JP2018111853A - Niobium-silicon based alloy product, method for manufacturing the product and heat engine using the product - Google Patents

Niobium-silicon based alloy product, method for manufacturing the product and heat engine using the product Download PDF

Info

Publication number
JP2018111853A
JP2018111853A JP2017002402A JP2017002402A JP2018111853A JP 2018111853 A JP2018111853 A JP 2018111853A JP 2017002402 A JP2017002402 A JP 2017002402A JP 2017002402 A JP2017002402 A JP 2017002402A JP 2018111853 A JP2018111853 A JP 2018111853A
Authority
JP
Japan
Prior art keywords
atomic
alloy
product
phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017002402A
Other languages
Japanese (ja)
Other versions
JP6824045B2 (en
Inventor
玉艇 王
Yuting Wang
玉艇 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017002402A priority Critical patent/JP6824045B2/en
Publication of JP2018111853A publication Critical patent/JP2018111853A/en
Application granted granted Critical
Publication of JP6824045B2 publication Critical patent/JP6824045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a Nb-Si based alloy product having more excellent characteristics than the conventional one, to provide a method for manufacturing the product and to provide a heat engine using the product.SOLUTION: The Nb-Si based alloy product has a chemical composition containing 13 to 23 atom% of Si, 2 to 10 atom% of Cr, 2 to 23 atom% of Ti, 1 to 7 atom% of Hf, 3 to 8 atom% of Mo, 0.5 to 3 atom% of W, 0.2 to 5 atom% of B, 0.1 to 15 atom% of Re, 1 atom% or less of C and 1 atom% or less of N, and the balance Nb with inevitable impurities. The product has a microstructure having a two-phase structure based on a rapidly quenched solidification structure in which a Nb-based solid solution phase is a continuous phase and a niobium silicide phase is dispersed therein; the occupancy of the Nb-based solid solution phase is 55% or more; and the occupancy of the niobium silicide phase is 40% or more. The product has a mechanical characteristics such that when applying a stress of 180 MPa at 1,200°C, the strain speed is less than 1×10s.SELECTED DRAWING: Figure 2

Description

本発明は、タービン用高温部材などの高耐熱部材の技術に関し、特に、ニオブ−ケイ素(Nb-Si)系合金製造物、該製造物の製造方法、および該製造物を用いた熱機関に関するものである。   The present invention relates to a technology for a high heat-resistant member such as a high-temperature member for a turbine, and more particularly to a niobium-silicon (Nb-Si) alloy product, a method for producing the product, and a heat engine using the product. It is.

省エネルギー(例えば、化石燃料の節約)および地球環境保護(例えば、CO2ガスの発生量抑制)の観点から、火力発電プラントの効率向上(例えば、タービン(蒸気タービン、ガスタービン)における熱効率向上)が強く望まれている。タービンの熱効率を向上させる有効な手段の一つとして、主流体温度の高温化がある。 From the standpoint of energy saving (for example, saving fossil fuel) and protecting the global environment (for example, reducing the amount of CO 2 gas generated), improving the efficiency of thermal power plants (for example, improving the thermal efficiency of turbines (steam turbines, gas turbines)) It is strongly desired. One effective means for improving the thermal efficiency of the turbine is to increase the temperature of the main fluid.

現在、ガスタービン用の高温部材には、高耐熱性のニッケル(Ni)基超合金が主に用いられている。ただし、ガスタービンの運転温度が既存のNi基超合金の耐用温度(約1100℃)にほぼ到達しており、主流体温度を更に高温化するためには、より高い耐熱性を有する超合金が必要とされている。   Currently, high-heat-resistant nickel (Ni) -based superalloys are mainly used for high-temperature members for gas turbines. However, the operating temperature of the gas turbine has almost reached the service temperature of the existing Ni-base superalloy (about 1100 ° C), and in order to further increase the main fluid temperature, a superalloy having higher heat resistance is required. is necessary.

言い換えると、ガスタービンの運転温度の設計自体が使用される部材の耐熱性に依存している。しかしながら、Ni基超合金における耐熱性向上の改良は限界に近づいているとも言われている。   In other words, the design of the operating temperature of the gas turbine itself depends on the heat resistance of the components used. However, it is said that the improvement in heat resistance in Ni-base superalloys is approaching its limit.

一方、近年、Ni基超合金の代替え材料の候補の一つとして、Nb-Si系合金が期待されている。例えば、特許文献1(特開2007-31837)には、
金属Nb基相と少なくとも1つの金属ケイ化物相とを含む微細構造を有する耐熱組成物であって、該耐熱組成物は、約9原子%〜約25原子%のケイ素(Si)、約5原子%〜約25原子%のチタン(Ti)、約1原子%〜約30原子%のレニウム(Re)、約1原子%〜約25原子%のクロム(Cr)、約1原子%〜約20原子%のアルミニウム(Al)、最大約20原子%までのハフニウム(Hf)、最大約30原子%までのルテニウム(Ru)、最大約30原子%までのタングステン(W)、タンタル(Ta)及びモリブデン(Mo)から選択された少なくとも1つの金属、並びに残部のニオブ(Nb)、を含むことを特徴とする耐熱組成物が、開示されている。
On the other hand, in recent years, Nb-Si alloys have been expected as one of alternative materials for Ni-base superalloys. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2007-31837),
A refractory composition having a microstructure comprising a metal Nb base phase and at least one metal silicide phase, the refractory composition comprising about 9 atomic percent to about 25 atomic percent silicon (Si), about 5 atoms % To about 25 atomic% titanium (Ti), about 1 atomic% to about 30 atomic% rhenium (Re), about 1 atomic% to about 25 atomic% chromium (Cr), about 1 atomic% to about 20 atoms % Aluminum (Al), up to about 20 atomic% hafnium (Hf), up to about 30 atomic% ruthenium (Ru), up to about 30 atomic% tungsten (W), tantalum (Ta) and molybdenum ( A heat resistant composition is disclosed, characterized in that it comprises at least one metal selected from Mo) and the balance niobium (Nb).

特許文献2(特開2013-28834)には、
Siを9.0〜17.5原子%、Au,Pd,Re,Os,Ir,及びPtからなる群から選ばれる1又は複数種の元素を1原子%以上固溶限度以下含有し残部が不可避不純物及びNbからなり、Nb母材相中に球状化したNb5Si3粒子を分散したNb/Nb5Si3共晶組織を有することを特徴とするニオブ基耐熱合金が、開示されている。
Patent Document 2 (Japanese Patent Laid-Open No. 2013-28834)
Si is contained at 9.0 to 17.5 atomic%, and one or more elements selected from the group consisting of Au, Pd, Re, Os, Ir, and Pt are contained at 1 atomic% or more and below the solid solution limit, and the balance is composed of inevitable impurities and Nb. Thus, a niobium-based heat-resistant alloy having an Nb / Nb 5 Si 3 eutectic structure in which spheroidized Nb 5 Si 3 particles are dispersed in an Nb base material phase is disclosed.

また、特許文献3(WO 2015/079558)には、
ケイ化ニオブ基複合材であって、10原子%以上25原子%以下のSiと、5原子%以上10原子%以下のCrと、1原子%以上4.9原子%以下のTiと、1原子%以上5原子%以下のHfと、0.5原子%以上6原子%以下のAlと、0.5原子%以上10原子%以下のTaと、0.5原子%以上5原子%以下のZrと、0.5原子%以上5原子%以下のWと、0.5原子%以上5原子%以下のMoとを含有し、残部がNbと不可避不純物とからなることを特徴とするケイ化ニオブ基複合材が、開示されている。
Patent Document 3 (WO 2015/079558)
Niobium silicide-based composites with 10 atomic percent to 25 atomic percent Si, 5 atomic percent to 10 atomic percent Cr, 1 atomic percent to 4.9 atomic percent Ti, and 1 atomic percent 5 atom% or less Hf, 0.5 atom% or more and 6 atom% or less Al, 0.5 atom% or more and 10 atom% or less Ta, 0.5 atom% or more and 5 atom% or less Zr, 0.5 atom% or more and 5 atom% or more A niobium silicide based composite material is disclosed that contains no more than% W and 0.5 atomic% or more and 5 atomic% or less Mo, the balance being Nb and inevitable impurities.

特開2007−31837号公報JP 2007-31837 A 特開2013−28834号公報JP 2013-28834 A 国際公開第2015/079558号International Publication No. 2015/077958

特許文献1〜3によると、耐熱性の他に常温靭性及び延性に優れたNb基耐熱合金を提供できるとされており、該Nb基耐熱合金(Nb-Si系合金)は、Ni基超合金の代替え材料の大変有望な候補の一つと考えられる。ただし、Nb-Si系合金は、比較的新しい材料群であることから、より望ましい特性(例えば、より高い高温強度)のための化学組成や微細組織や製造プロセスに関しては、現在も試行錯誤の段階である。   According to Patent Documents 1 to 3, it is said that an Nb-based heat-resistant alloy excellent in room temperature toughness and ductility in addition to heat resistance can be provided. The Nb-based heat-resistant alloy (Nb-Si alloy) is a Ni-based superalloy. One of the most promising candidates for alternative materials. However, since Nb-Si alloys are a relatively new material group, the chemical composition, microstructure, and manufacturing process for more desirable properties (for example, higher high-temperature strength) are still in the trial and error stage. It is.

本発明は、上記事情に鑑み、従来以上に優れた特性を有するNb-Si系合金製造物、該製造物の製造方法、および該製造物を用いた熱機関を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an Nb—Si-based alloy product having characteristics superior to those of the prior art, a method for producing the product, and a heat engine using the product.

(I)本発明の一態様は、Nb-Si(ニオブ−ケイ素)系合金からなる製造物であって、
前記Nb-Si系合金は、
13原子%以上23原子%以下のSiと、
2原子%以上10原子%以下のCr(クロム)と、
2原子%以上23原子%以下のTi(チタン)と、
1原子%以上7原子%以下のHf(ハフニウム)と、
3原子%以上8原子%以下のMo(モリブデン)と、
0.5原子%以上3原子%以下のW(タングステン)と、
0.2原子%以上5原子%以下のB(ホウ素)と、
0.1原子%以上15原子%以下のRe(レニウム)と、
1原子%以下のC(炭素)と、
1原子%以下のN(窒素)とを含有し、
残部がNbと不可避不純物とからなり、
前記製造物の微細組織は、急冷凝固組織に基づく二相組織を有し、Nb基固溶相が連続相で、ケイ化ニオブ相が分散しており、前記Nb基固溶相の占有率が55%以上で、前記ケイ化ニオブ相の占有率が40%以上であり、
前記製造物は、1200℃で180 MPaの応力を掛けたときのひずみ速度が1×10-7 s-1未満である機械的特性を有することを特徴とするNb-Si系合金製造物を提供するものである。
(I) One aspect of the present invention is a product made of an Nb-Si (niobium-silicon) alloy,
The Nb-Si alloy is
13 atomic% to 23 atomic% of Si,
2 atomic% or more and 10 atomic% or less of Cr (chromium),
2 atomic percent or more and 23 atomic percent or less of Ti (titanium),
1 to 7 atomic percent of Hf (hafnium),
3 to 8 atom% Mo (molybdenum),
0.5 to 3 atomic percent W (tungsten),
B (boron) of 0.2 atomic% or more and 5 atomic% or less,
Re (rhenium) of 0.1 atomic% or more and 15 atomic% or less,
1 atomic% or less of C (carbon),
Containing 1 atomic% or less of N (nitrogen),
The balance consists of Nb and inevitable impurities,
The microstructure of the product has a two-phase structure based on a rapidly solidified structure, the Nb-based solid solution phase is a continuous phase, the niobium silicide phase is dispersed, and the occupation ratio of the Nb-based solid solution phase is 55% or more, the occupation ratio of the niobium silicide phase is 40% or more,
Provided is an Nb-Si alloy product characterized in that the product has a mechanical property of a strain rate of less than 1 × 10 -7 s -1 when a stress of 180 MPa is applied at 1200 ° C. To do.

本発明は、上記の本発明に係るNb-Si系合金製造物(I)において、以下のような改良や変更を加えることができる。
(i)前記ケイ化ニオブ相は、Nb5Si3相を主相とする。
(ii)前記製造物は、タービン用高温部材である。
(iii)前記タービン用高温部材は、タービン翼である。
(iv)前記製造物は、急冷凝固合金粉末である。
In the Nb—Si alloy product (I) according to the present invention described above, the present invention can be improved or changed as follows.
(I) The niobium silicide phase has an Nb 5 Si 3 phase as a main phase.
(Ii) The product is a turbine high-temperature member.
(Iii) The high temperature member for turbine is a turbine blade.
(Iv) The product is a rapidly solidified alloy powder.

(II)本発明の他の一態様は、上記の本発明に係るNb-Si系合金製造物の製造方法であって、
前記Nb-Si系合金の原料を混合・溶解して溶湯を形成する原料混合溶解工程と、
前記溶湯から急冷凝固合金粉末を形成する溶湯−粉末化工程と、
前記急冷凝固合金粉末を用いて所望形状の合金成形体を造形する合金成形体造形工程と、
前記合金成形体に対して1200℃以上1600℃以下の熱処理を施して微細組織の制御を行う時効処理工程と、
を有することを特徴とするNb-Si系合金製造物の製造方法を提供するものである。
(II) Another aspect of the present invention is a method for producing an Nb—Si alloy product according to the present invention,
A raw material mixing and melting step of mixing and melting the raw material of the Nb-Si alloy to form a molten metal,
A melt-powdering step for forming a rapidly solidified alloy powder from the melt;
Alloy molded body modeling step of modeling an alloy molded body of a desired shape using the rapidly solidified alloy powder,
An aging treatment step for controlling the microstructure by performing a heat treatment of 1200 ° C. or more and 1600 ° C. or less for the alloy formed body,
The present invention provides a method for producing an Nb-Si based alloy product characterized by comprising:

(III)本発明のさらに他の一態様は、タービンを有する熱機関であって、
前記タービンの高温部材が、上記の本発明に係るNb-Si系合金製造物であることを特徴とする熱機関を提供するものである。
(III) Another aspect of the present invention is a heat engine having a turbine,
The high temperature member of the turbine is the Nb—Si based alloy product according to the present invention as described above.

本発明は、上記の本発明に係る熱機関(III)において、以下のような改良や変更を加えることができる。
(v)前記タービンは、ガスタービンである。
The present invention can be modified or changed as follows in the heat engine (III) according to the present invention.
(V) The turbine is a gas turbine.

本発明によれば、従来以上に優れた特性を有するNb-Si系合金製造物、該製造物の製造方法、および該製造物を用いた熱機関を提供することができる。また、該熱機関は、本発明に係るNb-Si系合金製造物を用いることで主流体温度の高温化が可能になるため、更なる高効率化に貢献できる。   ADVANTAGE OF THE INVENTION According to this invention, the Nb-Si type alloy product which has the characteristic more excellent than before, the manufacturing method of this product, and the heat engine using this product can be provided. Further, the heat engine can increase the temperature of the main fluid by using the Nb—Si based alloy product according to the present invention, which can contribute to further increase in efficiency.

本発明に係るNb-Si系合金製造物の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the Nb-Si type alloy product which concerns on this invention. 本発明に係るNb-Si系合金製造物の表面の微細組織例を示す電子顕微鏡観察像である。It is an electron microscope observation image which shows the example of the fine structure of the surface of the Nb-Si type alloy product which concerns on this invention. 本発明に係るタービン用高温部材としてのタービン動翼の一例を示す斜視模式図である。It is a perspective schematic diagram which shows an example of the turbine rotor blade as a high temperature member for turbines concerning this invention. 本発明に係る熱機関としてのガスタービンの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the gas turbine as a heat engine which concerns on this invention.

(本発明の基本思想)
本発明者は、主流体温度1200℃級(1200〜1300℃)のタービンにおいても無冷却で耐えられる高温部材(例えば、タービン翼)を目指して、従来以上に優れた特性を有するNb-Si系合金製造物、および該製造物の製造方法について鋭意研究を行った。その結果、主成分(Nb、Si)以外の添加成分の組成調整と微細組織制御とを行うことにより、従来よりも良好な高温クリープ特性を達成できることを見出した。
(Basic idea of the present invention)
The present inventor aims at a high-temperature member (for example, turbine blade) that can endure without cooling even in a turbine having a main fluid temperature of 1200 ° C. class (1200 to 1300 ° C.), and has an Nb—Si system that has superior characteristics than before. Intensive research was conducted on alloy products and methods for producing the products. As a result, it has been found that by adjusting the composition of additive components other than the main components (Nb, Si) and controlling the microstructure, it is possible to achieve better high-temperature creep characteristics than before.

また、製造物の製造方法としては、溶湯から合金粉末を形成する溶湯−粉末化工程と、該合金粉末を用いて所望形状の合金成形体を造形する合金成形体造形工程と、該合金成形体に対して所定の熱処理を施して微細組織の制御を行う時効処理工程との組み合わせが好ましいことを見出した。本発明は、これらの知見に基づいて完成されたものである。   Moreover, as a manufacturing method of a product, a molten metal-powdering process for forming an alloy powder from a molten metal, an alloy molded body modeling process for modeling an alloy molded body of a desired shape using the alloy powder, and the alloy molded body It has been found that a combination with an aging treatment step in which a predetermined heat treatment is performed to control the microstructure is preferable. The present invention has been completed based on these findings.

以下、本発明の実施形態について説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で、公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the embodiments described here, and may be appropriately combined with or improved based on known techniques without departing from the technical idea of the invention. Is possible.

[本発明のNb-Si系合金の化学組成]
本発明で用いるNb-Si系合金は、靱性・延性の高いNb基固溶相が連続相を構成し、高い高温強度に寄与するケイ化ニオブ相が分散相を構成する二相組織となるような化学組成を有する。以下、当該Nb-Si系合金の組成(各成分)について説明する。
[Chemical composition of Nb-Si alloy of the present invention]
The Nb-Si alloy used in the present invention has a two-phase structure in which the Nb-based solid solution phase having high toughness and ductility constitutes a continuous phase, and the niobium silicide phase contributing to high high-temperature strength constitutes a dispersed phase. It has a chemical composition. Hereinafter, the composition (each component) of the Nb—Si alloy will be described.

(Si成分:13原子%以上23原子%以下)
Si成分は、本発明のNb-Si系合金においてケイ化ニオブ相を形成する主要成分である。Nb-Si二元合金は、Si含有率17.5原子%付近に共晶点がある。相平衡状態図から、Si含有率18.7原子%付近まではNb基固溶相が連続相になり易いと考えられ、それを超えるとケイ化ニオブ相が連続相になり易いと考えられる。
(Si component: 13 atomic% to 23 atomic%)
The Si component is a main component that forms a niobium silicide phase in the Nb-Si alloy of the present invention. The Nb-Si binary alloy has a eutectic point near the Si content of 17.5 atomic%. From the phase equilibrium diagram, it is considered that the Nb-based solid solution phase tends to be a continuous phase up to a Si content of about 18.7 atomic%, and beyond that, the niobium silicide phase is likely to become a continuous phase.

本発明の合金製造物は、高い靱性と高い高温強度との両立を目指すものであることから、Nb基固溶相が連続相となり、かつケイ化ニオブ相ができるだけ多く分散晶出していることが好ましいと考えられる。この観点から、本発明のNb-Si系合金は、共晶点近傍の組成が好ましい。ただし、本発明のNb-Si系合金は多元系合金であることから、他成分とのバランスにより共晶点の組成が変化する。   Since the alloy product of the present invention aims to achieve both high toughness and high high-temperature strength, the Nb-based solid solution phase is a continuous phase, and the niobium silicide phase has as many dispersed crystals as possible. It is considered preferable. From this viewpoint, the Nb—Si alloy of the present invention preferably has a composition near the eutectic point. However, since the Nb—Si alloy of the present invention is a multi-component alloy, the composition of the eutectic point changes depending on the balance with other components.

本発明者による熱力学計算の結果、本発明のNb-Si系合金におけるSi含有率は、13原子%以上23原子%以下が好ましい。Si含有率が13原子%未満であると、ケイ化ニオブ相(高温強化相)の晶出量が不十分になり、高温強度が不十分になる。一方、Si含有率が23原子%超になると、ケイ化ニオブ相が連続相になり、靭性が不十分になる(脆性を示すようになる)。Si含有率は、14原子%以上20原子%以下がより好ましく、15原子%以上18原子%以下が更に好ましい。   As a result of thermodynamic calculation by the present inventor, the Si content in the Nb—Si based alloy of the present invention is preferably 13 atomic% or more and 23 atomic% or less. When the Si content is less than 13 atomic%, the amount of crystallization of the niobium silicide phase (high-temperature strengthening phase) becomes insufficient and the high-temperature strength becomes insufficient. On the other hand, when the Si content exceeds 23 atomic%, the niobium silicide phase becomes a continuous phase and the toughness becomes insufficient (becomes brittle). The Si content is more preferably 14 atom% or more and 20 atom% or less, and further preferably 15 atom% or more and 18 atom% or less.

(Cr成分:2原子%以上10原子%以下)
Cr成分は、主としてNb基固溶相を構成する成分であり、Nb基固溶相の連続相化に寄与する成分(すなわち、靱性に寄与する成分)である。該作用効果を得るためには、2原子%以上が必要である。一方、Cr含有率が10原子%超になると、脆化相であるラーベス相が析出し易くなって靱性が低下する。Cr含有率は、5原子%以上9.5原子%以下がより好ましく、6原子%以上9原子%以下が更に好ましい。
(Cr component: 2 atomic% to 10 atomic%)
The Cr component is a component mainly constituting the Nb group solid solution phase, and is a component contributing to the continuous phase formation of the Nb group solid solution phase (that is, a component contributing to toughness). In order to obtain this effect, 2 atomic% or more is necessary. On the other hand, when the Cr content exceeds 10 atomic%, the Laves phase, which is an embrittled phase, easily precipitates and the toughness decreases. The Cr content is more preferably 5 atomic% or more and 9.5 atomic% or less, and further preferably 6 atomic% or more and 9 atomic% or less.

なお、本発明において、「主としてNb基固溶相を構成する成分」という表現は、該成分がケイ化ニオブ相中に固溶することを否定するものではない。   In the present invention, the expression “a component mainly constituting the Nb-based solid solution phase” does not deny that the component is dissolved in the niobium silicide phase.

(Ti成分:2原子%以上23原子%以下)
Ti成分は、主としてNb基固溶相を構成する成分であり、Nb基固溶相の靱性向上に寄与する成分である。該作用効果を得るためには、2原子%以上が必要である。一方、Ti含有率が23原子%超になると、Si成分と化合して望ましくないシリサイド相(例えば、TiSi3、Ti5Si3)が析出し易くなって靱性および高温強度が低下する。Ti含有率は、2.5原子%以上22原子%以下がより好ましく、3原子%以上20原子%以下が更に好ましい。
(Ti component: 2 atomic% to 23 atomic%)
The Ti component is a component that mainly constitutes an Nb-based solid solution phase, and is a component that contributes to improving the toughness of the Nb-based solid solution phase. In order to obtain this effect, 2 atomic% or more is necessary. On the other hand, when the Ti content exceeds 23 atomic%, an undesired silicide phase (for example, TiSi 3 , Ti 5 Si 3 ) is likely to be combined with the Si component and the toughness and high-temperature strength are reduced. The Ti content is more preferably 2.5 atomic percent or more and 22 atomic percent or less, and further preferably 3 atomic percent or more and 20 atomic percent or less.

(Hf成分:1原子%以上7原子%以下)
Hf成分は、Nb基固溶相へのTi成分の固溶を安定化する成分である。該作用効果を得るためには、1原子%以上が必要である。一方、Hf含有率が7原子%超になると、Si成分と化合して望ましくないシリサイド相(例えば、HfSi2)が析出し易くなって靱性および高温強度が低下する。Hf含有率は、2原子%以上5.5原子%以下がより好ましく、2.5原子%以上5原子%以下が更に好ましい。
(Hf component: 1 atomic% to 7 atomic%)
The Hf component is a component that stabilizes the solid solution of the Ti component in the Nb-based solid solution phase. In order to obtain this effect, 1 atomic% or more is required. On the other hand, when the Hf content exceeds 7 atomic%, an undesired silicide phase (for example, HfSi 2 ) is likely to be combined with the Si component and the toughness and high-temperature strength are reduced. The Hf content is more preferably 2 atomic percent to 5.5 atomic percent, and further preferably 2.5 atomic percent to 5 atomic percent.

(Mo成分:3原子%以上8原子%以下)
Mo成分は、主としてNb基固溶相を構成する成分であり、Nb基固溶相の高温強度向上に寄与する(固溶強化する)成分である。該作用効果を得るためには、3原子%以上が必要である。一方、Mo含有率が8原子%超になると、Si成分と化合して望ましくないシリサイド相が析出し易くなって靱性が低下する。Mo含有率は、3.2原子%以上7.5原子%以下がより好ましく、3.5原子%以上7原子%以下が更に好ましい。
(Mo component: 3 atomic% to 8 atomic%)
The Mo component is a component that mainly constitutes an Nb-based solid solution phase, and is a component that contributes to (improves solid solution strengthening) the high-temperature strength of the Nb-based solid solution phase. In order to obtain this effect, 3 atomic% or more is necessary. On the other hand, when the Mo content exceeds 8 atomic%, it combines with the Si component, and an undesired silicide phase is likely to precipitate, resulting in a decrease in toughness. The Mo content is preferably 3.2 atomic% or more and 7.5 atomic% or less, and more preferably 3.5 atomic% or more and 7 atomic% or less.

(W成分:0.5原子%以上3原子%以下)
W成分は、上記のMo成分と同様に、主としてNb基固溶相を構成する成分であり、Nb基固溶相の高温強度向上に寄与する(固溶強化する)成分である。該作用効果を得るためには、0.5原子%以上が必要である。一方、W含有率が3原子%超になると、Si成分と化合して望ましくないシリサイド相が析出し易くなって靱性が低下する。W含有率は、0.6原子%以上2.5原子%以下がより好ましく、0.8原子%以上2原子%以下が更に好ましい。
(W component: 0.5 atomic% to 3 atomic%)
The W component is a component that mainly constitutes the Nb group solid solution phase, like the Mo component, and is a component that contributes to (improves solid solution strengthening) the high temperature strength of the Nb group solid solution phase. In order to obtain this effect, 0.5 atomic% or more is necessary. On the other hand, when the W content exceeds 3 atomic%, it combines with the Si component, and an undesired silicide phase is likely to precipitate, resulting in a decrease in toughness. The W content is more preferably 0.6 atomic percent to 2.5 atomic percent, and still more preferably 0.8 atomic percent to 2 atomic percent.

(B成分:0.2原子%以上5原子%以下)
B成分は、本発明のNb-Si系合金の靱性向上や耐酸化性向上に寄与する成分である。そのメカニズムについては、現段階で解明できていないが、B成分がNb基固溶相結晶とケイ化ニオブ相結晶との粒界面強度(粒界面の結合性)を向上させている可能性や、酸素原子の浸入を抑制している可能性が考えられる。該作用効果を得るためには、0.2原子%以上が必要である。一方、B含有率が5原子%超になると、靱性が低下する。B含有率は、0.25原子%以上4原子%以下がより好ましく、0.3原子%以上3原子%以下が更に好ましい。
(B component: 0.2 atomic% to 5 atomic%)
Component B is a component that contributes to improving the toughness and oxidation resistance of the Nb—Si based alloy of the present invention. The mechanism has not been elucidated at this stage, but the B component may improve the grain interface strength between the Nb-based solid solution phase crystal and the niobium silicide phase crystal (grain interface connectivity), It is possible that oxygen atoms have been prevented from entering. In order to obtain this effect, 0.2 atomic% or more is necessary. On the other hand, when the B content exceeds 5 atomic%, the toughness decreases. The B content is more preferably from 0.25 atomic% to 4 atomic%, and still more preferably from 0.3 atomic% to 3 atomic%.

(Re:0.1質量%以上15質量%以下)
Re成分は、主としてNb基固溶相を構成する成分であり、Nb基固溶相の固溶強化や耐食酸化性向上に寄与する成分である。該作用効果を得るためには、0.1原子%以上が必要である。一方、Reは高価な金属であるため、Re含有率が15原子%超になると、作用効果に比してコスト増大が著しい(商業的に許容困難になる)。Re含有率は、0.2原子%以上10原子%以下がより好ましく、0.3原子%以上5原子%以下が更に好ましい。
(Re: 0.1% to 15% by mass)
The Re component is a component that mainly constitutes the Nb group solid solution phase, and is a component that contributes to solid solution strengthening and corrosion resistance improvement of the Nb group solid solution phase. In order to obtain this effect, 0.1 atomic% or more is necessary. On the other hand, since Re is an expensive metal, if the Re content exceeds 15 atomic%, the cost increases significantly compared to the effects (commercially difficult to accept). The Re content is more preferably 0.2 atomic percent to 10 atomic percent, and further preferably 0.3 atomic percent to 5 atomic percent.

(その他の微量成分)
本発明のNb-Si系合金は、その他の微量成分として、C(炭素)成分およびN(窒素)成分をそれぞれ1原子%以下で含有してもよい。C成分は、高温での粒界移動を抑制する(結晶粒径の維持を補助する)成分である。N成分は、ケイ化ニオブ相の安定化を補助する成分である。これら成分の含有率が1原子%超になると、脆性の炭化物粒子や窒化物粒子が大きく析出し易くなって靱性が低下する要因になる。一方、これら成分を含まない場合、各成分による作用効果が得られないだけである。
(Other trace components)
The Nb—Si-based alloy of the present invention may contain a C (carbon) component and an N (nitrogen) component at 1 atomic% or less as other trace components. The C component is a component that suppresses grain boundary migration at high temperatures (helps maintain the crystal grain size). The N component is a component that assists in stabilizing the niobium silicide phase. When the content of these components exceeds 1 atomic%, brittle carbide particles and nitride particles are likely to be largely precipitated, resulting in a decrease in toughness. On the other hand, when these components are not included, only the effect of each component cannot be obtained.

(残部成分)
本発明のNb-Si系合金は、残部成分がNbおよび不可避不純物からなる。Nb基固溶相が連続相となるためには、Nb成分が最大含有率の成分である必要がある。一方、不可避不純物とは、混入を避けることが極めて困難であるが含有率をできるだけ少なくしたい不純物を意味する成分であり、例えば、P(リン)、S(硫黄)、O(酸素)が挙げられる。
(Remainder component)
The Nb—Si based alloy of the present invention consists of Nb and inevitable impurities as the remaining components. In order for the Nb-based solid solution phase to become a continuous phase, the Nb component needs to be a component with the maximum content. On the other hand, inevitable impurities are components that mean impurities that are extremely difficult to avoid, but whose content is to be reduced as much as possible. Examples thereof include P (phosphorus), S (sulfur), and O (oxygen). .

[本発明のNb-Si系合金製造物の製造方法]
次に、本発明に係るNb-Si系合金製造物の製造方法について説明する。図1は、本発明に係るNb-Si系合金製造物の製造方法の一例を示す工程図である。
[Production Method of Nb-Si Alloy Product of the Present Invention]
Next, a method for producing an Nb—Si alloy product according to the present invention will be described. FIG. 1 is a process diagram showing an example of a method for producing an Nb—Si based alloy product according to the present invention.

図1に示したように、まず、所望の組成となるようにNb-Si系合金の原料を混合・溶解して溶湯10を形成する原料混合溶解工程(ステップ1:S1)を行う。溶解方法に特段の限定はなく、高耐熱合金に対する従前の方法(例えば、誘導溶解法、電子ビーム溶解法、プラズマアーク溶解法)を好適に利用できる。   As shown in FIG. 1, first, a raw material mixing and melting step (step 1: S1) is performed in which a raw material of an Nb—Si alloy is mixed and melted to form a molten metal 10 to have a desired composition. There is no particular limitation on the melting method, and conventional methods (for example, induction melting method, electron beam melting method, plasma arc melting method) for high heat-resistant alloys can be suitably used.

なお、合金中の不純物成分(P、SおよびO)の含有率をより低減する(合金の清浄度を高める)ため、原料混合溶解工程S1において、溶湯10を形成した後に一旦凝固させて原料合金塊を形成し、その後、該原料合金塊を再溶解して清浄化溶湯を形成することは好ましい。合金の清浄度を高められる限り再溶解方法に特段の限定はないが、例えば、真空アーク再溶解(VAR)法を好ましく利用できる。   In order to further reduce the content of impurity components (P, S and O) in the alloy (in order to increase the cleanliness of the alloy), in the raw material mixing and melting step S1, the molten metal 10 is formed and then solidified once. It is preferable to form a lump, and then remelt the raw material alloy lump to form a cleaned molten metal. The remelting method is not particularly limited as long as the cleanliness of the alloy can be increased. For example, a vacuum arc remelting (VAR) method can be preferably used.

次に、溶湯10(または清浄化溶湯)からNb-Si系合金の急冷凝固合金粉末20を形成する溶湯−粉末化工程(ステップ2:S2)を行う。高清浄・均質組成が得られる限り溶湯−粉末化方法に特段の限定はなく、従前の合金粉末製造方法(例えば、アトマイズ法、メルトスピニング法、回転電極法)を好ましく利用できる。   Next, a molten metal-powdering step (step 2: S2) is performed in which the rapidly solidified alloy powder 20 of the Nb—Si alloy is formed from the molten metal 10 (or the purified molten metal). As long as a highly clean and homogeneous composition is obtained, there is no particular limitation on the melt-powdering method, and conventional alloy powder production methods (for example, the atomizing method, the melt spinning method, and the rotating electrode method) can be preferably used.

なお、本工程で得られる急冷凝固合金粉末20は、次工程で合金成形体を造形するための原料素材となることに加えて、高耐熱性の溶接材料や被覆材料としても利用することができる。すなわち、急冷凝固合金粉末20は、本発明に係るNb-Si系合金製造物の一種と見なすことができる。   The rapidly solidified alloy powder 20 obtained in this step can be used as a high heat resistance welding material or coating material in addition to being a raw material for shaping an alloy compact in the next step. . That is, the rapidly solidified alloy powder 20 can be regarded as a kind of Nb—Si alloy product according to the present invention.

溶湯−粉末化工程S2の後に、急冷凝固合金粉末20を用いて所望形状の合金成形体30を造形する合金成形体造形工程(ステップ3:S3)を行う。所望形状に造形できる限り合金成形体造形方法に特段の限定はなく、粉末を用いた従前の成形体造形方法(例えば、熱間静水圧プレス法、粉末積層造形法)を好ましく利用できる。なお、粉末積層造形法における局所溶融・急冷凝固方法にも特段の限定はなく、従前の方法(例えば、電子ビーム溶融法、選択的レーザ溶融法)を好ましく利用できる。   After the molten metal-powdering step S2, an alloy molded body forming step (step 3: S3) for forming the alloy molded body 30 having a desired shape using the rapidly solidified alloy powder 20 is performed. As long as the desired shape can be formed, there is no particular limitation on the method for forming an alloy formed body, and a conventional formed body forming method using powder (for example, a hot isostatic pressing method, a powder layered forming method) can be preferably used. Note that there is no particular limitation on the local melting / quick solidification method in the powder additive manufacturing method, and a conventional method (for example, an electron beam melting method or a selective laser melting method) can be preferably used.

次に、合金成形体30に対して1200℃以上1600℃以下の熱処理を施して微細組織の制御を行う時効処理工程(ステップ4:S4)を行う。時効処理工程S4は、非酸化性雰囲気(合金の酸化が実質的に生じない雰囲気、例えば、不活性ガスや真空)中で行うことが好ましい。   Next, an aging treatment step (step 4: S4) is performed in which the alloy compact 30 is subjected to a heat treatment at 1200 ° C. to 1600 ° C. to control the microstructure. The aging treatment step S4 is preferably performed in a non-oxidizing atmosphere (an atmosphere in which the alloy is not substantially oxidized, such as an inert gas or a vacuum).

急冷凝固合金粉末20を用いて造形した合金成形体30は、その微細組織が急冷凝固組織となるが、多元系合金における急冷凝固組織では、析出相の比率が組成本来の平衡比率からずれることがしばしば起こる。時効処理工程S4を行うことによって、析出相の比率を調整することができる。   The alloy compact 30 formed using the rapidly solidified alloy powder 20 has a rapid solidification structure in its microstructure. However, in the rapid solidification structure in a multi-component alloy, the ratio of the precipitated phase may deviate from the original equilibrium ratio of the composition. Often happens. By performing the aging treatment step S4, the ratio of the precipitated phase can be adjusted.

さらに、本時効処理の温度は、本Nb-Si系合金の融点(この場合、液相線温度)よりも十分に低いことから、過冷度が大きくなるため析出のための核生成頻度が高くなる。その結果、各相の結晶粒径が非常に小さく複雑に入り乱れたような微細組織が得られる。   Furthermore, since the temperature of this aging treatment is sufficiently lower than the melting point (in this case, the liquidus temperature) of this Nb-Si alloy, the degree of nucleation for precipitation is high because the degree of supercooling increases. Become. As a result, a fine structure in which the crystal grain size of each phase is very small and complicated is obtained.

最後に、時効処理を施した合金成形体に対して仕上げ加工を施して所望の高温部材を形成する仕上げ工程(ステップ5:S5)を行う。仕上げ加工に特段の限定はなく、従前の仕上げ加工(例えば、表面仕上げ)を行えばよい。   Finally, a finishing process (step 5: S5) is performed in which the alloy formed body subjected to the aging treatment is finished to form a desired high-temperature member. There is no particular limitation on the finishing process, and a conventional finishing process (for example, surface finishing) may be performed.

前述したように、本発明は、従来よりも高い主流体温度で利用できる高温部材を目指すものである。そして、本発明で用いるNb-Si系合金は、融点が非常に高いことから(例えば1800℃以上)、複雑形状を有する高温部材(例えば、タービン翼)を従来技術のような鋳造法で製造しようとすると、鋳造欠陥の多発や形状制御性の低下(すなわち、製造歩留まりの低下)を招き易く、結果として高コスト化し易いという問題がある。   As described above, the present invention aims at a high-temperature member that can be used at a higher main fluid temperature than before. The Nb—Si alloy used in the present invention has a very high melting point (for example, 1800 ° C. or higher), so a high temperature member (for example, a turbine blade) having a complicated shape will be manufactured by a casting method as in the prior art. Then, there are problems that frequent casting defects and a decrease in shape controllability (that is, a decrease in manufacturing yield) are likely to occur, resulting in an increase in cost.

このような問題に対し、本発明では、上述したように、溶湯−粉末化工程S2と合金成形体造形工程S3と時効処理工程S4とを組み合わせることによって、複雑形状を有する高温部材であっても高い製造歩留まりで製造することが可能になる。言い換えると、本発明の製造方法は、本発明のNb-Si系合金製造物を低コストで提供できる利点がある。   For such a problem, in the present invention, as described above, by combining the melt-powdering step S2, the alloy molded body forming step S3 and the aging treatment step S4, even a high-temperature member having a complicated shape can be obtained. It becomes possible to manufacture with a high manufacturing yield. In other words, the production method of the present invention has an advantage that the Nb—Si alloy product of the present invention can be provided at a low cost.

[本発明のNb-Si系合金製造物]
(微細組織)
本発明に係るNb-Si系合金製造物の微細組織(金属組織)について説明する。
[Nb-Si alloy product of the present invention]
(Fine structure)
The microstructure (metal structure) of the Nb—Si based alloy product according to the present invention will be described.

図2は、本発明に係るNb-Si系合金製造物の表面の微細組織例を示す電子顕微鏡観察像である。図2に示したように、本発明に係るNb-Si系合金製造物は、淡色のNb基固溶相と濃色のケイ化ニオブ相とが互いに分散混合した二相組織を有しており、Nb基固溶相が連続相(マトリックス)でケイ化ニオブ相が分散相になっていることが確認される。   FIG. 2 is an electron microscope observation image showing an example of the microstructure of the surface of the Nb—Si alloy product according to the present invention. As shown in FIG. 2, the Nb—Si alloy product according to the present invention has a two-phase structure in which a light-colored Nb-based solid solution phase and a dark-colored niobium silicide phase are dispersed and mixed with each other. It is confirmed that the Nb-based solid solution phase is a continuous phase (matrix) and the niobium silicide phase is a dispersed phase.

本発明のNb-Si系合金製造物の微細組織は、急冷凝固組織をベースとしており、各相の結晶粒径が非常に小さく(例えば、等価面積円に換算したときの平均結晶粒径が5μm以下)で、かつラメラ組織やデンドライト組織の名残のような組織が見られる。   The microstructure of the Nb-Si alloy product of the present invention is based on a rapidly solidified structure, and the crystal grain size of each phase is very small (for example, the average grain size when converted to an equivalent area circle is 5 μm). Below), and a remnant of a lamellar or dendrite organization is seen.

該試料に対して、後方散乱電子回折像(EBSP)解析を行ったところ、Nb基固溶相の占有率が55%以上であり、ケイ化ニオブ相の占有率が40%以上であることが確認された。また、ケイ化ニオブ相は、Nb5Si3相を主相としていることが確認された。一方、望ましくない副析出相(例えば、ラーベス相や、ケイ化ニオブ相以外のシリサイド相などの析出相)の占有率は、5%以下であることが確認された。 When the backscattered electron diffraction image (EBSP) analysis was performed on the sample, the Nb-based solid solution phase occupancy was 55% or more, and the niobium silicide phase occupancy was 40% or more. confirmed. In addition, it was confirmed that the niobium silicide phase has the Nb 5 Si 3 phase as the main phase. On the other hand, it was confirmed that the occupancy ratio of undesirable subprecipitation phases (for example, precipitation phases such as Laves phase and silicide phases other than niobium silicide phase) was 5% or less.

本発明のNb-Si系合金製造物は、靱性・延性の高いNb基固溶相が連続相を構成し、高い高温強度に寄与するケイ化ニオブ相が分散相を構成する二相組織を有し、かつ急冷凝固組織をベースとすることから、各相の結晶粒径が小さく、各相のスペーシングも非常に小さい。その結果、本Nb-Si系合金製造物は、優れた靱性と高い高温強度とを同時に達成することができ、タービン用高温部材として好適に利用できる。   The Nb-Si alloy product of the present invention has a two-phase structure in which a tough and ductile Nb-based solid solution phase constitutes a continuous phase and a niobium silicide phase contributing to high high-temperature strength constitutes a dispersed phase. In addition, since it is based on a rapidly solidified structure, the crystal grain size of each phase is small, and the spacing of each phase is very small. As a result, the Nb—Si-based alloy product can simultaneously achieve excellent toughness and high high-temperature strength, and can be suitably used as a high-temperature member for turbines.

(高温部材)
図3は、本発明に係るタービン用高温部材としてのタービン動翼の一例を示す斜視模式図である。図3に示したように、タービン動翼100は、概略的に、翼部110とシャンク部120とルート部(ダブティル部とも言う)130とから構成される。シャンク部120は、プラットホーム121とラジアルフィン122とを備えている。ガスタービンの場合、通常、タービン動翼100の大きさ(図中縦方向の長さ)は10〜100 cm程度、重量は1〜10 kg程度である。
(High temperature member)
FIG. 3 is a schematic perspective view showing an example of a turbine rotor blade as a high-temperature member for turbines according to the present invention. As shown in FIG. 3, the turbine rotor blade 100 generally includes a blade portion 110, a shank portion 120, and a root portion (also referred to as a dovetail portion) 130. The shank unit 120 includes a platform 121 and a radial fin 122. In the case of a gas turbine, the size (length in the vertical direction in the drawing) of the turbine rotor blade 100 is usually about 10 to 100 cm and the weight is about 1 to 10 kg.

ガスタービン動翼は、高温での回転遠心力および起動・停止に伴う熱応力が繰り返し加わる厳しい環境に曝されるため、材料特性として、優れた高温強度が要求される。従来のガスタービン動翼は、素材の高温強度(言い換えると、耐用温度)の観点から、内部に複雑な冷却構造を形成する必要があり、ガスタービン全体としての熱効率を損なっていた。   Since the gas turbine rotor blade is exposed to a severe environment in which a rotational centrifugal force at a high temperature and a thermal stress accompanying starting and stopping are repeatedly applied, an excellent high temperature strength is required as a material characteristic. Conventional gas turbine rotor blades need to form a complicated cooling structure inside from the viewpoint of the high-temperature strength of the material (in other words, the service temperature), and the thermal efficiency of the entire gas turbine is impaired.

これに対し、本発明のタービン用高温部材は、従来よりも高温特性に優れることから、主流体温度を高温化したり、内部の冷却構造を省略または簡略化したりすることができる。これらは、ガスタービン全体としての熱効率の向上に貢献する。   On the other hand, since the high temperature member for turbines of the present invention is superior in high temperature characteristics than before, the main fluid temperature can be increased, and the internal cooling structure can be omitted or simplified. These contribute to the improvement of the thermal efficiency of the gas turbine as a whole.

[本発明の熱機関]
図4は、本発明に係る熱機関としてのガスタービンの一例を示す断面模式図である。図4に示したように、ガスタービン200は、概略的に、吸気を圧縮する圧縮機部210と燃料の燃焼ガスをタービン翼に吹き付けて回転動力を得るタービン部220とから構成される。本発明のタービン用高温部材は、タービン部220内のタービンノズル221やタービン動翼100として好適に用いることができる。当然のことながら、本発明に係る熱機関は、ガスタービンに限定されるものではなく、他の高温熱機関であってもよい。
[The heat engine of the present invention]
FIG. 4 is a schematic cross-sectional view showing an example of a gas turbine as a heat engine according to the present invention. As shown in FIG. 4, the gas turbine 200 generally includes a compressor unit 210 that compresses intake air and a turbine unit 220 that obtains rotational power by blowing fuel combustion gas onto turbine blades. The high temperature member for turbine of the present invention can be suitably used as the turbine nozzle 221 or the turbine blade 100 in the turbine section 220. As a matter of course, the heat engine according to the present invention is not limited to the gas turbine, and may be another high-temperature heat engine.

前述したように、本発明のタービン用高温部材は、従来よりも高温特性に優れることから、主流体温度を高温化したり、内部の冷却構造を省略/簡略化したりすることができ、ガスタービン全体としての熱効率の向上に貢献する。また、高温部材に対する冷却機構の省略・簡略化は、ガスタービンの出力を同じとした場合に、ガスタービンの小型化に貢献し、ガスタービンのサイズを同じとした場合に、ガスタービンの高出力化に貢献するという利点もある。   As described above, since the high temperature member for turbines of the present invention has superior high temperature characteristics than before, the main fluid temperature can be increased and the internal cooling structure can be omitted / simplified. Contributes to the improvement of thermal efficiency. In addition, the omission and simplification of the cooling mechanism for high temperature members contributes to the miniaturization of the gas turbine when the output of the gas turbine is the same, and the high output of the gas turbine when the size of the gas turbine is the same. There is also an advantage of contributing to the development.

なお、ガスタービンの運転温度(主流体温度)を同じとした場合は、当該高温部材の寿命を延ばすことができるという利点もある。   In addition, when the operating temperature (main fluid temperature) of a gas turbine is made the same, there also exists an advantage that the lifetime of the said high temperature member can be extended.

以下、実施例および比較例を用いて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely using an Example and a comparative example, this invention is not limited to these.

(実施例1および比較例1〜2の合金製造物の作製)
図1の製造方法に沿って、表1に示す名目化学組成を有する合金製造物(実施例1および比較例1〜2)を作製した。合金製造物の作製にあたり、急冷凝固合金粉末は、ガスアトマイズ法により用意し、合金成形体は、粉末積層造形法により造形した円柱体(直径10 mm×高さ20 mm)とした。また、時効処理の条件は、アルゴン雰囲気中、1200〜1600℃で2〜10時間保持とした。
(Production of alloy products of Example 1 and Comparative Examples 1-2)
An alloy product (Example 1 and Comparative Examples 1 and 2) having the nominal chemical composition shown in Table 1 was prepared along the manufacturing method of FIG. In producing the alloy product, the rapidly solidified alloy powder was prepared by a gas atomizing method, and the alloy compact was a cylindrical body (diameter 10 mm × height 20 mm) formed by a powder additive manufacturing method. The aging treatment was performed at 1200 to 1600 ° C. for 2 to 10 hours in an argon atmosphere.

(比較例3の合金製造物の作製)
比較例3の合金製造物では、合金成形体造形工程S3の代わりに、急冷凝固合金粉末を再溶融させて従来の一方向凝固法により合金鋳造体を形成した。得られた合金鋳造体に対して、試料の高さ方向が凝固方向となるように円柱体を削り出して試料とした。時効処理工程S4は、行わなかった。
(Preparation of alloy product of Comparative Example 3)
In the alloy product of Comparative Example 3, instead of the alloy compact forming step S3, the rapidly solidified alloy powder was remelted to form an alloy casting by the conventional unidirectional solidification method. From the obtained alloy cast body, a cylindrical body was cut out so that the height direction of the sample was a solidification direction, and used as a sample. The aging treatment step S4 was not performed.

Figure 2018111853
Figure 2018111853

(高温強度試験)
各試料の高温強度を評価するため、高温圧縮試験を行ってクリープひずみ速度を測定した。試験条件は、温度を1200℃とし、付加応力を70〜180 MPaとした。ひずみ速度が1×10-7 s-1未満(すなわち、10-8 s-1オーダ以下)を合格と判定し、1×10-7 s-1以上を不合格と判定した。結果を表2に示す。
(High temperature strength test)
In order to evaluate the high temperature strength of each sample, the creep strain rate was measured by performing a high temperature compression test. The test conditions were a temperature of 1200 ° C. and an applied stress of 70 to 180 MPa. A strain rate of less than 1 × 10 −7 s −1 (ie, 10 −8 s −1 or less) was determined to be acceptable, and 1 × 10 −7 s −1 or greater was determined to be unacceptable. The results are shown in Table 2.

Figure 2018111853
Figure 2018111853

表2に示したように、比較例1〜2は、付加応力140〜180 MPaにおいて、ひずみ速度が1×10-7 s-1以上であり、不合格と判定された。一方向凝固法により作製した比較例3は、付加応力70 MPaにおいても、ひずみ速度が1×10-7 s-1以上であり、不合格と判定された。 As shown in Table 2, Comparative Examples 1 and 2 had a strain rate of 1 × 10 −7 s −1 or more at an applied stress of 140 to 180 MPa, and were determined to be unacceptable. Comparative Example 3 produced by the unidirectional solidification method had a strain rate of 1 × 10 −7 s −1 or more even at an applied stress of 70 MPa, and was determined to be unacceptable.

これらに対し、本発明の実施例1は、付加応力180 MPaにおいて、ひずみ速度が1×10-7 s-1未満(10-8 s-1オーダ)であり、合格と判定された。すなわち、本発明に係る合金製造物は、より望ましい機械的特性(少なくとも、より高い高温強度)を有していることが確認された。 In contrast, in Example 1 of the present invention, the strain rate was less than 1 × 10 −7 s −1 (on the order of 10 −8 s −1 ) at an applied stress of 180 MPa, and it was determined to be acceptable. That is, it was confirmed that the alloy product according to the present invention has more desirable mechanical properties (at least, higher high-temperature strength).

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成で置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   The above-described embodiments and examples are described in order to facilitate understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, it is possible to replace a part of the configuration of the embodiment with the configuration of common technical knowledge of those skilled in the art, and it is also possible to add the configuration of the common technical knowledge of those skilled in the art to the configuration of the embodiment. That is, according to the present invention, a part of the configurations of the embodiments and examples of the present specification can be deleted, replaced with other configurations, and added with other configurations.

10…溶湯、20…急冷凝固合金粉末、30…合金成形体、100…タービン動翼、110…翼部、120…シャンク部、121…プラットホーム、122…ラジアルフィン、130…ルート部、200…ガスタービン、210…圧縮機部、220…タービン部、221…タービンノズル。   10 ... Molten metal, 20 ... Rapidly solidified alloy powder, 30 ... Molded alloy, 100 ... Turbine blade, 110 ... Blade, 120 ... Shank, 121 ... Platform, 122 ... Radial fin, 130 ... Route part, 200 ... Gas Turbine, 210 ... compressor part, 220 ... turbine part, 221 ... turbine nozzle.

Claims (8)

Nb-Si系合金からなる製造物であって、
前記Nb-Si系合金は、
13原子%以上23原子%以下のSiと、
2原子%以上10原子%以下のCrと、
2原子%以上23原子%以下のTiと、
1原子%以上7原子%以下のHfと、
3原子%以上8原子%以下のMoと、
0.5原子%以上3原子%以下のWと、
0.2原子%以上5原子%以下のBと、
0.1原子%以上15原子%以下のReと、
1原子%以下のC(炭素)と、
1原子%以下のN(窒素)とを含有し、
残部がNbと不可避不純物とからなり、
前記製造物の微細組織は、急冷凝固組織に基づく二相組織を有し、Nb基固溶相が連続相で、ケイ化ニオブ相が分散しており、前記Nb基固溶相の占有率が55%以上で、前記ケイ化ニオブ相の占有率が40%以上であり、
前記製造物は、1200℃で180 MPaの応力を掛けたときのひずみ速度が1×10-7 s-1未満である機械的特性を有することを特徴とするNb-Si系合金製造物。
A product made of Nb-Si alloy,
The Nb-Si alloy is
13 atomic% to 23 atomic% of Si,
2 atomic% or more and 10 atomic% or less of Cr,
2 atomic% or more and 23 atomic% or less of Ti,
1 to 7 atomic percent of Hf,
3 atomic% to 8 atomic% Mo,
0.5 atomic% to 3 atomic% W,
0.2 atomic% to 5 atomic% B,
0.1 atomic% to 15 atomic% Re,
1 atomic% or less of C (carbon),
Containing 1 atomic% or less of N (nitrogen),
The balance consists of Nb and inevitable impurities,
The microstructure of the product has a two-phase structure based on a rapidly solidified structure, the Nb-based solid solution phase is a continuous phase, the niobium silicide phase is dispersed, and the occupation ratio of the Nb-based solid solution phase is 55% or more, the occupation ratio of the niobium silicide phase is 40% or more,
The Nb-Si-based alloy product is characterized in that the product has a mechanical property of a strain rate of less than 1 × 10 −7 s −1 when a stress of 180 MPa is applied at 1200 ° C.
請求項1に記載のNb-Si系合金製造物において、
前記ケイ化ニオブ相は、Nb5Si3相を主相とすることを特徴とするNb-Si系合金製造物。
In the Nb-Si based alloy product according to claim 1,
The niobium silicide phase is an Nb-Si based alloy product characterized in that the main phase is an Nb 5 Si 3 phase.
請求項1又は請求項2に記載のNb-Si系合金製造物において、
前記製造物は、タービン用高温部材であることを特徴とするNb-Si系合金製造物。
In the Nb-Si based alloy product according to claim 1 or 2,
The product is an Nb-Si alloy product, which is a high-temperature member for a turbine.
請求項3に記載のNb-Si系合金製造物において、
前記タービン用高温部材は、タービン翼であることを特徴とするNb-Si系合金製造物。
In the Nb-Si based alloy product according to claim 3,
The Nb-Si alloy product, wherein the high temperature member for turbine is a turbine blade.
請求項1又は請求項2に記載のNb-Si系合金製造物において、
前記製造物は、急冷凝固合金粉末であることを特徴とするNb-Si系合金製造物。
In the Nb-Si based alloy product according to claim 1 or 2,
The product is a rapidly solidified alloy powder, which is an Nb-Si alloy product.
請求項3又は請求項4に記載のNb-Si系合金製造物の製造方法であって、
前記Nb-Si系合金の原料を混合・溶解して溶湯を形成する原料混合溶解工程と、
前記溶湯から急冷凝固合金粉末を形成する溶湯−粉末化工程と、
前記急冷凝固合金粉末を用いて所望形状の合金成形体を造形する合金成形体造形工程と、
前記合金成形体に対して1200℃以上1600℃以下の熱処理を施して微細組織の制御を行う時効処理工程と、
を有することを特徴とするNb-Si系合金製造物の製造方法。
It is a manufacturing method of the Nb-Si system alloy product according to claim 3 or 4,
A raw material mixing and melting step of mixing and melting the raw material of the Nb-Si alloy to form a molten metal,
A melt-powdering step for forming a rapidly solidified alloy powder from the melt;
Alloy molded body modeling step of modeling an alloy molded body of a desired shape using the rapidly solidified alloy powder,
An aging treatment step for controlling the microstructure by performing a heat treatment of 1200 ° C. or more and 1600 ° C. or less for the alloy formed body,
The manufacturing method of the Nb-Si type alloy product characterized by having.
タービンを有する熱機関であって、
前記タービンの高温部材が、請求項3又は請求項4に記載のNb-Si系合金製造物であることを特徴とする熱機関。
A heat engine having a turbine,
The heat engine, wherein the high-temperature member of the turbine is the Nb-Si alloy product according to claim 3 or 4.
請求項7に記載の熱機関において、
前記タービンは、ガスタービンであることを特徴とする熱機関。
The heat engine according to claim 7,
The heat engine, wherein the turbine is a gas turbine.
JP2017002402A 2017-01-11 2017-01-11 Niobium-silicon alloy product, manufacturing method of the product, and heat engine using the product Active JP6824045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017002402A JP6824045B2 (en) 2017-01-11 2017-01-11 Niobium-silicon alloy product, manufacturing method of the product, and heat engine using the product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017002402A JP6824045B2 (en) 2017-01-11 2017-01-11 Niobium-silicon alloy product, manufacturing method of the product, and heat engine using the product

Publications (2)

Publication Number Publication Date
JP2018111853A true JP2018111853A (en) 2018-07-19
JP6824045B2 JP6824045B2 (en) 2021-02-03

Family

ID=62911925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002402A Active JP6824045B2 (en) 2017-01-11 2017-01-11 Niobium-silicon alloy product, manufacturing method of the product, and heat engine using the product

Country Status (1)

Country Link
JP (1) JP6824045B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165338A (en) * 1984-02-08 1985-08-28 Hitachi Ltd Compound super-conductor and its preparation
JP2001226734A (en) * 2000-02-15 2001-08-21 Chokoon Zairyo Kenkyusho:Kk Niobium base composite material and its producing method
JP2006241484A (en) * 2005-02-28 2006-09-14 Hokkaido Univ New niobium based composite and its use
JP2007031837A (en) * 2005-07-26 2007-02-08 General Electric Co <Ge> Refractory metal-intermetallic composite based on niobium silicide and its related article
JP2013028834A (en) * 2011-07-27 2013-02-07 Hokkaido Univ Nb-Si-BASED HIGH-TEMPERATURE ALLOY
WO2015079558A1 (en) * 2013-11-29 2015-06-04 三菱日立パワーシステムズ株式会社 Niobium silicide-based composite material, and high-temperature part and high-temperature heat engine each manufactured using same
JP2015175026A (en) * 2014-03-14 2015-10-05 山陽特殊製鋼株式会社 Precipitation hardening stainless steel powder obtaining high strength after sinter-aging treatment, manufacturing method therefor and molded body thereof
WO2016189612A1 (en) * 2015-05-25 2016-12-01 三菱日立パワーシステムズ株式会社 Niobium silicide-based composite material, high-temperature component using same, and high-temperature heat engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165338A (en) * 1984-02-08 1985-08-28 Hitachi Ltd Compound super-conductor and its preparation
JP2001226734A (en) * 2000-02-15 2001-08-21 Chokoon Zairyo Kenkyusho:Kk Niobium base composite material and its producing method
JP2006241484A (en) * 2005-02-28 2006-09-14 Hokkaido Univ New niobium based composite and its use
JP2007031837A (en) * 2005-07-26 2007-02-08 General Electric Co <Ge> Refractory metal-intermetallic composite based on niobium silicide and its related article
JP2013028834A (en) * 2011-07-27 2013-02-07 Hokkaido Univ Nb-Si-BASED HIGH-TEMPERATURE ALLOY
WO2015079558A1 (en) * 2013-11-29 2015-06-04 三菱日立パワーシステムズ株式会社 Niobium silicide-based composite material, and high-temperature part and high-temperature heat engine each manufactured using same
JP2015175026A (en) * 2014-03-14 2015-10-05 山陽特殊製鋼株式会社 Precipitation hardening stainless steel powder obtaining high strength after sinter-aging treatment, manufacturing method therefor and molded body thereof
WO2016189612A1 (en) * 2015-05-25 2016-12-01 三菱日立パワーシステムズ株式会社 Niobium silicide-based composite material, high-temperature component using same, and high-temperature heat engine

Also Published As

Publication number Publication date
JP6824045B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP5278936B2 (en) Heat resistant superalloy
JP6713071B2 (en) Method for manufacturing cobalt-based alloy laminated body
JP2881626B2 (en) Single crystal nickel-based superalloy
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
JP2017075403A (en) Nickel-based heat-resistant superalloy
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
KR102443966B1 (en) Ni-based alloy softened powder and manufacturing method of the softened powder
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JP4409409B2 (en) Ni-Fe base superalloy, method for producing the same, and gas turbine
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP2009149976A (en) Ternary nickel eutectic alloy
JP2014237884A (en) Ni BASED FORGED ALLOY, AND TURBINE DISK, TURBIN SPACER AND GAS TURBIN USING THE SAME
JP6030250B1 (en) Niobium silicide matrix composite and high-temperature parts and high-temperature heat engine using the same
JP2015120976A (en) Ni-BASED CASTING SUPERALLOY AND CAST ARTICLE THEREFROM
JP5645054B2 (en) Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
WO2015079558A1 (en) Niobium silicide-based composite material, and high-temperature part and high-temperature heat engine each manufactured using same
JP6938765B2 (en) Manufacturing method of cobalt-based alloy powder, cobalt-based alloy sintered body and cobalt-based alloy sintered body
JP5876943B2 (en) Alloy and production method thereof
JP4635065B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP4028122B2 (en) Ni-base superalloy, manufacturing method thereof, and gas turbine component
JP2018111853A (en) Niobium-silicon based alloy product, method for manufacturing the product and heat engine using the product
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts
JP4773303B2 (en) Nickel-based single crystal superalloy excellent in strength, corrosion resistance, and oxidation resistance and method for producing the same
WO2020225966A1 (en) Vanadium-based alloy material, and manufactured article using same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210112

R150 Certificate of patent or registration of utility model

Ref document number: 6824045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150