JP2013028834A - Nb-Si-BASED HIGH-TEMPERATURE ALLOY - Google Patents

Nb-Si-BASED HIGH-TEMPERATURE ALLOY Download PDF

Info

Publication number
JP2013028834A
JP2013028834A JP2011164866A JP2011164866A JP2013028834A JP 2013028834 A JP2013028834 A JP 2013028834A JP 2011164866 A JP2011164866 A JP 2011164866A JP 2011164866 A JP2011164866 A JP 2011164866A JP 2013028834 A JP2013028834 A JP 2013028834A
Authority
JP
Japan
Prior art keywords
niobium
alloy
heat
melting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011164866A
Other languages
Japanese (ja)
Other versions
JP5854497B2 (en
Inventor
Seiji Miura
誠司 三浦
Tetsuo Mori
哲夫 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2011164866A priority Critical patent/JP5854497B2/en
Publication of JP2013028834A publication Critical patent/JP2013028834A/en
Application granted granted Critical
Publication of JP5854497B2 publication Critical patent/JP5854497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a material which is excellent in high-temperature strength and room-temperature toughness, in which precision casting and directional solidification can be applied, and which is easily hot worked.SOLUTION: The niobium-based high-temperature alloy includes 9.0 to 17.5 atom% Si and 1 atom% or more and a solid-solution limit or less of one or more elements selected from the group consisting of Au, Pd, Re, Os, Ir, and Pt, with the balance consisting of inevitable impurities and niobium, and has a Nb/NbSieutectic structure in which spheroidized NbSiparticles are dispersed in a Nb base material phase. In the niobium-based high-temperature alloy, the amount of displacement by a 1,200°C high-temperature three-point bending test is 1,500 μm or more. The niobium-based high-temperature alloy can be produced by a method including: a melting step of melting a raw material metal component; a solidification step of solidifying the molten material obtained by the melting step; and a heat treatment step of heat-treating the solidified material with a lamellar structure comprising Nb and NbSiobtained by the solidification step at 1,100 to 1,700°C in a solid state to spheroidize the NbSi.

Description

本発明は、高温強度と靭性に優れた、高温耐熱材料として用いられるNb-Si系耐熱合金
に関する。
The present invention relates to an Nb—Si heat-resistant alloy that is excellent in high-temperature strength and toughness and used as a high-temperature heat-resistant material.

エネルギー、航空宇宙、鉄鋼業、化学工業等の分野では、高温の厳しい環境下で長時間使
用可能な機器部材用構成材料、つまり耐熱材料の開発が期待されている。特に、火力発電
では、地球環境保全や化石燃料資源保護の観点から、熱効率の向上が求められている。し
たがって、ガスタービンの運転温度を一層高温化させること、ひいては、ガスタービンの
構成材料の耐熱性及び耐久性等の特性を更に向上させることが急務の課題である。
In the fields of energy, aerospace, steel industry, chemical industry, etc., development of component materials for equipment members that can be used for a long time in a severe environment of high temperatures, that is, heat-resistant materials is expected. In particular, thermal power generation is required to improve thermal efficiency from the viewpoint of global environmental conservation and fossil fuel resource protection. Therefore, it is an urgent task to further increase the operating temperature of the gas turbine, and to further improve the characteristics such as heat resistance and durability of the constituent materials of the gas turbine.

現在、耐熱材料として広く用いられているのはニッケル(Ni)基合金である。しかし、
Ni基合金の使用可能温度の上限は1100℃程度であり、その耐熱性の向上はほぼ限界
に達している。そのため、Ni基合金に替わる新たな耐熱材料が必要となっている。
Currently, nickel (Ni) based alloys are widely used as heat resistant materials. But,
The upper limit of the usable temperature of the Ni-based alloy is about 1100 ° C., and the improvement of the heat resistance has almost reached the limit. Therefore, a new heat-resistant material that replaces the Ni-based alloy is required.

新たな耐熱材料としては、Niよりも融点の高いことが必須の条件であり、これを満たす
ものとして、いわゆる高融点金属が考えられる。その中でも特にニオブ(Nb)は、Ni
より融点が1000℃以上も高く、しかも軽量であることから、耐熱材料として有望視さ
れている。しかしながら、ニオブ単体を耐熱材料として実用化するには、高温強度及び常
温靭性を強化する必要がある。
As a new heat-resistant material, a higher melting point than Ni is an essential condition, and so-called refractory metals can be considered to satisfy this condition. Of these, niobium (Nb) is particularly Ni.
Its melting point is higher than 1000 ° C. and it is lightweight, so it is considered promising as a heat resistant material. However, in order to put niobium as a heat-resistant material into practical use, it is necessary to enhance the high temperature strength and the room temperature toughness.

現在、耐熱材料であるNi基超合金の代替材料候補の一つとしてNb-Si系合金が期待され
ている。特許文献1には、Nbに2〜10at%のMoと18.7〜26at%のSiを含有し
、Nb固溶相中にニオブシリサイドが分散した耐熱構造材料用二相合金が記載されている
。本発明者らは、先に、Nb、Si、及び適切な添加物(例えば、Mg)を溶融、凝固さ
せた後、熱処理することによって、新たな組織構成を有するNb基複合体を得る方法に関
する発明を特許出願した(特許文献2)。
At present, Nb-Si alloys are expected as one of alternative materials for Ni-base superalloys that are heat-resistant materials. Patent Document 1 describes a two-phase alloy for a heat-resistant structural material containing 2 to 10 at% Mo and 18.7 to 26 at% Si in Nb, in which niobium silicide is dispersed in the Nb solid solution phase. . The inventors of the present invention relate to a method for obtaining an Nb-based composite having a new structure by first melting and solidifying Nb, Si, and an appropriate additive (for example, Mg) and then heat-treating. Patent application for the invention (Patent Document 2).

また、特許文献3には、金属Nb基相と少なくとも1つの金属ケイ化物相とを含み、約9
原子%〜約25原子%のSi、約5原子%〜約25原子%のTi、約1原子%〜約30原
子%のRe、約1原子%〜約25原子%のCr、約1原子%〜約20原子%のAl、最大
約20原子%までのHf、最大約30原子%までのRu、最大約30原子%までのW、T
a及びMoから選択された少なくとも1つの金属、並びに残部のNb、を含む高融点金属
の金属間化合物複合材が記載されている。
Patent Document 3 includes a metal Nb base phase and at least one metal silicide phase,
Atomic percent to about 25 atomic percent Si, about 5 atomic percent to about 25 atomic percent Ti, about 1 atomic percent to about 30 atomic percent Re, about 1 atomic percent to about 25 atomic percent Cr, about 1 atomic percent Up to about 20 atomic% Al, up to about 20 atomic% Hf, up to about 30 atomic% Ru, up to about 30 atomic% W, T
A refractory metal intermetallic compound composite comprising at least one metal selected from a and Mo and the balance Nb is described.

非特許文献1には、NbにSiを添加し、ニオブシリサイド(Nb5Si3)を析出(共晶
)させることによって、Nb固溶体中(母材相)にNb5Si3が分散した複合体組織(N
b‐Nb5Si3)、すなわちニオブ基複合体を形成することが記載されている。また、非
特許文献2には、さらにMo及びWを添加することによってNb固溶体を強化し、高温強
度を向上させること(固溶体強化)が記載されている。本発明者らは、Nb-18.1at%Si-1.5
at%Zr-100ppmMg合金における微細組織の制御についての報告(非特許文献3、4)及びNb
-Si-Mo合金へのTa添加によりNb3Siが安定化されるという報告をしている(非特許文献5
)。
Non-Patent Document 1 discloses a composite in which Nb 5 Si 3 is dispersed in an Nb solid solution (base material phase) by adding Si to Nb and precipitating (eutectic) niobium silicide (Nb 5 Si 3 ). Organization (N
b-Nb 5 Si 3 ), ie forming a niobium group complex. Non-Patent Document 2 describes that Nb solid solution is further strengthened by adding Mo and W to improve high-temperature strength (solid solution strengthening). We have Nb-18.1at% Si-1.5
Report on microstructure control in at% Zr-100ppmMg alloy (Non-Patent Documents 3 and 4) and Nb
Nb 3 Si has been reported to be stabilized by adding Ta to the Si-Mo alloy (Non-patent Document 5).
).

従来、Ni基合金の製造方法は、より強度のあるNi基耐熱合金の製造を目指して、普通
鋳造(CC:Conventionally Cast)合金から、一方向凝固(DS:Directionally Solid
ified)合金、単結晶(SC:Single Crystal)合金、そして酸化物分散強化型(ODS
:oxide dispersion strengthening)合金へとその手法が開発されてきた。
Conventionally, a Ni-based alloy manufacturing method aims to manufacture a stronger Ni-based heat-resistant alloy, from a unidirectional solidification (DS: Directionally Solid) from a CC (Conventionally Cast) alloy.
ified) alloys, single crystal (SC) alloys, and oxide dispersion strengthened (ODS)
: Oxide dispersion strengthening), and the technique has been developed.

現在、最も過酷な条件下で用いられている耐熱材料であるNi基合金では、より高性能な
合金を目指して、SC合金の開発が盛んである。すなわち、粗大なNi結晶粒中に化合物
を分散させることによって高い強度を実現している。
Currently, in the Ni-based alloys that are heat-resistant materials used under the harshest conditions, SC alloys are actively developed with the aim of achieving higher performance alloys. That is, high strength is realized by dispersing the compound in coarse Ni crystal grains.

現在、Nb基合金の製造方法として可能なのはDSである。Ni基合金と同じく、さらに
SCへと改良を進めることが望まれるが、Nbを用いた場合、高温で複数の相変態が起き
るため、既存の方法である精密鋳造・一方向凝固は適用できない。従って、現在の金属工
学で用いられる手法、すなわち溶融状態からの凝固による直接形成では、Nb基合金をS
Cに進めることは不可能であると考えられている。Siの量を一桁減らせば、SCを製造
することは可能であるが、このように化合物の量を減らすと、現在使用されているNi基
合金と比較して、強度が著しく小さくなり、実用に耐えうる材料は製造できない。
Currently, DS is a possible method for producing Nb-based alloys. As with the Ni-based alloy, it is desired to further improve the SC. However, when Nb is used, a plurality of phase transformations occur at a high temperature, so that the existing methods of precision casting and unidirectional solidification cannot be applied. Therefore, in the technique used in current metal engineering, that is, direct formation by solidification from a molten state, an Nb-based alloy is made of S.
It is considered impossible to proceed to C. If the amount of Si is reduced by an order of magnitude, it is possible to produce SC. However, if the amount of the compound is reduced in this way, the strength becomes significantly smaller than that of the currently used Ni-based alloys, and it is practical. Can not be manufactured.

特開2003−306736号公報JP 2003-306736 A 特開2006−241484号公報JP 2006-241484 A 特開2007−031837号公報JP 2007-031837 A Won-Yong Kim, et al., "Materials Science and Engineering ",A346 (2003) p.65-74Won-Yong Kim, et al., "Materials Science and Engineering", A346 (2003) p.65-74 Jiangbo Sha, et al.," Materials Science and Engineering ",A364 (2004) p.151-158Jiangbo Sha, et al., “Materials Science and Engineering”, A364 (2004) p.151-158 S.Miura et al.,"Metall.Mater.Trans.A",36(2005),p.489S. Miura et al., "Metall. Mater. Trans. A", 36 (2005), p. 489 S.Miura et al.,"Materials Science and Engineering ",A510-511(2009),p.317-321S. Miura et al., “Materials Science and Engineering”, A510-511 (2009), p.317-321 S. Miura et al.,"Materials Science Forum", Vols. 654-656(2010) p.444-447S. Miura et al., "Materials Science Forum", Vols. 654-656 (2010) p.444-447

耐熱材料としては、従来は、融点が1300℃程度のNiを主成分とする合金材料を用い
ており、ジエットエンジンや発電用ガスタービンの動翼材料として用いた場合、これ以上
の燃焼効率向上の余地に乏しい。また、耐熱性を上げるために内部に冷却用の空気を流す
等するために、製作に複雑な工程を必要としており、コストが高い。
As a heat-resistant material, conventionally, an alloy material mainly composed of Ni having a melting point of about 1300 ° C. is used. When used as a moving blade material for a jet engine or a gas turbine for power generation, the combustion efficiency can be further improved. There is little room. In addition, in order to increase the heat resistance, for example, cooling air is allowed to flow inside, so that a complicated process is required for manufacturing, and the cost is high.

そこで、融点が1900℃以上のNb基合金を用いることにより、耐熱性を確保してエネ
ルギーを効率的に利用し、CO2ガス排出削減、石油等の炭素系資源の有効利用を図るこ
とができると考えられる。
Therefore, by using an Nb-based alloy having a melting point of 1900 ° C. or higher, it is possible to ensure heat resistance, efficiently use energy, reduce CO 2 gas emission, and effectively use carbon-based resources such as petroleum. it is conceivable that.

Nb-Si二元系合金は、図8に示す状態図のとおり共晶合金であり、状態図に現れる金属間
化合物Nb5Si3は酸化抵抗やクリープ抵抗の改善に有効とされ注目されており、延性に富む
Nbと優れた高温強度を持つシリサイドとの複合化による高靭性化が期待されているが、
Si濃度が10〜15at%程度で室温靭性が大幅に低下する問題がある。Nb-Si系合金の
課題の一つとして高温強度を有するとともに室温靭性の改善が挙げられる。また、既存の
方法である精密鋳造・一方向凝固が適用できる材料や熱間加工が容易な材料が求められて
いる。
The Nb-Si binary alloy is a eutectic alloy as shown in the phase diagram shown in FIG. 8, and the intermetallic compound Nb 5 Si 3 appearing in the phase diagram has been attracting attention as being effective in improving oxidation resistance and creep resistance. , High toughness is expected by combining Nb rich in ductility and silicide having excellent high-temperature strength.
There is a problem in that the room temperature toughness is significantly lowered when the Si concentration is about 10 to 15 at%. One of the problems with Nb-Si alloys is that they have high-temperature strength and room temperature toughness. There is also a need for materials that can be applied to existing methods such as precision casting and unidirectional solidification, and materials that are easy to hot work.

本発明者らは、Nb-Si二元合金は大きな塑性変形を示さないが、Au,Pd,Re,Os,Ir,及びPtか
らなる群から選ばれる1又は複数種の元素を添加し通常の溶融凝固法で製造したNb-Si合
金では高温での熱処理により延性Nb中でNb5Si3が球状化して分散した組織とすることが
でき、強度を犠牲にすることなく優れた塑性変形能を示すNb基合金が得られることを見出
した。
Although the Nb—Si binary alloy does not show large plastic deformation, the present inventors added one or more elements selected from the group consisting of Au, Pd, Re, Os, Ir, and Pt to add ordinary elements. Nb-Si alloy produced by melt solidification method can be made into a structure in which Nb 5 Si 3 is spheroidized and dispersed in ductile Nb by heat treatment at high temperature, and has excellent plastic deformability without sacrificing strength. It has been found that the Nb-based alloy shown can be obtained.

すなわち、本発明は、Siを9.0〜17.5原子%、Au,Pd,Re,Os,Ir,及びPtからなる群
から選ばれる元素を1原子%以上固溶限度以下含有し残部が不可避不純物及びニオブから
なり、Nb母材相中に球状化したNb5Si3粒子を分散したNb/Nb5Si3共晶組織を有することを
特徴とするニオブ基耐熱合金、である。この合金は、1200℃における高温三点曲げ試
験による変位量が1500μm以上であることを特徴とする。
That is, the present invention contains Si at 9.0 to 17.5 atomic%, an element selected from the group consisting of Au, Pd, Re, Os, Ir, and Pt at 1 atomic% or more and the solid solution limit or less. A niobium-based heat-resistant alloy comprising an Nb / Nb 5 Si 3 eutectic structure in which spheroidized Nb 5 Si 3 particles are dispersed in an Nb base material phase, which consists of inevitable impurities and niobium. This alloy is characterized in that a displacement amount by a high temperature three-point bending test at 1200 ° C. is 1500 μm or more.

この合金は、原料金属成分を溶融させる溶融工程と、上記溶融工程によって得られた溶融
物を凝固させる凝固工程と、上記凝固工程によって得られたNbとNb5Si3からなるラメラ構
造をもつ凝固物を固体状態で1100〜1700℃で熱処理してNb5Si3を球状化する熱処
理工程と、を含む方法により製造できる。
This alloy has a melting step for melting the raw metal components, a solidification step for solidifying the melt obtained by the melting step, and a solidification having a lamellar structure composed of Nb and Nb 5 Si 3 obtained by the solidification step. And a heat treatment step of spheroidizing Nb 5 Si 3 by heat-treating the product at 1100 to 1700 ° C. in a solid state.

これまでにも、Mo及び/又はW等の他の高融点金属元素を添加することによって、固溶
体強化したニオブ基三元系合金が報告されている。しかし、本発明の製造方法は、Nb及
びSiに、上述のようにAu,Pd,Re,Os,Ir,及びPtからなる群から選ばれる1又は複数種の
元素を添加することで、従来の単なる固溶体強化等の特性改善方法では得られなかった特
性を有するニオブ基耐熱合金を提供するものである。
So far, niobium-based ternary alloys that have been solid-solution strengthened by adding other refractory metal elements such as Mo and / or W have been reported. However, in the production method of the present invention, one or more elements selected from the group consisting of Au, Pd, Re, Os, Ir, and Pt as described above are added to Nb and Si. The present invention provides a niobium-based heat-resistant alloy having characteristics that cannot be obtained by a property improvement method such as simple solid solution strengthening.

本発明の耐熱合金は、ニオブ母体結晶相中に微細な球状のニオブシリサイドが分散した組
織形態となっている。このため、耐熱性の他に常温靭性及び延性が特に優れている。した
がって、本発明のニオブ基耐熱合金は熱間鍛造等の加工にも適し、耐熱材料として、非常
に有用である。
The heat-resistant alloy of the present invention has a microstructure in which fine spherical niobium silicide is dispersed in a niobium base crystal phase. For this reason, in addition to heat resistance, room temperature toughness and ductility are particularly excellent. Therefore, the niobium-based heat-resistant alloy of the present invention is suitable for processing such as hot forging and is very useful as a heat-resistant material.

本発明の合金の製造方法と得られる組織を従来のZrを添加元素とした場合と比較して示す概念図である。It is a conceptual diagram which shows the manufacturing method of the alloy of this invention, and the structure | tissue obtained compared with the case where the conventional Zr is used as an additive element. Nb-Si合金鋳造材の添加元素による組織の相違を示す図面代用SEM写真である。It is a drawing substitute SEM photograph which shows the difference in the structure by the addition element of a Nb-Si alloy casting material. 実施例のNb-15Si-3Au合金の鋳造のままの組織と熱処理後の組織を示す図面代用SEM写真である。It is a drawing substitute SEM photograph which shows the structure | tissue as a cast of the Nb-15Si-3Au alloy of an Example, and the structure | tissue after heat processing. 本発明の実施例及び比較例の合金の熱処理後の室温三点曲げ試験結果を示すグラフである。It is a graph which shows the room temperature three-point bending test result after heat processing of the alloy of the Example of this invention, and a comparative example. 本発明の実施例及び比較例の合金の熱処理後の1200℃における高温三点曲げ試験結果を示すグラフである。It is a graph which shows the high temperature three point bending test result in 1200 degreeC after the heat processing of the alloy of the Example of this invention, and a comparative example. 高温三点曲げ試験後の試験片の図面代用光学写真である。It is a drawing substitute optical photograph of the test piece after a high temperature three-point bending test. 三点曲げ試験の概念図である。It is a conceptual diagram of a three-point bending test. Nb-Si二元系合金の状態図である。It is a phase diagram of a Nb-Si binary system alloy.

<本発明に係るニオブ基耐熱合金の組成と組織>
Nb−Si系の二元系合金は、一般に、Nbが17.5at%以下の亜共晶域では、マト
リックス(連続相)が延性大なNb相であるのに対して、Nbが17.5at%以上の過
共晶域では、延性の低いシリサイドがマトリックスになるため、硬くて脆い材料になり、
靭性の確保が難しくなる。
<Composition and structure of niobium-based heat-resistant alloy according to the present invention>
In the Nb—Si based binary alloy, in general, in the hypoeutectic region where Nb is 17.5 at% or less, the matrix (continuous phase) is a ductile Nb phase, whereas Nb is 17.5 at. % In the hypereutectic region, a low ductility silicide becomes a matrix, making it a hard and brittle material,
It becomes difficult to ensure toughness.

本発明に係るニオブ基耐熱合金中のケイ素の量は亜共晶域の約9原子%〜約17.5原子
%の範囲、より好ましくは、10原子%〜約16原子%の範囲内である。ケイ素の量が約
9原子%より少ないと、ニオブシリサイドの量が少なくなり耐熱強度が低下する。上限は
共晶点が好ましい。球状の金属間化合物Nb5Si3を形成するためには、Au,Pd,Re,Os,Ir,及
びPtからなる群から選ばれる1又は複数種の元素(以下「Au等の添加金属」という場合も
ある)を添加する必要がある。これらの元素の含有量は1原子%以上であれば球状化効果
が発揮され、添加量はコストと効果の関係を考慮して選択できるが、固溶限度まで添加は
可能である。これらの添加金属は、ニオブ母材相とニオブシリサイドに固溶するが、Nb
母材相の固溶量は約2〜6at%である。
The amount of silicon in the niobium-based heat-resistant alloy according to the present invention is in the range of about 9 atomic% to about 17.5 atomic% of the hypoeutectic region, more preferably in the range of 10 atomic% to about 16 atomic%. . When the amount of silicon is less than about 9 atomic%, the amount of niobium silicide is reduced and the heat resistance is lowered. The upper limit is preferably the eutectic point. In order to form the spherical intermetallic compound Nb 5 Si 3 , one or more elements selected from the group consisting of Au, Pd, Re, Os, Ir, and Pt (hereinafter referred to as “added metal such as Au”) May need to be added). If the content of these elements is 1 atomic% or more, the spheroidizing effect is exhibited, and the addition amount can be selected in consideration of the relationship between the cost and the effect, but it can be added up to the solid solution limit. These additive metals dissolve in the niobium matrix phase and niobium silicide, but Nb
The solid solution amount of the base material phase is about 2 to 6 at%.

このニオブ基耐熱合金は、Nb結晶を含む母材相と、ニオブシリサイドを含む化合物相と
を有する複合体である。上記化合物相は、Nb母材相に分散した球状の金属間化合物Nb5S
i3である。化合物相の大きさは、より小さいことが好ましい。これは、化合物相のサイズ
が大きいと、塑性変形抵抗として機能しにくいためである。また、負荷応力で破壊された
ときにできる亀裂が化合物相のサイズと同じになることから、化合物相のサイズが大きい
と、応力集中しやすくなって靭性が低下する。化合物相の大きさとしては特に限定されな
いが、直径が1μm又はそれ以下が好ましい。
This niobium-based heat-resistant alloy is a composite having a base material phase containing Nb crystals and a compound phase containing niobium silicide. The compound phase is a spherical intermetallic compound Nb 5 S dispersed in the Nb matrix phase.
i 3 . The size of the compound phase is preferably smaller. This is because if the size of the compound phase is large, it will be difficult to function as plastic deformation resistance. In addition, since the crack formed when fractured by load stress is the same as the size of the compound phase, if the size of the compound phase is large, stress is easily concentrated and the toughness is lowered. Although it does not specifically limit as a magnitude | size of a compound phase, A diameter is 1 micrometer or less.

図1は、本発明の合金の製造方法を従来のZrを添加元素とした場合と比較して示す概念図
である。従来の例えばNb-15Si-1.5Zr系合金では、溶解鋳造した凝固体は、Nb3Siを主成分
とするニオブシリサイド中に微細なニオブ固溶体が析出したミクロ組織となる。このNb3S
iは脆いために合金作成時に亀裂などの欠陥が入る。一方本発明の合金では、溶解鋳造し
た凝固体は、溶けた状態から直接又はNb+Nb3Si共晶を経由して、ニオブとNb5Si3ラメラ(
板状)構造となる。これは、添加金属がNb3Siを極めて不安定化し凝固過程においてNb/Nb
5Si3共晶と考えられる組織形態が生じるためであると推察される。最終的にNb5Si3の球状
化が進んでいれば靭性向上は達成される。
FIG. 1 is a conceptual diagram showing a method for producing an alloy of the present invention in comparison with a conventional case where Zr is used as an additive element. In a conventional Nb-15Si-1.5Zr-based alloy, for example, a melt-cast solidified body has a microstructure in which a fine niobium solid solution is precipitated in niobium silicide containing Nb 3 Si as a main component. This Nb 3 S
Since i is brittle, defects such as cracks are introduced during alloy production. On the other hand, in the alloy of the present invention, the melt-cast solidified body is obtained from niobium and Nb 5 Si 3 lamellae directly from the melted state or via Nb + Nb 3 Si eutectic (
Plate-like) structure. This is because the added metal destabilizes Nb 3 Si and Nb / Nb in the solidification process.
This is presumably because of the formation of a microstructure that is considered to be 5 Si 3 eutectic. If Nb 5 Si 3 is finally spheroidized, the improvement in toughness is achieved.

ニオブシリサイドは高温強度に優れるものの、常温靭性に乏しい。従来のNb-ニオブシ
リサイド複合体では、そのニオブシリサイドが長く繋がっていたので、シリサイド中の亀
裂はどんどん進展し、その結果破壊に至るという問題があった。
Niobium silicide is excellent in high-temperature strength, but has poor room temperature toughness. In the conventional Nb-niobium silicide composite, since the niobium silicide has been connected for a long time, there is a problem that cracks in the silicide progress more and more, resulting in destruction.

しかし、本発明のニオブ基耐熱合金は、上述のような組織構造を有するために、上述した
破壊の進行を抑えることができ、高い強度と常温靭性とを有する。しかも、上述した破壊
の進行を抑える機構は、低温、高温によらずに有効であるので、本発明のニオブ基耐熱合
金は、幅広い温度環境で使用可能である。
However, since the niobium-based heat-resistant alloy of the present invention has the above-described structure, it can suppress the above-described progress of fracture, and has high strength and room temperature toughness. In addition, since the mechanism for suppressing the progress of destruction described above is effective regardless of the low temperature and high temperature, the niobium-based heat-resistant alloy of the present invention can be used in a wide temperature environment.

<本発明に係るニオブ基耐熱合金の製造方法>
本発明のニオブ基耐熱合金の製造方法は、Nb、Si及び、Au等の添加金属の原料を溶融
させる溶融工程と、上記溶融工程によって得られた溶融物を共晶凝固させる凝固工程と、
上記凝固工程によって得られた凝固物を固体状態で熱処理する熱処理工程とを含んでいれ
ばよい。上記溶融工程や共晶凝固工程は、従来公知の合金製造方法において行われる溶融
工程、凝固工程を好適に用いることができ、その具体的な手法、条件等については限定さ
れるものではない。
<Method for producing niobium-based heat-resistant alloy according to the present invention>
The manufacturing method of the niobium-based heat-resistant alloy of the present invention includes a melting step for melting raw materials of additive metals such as Nb, Si, and Au, and a solidification step for eutectic solidifying the melt obtained by the melting step,
And a heat treatment step of heat-treating the solidified product obtained by the solidification step in a solid state. The melting step and the eutectic solidification step can suitably use the melting step and solidification step performed in a conventionally known alloy production method, and the specific method, conditions, etc. thereof are not limited.

例えば、上記溶融工程における溶融方法としては、アーク溶解法、電子ビーム溶解法、高
周波溶解法、光学的加熱法等の方法を適用することが可能である。特に、一方向凝固装置
を用いることによって、ニオブ結晶の方位が揃った領域を大きくすることができる。
For example, as a melting method in the melting step, methods such as an arc melting method, an electron beam melting method, a high frequency melting method, and an optical heating method can be applied. In particular, by using a unidirectional solidification apparatus, a region where the orientations of niobium crystals are aligned can be enlarged.

また、材料を溶融させる前に、粉状の試料を一定の形状にするために、粉末焼結を行って
もよい。つまり、粉末焼結を行う場合は、粉末焼結では溶解状態にならないので、粉末焼
結後、上述したような溶融方法で溶融させることになる。溶融工程は、アルゴン等の不活
性雰囲気中、又は真空条件で行うことが好ましい。
Further, before the material is melted, powder sintering may be performed in order to make the powder sample into a certain shape. That is, when powder sintering is performed, the powder sintering does not result in a dissolved state, and therefore, after powder sintering, the powder is melted by the melting method described above. The melting step is preferably performed in an inert atmosphere such as argon or under vacuum conditions.

また、溶融工程で溶解される材料には、それぞれの構成元素(Nb、Si、Au等の添加金
属)が単体の状態で含まれていてもよいし、化合物又は合金の状態で含まれていてもよい
。また、材料の形態も特に限定されるものではなく、塊、フレーク、又は粉末等の状態に
ある材料を用いることができる。例えば、高純度のNb塊、Siフレーク、及びAu等の添
加金属フレークを材料としてもよいし、Nb、Si、Au等の添加金属の純金属又は合金の
粉末を用い、これらの粉末を粉末焼結法等によって処理することで材料を一定の形状にし
た後、上述した溶融法によって溶融させてもよい。
In addition, each constituent element (addition metal such as Nb, Si, Au, etc.) may be included in a single state, or in a compound or alloy state, in the material to be melted in the melting step. Also good. Further, the form of the material is not particularly limited, and a material in a state of a lump, flake, powder, or the like can be used. For example, high-purity Nb agglomerates, Si flakes, and additive metal flakes such as Au may be used as materials, and pure metal or alloy powders of additive metals such as Nb, Si, and Au are used, and these powders are powder-fired. The material may be melted by the above-described melting method after the material is made into a certain shape by processing by a sintering method or the like.

(熱処理工程)
本発明に係る熱処理工程は、上記凝固工程を経た試料を固体状態のまま熱処理する工程で
ある。また、熱処理工程は、真空中又は不活性雰囲気中で行うことが好ましい。
(Heat treatment process)
The heat treatment step according to the present invention is a step of heat-treating the sample that has undergone the above solidification step in a solid state. The heat treatment step is preferably performed in a vacuum or in an inert atmosphere.

この熱処理工程を経て得られたニオブ基耐熱合金は、Nb結晶を主とする母材相と、ニオ
ブシリサイドを主とする化合物相からなるニオブ基複合体であり、このニオブ基複合体の
ニオブシリサイドのほとんどはNb5Si3である。また、このニオブ基複合体の組織を観
察すると、Nb相(母材相)に球状のNb5Si3相が分散した状態になっている。
The niobium-based heat-resistant alloy obtained through this heat treatment step is a niobium-based composite composed of a base material phase mainly composed of Nb crystals and a compound phase mainly composed of niobium silicide, and the niobium silicide of this niobium-based composite Most of these are Nb 5 Si 3 . Further, when the structure of the niobium group composite is observed, a spherical Nb 5 Si 3 phase is dispersed in the Nb phase (base material phase).

以上に述べた溶融工程、凝固工程、及び熱処理工程によってこのような組織のニオブ基複
合体が得られるのは、以下のような過程によると考えられる。上述の溶融工程及び凝固工
程を経ることによって、材料中のNb及びSiから、Nbを主とするNb相と、薄片状ニ
オブシリサイド(Nb5Si3)を主とするラメラ構造を有する凝固物を得ることができる
。この凝固物に上述の熱処理工程を施すと、上記凝固物中の薄片状Nb5Si3が、熱処理
工程によって多数の粒子に分断され、球状化する。
It is considered that the niobium group composite having such a structure is obtained by the melting process, the solidification process, and the heat treatment process described above according to the following process. By passing through the melting step and the solidification step described above, a solidified product having a Nb phase mainly composed of Nb and a lamellar structure mainly composed of flaky niobium silicide (Nb 5 Si 3 ) is obtained from Nb and Si in the material. Can be obtained. When the above heat treatment step is performed on the solidified product, the flaky Nb 5 Si 3 in the solidified product is divided into a large number of particles by the heat treatment step and spheroidized.

Au等の添加金属の添加なしでは、このような組織は得られない。これは、 Au等の添加金
属を加えずに熱処理工程を行った場合には、Nb5Si3の界面エネルギーが等方的ではな
いことから、球状化過程が進まないためであると考えられる。添加元素がMoやWの場合は
、熱処理によっても球状化せず、ラメラのままである。
Such a structure cannot be obtained without the addition of an additive metal such as Au. This is considered to be because when the heat treatment step is performed without adding an additive metal such as Au, the interface energy of Nb 5 Si 3 is not isotropic, so that the spheronization process does not proceed. When the additive element is Mo or W, it is not spheroidized even by heat treatment and remains a lamella.

また、熱処理工程における温度、及び時間は、ラメラ構造のNb5Si3が球状化するよう
に設定されればよく、加熱温度は、1100〜1700℃程度、好ましくは1300〜1
700℃程度、さらに好ましくは1500〜1650℃である。
Further, the temperature and time in the heat treatment step may be set so that the Nb 5 Si 3 having a lamellar structure is spheroidized, and the heating temperature is about 1100 to 1700 ° C., preferably 1300 to 1
It is about 700 degreeC, More preferably, it is 1500-1650 degreeC.

この合金製品は、様々な方法によって所望の物品に加工及び成形することができる。例え
ば、溶融させた合金製品は、適当な装置内で鋳造することができる。様々なその他の方法
(単独又は組合せの)もまた、合金製品を加工処理するために使用することができる。非
限定的な実施例には、押出し(例えば、熱間押出し)、鍛造、熱間等静圧圧縮成形及び圧
延が含まれる。当業者は、これらの合金の適当な加工熱処理に関する詳細に精通している
This alloy product can be processed and formed into the desired article by various methods. For example, a molten alloy product can be cast in a suitable apparatus. Various other methods (alone or in combination) can also be used to process the alloy product. Non-limiting examples include extrusion (eg, hot extrusion), forging, hot isostatic pressing and rolling. The person skilled in the art is familiar with details regarding the appropriate thermomechanical treatment of these alloys.

<実施例及び比較例>
合金組成をNb-15at%Si-3at%Xとし、添加金属Xは遷移金属であるFe、Co、Ni、Cu、Ru、Rh
、Pd、Ir、又はAuとした。なお、Cuに関してはNbへの固溶量が1.2at%であるので1at%添加
とした。純度99.9%程度の塊状Nb、純度99.999%程度のSiフレーク、及び
純度99%程度の添加金属のフレークを原料とし、アーク溶解し、鋳造して約20gのイン
ゴットを作製した。溶解にはアルゴンアーク溶解炉を用いた。
<Examples and Comparative Examples>
The alloy composition is Nb-15at% Si-3at% X, and the additive metal X is transition metal Fe, Co, Ni, Cu, Ru, Rh
, Pd, Ir, or Au. Regarding Cu, since the solid solution amount in Nb is 1.2 at%, 1 at% was added. Bulk ingot Nb having a purity of about 99.9%, Si flakes having a purity of about 99.999%, and flakes of added metals having a purity of about 99% were arc-melted and cast to produce about 20 g of ingot. An argon arc melting furnace was used for melting.

溶湯を凝固して得られたインゴットを切断し、#180〜#2000まで湿式研磨、アルミナ粉
末(粒径0.1μm)で鏡面仕上げし観察試料とした。組織観察にはSEM(JXA-8900(JEOL))を用
い、各合金構成相の同定および添加元素の固溶量を測定するために波長分散X線分光分析
を行った。また、Nb-15Si-3AuにはさらにTa又はTiを5at%添加した試料も作製し、同様の
観察、測定を行った。
An ingot obtained by solidifying the molten metal was cut, wet-polished from # 180 to # 2000, and mirror-finished with alumina powder (particle diameter: 0.1 μm) to obtain an observation sample. For structural observation, SEM (JXA-8900 (JEOL)) was used, and wavelength dispersion X-ray spectroscopic analysis was performed in order to identify each alloy constituent phase and measure the solid solution amount of the additive element. Further, a sample in which Ta or Ti was further added to Nb-15Si-3Au at 5 at% was also prepared, and the same observation and measurement were performed.

図2に、各試料のSEM観察結果を示す。Nb-15Si-3Au合金は、Nb母相のNb/Nb5Si3には二
相組織からなるラメラ構造を示している。Nb-15Si-3(Cu,Ru,Rh,Pd)合金は、as-cast材中
のNb3Siに共析分解が起きていることから分解促進効果があると結論された。Nb-15Si-3Co
合金は、Nb5Si3母相のNb/Nb5Si3二相組織を示している。Co、NiではNb5Si3の代わりに三
元化合物相と思われる相が観察された。Nb3Si相への固溶量はどの添加元素も1at%以下と
小さいが、Nb5Si3相へは2〜6at%とより大きな固溶量を示した。また、いずれの添加元素
も化合物相よりNb相にさらに大きく固溶する。Nbデンドライト初晶への添加元素の固溶量
は、添加元素の原子半径がNb原子半径に近づくにつれて大きくなるという傾向が見られた
。Nb-Si-Mo合金へのTa添加によりNb3Siが安定化されるという先行研究[非特許文献5]と
同様に、Nb-Si-AuにおいてもTa添加によりNb3Siが安定化される一方、Ti添加はNb3Siの安
定化に寄与しないという結果が得られた。
In FIG. 2, the SEM observation result of each sample is shown. The Nb-15Si-3Au alloy has a lamellar structure consisting of a two-phase structure in Nb / Nb 5 Si 3 of the Nb matrix. It was concluded that the Nb-15Si-3 (Cu, Ru, Rh, Pd) alloy has an effect of promoting decomposition because eutectoid decomposition occurs in Nb 3 Si in the as-cast material. Nb-15Si-3Co
The alloy shows a Nb / Nb 5 Si 3 dual phase structure of the Nb 5 Si 3 matrix. In Co and Ni, a phase considered to be a ternary compound phase was observed instead of Nb 5 Si 3 . The amount of solid solution in the Nb 3 Si phase was as small as 1 at% or less for all the added elements, but the amount of solid solution was 2 to 6 at% in the Nb 5 Si 3 phase. In addition, any additive element is more solidly dissolved in the Nb phase than in the compound phase. There was a tendency that the solid solution amount of the additive element in the primary crystal of Nb dendrite increased as the atomic radius of the additive element approached the Nb atomic radius. Similar to previous studies [Non-Patent Document 5] that Nb 3 Si by Ta addition to Nb-Si-Mo alloy is stabilized, Nb 3 Si is stabilized by Ta addition even in Nb-Si-Au On the other hand, the result that Ti addition did not contribute to the stabilization of Nb 3 Si was obtained.

次で、各試料を1650℃で100時間、縦型超高温炉を用い、高純度アルゴンガスを流
しながら熱処理した。Nb-15Si-3Au合金については、1300℃×100Hr、1500℃
×100Hr、1650℃×100Hrでそれぞれ熱処理し、組織を観察した。図3に、Nb-1
5Si-3Au合金の鋳造のままの組織と熱処理後の組織を示す。
Next, each sample was heat-treated at 1650 ° C. for 100 hours using a vertical ultra-high temperature furnace while flowing high-purity argon gas. For Nb-15Si-3Au alloy, 1300 ℃ × 100Hr, 1500 ℃
It heat-processed by * 100Hr and 1650 degreeC * 100Hr, respectively, and observed the structure | tissue. Fig. 3 shows Nb-1
The structure of 5Si-3Au alloy as cast and the structure after heat treatment are shown.

さらに、図4に、常温三点曲げ試験結果を、図5に、1200℃における高温三点曲げ試
験結果を示す。また、図6に高温三点曲げ試験後の試験片(Nb-15Si-3Pd及びNb-15Si-3Au)
の光学写真を示す。なお三点曲げ試験は、図7に示すように、断面1mmx2mm、長さ10mm
の棒状試験片を用い、アルミナピン間の距離を8mmとした。R熱電対で温度を制御した赤外
線イメージ炉で加熱し、ピエゾ素子を用いて1ミクロン/秒の速度で中央のピンを押し込
み、その移動量を計測した。
Furthermore, FIG. 4 shows a normal temperature three-point bending test result, and FIG. 5 shows a high-temperature three-point bending test result at 1200 ° C. Fig. 6 shows the specimens after the high-temperature three-point bending test (Nb-15Si-3Pd and Nb-15Si-3Au).
An optical photograph of is shown. As shown in Fig. 7, the three-point bending test has a cross section of 1 mm x 2 mm and a length of 10 mm.
The distance between the alumina pins was 8 mm. The sample was heated in an infrared image furnace whose temperature was controlled by an R thermocouple, and a central pin was pushed in at a speed of 1 micron / second using a piezoelectric element, and the amount of movement was measured.

図4、図5では、横軸が三点曲げ試験のピンの移動距離、縦軸が荷重である。二元合金で
は大きな塑性変形が観察されないが、Au、Pdを添加した合金試験片は試験終了まで割れず
大きな塑性変形を示した。Ruは途中で破断しているが、その他の添加元素材はほぼ同様の
塑性変形能を持っている。
4 and 5, the horizontal axis represents the pin travel distance of the three-point bending test, and the vertical axis represents the load. Large plastic deformation was not observed in the binary alloy, but the alloy specimens to which Au and Pd were added showed large plastic deformation without cracking until the end of the test. Ru is broken in the middle, but other additive materials have almost the same plastic deformability.

Nb-15Si-1Cu合金は常温曲げ試験結果は優れているが、高温曲げ試験結果は良くない。Au
、Pdを添加したNb-Si合金では常温曲げ試験で優れた結果が得られ、高温曲げ試験では変
位量が1500μmを超えても破壊しないことが分かる。
Nb-15Si-1Cu alloy is excellent in the normal temperature bending test result, but the high temperature bending test result is not good. Au
Nb-Si alloy with Pd shows excellent results in the normal temperature bending test, and the high temperature bending test shows that the Nb-Si alloy does not break even when the displacement exceeds 1500 μm.

本発明の合金は、耐熱材料として非常に適した性質を備えているので、エネルギー、航空
宇宙、鉄鋼業、化学工業等において、高温の厳しい環境下で長時間使用可能な機器部材用
構成材料として用いることができる。例えば、ジエットエンジンや発電用ガスタービン等
の動翼材料として用いることで、ガス燃焼温度を向上させ、熱効率を向上させることがで
きる。
Since the alloy of the present invention has very suitable properties as a heat resistant material, it can be used as a component material for equipment members that can be used for a long time in severe environments of high temperatures in the energy, aerospace, steel industry, chemical industry, etc. Can be used. For example, by using it as a moving blade material for a jet engine or a power generation gas turbine, the gas combustion temperature can be improved and the thermal efficiency can be improved.

Claims (3)

Siを9.0〜17.5原子%、Au,Pd,Re,Os,Ir,及びPtからなる群から選ばれる1又は複数
種の元素を1原子%以上固溶限度以下含有し残部が不可避不純物及びニオブからなり、Nb
母材相中に球状化したNb5Si3粒子を分散したNb/Nb5Si3共晶組織を有することを特徴とす
るニオブ基耐熱合金。
Containing 9.0 to 17.5 atomic percent of Si, one or more elements selected from the group consisting of Au, Pd, Re, Os, Ir, and Pt containing 1 atomic percent or more and below the solid solution limit, with the remainder unavoidable Made of impurities and niobium, Nb
A niobium-based heat-resistant alloy having an Nb / Nb 5 Si 3 eutectic structure in which spheroidized Nb 5 Si 3 particles are dispersed in a matrix phase.
1200℃における高温三点曲げ試験による変位量が1500μm以上であることを特徴
とする請求項1記載のニオブ基耐熱合金。
The niobium-based heat-resistant alloy according to claim 1, wherein a displacement amount by a high-temperature three-point bending test at 1200 ° C is 1500 µm or more.
原料金属成分を溶融させる溶融工程と、
上記溶融工程によって得られた溶融物を凝固させる凝固工程と、
上記凝固工程によって得られたNbとNb5Si3からなるラメラ構造をもつ凝固物を固体状態で
1100〜1700℃で熱処理してNb5Si3を球状化する熱処理工程と、
を含むことを特徴とする請求項1又は2記載のニオブ基耐熱合金の製造方法。
A melting step for melting the raw metal component,
A solidification step for solidifying the melt obtained by the melting step;
A heat treatment step of spheroidizing Nb 5 Si 3 by heat-treating a solidified product having a lamellar structure composed of Nb and Nb 5 Si 3 obtained in the solidification step at 1100 to 1700 ° C. in a solid state;
The method for producing a niobium-based heat-resistant alloy according to claim 1 or 2, characterized by comprising:
JP2011164866A 2011-07-27 2011-07-27 Nb-Si heat resistant alloy Expired - Fee Related JP5854497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164866A JP5854497B2 (en) 2011-07-27 2011-07-27 Nb-Si heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164866A JP5854497B2 (en) 2011-07-27 2011-07-27 Nb-Si heat resistant alloy

Publications (2)

Publication Number Publication Date
JP2013028834A true JP2013028834A (en) 2013-02-07
JP5854497B2 JP5854497B2 (en) 2016-02-09

Family

ID=47786129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164866A Expired - Fee Related JP5854497B2 (en) 2011-07-27 2011-07-27 Nb-Si heat resistant alloy

Country Status (1)

Country Link
JP (1) JP5854497B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737682B1 (en) * 2014-04-28 2015-06-17 国立研究開発法人宇宙航空研究開発機構 Heat-resistant metal member, method for producing heat-resistant metal member, alloy film, method for producing alloy film, rocket engine, artificial satellite, and gas turbine for power generation
JP2018111853A (en) * 2017-01-11 2018-07-19 三菱日立パワーシステムズ株式会社 Niobium-silicon based alloy product, method for manufacturing the product and heat engine using the product
CN108624959A (en) * 2018-04-17 2018-10-09 西北工业大学 The method for preparing single crystal super alloy using the seed crystal through solution treatment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147335A1 (en) * 2004-12-31 2006-07-06 Bewlay Bernard P Niobium-silicide based compositions, and related articles
JP2006241484A (en) * 2005-02-28 2006-09-14 Hokkaido Univ New niobium based composite and its use
JP2007031837A (en) * 2005-07-26 2007-02-08 General Electric Co <Ge> Refractory metal-intermetallic composite based on niobium silicide and its related article
CN101168812A (en) * 2007-12-05 2008-04-30 北京航空航天大学 Metal element alloyed sheet layer niobium-molybdenum-silicon-base in situ composite material and preparation method thereof
CN101974712A (en) * 2010-10-15 2011-02-16 北京航空航天大学 Nb-Ti-Si-Sr alloy material and preparation method thereof
CN102021458A (en) * 2010-10-15 2011-04-20 北京航空航天大学 Nb-Ti-Si-Zn alloy material and preparation method thereof
JP2012132099A (en) * 2000-09-28 2012-07-12 Toshio Narita Niobium-based alloy heat-resistant material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132099A (en) * 2000-09-28 2012-07-12 Toshio Narita Niobium-based alloy heat-resistant material
US20060147335A1 (en) * 2004-12-31 2006-07-06 Bewlay Bernard P Niobium-silicide based compositions, and related articles
JP2006241484A (en) * 2005-02-28 2006-09-14 Hokkaido Univ New niobium based composite and its use
JP2007031837A (en) * 2005-07-26 2007-02-08 General Electric Co <Ge> Refractory metal-intermetallic composite based on niobium silicide and its related article
CN101168812A (en) * 2007-12-05 2008-04-30 北京航空航天大学 Metal element alloyed sheet layer niobium-molybdenum-silicon-base in situ composite material and preparation method thereof
CN101974712A (en) * 2010-10-15 2011-02-16 北京航空航天大学 Nb-Ti-Si-Sr alloy material and preparation method thereof
CN102021458A (en) * 2010-10-15 2011-04-20 北京航空航天大学 Nb-Ti-Si-Zn alloy material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737682B1 (en) * 2014-04-28 2015-06-17 国立研究開発法人宇宙航空研究開発機構 Heat-resistant metal member, method for producing heat-resistant metal member, alloy film, method for producing alloy film, rocket engine, artificial satellite, and gas turbine for power generation
WO2015166831A1 (en) * 2014-04-28 2015-11-05 国立研究開発法人宇宙航空研究開発機構 Heat-resistant metal member, method for producing heat-resistant metal member, alloy coating film, method for producing alloy coating film, rocket engine, artificial satellite and gas turbine for power generation
JP2018111853A (en) * 2017-01-11 2018-07-19 三菱日立パワーシステムズ株式会社 Niobium-silicon based alloy product, method for manufacturing the product and heat engine using the product
CN108624959A (en) * 2018-04-17 2018-10-09 西北工业大学 The method for preparing single crystal super alloy using the seed crystal through solution treatment
CN108624959B (en) * 2018-04-17 2021-01-05 西北工业大学 Method for preparing single crystal superalloy using solution treated seed crystal

Also Published As

Publication number Publication date
JP5854497B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
EP2653578B1 (en) Aluminum die casting alloy
Lapin TiAl-based alloys: Present status and future perspectives
CN112981208B (en) Light refractory high-temperature-resistant eutectic high-entropy alloy and preparation method thereof
Kakehi et al. Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting
CN110512116A (en) A kind of high Nb-TiAl intermetallic compound of multicomponent high-alloying
JP2012041627A (en) Co-BASED ALLOY
JP2023507928A (en) heat resistant aluminum powder material
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
JP5854497B2 (en) Nb-Si heat resistant alloy
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
JP2011052239A (en) Heat resistant orthorhombic titanium alloy and method for producing the same
Ren et al. Phase formation and mechanical features in (AlCoCrFeNi) 100-xHfx high-entropy alloys: the role of Hf
JP5911072B2 (en) High temperature shape memory alloy and manufacturing method thereof
JP5747410B2 (en) Heat resistant titanium alloy
WO2015079558A1 (en) Niobium silicide-based composite material, and high-temperature part and high-temperature heat engine each manufactured using same
WO2014112151A1 (en) Alloy and method for producing same
JP6284232B2 (en) TiAl-based cast alloy and method for producing the same
JP2006241484A (en) New niobium based composite and its use
TWI657147B (en) A HIGH STRENGH Ni-BASE ALLOY
JP2003306736A (en) Niobium silicide based composite material and production method thereof
JP6189855B2 (en) Niobium silicide-based composite material, turbine blade for gas turbine using the same, turbine stationary blade and high-temperature component for gas turbine, and gas turbine, jet engine and high-temperature heat engine using the high-temperature component
Bondarenko et al. Directional solidification, structure, and mechanical properties of a eutectic Nb–Si alloy with a natural composite structure for GTE blades
Wan et al. A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications
RU2786768C1 (en) Refractory high-entropy alloy with bcc-b2 structure
CN113245749B (en) Titanium alloy welding wire for arc fuse additive manufacturing and high-performance welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151204

R150 Certificate of patent or registration of utility model

Ref document number: 5854497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees