高周波などを印加することで原料ガスをプラズマ化させるのが特徴であり、半導体素子の製造などに広く用いられている。成膜速度が速く、処理面積も大きくできる、凹凸のある表面でも満遍なく製膜できるなど、化学気相成長の主な長所を多く有する。さらにプラズマを援用することで、熱CVDなどに比較すると、低い温度でもより緻密な薄膜を形成でき、熱によるダメージや層間での相互拡散を抑制でき、熱分解しにくい原料でも実用的な堆積速度が得られやすく、熱分解温度の異なる原料同士を用いても薄膜を形成できる。このプラズマCVDにおいては、直流(DC)・高周波(RF)・マイクロ波などを供給することで、原料ガスをプラズマ状態にする。これによって原料ガスの原子や分子は励起され、化学的に活性となる。プラズマCVDには励起方法などによって、下記のような分類がある。従来の高周波プラズマCVDは、周波数(13.56)MHzの高周波による放電を用い、絶縁性の薄膜形成が可能で、もっとも一般的なプラズマCVDである。プラズマCVDは一般的には反応室内部の圧力を真空ポンプで減圧して運転され、ポンプには油回転ポンプやドライポンプのほか、ターボ分子ポンプやメカニカルブースターポンプなどが組み合わせて用いられることもある。 Plasma CVD (plasma-enhanced chemical vapor deposition, PECVD) is a type of chemical vapor deposition (CVD) that uses plasma and is one of the deposition methods for forming thin films of various materials. In order to activate the chemical reaction, the raw material gas is turned into plasma by applying a high frequency or the like, which is widely used for manufacturing semiconductor devices. It has many main advantages of chemical vapor deposition, such as a high deposition rate, a large processing area, and uniform film formation even on uneven surfaces. Furthermore, with the aid of plasma, a denser thin film can be formed even at low temperatures compared to thermal CVD, etc., and thermal damage and interdiffusion between layers can be suppressed. Can be obtained, and a thin film can be formed using raw materials having different thermal decomposition temperatures. In this plasma CVD, direct current (DC), high frequency (RF), microwaves, etc. are supplied to bring the source gas into a plasma state. As a result, the atoms and molecules of the source gas are excited and become chemically active. Plasma CVD has the following classification according to the excitation method. Conventional high-frequency plasma CVD is the most common plasma CVD because it can form an insulating thin film by using discharge at a high frequency of (13.56) MHz. Plasma CVD is generally operated by reducing the pressure inside the reaction chamber with a vacuum pump. In addition to oil rotary pumps and dry pumps, turbo molecular pumps and mechanical booster pumps may be used in combination. .

大気圧プラズマ化学蒸着CVD 法(以下、略して、CPD 法とする)は、真空プラズマCVDよりもプラズマ密度を高めたものであり、より低い温度でも良質の膜が形成できるなどの利点を持ち、大気圧(常圧)で運転するものは、大気圧プラズマCVDと呼ばれる。このプラズマCPD 法は、特に薄膜シリコン膜の形成への利用をきっかけとして広く用いられるようになり、液晶など平面ディスプレイの薄膜トランジスタ素子(TFT)や、薄膜シリコン太陽電池の製造で使われるほか、超LSIの層間絶縁膜の形成などにも用いられる。大気圧プラズマCVD 法は、一般的にプラズマ励起に用いられている電源周波数(13.56 MHz)よりも、一桁程度高い150 MHz(VHF帯)の高周波により、大気圧下で安定なグロープラズマを発生させ、高密度に生成される反応種を利用した成膜法である。この150MHzという高周波電力を利用することにより、0.1〜1mm という小さな電極と基板間ギャップにおいて高密度なプラズマを発生させることが可能となっている。大気圧VHFプラズマが一般的な減圧プラズマと異なる点は、プラズマ中の原料ガスの分圧を高くでき、プラズマ中での原子や分子の衝突周波数が高く荷電粒子運動エネルギーが小さくなり、プラズマのガス温度(回転温度、振動温度を含む)が高く、膜成長表面へ物理的・化学的エネルギーを効率的に供給できること集約できる。したがって、大気圧VHFプラズマを用いれば、原理的に高速成膜が可能であり、膜のイオンダメージが低減されるとともに、基板温度が低温であっても膜成長表面での化学反応が促進され、高品質な薄膜形成が期待できる。反応ガスの高能率供給、大気圧プラズマの安定制御、大電力の投入などを可能とする二種類の電極として、高速回転電極及び多孔質カーボン電極があり、これらの電極の本質的な違いは、プラズマへのガス供給方法である。図2の高速回転電極の場合、円筒型の電極を高速回転させることにより、雰囲気の反応ガスを電極−基板間ギャップに能率的に供給することができる。一方、図1の多孔質カーボン電極の場合は、電極を通して各種の高純度なプロセスガスを直接プラズマ中へ供給できる。 The atmospheric pressure plasma chemical vapor deposition CVD method (hereinafter abbreviated as CPD method) has a higher plasma density than vacuum plasma CVD, and has the advantage that a high-quality film can be formed at a lower temperature. Those operating at atmospheric pressure (normal pressure) are called atmospheric pressure plasma CVD. This plasma CPD method has been widely used especially for the formation of thin film silicon films, and is used in the manufacture of thin film transistor elements (TFTs) for flat displays such as liquid crystals and thin film silicon solar cells. It is also used for forming an interlayer insulating film. The atmospheric pressure plasma CVD method generates a stable glow plasma under atmospheric pressure with a high frequency of 150 MHz (VHF band), which is about an order of magnitude higher than the power supply frequency (13.56 MHz) generally used for plasma excitation. The film forming method utilizes reactive species generated at high density. By using this high-frequency power of 150 MHz, it is possible to generate high-density plasma in the small electrode of 0.1 to 1 mm and the gap between the substrates. The difference between atmospheric pressure VHF plasma and general low-pressure plasma is that the partial pressure of the source gas in the plasma can be increased, the collision frequency of atoms and molecules in the plasma is high, and the kinetic energy of charged particles is reduced. High temperature (including rotational temperature and vibration temperature) and efficient physical and chemical energy supply to the film growth surface. Therefore, if atmospheric pressure VHF plasma is used, high-speed film formation is possible in principle, ion damage of the film is reduced, and chemical reaction on the film growth surface is promoted even when the substrate temperature is low, High quality thin film formation can be expected. There are two types of electrodes that enable high-efficiency supply of reactive gases, stable control of atmospheric pressure plasma, and input of high power, such as a high-speed rotating electrode and a porous carbon electrode. The essential difference between these electrodes is It is a gas supply method to plasma. In the case of the high-speed rotating electrode in FIG. 2, the reaction gas in the atmosphere can be efficiently supplied to the electrode-substrate gap by rotating the cylindrical electrode at a high speed. On the other hand, in the case of the porous carbon electrode of FIG. 1, various high-purity process gases can be directly supplied into the plasma through the electrode.

シリコンカーバイド(SiC)は、Si と比較してバンドギャップが約三倍、絶縁破壊電界強度が約十倍、熱伝導度が約三倍という優れた物性値を有している。例えば、SiC をパワー半導体デバイスに適用すれば、小型化とともに、電力変換時の熱損失をSi デバイスの約1/100 以下に低減できる。さらに、Si では150℃程度とされている動作上限温度を400-500℃まで上げることができる。 Silicon carbide (SiC) has excellent physical properties such as about three times the band gap, about ten times the dielectric breakdown electric field strength, and about three times the thermal conductivity compared to Si. For example, if SiC is applied to a power semiconductor device, it is possible to reduce the heat loss during power conversion to about 1/100 or less that of a Si device as well as downsizing. Furthermore, the maximum operating temperature, which is about 150 ° C for Si, can be raised to 400-500 ° C.

シリコンナイトライド(SiNx)薄膜は、高誘電率、高密度、フッ酸エッチングに対する高い耐性等の優れた性質を有しており、薄膜トランジスタ(TFT)や酸化膜形成におけるマスク材などとして幅広く用いられている。このSiNx 薄膜の代表的な製法の一つとして減圧プラズマを用いたプラズマCVD法があるが、減圧プロセスでは反応ガスの絶対量が少なく、成膜速度の飛躍的な向上は期待できないので、大気圧プラズマCVD 法(CPD 法)を用いることにより、高品質なSiNx 薄膜を低温基板上に高速形成する技術の開発を進めている。原料ガスとしてSiH4 およびNH3 を用い、SiNx 薄膜を形成し、原料ガス濃度(NH3/SiH4比)、水素濃度、投入電力、基板温度等の成膜パラメータが膜構造に及ぼす影響が検討されている。 Silicon nitride (SiNx) thin film has excellent properties such as high dielectric constant, high density, and high resistance to hydrofluoric acid etching, and is widely used as a mask material in thin film transistor (TFT) and oxide film formation. Yes. One of the typical methods for producing this SiNx thin film is the plasma CVD method using low-pressure plasma. However, since the absolute amount of reaction gas is small in the low-pressure process and a dramatic improvement in film formation speed cannot be expected, atmospheric pressure can be expected. We are developing technology for forming high-quality SiNx thin films on low-temperature substrates at high speed by using plasma CVD (CPD). SiHx and NH3 are used as source gases to form SiNx thin films, and the influence of deposition parameters such as source gas concentration (NH3 / SiH4 ratio), hydrogen concentration, input power, and substrate temperature on the film structure is being investigated.

特許文献2の特開2001-348665によると、本発明は、大気圧プラズマCVDによる高速成膜法によって基板上に形成した、アモルファスSiC薄膜に関するものである。結晶SiCだけではなくアモルファスSi1-xCx(a-Si1-xCx)薄膜についても、その電気・光学特性が成膜パラメータによって自由に制御できることから、光電子デバイスや太陽電池、発光ダイオード等への応用が試みられてきた。これまでa-Si1-xCx薄膜の形成には、RFスパッタリング法、減圧下でのプラズマCVD法等が用いられているが、成膜速度が遅く、格段の成膜速度の高速化が望まれていて、RFスパッタリング法、減圧下でのプラズマCVD法等の従来の成膜方法による成膜速度より10倍以上の高速成膜が可能な大気圧プラズマCVDによって基板上に作製したアモルファスSiC薄膜を製造できる。このアモルファスSiC薄膜は、太陽電池、発光ダイオード、パワーデバイス用の半導体材料としても提供できる。前述の課題解決のために、気密チャンバ内に、加熱手段を備えた試料ステージと円筒形状の回転電極とを配設し、回転電極との間に所定のギャップを設けて前記試料ステージに基板を保持し、気密チャンバ内に導入したSi供給反応ガスとC供給反応ガス及び不活性ガス(Ar,He)からなるキャリアガスを少なくとも含む0.1〜10atmの原料ガスを、高速に回転させた前記回転電極表面で巻き込んで、前記ギャップを横切るガス流を形成するとともに、回転電極に高周波電圧を印加してギャップでプラズマを発生し、反応ガスに基づく高密度ラジカルを生成し、前記試料ステージと回転電極とを相対的に移動させながらラジカル反応によって加熱基板上にSiC薄膜を形成したことを特徴とする大気圧プラズマCVDによるアモルファスSiC薄膜を構成し、物理的、電気的特性に優れたアモルファスSiC薄膜を作製するためには、各種のパラメータを最適に設定する必要がある。前記回転電極に供給する高周波電力の周波数を、50〜300MHzとした。ここで、通常は導体で形成した気密チャンバが電気的に接地されてアース電位となっており、回転電極と基板との間のギャップでプラズマが発生維持されるのは、誘電率の違いによる 電界集中のためである。また、前記基板の温度を、300〜500℃の範囲に設定し、成膜速度を15〜40nm/sの範囲に設定している。そして、前記原料ガスとして、HeにCH4とSiH4及びH2を混合したものを用いてなることが好ましく、更にHeに対してCH4:0.5〜2体積%、SiH4:0.01〜0.1体積%、H2:0.5〜2体積%混合したものを用いてなることがより良い。図2は本発明に係る成膜装置の簡略説明図であり、図中符号12は回転電極、6は基板、7は試料ステージをそれぞれ示している。
気密チャンバは、ステンレス製の容器であり、内部に回転電極と基板を保持した試料ステージを配置している。回転電極は、表面にアルミナ溶射処理 を施した直径300mm、長さ100mmのアルミニウム合金製の円筒型で、外部に設置された高速回転モータ5によりマグネットカップリングを介して回転させる。基板は試料ステージ上に真空チャックにより固定し、回転電極との間に成膜ギャップを形成している。試料ステージは、内蔵したヒータにより大気圧He雰囲気中で最高600℃ まで加熱することができる。成膜ギャップは、ステージを上下させることにより制御し、ステージを前後方向に移動させることにより、移動距離に対応した面積の薄膜を形成できる。電源周波数は150MHzで、電力はインピーダンスマッチングユニットを介して電極部に供給され、電極と基板間ギャップに プラズマを発生させる。電源周波数として150MHzを用いることで、従来のプラズマCVD法で主に用いられている13.56MHzに比べて荷電粒子の振動振幅が小さくなることから、成膜ギャップが小さくても反応ガスを効率良く分解・活性化することができる。成膜中に発生するパーティクルは、電極回転に伴う高速ガス流により成膜ギャップ外へ排出されるが、それらパーティクルはフィルタを介したプロセスガスの循環により効率良く回収することが可能となっている。
作製した薄膜を透過電子顕微鏡で観察した結果、透過電子線回折像から、ブロードなハローパターンが観察され、明視野像から目立ったコントラストは見られないことから、薄膜の構造はアモルファスであることが確認できた。円筒型の回転電極を用いていることから、電極−基板間に発生する大気圧プラズマは、ギャップの最も小さい位置を中心として電極の周方向に広がりを持っている。このプラズマの広がりの大きさ(プラズマ長さ)は20〜30mm程度であり、成膜条件(投入電力、反応ガス濃度等)によって変化する。そのため、成膜速度は、プラズマ長さを基板走査速度で除算した時間と膜厚から求めている。
According to Japanese Patent Laid-Open No. 2001-348665 of Patent Document 2, the present invention relates to an amorphous SiC thin film formed on a substrate by a high-speed film forming method using atmospheric pressure plasma CVD. Not only crystalline SiC but also amorphous Si 1-x C x (a-Si 1-x C x ) thin films can be controlled freely by their deposition parameters, so optoelectronic devices, solar cells, and light-emitting diodes Attempts have been made to apply to the above. Up to now, a-Si 1-x C x thin film has been formed by RF sputtering method, plasma CVD method under reduced pressure, etc., but the film formation rate is slow, and the film formation rate is significantly increased. Amorphous SiC fabricated on a substrate by atmospheric pressure plasma CVD capable of forming a film at a speed 10 times or more higher than a film forming speed by a conventional film forming method such as an RF sputtering method or a plasma CVD method under reduced pressure. A thin film can be manufactured. This amorphous SiC thin film can also be provided as a semiconductor material for solar cells, light emitting diodes, and power devices. In order to solve the above-mentioned problems, a sample stage having a heating means and a cylindrical rotating electrode are disposed in an airtight chamber, and a predetermined gap is provided between the rotating electrode and the substrate is placed on the sample stage. The raw material gas of 0.1 to 10 atm including at least the carrier gas composed of the Si supply reaction gas, the C supply reaction gas, and the inert gas (Ar, He) introduced into the hermetic chamber is rotated at a high speed. Involved on the surface of the rotating electrode to form a gas flow across the gap, and a high-frequency voltage is applied to the rotating electrode to generate plasma in the gap to generate high-density radicals based on the reaction gas, which rotates with the sample stage. Amorphous Si by atmospheric pressure plasma CVD, characterized in that a SiC thin film is formed on a heated substrate by radical reaction while moving relative to the electrode In order to form an amorphous SiC thin film having excellent physical and electrical characteristics by forming a C thin film, it is necessary to optimally set various parameters. The frequency of the high frequency power supplied to the rotating electrode was 50 to 300 MHz. Here, normally, the hermetic chamber formed of a conductor is electrically grounded and has an earth potential, and plasma is generated and maintained in the gap between the rotating electrode and the substrate because of the difference in dielectric constant. Because of concentration. Further, the temperature of the substrate is set in the range of 300 to 500 ° C., and the film formation rate is set in the range of 15 to 40 nm / s. Then, the as a source gas, it is preferable formed by using a mixture of CH 4 and SiH 4 and H 2 in the He, CH 4 against further the He: 0.5 to 2 vol%, SiH 4: 0. It is better to use a mixture of 01 to 0.1% by volume and H 2 : 0.5 to 2% by volume. FIG. 2 is a simplified explanatory view of a film forming apparatus according to the present invention, in which reference numeral 12 denotes a rotating electrode, 6 denotes a substrate, and 7 denotes a sample stage.
The hermetic chamber is a stainless steel container in which a sample stage holding a rotating electrode and a substrate is disposed. The rotating electrode is a cylindrical shape made of aluminum alloy having a diameter of 300 mm and a length of 100 mm, the surface of which is subjected to alumina spraying, and is rotated through a magnet coupling by a high-speed rotating motor 5 installed outside. The substrate is fixed on the sample stage by a vacuum chuck, and a film forming gap is formed between the substrate and the rotating electrode. The sample stage can be heated up to 600 ° C. in an atmospheric pressure He atmosphere by a built-in heater. The film formation gap is controlled by moving the stage up and down, and a thin film having an area corresponding to the moving distance can be formed by moving the stage in the front-rear direction. The power supply frequency is 150 MHz, and electric power is supplied to the electrode part via the impedance matching unit, and plasma is generated in the gap between the electrode and the substrate. By using 150 MHz as the power supply frequency, the vibration amplitude of charged particles is smaller than that of 13.56 MHz, which is mainly used in the conventional plasma CVD method. It can be decomposed and activated. Particles generated during film formation are discharged out of the film formation gap by a high-speed gas flow accompanying electrode rotation, but these particles can be efficiently recovered by circulation of process gas through a filter. .
As a result of observation of the prepared thin film with a transmission electron microscope, a broad halo pattern is observed from the transmission electron beam diffraction image, and no conspicuous contrast is seen from the bright field image. Therefore, the structure of the thin film may be amorphous. It could be confirmed. Since the cylindrical rotating electrode is used, the atmospheric pressure plasma generated between the electrode and the substrate spreads in the circumferential direction of the electrode around the position where the gap is the smallest. The magnitude of the plasma spread (plasma length) is about 20 to 30 mm, and varies depending on the film forming conditions (input power, reaction gas concentration, etc.). Therefore, the film formation speed is obtained from the time obtained by dividing the plasma length by the substrate scanning speed and the film thickness.

図3は、CPD 法のa-Si1-xCx成膜速度の投入電力密度依存性を示したものである。投入電力密度が500J/l以下では、原料ガスの(CH4、SiH4)の十分な分解・活性化ができないと考えられる。投入電力密度が500J/l以上では、投入電力密度の増加とともに成膜速度が減少する傾向にある。これは、投入電力密度の増加により、プラズマ中での各種ラジカルの状態や密度、基板表面の温度などが変わってa-Si1-xCx薄膜の成長メカニズムが変化し、その結果としてa-Si1-xCx薄膜の構造が変化したことを示していると考えられる。本発明によれば、成膜条件を最適に設定することにより、偏析やピンホール等の欠陥のないストイキオメトリック(Si:C=1:1)なアモルファスSiC薄膜の形成を実現できるとともに、従来の成膜方法による成膜速度より10倍以上の高速成膜によって作製できた。 FIG. 3 shows the dependency of the CPD method on the input power density of the a-Si 1-x C x deposition rate. When the input power density is 500 J / l or less, it is considered that the source gas (CH 4 , SiH 4 ) cannot be sufficiently decomposed and activated. When the input power density is 500 J / l or more, the deposition rate tends to decrease as the input power density increases. This is because the growth mechanism of the a-Si 1-x C x thin film changes due to changes in the state and density of various radicals in the plasma, the temperature of the substrate surface, etc., as the input power density increases. This is considered to indicate that the structure of the Si 1-x C x thin film has changed. According to the present invention, it is possible to realize the formation of a stoichiometric (Si: C = 1: 1) amorphous SiC thin film free from defects such as segregation and pinholes by setting film forming conditions optimally. The film was formed by high-speed film formation that was 10 times or more faster than the film formation speed of the film formation method.

従来のプラズマCVD(PECVD)は、高品質な成膜には400℃付近までプロセス温度を上げる必要があったので、200℃未満での高品質な成膜を実現し、低いプロセス温度で高いクオリティのSi3N4の均一性成膜が可能なSiC及びSi3N4電極の高速CPD 法製膜 を目的とする。 In conventional plasma CVD (PECVD), the process temperature needed to be raised to around 400 ° C for high-quality film formation, so high-quality film formation at temperatures below 200 ° C was achieved, and high quality at low process temperatures. The purpose is high-speed CPD deposition of SiC and Si 3 N 4 electrodes, which enables uniform deposition of Si3N4.

正極をSiCの化学式を有している炭化ケイ素とし、負極をSiの化学式を有している窒化ケイ素とし、正極と負極との間に非水電解質を採用する固体電解質型二次電池をCPD 法で製造するために、陽極にアモルファス(非晶質)SiC、及び陰極にアモルファス(非晶質)Siを、電極リード金属性の基盤に高速で製膜する製膜する製法として、高周波大気圧プラズマ化学蒸着CVD 法(以下、略して、CPD 法とする)により、シリコン二次電池のアモルファスケイ素化合物電極の製膜を可能とする。 Solid electrolyte secondary battery in which the positive electrode is silicon carbide having the chemical formula of SiC, the negative electrode is silicon nitride having the chemical formula of Si 3 N 4 , and a nonaqueous electrolyte is employed between the positive electrode and the negative electrode In order to manufacture the film by the CPD method, a process for forming amorphous (amorphous) SiC at the anode and amorphous (amorphous) Si 3 N 4 at the cathode at a high speed on the electrode lead metal base As described above, an amorphous silicon compound electrode of a silicon secondary battery can be formed by a high-frequency atmospheric pressure plasma chemical vapor deposition CVD method (hereinafter abbreviated as CPD method).

シリコン二次電池のアモルファスケイ素化合物電極の製膜を可能とするために、従来一般に使用されていたプラズマ励起に用いる電源周波数 13.56 MHz(RF帯)よりも、一桁高い従来の 150 MHz(VHF 帯)よりも、さらに高い 高周波550 MHz(UHF帯)を使用して、安定なグロープラズマを発生させ、高密度に生成される反応種を利用した成膜法を採用して、小さな電極と基板間ギャップにおいて高密度なプラズマを発生させることが可能とする。 In order to enable the formation of amorphous silicon compound electrodes for silicon secondary batteries, the conventional power supply frequency of 13.56 MHz (RF band) used for plasma excitation, which is conventionally used, is an order of magnitude higher than the conventional 150 MHz (VHF band). ) Using a high-frequency 550 MHz (UHF band), generating stable glow plasma, and using a deposition method that uses reactive species generated at high density, It is possible to generate a high-density plasma in the gap.

高い周波数として、基準波で例えば550 MHzを発生するために、本発明者は超小型の水晶振動子を、特許文献3のUSApatent6952074を発明した。単一波長で指向性のある高周波弾性波を最初に発振させることに成功したキーポイントは、溝型 凹−凸(concavo−convex)レンズ形状水晶物体を形成するのに、撓みの現象と動圧の現象を同時に使用して、表面に凸レンズ形状を裏面に凹レンズ形状を同時に加工する設計法を発見したことによる。すなわち、凸レンズ形状の加工軸である中心軸線と凹レンズ形状の加工軸である中心軸線が、同時に形成 可能な設計法を提案した。その結果、2つの中心軸線は、極く自然に完全に一致することになる。さらに水晶の光軸又は回転光軸と、2つの中心軸線が完全に一致する設計法も提案した。これにより、2段階形状をした片面溝型(single−sided grooved type)の振動部分として、極く小さい凹 −凸レンズ形状でありながら、2つの中心軸線と水晶の光軸又は回転光軸の3つの軸線が完全に一致した水晶振動子が完成した。本設計法に基づいて開発に成功した水晶振動子は、2段階溝型水晶母材の中に、片面が凸レンズ形状で、他の面が凹レンズ形状をした極く小さい凹−凸レンズ形状の振動部分を有する。この振動部分は、適切に設計された上下蒸着電極の基に、厚みすべりmodeで振動し(thickness−shear vibration mode)、主振動の近傍に全く spurious modeが存在しない、かつQ値の高いATカット水晶振動子で、基準波で例えば550 MHzを発生できる。
試料水晶ブランクとして、厚さが90μm、縦幅が3.58mm、横幅が3.58mmの、素材がAT−cutのものを用いた。水晶ブランクの中心部分に、最初に、口径が1.6mmで深さが57.0μmの、10角形状の大きい面積にフッ酸を使用してchemical etching加工を行って、1段階形状をしたgrooved typeの水晶ブランクを加工している。この1段階形状で10角形状をしたgrooved typeの中心部分に、さらに2番目の加工工程としてフッ酸を使用し て、2回目のchemical etching加工にて、円形形状をした、口径が0.59mmで、深さが15.0μmの2段階形状部分を形成した。フッ酸を使用しての2回の chemical etching加工を行ってできた、2段階形状をしたsingle−sided grooved−typeの水晶ブランクは、最初に小さい面積の円形形状の口径が0.59mmの振動部分を chemical etching加工して、次に2番目の加工工程として大きい面積の口径が1.6mmの10角形状をした溝部分をchemical etching加工で製作すると、水晶の異方性が発生して、振動部分に水晶の結晶方向が発生することにより、水晶振動子としては全く使用することができなかった。通常考えられないchemical etching加工方法にて、2段階形状をしたsingle−sided grooved−typeの水晶振動子を完成させることができた。上下の 研磨盤の間に水晶ブランクをある一定の圧力をかけて挟み、dual−face polishing machineを使用して研磨加工をする。研磨剤としては、酸化セリウムを使用すると、凹形状をした水晶ブランクを上下の研磨盤で圧力を掛けて挟むために、dual−face polishing machineに挟まれた凹形状の水晶ブランクの圧力分布は、矢印にて示しているように、フレーム部分は上下の両側からの圧力を受けるが、振動部分の反対側は空洞となっているので、下からのみの圧力を受ける。その結果、10角形状をした溝部分及び円形形状の振動部分の中心を頂点として、上方向に撓む。こうして、上方向に逃げた撓みの分だけ、圧力は中心部分を最小として、両端で最大となる。また両部分の間の研磨量は、球面の一部のように曲率をもって変化する。研磨量は圧力に比例する。したがって、加工後の2段階形状をしたsingle−sided grooved−typeの水晶ブランクは、振動部分の中心部分を最大として飛び出し、膨らんだ凸レンズ形状となる事が解明できた。この結果、平−凸レンズ形状が完成した。
In order to generate, for example, 550 MHz as a reference wave at a high frequency, the present inventor invented US patent 6952074 of Patent Document 3 as an ultra-small crystal resonator. The key points for successfully oscillating a directional high-frequency elastic wave at a single wavelength are the phenomenon of bending and dynamic pressure to form a groove-shaped concave-convex lens-shaped crystal object. This is due to the discovery of a design method that simultaneously processes the convex lens shape on the front surface and the concave lens shape on the back surface. In other words, we proposed a design method in which the central axis that is the convex lens-shaped machining axis and the central axis that is the concave lens-shaped machining axis can be formed simultaneously. As a result, the two central axes coincide completely naturally. In addition, a design method was proposed in which the optical axis of the crystal or the optical axis of rotation and the two central axes coincide completely. As a result, the vibration part of a single-sided grooved type having a two-stage shape is an extremely small concave-convex lens shape. A crystal unit with perfectly matched axes was completed. The crystal unit that has been successfully developed based on this design method is a very small concave-convex lens-shaped vibrating part with a convex lens shape on one side and a concave lens shape on the other side in a two-stage groove-type crystal base material. Have This vibration part vibrates in a thickness-shear vibration mode on the basis of appropriately designed upper and lower vapor deposition electrodes, and there is no spurious mode near the main vibration and an AT cut with a high Q value. A crystal oscillator can generate 550 MHz, for example, as a reference wave.
A sample crystal blank having a thickness of 90 μm, a vertical width of 3.58 mm, a horizontal width of 3.58 mm and a material of AT-cut was used. At the center of the quartz blank, first, a chemical etching process was performed using a hydrofluoric acid on a large area of a decagonal shape having a diameter of 1.6 mm and a depth of 57.0 μm, and a one-step shaped grooved A type quartz blank is processed. In the central part of the grooved type that is a 10-step shape in this one-step shape, a second chemical etching process is performed using hydrofluoric acid as the second processing step, and the diameter is 0.59 mm. Thus, a two-stage shape portion having a depth of 15.0 μm was formed. The single-sided grooved-type quartz blank with a two-stage shape, which was obtained by performing two chemical etching processes using hydrofluoric acid, was the first vibration with a circular area of 0.59 mm in a small area. When the portion is chemically etched, and then the second processing step is followed by a chemical etching process to produce a 10 mm square groove with a large area of 1.6 mm, the crystal anisotropy occurs, Since the crystal direction of the crystal is generated in the vibrating portion, it cannot be used as a crystal resonator at all. A single-sided grooved-type crystal resonator having a two-stage shape could be completed by a chemical etching processing method that is not normally considered. A quartz blank is sandwiched between the upper and lower polishing machines by applying a certain pressure, and polishing is performed using a dual-face polishing machine. As the polishing agent, when cerium oxide is used, the pressure distribution of the concave-shaped quartz blank sandwiched between the dual-face polishing machines is in order to sandwich the concave-shaped quartz blank by applying pressure between the upper and lower polishing discs. As indicated by the arrows, the frame portion receives pressure from both the upper and lower sides, but the opposite side of the vibration portion is hollow, and therefore receives pressure only from below. As a result, it bends upward with the centers of the decagonal groove portion and the circular vibration portion as vertices. Thus, the pressure is maximized at both ends, with the central portion being the minimum, by the amount of deflection that has escaped upward. Further, the polishing amount between the two parts changes with curvature like a part of the spherical surface. The polishing amount is proportional to the pressure. Therefore, it was clarified that the single-sided grooved-type quartz blank having a two-stage shape after processing protruded with the central portion of the vibration portion as a maximum and became a bulging convex lens shape. As a result, a plano-convex lens shape was completed.

シリコン二次電池を組み立てるために、リード金属に製膜した、SiCの化学式を有している炭化ケイ素の正極、及びSi窒化ケイ素の負極を製造した後、各電極に非水電解質を塗布して、張り合わせることにより、当該シリコン二次電池を迅速に組み立て製造できる。
In order to assemble a silicon secondary battery, a silicon carbide positive electrode having a chemical formula of SiC and a negative electrode of Si 3 N 4 silicon nitride formed on a lead metal were manufactured, and then a nonaqueous electrolyte was applied to each electrode. By applying and bonding, the silicon secondary battery can be quickly assembled and manufactured.

従来のプラズマCVDは、高品質な成膜には400℃付近までプロセス温度を上げる必要があったが、200℃未満での高品質な成膜を実現し、低いプロセス温度で高いクオリティで均一性成膜が可能 SiC及びSi3N4電極を高速にて製膜できる。シリコン二次電池を組み立てるために、リード金属に製膜した、SiCの化学式を有している炭化ケイ素の正極、及びSi窒化ケイ素の負極を製造した後、各電極に非水電解質を塗布して、接合して張り合わせることにより、当該シリコン二次電池を迅速に製造できる。
In conventional plasma CVD, the process temperature must be raised to around 400 ° C for high-quality film formation, but high-quality film formation at temperatures below 200 ° C has been achieved, and high quality and uniformity at low process temperatures. Capable of forming SiC and Si3N4 electrodes can be formed at high speed. In order to assemble a silicon secondary battery, a silicon carbide positive electrode having a chemical formula of SiC and a negative electrode of Si 3 N 4 silicon nitride formed on a lead metal were manufactured, and then a nonaqueous electrolyte was applied to each electrode. The silicon secondary battery can be rapidly manufactured by applying, bonding and bonding.

陽極としてアモルファス(非晶質)炭化ケイ素SiC、及び陰極としてアモルファス(非晶質)窒化ケイ素Siをからなるシリコン化合物の試料5を、リード線用金属6に製膜するために、シランSiH4やメタンCH4のプロセスガス1及び不活性キャリアガス8を機密容器2に供給して、多孔質電極3から混合ガス流9を大気圧プラズマ化学蒸着CVD 法(CPD 法)により、一般にプラズマ励起に用いられている電源周波数13.56 MHz(RF帯)よりも、一桁高い従来の150 MHz(VHF帯)よりも、さらに高い550MHz(UHF帯)の高周波電源10を使用して、安定なグロープラズマ4 を発生させ、温度制御したステージ1と、多孔質電極3と基板7の間における0.1〜1mm という小さなギャップにおいて高密度なプラズマ4を発生させる。図1の多孔質カーボン電極では、電極を通して各種の高純度なプロセスガスを直接プラズマ中へ供給できる。In order to form a sample 5 of a silicon compound comprising amorphous (amorphous) silicon carbide SiC as an anode and amorphous (amorphous) silicon nitride Si 3 N 4 as a cathode on a lead metal 6, A process gas 1 of SiH 4 or methane CH 4 and an inert carrier gas 8 are supplied to a confidential container 2, and a mixed gas flow 9 from the porous electrode 3 is generally plasma by an atmospheric pressure plasma chemical vapor deposition CVD method (CPD method). A stable glow using a high frequency power supply 10 of 550 MHz (UHF band) higher than the conventional 150 MHz (VHF band), which is one digit higher than the power supply frequency of 13.56 MHz (RF band) used for excitation. Plasma 4 is generated, and high-density plasma 4 is generated in a small gap of 0.1 to 1 mm between the temperature-controlled stage 1 and the porous electrode 3 and the substrate 7. In the porous carbon electrode of FIG. 1, various high-purity process gases can be directly supplied into the plasma through the electrode. 反応ガスの高能率供給、大気圧プラズマの安定制御、大電力の投入などを可能とするには、二種類の電極(高速回転電極および図1の多孔質カーボン電極)がある。これらの電極の違いは、プラズマへのガス供給方法であり、図2の高速回転電極の場合、円筒型の電極を高速回転させることにより、雰囲気の反応ガスを電極と基板間ギャップに能率的に供給することができる。反応ガスの大気圧の下、両電極の間に局所的に強い電界を形成させてプラズマを発生させ、当該プラズマによって生成する活性種を被処理物に照射することにより被処理物に所望の処理を施す大気圧プラズマ処理装置において、絶縁体が、その電圧印加電極側部分に、強い電界を特定の位置に形成させ、それによって該強い電界の方向を被処理物の搬送方向に対して傾斜させる突起部を備えている。There are two types of electrodes (high-speed rotating electrode and porous carbon electrode in FIG. 1) in order to enable high-efficiency supply of reactive gas, stable control of atmospheric pressure plasma, and input of high power. The difference between these electrodes is the gas supply method to the plasma. In the case of the high-speed rotating electrode shown in FIG. 2, by rotating the cylindrical electrode at a high speed, the reaction gas in the atmosphere is efficiently transferred to the gap between the electrode and the substrate. Can be supplied. Under the atmospheric pressure of the reaction gas, a strong electric field is locally formed between the two electrodes to generate plasma, and the object to be processed is irradiated with active species generated by the plasma. In the atmospheric pressure plasma processing apparatus that performs the process, the insulator causes a strong electric field to be formed at a specific position on the voltage application electrode side portion, thereby tilting the direction of the strong electric field with respect to the conveyance direction of the workpiece. Protrusions are provided. 当該CPD 法の製膜方法には、従来のプラズマ励起に用いられている電源周波数のRF帯よりも、一桁高いVHF帯の高周波よりも、さらに高いUHF帯の電源(UHF帯>300MHz)を使用しているので、シリコン二次電池のシリコン化合物電極を迅速に生成できる。In the film formation method of the CPD method, a power supply in the UHF band (UHF band> 300 MHz) higher than the high frequency in the VHF band, which is one digit higher than the RF band of the power supply frequency used for conventional plasma excitation, is used. Since it is used, the silicon compound electrode of the silicon secondary battery can be quickly generated.

従来のプラズマCVD(PECVD)は、高品質な成膜には400℃付近までプロセス温度を上げる必要があったが、本発明の図1に示すCPD 法 では、200℃未満での高品質な成膜5を反応ガス1(シランSiH4,メタンCH4)を使用して実現し、CVD装置への低温化の要求に対し、高いクオリティの炭化ケイ素SiCを成膜することが可能である。図1に示すPECVD装置を用いて成膜した膜厚、膜応力、組成比、エッチ耐性などの項目について計測した。また熱の影響を調べるため、600℃でアニール(焼きなまし)を行い、焼きなまし前のサンプルと比較をした結果、堆積速度は56 nm/sであり、アニール後のサンプルでは膜厚が20 nm減少した。またアニールをすることによって、膜応力は圧縮領域から引張り領域へと遷移することも確認された。組成をEPMAで求めたところ、SiとCの比は、低周波LF成分が小さいほどCが減少し、LF成分が大きいほどCが増加することが分かり、Cの量が膜応力に影響を与えていることが推測される。図1に示す高周波(UHF帯>300MHz)CPD法を使用して、低温で堆積させたアモルファスSiC膜でも、化学的安定性が失われることなく、十分なエッチ耐性があることが分かった。 Conventional plasma CVD (PECVD) required the process temperature to be raised to around 400 ° C for high-quality film formation, but the CPD method shown in FIG. The film 5 can be realized by using the reaction gas 1 (silane SiH 4 , methane CH 4 ), and high quality silicon carbide SiC can be formed to meet the demand for low temperature in the CVD apparatus. Items such as film thickness, film stress, composition ratio, etch resistance, etc., formed using the PECVD apparatus shown in FIG. 1 were measured. In order to investigate the effect of heat, annealing (annealing) was performed at 600 ° C and compared with the sample before annealing. As a result, the deposition rate was 56 nm / s, and the film thickness was reduced by 20 nm in the sample after annealing. . It was also confirmed that the film stress transitioned from the compression region to the tensile region by annealing. When the composition was determined by EPMA, it was found that the ratio of Si to C decreased as the low-frequency LF component decreased, and increased as the LF component increased. The amount of C affected the film stress. I guess that. It was found that even an amorphous SiC film deposited at a low temperature using the high frequency (UHF band> 300 MHz) CPD method shown in FIG. 1 has sufficient etch resistance without losing chemical stability.

本発明の図2に示すSi3N4厚膜の高速連続デポジションPECVD装置は、膜のストレス制御、膜厚均一性の制御のために、プラズマ源に磁気強化型誘導結合方式(Magnetically Enhanced Inductively Coupled Plasma)を採用して、大型8インチウェハーまでの対応も可能である。図3に示すように本発明のCPD 法により、一般に反応ガス1(SiH4,アンモニアNH3)のプラズマ励起に用いられている電源周波数13.56 MHz(RF帯)よりも、一桁高い従来の150 MHz(VHF帯)の高周波製膜速度は約6倍になっていたが、本発明ではさらに高い550MHz(UHF帯)電源10を使用しているので、高周波(UHF帯>300MHz)CPD法を使用して、電極3と基板7の間のギャップにおいて高密度なプラズマ4を発生できて、従来のRF帯電源の製膜速度をよりも約10倍速くなった。プラズマCVDにも対応可能なDrift-diffusion model計算によると、この反応性混合ガスの場合、アンモニア濃度を五パーセント程度にすると、アモルファスSi膜が最適に製造できる。さらに、シリコン二次電池を組み立てるために、リード金属に製膜した、SiCの化学式を有している炭化ケイ素の正極、及びSiの化学式を有している窒化ケイ素の負極を製造した後、各電極に非水電解質を塗布して、張り合わせることにより、当該シリコン二次電池を迅速に製造できる。なお、大容量シリコン二次電池の生産には、この約4ボルト単位電池の集電リードは金属箔板であるから、直列に容易に積層できる特長がある。
The high-speed continuous deposition PECVD apparatus of Si 3 N 4 thick film shown in FIG. 2 of the present invention is magnetically enhanced inductively coupled to the plasma source for controlling the film stress and controlling the film thickness uniformity. Coupled Plasma) can be used to handle up to large 8-inch wafers. As shown in FIG. 3, according to the CPD method of the present invention, the power supply frequency of 13.56 MHz (RF band) that is generally used for plasma excitation of the reaction gas 1 (SiH 4 , ammonia NH 3 ) is 150 times higher than that of the conventional 150 The high-frequency film-forming speed of MHz (VHF band) was about 6 times higher, but in the present invention, a higher 550 MHz (UHF band) power supply 10 is used, so the high-frequency (UHF band> 300 MHz) CPD method is used. As a result, a high-density plasma 4 can be generated in the gap between the electrode 3 and the substrate 7, and the film forming speed of the conventional RF band power supply is about 10 times faster than that. According to a drift-diffusion model calculation that can also be applied to plasma CVD, in the case of this reactive mixed gas, an amorphous Si 3 N 4 film can be optimally produced when the ammonia concentration is about 5 percent. Furthermore, in order to assemble a silicon secondary battery, a silicon carbide positive electrode having a chemical formula of SiC and a silicon nitride negative electrode having a chemical formula of Si 3 N 4 were formed on a lead metal. Thereafter, the silicon secondary battery can be rapidly manufactured by applying a nonaqueous electrolyte to each electrode and bonding them together. The production of large-capacity silicon secondary batteries has the advantage that they can be easily stacked in series because the current collecting leads of the approximately 4-volt unit batteries are metal foil plates.

パソコン及び携帯電話等のポータブル機器、及び自動車やスマートグリッドの普及に伴い、当該機器の電源である二次電池の需要が急速に増大していて、このような二次電池の典型例はリチウム(Li)を負極として、フッ化炭素等を正極とするリチウム電池であったが、リチウムは希少高価であり、廃棄した場合にはリチウムが流出し環境上好ましくない。これに対し、本来半導体であるケイ素(Si)を電極の素材とする場合には、リチウムに比較して安価であると共に、ケイ素は金属リチウムの流出のような環境上の問題を生じない。ケイ素を二次電池の電極の素材として採用することが試みられ、シリコン電極を使った二次電池は、リチウムイオン電池に比べて、シリコンの特性を生かすと大容量で耐久性が実現できる可能性があり、正極に炭化ケイ素、負極に窒化ケイ素を使い、電解質にイオン交換樹脂を取りいれた。本発明のCPD 法により、一般にプラズマ励起に用いられている電源周波数13 MHz(RF帯)よりも、40倍高い550MHz(UHF帯)電源10を使用しているので、高密度なプラズマ4を発生できて、従来のRF帯電源の製膜速度よりも約10倍速くなった。さらに、シリコン二次電池を組み立てるために、リード金属に製膜した、SiC正極、及びSi負極を製造した後、各電極に非水電解質を塗布して、張り合わせることにより、当該シリコン二次電池を迅速に製造できる。なお、大容量シリコン二次電池の生産には、この単位電池の集電リードは金属箔板であるから、直列に容易に積層できる。 With the widespread use of portable devices such as personal computers and mobile phones, and automobiles and smart grids, the demand for secondary batteries, which are the power sources of such devices, is rapidly increasing. Typical examples of such secondary batteries are lithium ( Although the lithium battery has Li) as a negative electrode and carbon fluoride or the like as a positive electrode, lithium is rare and expensive. When discarded, lithium flows out, which is not preferable in terms of environment. On the other hand, when silicon (Si), which is originally a semiconductor, is used as an electrode material, it is cheaper than lithium and silicon does not cause environmental problems such as outflow of metallic lithium. Attempts have been made to adopt silicon as a material for secondary battery electrodes, and secondary batteries using silicon electrodes have the potential to achieve high capacity and durability when utilizing the characteristics of silicon compared to lithium ion batteries. In this case, silicon carbide was used for the positive electrode, silicon nitride was used for the negative electrode, and an ion exchange resin was used for the electrolyte. The CPD method of the present invention generates a high-density plasma 4 because it uses a 550 MHz (UHF band) power supply 10 that is 40 times higher than the power supply frequency 13 MHz (RF band) generally used for plasma excitation. As a result, the film formation speed of the conventional RF band power supply is about 10 times faster. Further, in order to assemble a silicon secondary battery, after manufacturing a SiC positive electrode and a Si 3 N 4 negative electrode formed on a lead metal, a non-aqueous electrolyte is applied to each electrode, and the silicon secondary battery is laminated. A secondary battery can be manufactured quickly. For production of a large-capacity silicon secondary battery, the current collecting lead of the unit battery is a metal foil plate and can be easily stacked in series.

微小放電電極間で微細ガス流を用いると、大気圧グロープラズマを安定に生成できるが、プラズマは約1mm以下の微小電極間に存在するので、これを利用する応用は限定される。この問題点を解決するため、円形の開口部を有する電極の使用と放電条件の設定により、プラズマ流を電極外部に引き出す方式を検討した。電力が注入される電極間と電極外部に引き出される領域での現象は、相互に深い関係にあり両者を統一的に理解して、所定のエネルギーと電荷量を持ったプラズマ流の引き出す制御法を確立する必要がある。また、ミクロンオーダのプラズマでは、電源周波数の高いほうが効率よくエネルギーを注入できるので、高周波電力により大気圧マイクロプラズマを生成し、エネルギー密度の高いプラズマを放電電極の外部へ伸展できることを示した。他の産業上の微細加工、表面処理への応用に向けて、電極の穴径を制御して得られる異なる形態の放電の生成とその利用に関する開発も進めている。 When a fine gas flow is used between the micro discharge electrodes, atmospheric pressure glow plasma can be stably generated. However, since the plasma exists between the micro electrodes of about 1 mm or less, applications using this are limited. In order to solve this problem, a method of extracting a plasma flow to the outside of the electrode by using an electrode having a circular opening and setting discharge conditions was examined. The phenomenon between the electrodes where power is injected and the region where the power is drawn out is deeply related to each other. Need to be established. In addition, it was shown that the micron-order plasma can efficiently inject energy with a higher power supply frequency, so that atmospheric pressure microplasma can be generated by high-frequency power and the plasma with high energy density can be extended outside the discharge electrode. Developments are also underway for the generation and use of different forms of electrical discharges obtained by controlling the hole diameter of electrodes for other industrial micromachining and surface treatment applications.

最新の先端半導体デバイス(SiC、Si) などのCPD 法による大量生産工程では、高性能を実現するため,より微細な構造に良好な被覆性で、より低温で高品質な絶縁膜を形成する技術が求められ、より低コストで電極(SiC、Si)を提供するため、生産性の高いプロセスが必須となっている。これらの課題を克服するために、新しい成膜技術を開発することによって、被覆性がよく比較的低温で膜質の高い絶縁膜を形成するプロセスを実現できる。従来の減圧CVD技術よりも高い膜厚均一性と高精度の組成制御性を得るため、新しい高周波(UHF帯>300MHz)CPD法成膜装置・プロセスが開発され、メタル膜や低温の窒化ケイ素膜など向けのプロセスを開発されている。この技術により、次世代のメモリやデバイス(SiC、Si)の課題の多くが解決されると期待されている。パワーデバイスの有力候補であるSiCデバイスの製造工程では、量産型の高温(〜800℃)アニール装置が必要である。
In the mass production process by the CPD method such as the latest advanced semiconductor devices (SiC, Si 3 N 4 ), in order to achieve high performance, a finer structure with better coverage, lower temperature and higher quality insulation film In order to provide a technique for forming the electrode (SiC, Si 3 N 4 ) at a lower cost, a highly productive process is essential. In order to overcome these problems, by developing a new film forming technique, it is possible to realize a process for forming an insulating film having a good coverage and a relatively high temperature at a relatively low temperature. A new high-frequency (UHF band> 300 MHz) CPD deposition system and process have been developed to obtain higher film thickness uniformity and higher composition controllability than conventional low-pressure CVD technology. Metal films and low-temperature silicon nitride films have been developed. Processes for such as have been developed. This technology is expected to solve many of the problems of next-generation memories and devices (SiC, Si 3 N 4 ). In the manufacturing process of SiC devices that are promising candidates for power devices, mass-production type high temperature (up to 800 ° C.) annealing equipment is required.

1 反応ガス
2 密封容器
3 電極
4 プラズマ
5 シリコン化合物膜
6 終電金属板
7 温度制御ステージ
8 キャリアガス
9 プロセスガス
10 高周波電源
11 温度制御電源
12 回転電極
DESCRIPTION OF SYMBOLS 1 Reaction gas 2 Sealed container 3 Electrode 4 Plasma 5 Silicon compound film 6 Last power metal plate 7 Temperature control stage 8 Carrier gas 9 Process gas 10 High frequency power supply 11 Temperature control power supply 12 Rotating electrode

Claims (3)

正極をSiCの化学式を有している炭化ケイ素とし、負極をSiの化学式を有している窒化ケイ素とし、正極と負極との間に非水電解質を採用するシリコン二次電池を製造するために、陽極にアモルファス(非晶質)SiC、及び陰極にアモルファス(非晶質)Siを、電極リード金属性の基盤に高速で製膜する製膜する製法として、高周波(UHF帯>300MHz)による大気圧プラズマ化学蒸着CVD 法(以下、略して、CPD 法とする)により、シリコン二次電池のアモルファスケイ素化合物電極の製膜を可能とすることを特徴とする、当該ケイ素化合物電極の製造方法、及び製造装置。 Manufacture a silicon secondary battery that employs a non-aqueous electrolyte between the positive electrode and the negative electrode, with the positive electrode made of silicon carbide having the chemical formula of SiC and the negative electrode made of silicon nitride having the chemical formula of Si 3 N 4 In order to achieve this, a high-frequency (UHF) method is used to form amorphous (amorphous) SiC on the anode and amorphous (amorphous) Si 3 N 4 on the cathode at a high speed on the electrode lead metal base. A silicon compound characterized in that an amorphous silicon compound electrode of a silicon secondary battery can be formed by an atmospheric pressure plasma chemical vapor deposition CVD method (hereinafter abbreviated as a CPD method) using a band> 300 MHz) Electrode manufacturing method and manufacturing apparatus. 請求項1において、シリコン二次電池のアモルファスケイ素化合物電極のCPD 法製膜を可能とするために、従来一般に使用されていたプラズマ励起に用いる電源周波数13.56 MHz(RF帯)よりも、一桁高い従来の150 MHz(VHF帯)の高周波よりも、さらに高い300 MHz以上のUHF帯を使用して、安定なグロープラズマを発生させ、高密度に生成される反応種を利用した成膜法を採用して、小さな電極基板間ギャップにおいて高密度なプラズマを発生させることが可能とする、当該ケイ素化合物電極の製膜方法、及び製膜装置。 In claim 1, in order to make it possible to form a CPD film of an amorphous silicon compound electrode of a silicon secondary battery, the conventional power supply frequency of 13.56 MHz (RF band) used for plasma excitation, which has been conventionally used, is an order of magnitude higher Using a UHF band of 300 MHz or higher, which is higher than the 150 MHz (VHF band) high frequency, a stable glow plasma is generated, and a deposition method using reactive species generated at high density is adopted. The silicon compound electrode film-forming method and film-forming apparatus are capable of generating high-density plasma in a small gap between electrode substrates. 請求項1において、シリコン二次電池を組み立てるために、請求項2においてリード金属板の表面に高周波CPD 法を使用して製膜した、SiCの化学式を有している炭化ケイ素の正極、及びSiの負極を各々製造した後、各電極に非水電解質を塗布して、接合することを特徴とした当該シリコン二次電池の製造方法。

2. A silicon carbide positive electrode having a chemical formula of SiC, formed by using a high frequency CPD method on the surface of a lead metal plate in claim 2 to assemble a silicon secondary battery, and Si 3. A method for manufacturing a silicon secondary battery, comprising manufacturing a negative electrode of 3 N 4 and then applying and bonding a nonaqueous electrolyte to each electrode.

JP2011204170A 2011-09-20 2011-09-20 Method for manufacturing silicon secondary battery amorphous electrode by high-frequency atmospheric pressure plasma cvd Withdrawn JP2013065496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204170A JP2013065496A (en) 2011-09-20 2011-09-20 Method for manufacturing silicon secondary battery amorphous electrode by high-frequency atmospheric pressure plasma cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204170A JP2013065496A (en) 2011-09-20 2011-09-20 Method for manufacturing silicon secondary battery amorphous electrode by high-frequency atmospheric pressure plasma cvd

Publications (1)

Publication Number Publication Date
JP2013065496A true JP2013065496A (en) 2013-04-11

Family

ID=48188822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204170A Withdrawn JP2013065496A (en) 2011-09-20 2011-09-20 Method for manufacturing silicon secondary battery amorphous electrode by high-frequency atmospheric pressure plasma cvd

Country Status (1)

Country Link
JP (1) JP2013065496A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013859A1 (en) * 2014-07-22 2016-01-28 주식회사 이엠따블유에너지 Silicon secondary battery
JP2017199629A (en) * 2016-04-28 2017-11-02 株式会社三五 Method for manufacturing negative electrode for lithium ion secondary battery
WO2019177338A1 (en) * 2018-03-14 2019-09-19 주식회사 엘지화학 Amorphous silicon-carbon composite, preparation method therefor, and lithium secondary battery comprising same
JP2020525648A (en) * 2017-06-27 2020-08-27 ペーエスツェー テクノロジーズ ゲーエムベーハー Method for producing fibers and foams containing silicon carbide and use thereof
US11616233B2 (en) 2018-03-14 2023-03-28 Lg Energy Solution, Ltd. Amorphous silicon-carbon composite, preparation method therefor, and lithium secondary battery comprising same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013859A1 (en) * 2014-07-22 2016-01-28 주식회사 이엠따블유에너지 Silicon secondary battery
WO2016013861A1 (en) * 2014-07-22 2016-01-28 주식회사 이엠따블유에너지 Silicon secondary battery
WO2016013860A1 (en) * 2014-07-22 2016-01-28 주식회사 이엠따블유에너지 Silicone secondary battery unit and battery module for electrical vehicle using same
US10050302B2 (en) 2014-07-22 2018-08-14 Rekrix Co., Ltd. Silicon secondary battery
US10468716B2 (en) 2014-07-22 2019-11-05 Rekrix Co., Ltd. Silicon secondary battery
JP2017199629A (en) * 2016-04-28 2017-11-02 株式会社三五 Method for manufacturing negative electrode for lithium ion secondary battery
JP2020525648A (en) * 2017-06-27 2020-08-27 ペーエスツェー テクノロジーズ ゲーエムベーハー Method for producing fibers and foams containing silicon carbide and use thereof
WO2019177338A1 (en) * 2018-03-14 2019-09-19 주식회사 엘지화학 Amorphous silicon-carbon composite, preparation method therefor, and lithium secondary battery comprising same
US11616233B2 (en) 2018-03-14 2023-03-28 Lg Energy Solution, Ltd. Amorphous silicon-carbon composite, preparation method therefor, and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
KR100341407B1 (en) A Crystall ization method of lithium transition metal oxide thin films by plasma treatm ent
JP6076052B2 (en) Cleaning method for film forming apparatus
US11673807B2 (en) Carbon nanostructured materials and methods for forming carbon nanostructured materials
JP2013065496A (en) Method for manufacturing silicon secondary battery amorphous electrode by high-frequency atmospheric pressure plasma cvd
JP6194320B2 (en) Battery electrode processing method
JP2011023655A (en) Silicon nitride thin film depositing method, and silicon nitride thin film depositing device
JP2008124111A (en) Method for forming silicon thin film by plasma cvd method
JP2006265079A (en) Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
US8946061B2 (en) Engineering of porous coatings formed by ion-assisted direct deposition
JP2009158416A (en) Manufacturing method for solid electrolyte thin film, parallel flat-plate type magnetron sputtering device, and manufacturing method for thin-film solid lithium ion secondary battery
JP2009187682A (en) Method for manufacturing cathode electrode, and method for manufacturing thin film solid lithium-ion secondary battery
TW201123466A (en) Method of manufacturing photoelectric conversion device
CN105070646B (en) A kind of preparation method of low stress nitride silicon thin film
JP6563361B2 (en) Method for producing negative electrode for lithium ion secondary battery
CN109825807B (en) Gas phase synthesis method of thickness-controllable lithium metal negative electrode porous Zn current collector
JPH10265212A (en) Production of microcrystal and polycrystal silicon thin films
JP3911555B2 (en) Silicon-based thin film manufacturing method
KR101171555B1 (en) Positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
US20210359339A1 (en) Cathode for solid-state lithium battery
CN113422017A (en) Silicon-carbon composite negative electrode material for secondary battery and preparation method thereof
US20160016143A1 (en) APPARATUS FOR MANUFACTURING Si-BASED NANO-PARTICLES USING PLASMA
JP4515440B2 (en) Method for manufacturing thin film transistor
CN102271454B (en) Intermediate/low-frequency plasma processing device and electrode plates
JP4470227B2 (en) Film forming method and thin film transistor manufacturing method
JPH09263948A (en) Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202