JP2013018688A - Method for producing high nitrogen containing transition metal nitride and high nitrogen containing transition metal nitride - Google Patents

Method for producing high nitrogen containing transition metal nitride and high nitrogen containing transition metal nitride Download PDF

Info

Publication number
JP2013018688A
JP2013018688A JP2011155185A JP2011155185A JP2013018688A JP 2013018688 A JP2013018688 A JP 2013018688A JP 2011155185 A JP2011155185 A JP 2011155185A JP 2011155185 A JP2011155185 A JP 2011155185A JP 2013018688 A JP2013018688 A JP 2013018688A
Authority
JP
Japan
Prior art keywords
transition metal
metal nitride
high nitrogen
containing transition
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011155185A
Other languages
Japanese (ja)
Other versions
JP5867801B2 (en
Inventor
Shiro Kawamura
史朗 川村
Takashi Taniguchi
尚 谷口
Hitoshi Yusa
斉 遊佐
Hironari Sakurai
裕也 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2011155185A priority Critical patent/JP5867801B2/en
Publication of JP2013018688A publication Critical patent/JP2013018688A/en
Application granted granted Critical
Publication of JP5867801B2 publication Critical patent/JP5867801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high nitrogen containing transition metal nitride having a bulk modulus of ≥150 GPa, and to provide a high nitrogen containing transition metal nitride.SOLUTION: The method for producing a high nitrogen containing transition metal nitride includes: a step of preparing a mixture by mixing powder 11 of a transition metal halide, powder 13 of an alkali metal nitride or an alkaline earth metal nitride, and powder 12 of an alkali metal halide or an alkaline earth metal halide; and a step of pressurizing and heating the mixture.

Description

本発明は、高窒素含有遷移金属窒化物の製造方法及び高窒素含有遷移金属窒化物に関する。 The present invention relates to a method for producing a high nitrogen content transition metal nitride and a high nitrogen content transition metal nitride.

従来、高硬度材料としてダイヤモンドが知られている。ダイヤモンドの体積弾性率(Bulk Modulus)は443GPaである(非特許文献1)。しかし、ダイヤモンドは鉄と反応し、鉄の加工には用いることができない。
鉄の加工に用いることができる高硬度材料としてcBNが知られている。しかし、cBNの体積弾性率は386GPaであり、ダイヤモンドに劣る(非特許文献2)。
鉄の加工に用いることができ、ダイヤモンドと同程度又はそれ以上の体積弾性率を有する材料の開発が求められている。
Conventionally, diamond is known as a high hardness material. The bulk modulus of diamond is 443 GPa (Non-patent Document 1). However, diamond reacts with iron and cannot be used to process iron.
CBN is known as a high hardness material that can be used for processing iron. However, the volume elastic modulus of cBN is 386 GPa, which is inferior to diamond (Non-Patent Document 2).
Development of a material that can be used for processing iron and has a bulk modulus equal to or higher than that of diamond is required.

近年、高硬度材料として窒化物が注目されている。遷移金属窒化物は高硬度であることが計算結果で示されているためである。例えば、体積弾性率(計算値)は、WN(411GPa)、MoN(379GPa)、OsN(367GPa)である(非特許文献1、非特許文献5)。また、ReBは、ダイヤモンドと同等程度の硬度を有する新物質として注目されている(非特許文献4)。更に、既知の低窒素含有物質であるReNは、ダイヤモンドに匹敵する硬さ415GPaであることが計算されている(非特許文献6)。計算による予測では、ReNについても443GPaという計算結果も存在する(非特許文献10)。非特許文献3では、WNの体積弾性率が411GPaと計算されている。非特許文献5では、MoNの体積弾性率が379GPaと計算されている。 In recent years, nitrides have attracted attention as high hardness materials. This is because the transition metal nitride shows high hardness in the calculation results. For example, the volume elastic modulus (calculated value) is WN 2 (411 GPa), MoN (379 GPa), and OsN (367 GPa) (Non-patent Documents 1 and 5). ReB 2 has attracted attention as a new material having a hardness comparable to that of diamond (Non-Patent Document 4). Furthermore, Re 2 N, which is a known low nitrogen-containing substance, has been calculated to have a hardness of 415 GPa comparable to diamond (Non-patent Document 6). In the prediction by calculation, there is also a calculation result of 443 GPa for ReN 2 (Non-patent Document 10). In Non-Patent Document 3, the volume elastic modulus of WN 2 is calculated to be 411 GPa. In Non-Patent Document 5, the volume elastic modulus of MoN is calculated to be 379 GPa.

しかし、従来、固体窒化源を用いて遷移金属窒化物結晶を合成する場合、反応速度が速すぎて、爆発的な発熱反応を誘引し、目的とする遷移金属窒化物結晶が得られなかった。
例えば、ReCl+LiN→RexNyという反応の場合には、爆発的な発熱反応により窒素が逸散し、遷移金属窒化物結晶はほとんど合成されず、回収物の大半は金属Reとなってしまった。
爆発的な発熱反応を抑制するため、希釈剤を用い、複分解(メタセシス)反応により、窒化物を合成する試みがなされている。メタセシス反応とは、次式(1)のように、二種類の化合物間で結合の組換えを行う反応のことである。ここでA、B、C、Dは元素、或いは分子、或いは官能基の種類を示す。
However, conventionally, when a transition metal nitride crystal was synthesized using a solid nitridation source, the reaction rate was too high, and an explosive exothermic reaction was induced, and the intended transition metal nitride crystal could not be obtained.
For example, in the case of a reaction of ReCl 3 + Li 3 N → RexNy, nitrogen is dissipated by an explosive exothermic reaction, transition metal nitride crystals are hardly synthesized, and most of the recovered material becomes metal Re. It was.
In order to suppress the explosive exothermic reaction, attempts have been made to synthesize nitrides by metathesis reaction using a diluent. The metathesis reaction is a reaction that recombines bonds between two kinds of compounds as shown in the following formula (1). Here, A, B, C, and D indicate the type of element, molecule, or functional group.

例えば、希釈剤としてNHClを混ぜ、高圧を印加する、次式(2)に示すメタセシス反応が報告されている(非特許文献7、p.101)。 For example, a metathesis reaction represented by the following formula (2) in which NH 4 Cl is mixed as a diluent and a high pressure is applied has been reported (Non-patent Document 7, p. 101).

この反応では、Snが生成される。しかし、このメタセシス反応では、窒素を含むNHCl自体が窒素源となり、窒化反応を抑制する希釈剤としての役割が十分ではない。更に、NHClの常圧下での融点が338℃と低く、1000℃以上での高温下での合成に不適である(非特許文献8、p.101)。 In this reaction, Sn 3 N 4 is produced. However, in this metathesis reaction, NH 4 Cl itself containing nitrogen becomes a nitrogen source, and the role as a diluent for suppressing the nitriding reaction is not sufficient. Furthermore, NH 4 Cl has a low melting point of 338 ° C. under normal pressure, and is unsuitable for synthesis at a high temperature of 1000 ° C. or higher (Non-patent Document 8, p. 101).

また、希釈剤としてMgClを混ぜて、昇温する、次式(3)に示すメタセシス反応も報告されている(非特許文献9、p.333)。 Also, mix MgCl 2 as a diluent, the temperature is raised, the following equation (3) the metathesis reaction shown has also been reported (Non-Patent Document 9, page 335.).

この反応では、TaBが生成される。しかし、加圧を行っていないので、MgClの融点714℃はそのままであり、1000℃以上での高温下での合成に不適である。 In this reaction, TaB 2 is generated. However, since no pressurization is performed, the melting point of 714 ° C. of MgCl 2 remains as it is, and it is unsuitable for synthesis at a high temperature of 1000 ° C. or higher.

Jin−Cheng Zheng et.al.,PHYSICAL REVIEW B 72, 052105, 2005Jin-Cheng Zheng et. al. , PHYSICAL REVIEW B 72, 052105, 2005 ALEXANDER F.GONCHAROV et.al., High Pressure Research,Vol.27,No.4,December 2007, 409-417ALEXANDER F. GONCHAROV et. al. , High Pressure Research, Vol. 27, no. 4, December 2007, 409-417 Hui Wang et.al.,PHYSICAL REVIEW B 79,132109,2009Hui Wang et. al. , PHYSICAL REVIEW B 79,132109,2009 Jin−Cheng Zheng et.al.,PHYSICAL REVIEW B 72,052105,2005Jin-Cheng Zheng et. al. , PHYSICAL REVIEW B 72,052105, 2005 M.B.Kanoun,PHYSICAL REVIEW B 76,134109,2007M.M. B. Kanon, PHYSICAL REVIEW B 76, 134109, 2007 Hsiu−Ying Chung et.al.,Science 316,436−439Hsiu-Ying Chung et. al. , Science 316, 436-439 Alexandra Friedrich et.al.,PHYSICAL REVIEW LETEERS,105,085504,2010Alexandra Friedrich et. al. , PHYSICAL REVIEW LETEERS, 105, 085504, 2010 J.Am.Ceram.Soc.,85(1)2002,101−104J. et al. Am. Ceram. Soc. , 85 (1) 2002, 101-104 Chem.Mater.,8(2)1996,333−343Chem. Mater. , 8 (2) 1996, 333-343 Physics Letters A,374, 2010,2569−2574Physics Letters A, 374, 2010, 2569-2574

本発明は、体積弾性率が150GPa以上の高窒素含有遷移金属窒化物の製造方法及び高窒素含有遷移金属窒化物を提供することを課題とする。 An object of the present invention is to provide a method for producing a high nitrogen-containing transition metal nitride having a bulk modulus of 150 GPa or more and a high nitrogen-containing transition metal nitride.

上記事情を鑑みて、本発明者は、様々な材料を希釈剤として検討した。その結果、希釈剤として、反応性の低い固体であるNaClを用いることにより、爆発的な発熱反応を防止して、メタセシス反応を行うことが可能であることを見出した。また、NaClは融点が801℃と高く、高温のメタセシス反応が可能であり、更に、加圧によってNaClの融点を上昇させることにより、より高温のメタセシス反応が可能となることを見出した。また、高温のメタセシス反応により、ReN等の窒素含有量の高い材料の合成が可能であることを見出した。更に、ReN等の窒素含有量の高い材料は、体積弾性率が150GPa以上の高窒素含有遷移金属窒化物であることを見出し、本発明を完成した。
本発明は、以下の構成を有する。
In view of the above circumstances, the present inventor has studied various materials as diluents. As a result, it was found that by using NaCl, which is a solid with low reactivity, as a diluent, an explosive exothermic reaction can be prevented and a metathesis reaction can be performed. Further, it has been found that NaCl has a high melting point of 801 ° C. and can perform a high-temperature metathesis reaction, and further, by increasing the melting point of NaCl by pressurization, a higher-temperature metathesis reaction can be performed. Further, the high temperature of the metathesis reaction, it was found that it is possible to synthesize a high nitrogen content, such as ReN 2 material. Furthermore, the present inventors have found that a material having a high nitrogen content such as ReN 2 is a high nitrogen content transition metal nitride having a bulk modulus of 150 GPa or more, and completed the present invention.
The present invention has the following configuration.

(1)遷移金属ハロゲン化物の粉末と、アルカリ金属窒化物又はアルカリ土類金属窒化物の粉末と、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末と、を混合して混合物を作製する工程と、前記混合物を加圧加熱する工程と、を有することを特徴とする高窒素含有遷移金属窒化物の製造方法。
(2)前記混合物を1GPa以上に加圧することを特徴とする(1)に記載の高窒素含有遷移金属窒化物の製造方法。
(3)前記混合物を800℃以上に加熱することを特徴とする(1)又は(2)に記載の高窒素含有遷移金属窒化物の製造方法。
(4)アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末の量を前記遷移金属ハロゲン化物の粉末の量の2倍以上にして、前記混合物を作製することを特徴とする(1)〜(3)のいずれかに記載の高窒素含有遷移金属窒化物の製造方法。
(5)(1)〜(4)のいずれかに記載の高窒素含有遷移金属窒化物の製造方法により製造された高窒素含有遷移金属窒化物であって、遷移金属に対する窒素のモル比が1以上であることを特徴とする高窒素含有遷移金属窒化物。
(6)前記遷移金属がRe又はWであることを特徴とする(5)に記載の高窒素含有遷移金属窒化物。
(7)前記遷移金属に対する窒素のモル比が2以上であることを特徴とする(6)に記載の高窒素含有遷移金属窒化物。
(1) Step of mixing a transition metal halide powder, an alkali metal nitride or alkaline earth metal nitride powder, and an alkali metal halide or alkaline earth metal halide powder to produce a mixture And a step of pressurizing and heating the mixture. A method for producing a high nitrogen-containing transition metal nitride, comprising:
(2) The method for producing a high nitrogen-containing transition metal nitride according to (1), wherein the mixture is pressurized to 1 GPa or more.
(3) The method for producing a high nitrogen-containing transition metal nitride according to (1) or (2), wherein the mixture is heated to 800 ° C. or higher.
(4) The mixture is prepared by making the amount of the alkali metal halide or alkaline earth metal halide powder more than twice the amount of the transition metal halide powder. The method for producing a high nitrogen-containing transition metal nitride according to any one of 3).
(5) A high nitrogen-containing transition metal nitride produced by the method for producing a high nitrogen-containing transition metal nitride according to any one of (1) to (4), wherein the molar ratio of nitrogen to the transition metal is 1 A high nitrogen-containing transition metal nitride characterized by the above.
(6) The high nitrogen-containing transition metal nitride according to (5), wherein the transition metal is Re or W.
(7) The high nitrogen-containing transition metal nitride according to (6), wherein a molar ratio of nitrogen to the transition metal is 2 or more.

本発明の高窒素含有遷移金属窒化物の製造方法は、遷移金属ハロゲン化物の粉末と、アルカリ金属窒化物又はアルカリ土類金属窒化物の粉末と、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末と、を混合して混合物を作製する工程と、前記混合物を加圧加熱する工程と、を有する構成なので、体積弾性率が150GPa以上の高窒素含有遷移金属窒化物を容易に製造できる。特に、反応速度を制御できる。 The method for producing a high nitrogen-containing transition metal nitride according to the present invention comprises a transition metal halide powder, an alkali metal nitride or alkaline earth metal nitride powder, an alkali metal halide or an alkaline earth metal halide. Since the composition has a step of mixing a powder to produce a mixture and a step of pressurizing and heating the mixture, a high nitrogen-containing transition metal nitride having a volume modulus of 150 GPa or more can be easily produced. In particular, the reaction rate can be controlled.

本発明の高窒素含有遷移金属窒化物は、先に記載の高窒素含有遷移金属窒化物の製造方法により製造された高窒素含有遷移金属窒化物であって、遷移金属に対する窒素のモル比が1以上である構成なので、窒素含有量の高い遷移金属窒化物(N/Metal≧1)とすることができ、体積弾性率が150GPa以上とすることができる。 The high nitrogen-containing transition metal nitride of the present invention is a high nitrogen-containing transition metal nitride produced by the method for producing a high nitrogen-containing transition metal nitride described above, and the molar ratio of nitrogen to the transition metal is 1. Since it is the above structure, it can be set as the transition metal nitride (N / Metal> = 1) with high nitrogen content, and a volume elastic modulus can be 150 GPa or more.

本発明の実施形態である高窒素含有遷移金属窒化物の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the high nitrogen content transition metal nitride which is embodiment of this invention. 実施例1で用いた高窒素含有遷移金属窒化物の製造装置を示す図である。1 is a view showing an apparatus for producing a high nitrogen-containing transition metal nitride used in Example 1. FIG. 実施例1試料の微小X線回折図である。1 is a micro X-ray diffraction pattern of a sample of Example 1. FIG. 実施例1試料の透過顕微鏡写真である。2 is a transmission micrograph of a sample of Example 1. 実施例1試料の電子顕微鏡写真(×1000倍)である。It is an electron micrograph (x1000 times) of Example 1 sample. 実施例1試料のRe4fについてのXPS分光分析結果である。It is a XPS spectroscopic analysis result about Re4f of an Example 1 sample. 実施例1試料のN1sについてのXPS分光分析結果である。It is a XPS spectroscopic analysis result about N1s of an Example 1 sample. 実施例2試料の微小X線回折図である。2 is a micro X-ray diffraction pattern of a sample of Example 2. FIG.

(本発明の実施形態)
以下、添付図面を参照しながら、本発明の実施形態である高窒素含有遷移金属窒化物の製造方法及び高窒素含有遷移金属窒化物について説明する。
(Embodiment of the present invention)
Hereinafter, a method for producing a high nitrogen-containing transition metal nitride and a high nitrogen-containing transition metal nitride according to embodiments of the present invention will be described with reference to the accompanying drawings.

<高窒素含有遷移金属窒化物の製造方法>
本発明の実施形態である高窒素含有遷移金属窒化物の製造方法は、混合物作製工程S1と、混合物加圧加熱工程S2と、を有する。
<Method for producing high nitrogen-containing transition metal nitride>
The manufacturing method of the high nitrogen content transition metal nitride which is embodiment of this invention has mixture preparation process S1 and mixture pressurization heating process S2.

<混合物作製工程S1>
混合物作製工程S1は、遷移金属ハロゲン化物の粉末と、アルカリ金属窒化物又はアルカリ土類金属窒化物の粉末と、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末と、を混合して混合物を作製する工程である。
<Mixture production process S1>
The mixture preparation step S1 includes mixing a transition metal halide powder, an alkali metal nitride or alkaline earth metal nitride powder, and an alkali metal halide or alkaline earth metal halide powder. It is a manufacturing process.

図1は、本発明の実施形態である高窒素含有遷移金属窒化物の製造方法の一例を示す工程図である。
まず、図1に示すように、底面側が封じられた円筒状のPt製容器20の空洞部20cに、スパチェラ15で、試料粉末11、12、13をそれぞれ所定量、量りとり、均一に分散するように混合する。
FIG. 1 is a process diagram showing an example of a method for producing a high nitrogen-containing transition metal nitride according to an embodiment of the present invention.
First, as shown in FIG. 1, sample powders 11, 12, and 13 are weighed and uniformly dispersed by a spatula 15 in a hollow portion 20c of a cylindrical Pt container 20 whose bottom side is sealed. Mix like so.

試料粉末11は、遷移金属ハロゲン化物の粉末である。例えば、ReCl、ReCl、WCl、OsClである。これらは、メタセシス反応において、遷移金属源となる。 The sample powder 11 is a transition metal halide powder. For example, ReCl 3 , ReCl 5 , WCl 6 , OsCl 3 . These serve as transition metal sources in the metathesis reaction.

また、試料粉末12は、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末である。窒素も遷移金属も含まない反応性の低い固体物質である塩を用いることができ、例えば、NaCl、MgCl、NaF、CaClである。
これらは、メタセシス反応において、希釈剤となる。これらの材料を用いることにより、メタセシス反応の反応速度を低下して、爆発的な発熱反応を防止することができる。これらの材料を用いない場合には、遷移金属塩化物とアルカリ金属窒化物の混合により、爆発的な発熱反応を開始して、窒化反応が不十分となり、金属成分が回収されるといった問題が生じる。
The sample powder 12 is a powder of an alkali metal halide or alkaline earth metal halide. A salt that is a solid material having low reactivity and containing neither nitrogen nor transition metals can be used, for example, NaCl, MgCl 2 , NaF, CaCl 2 .
These become diluents in the metathesis reaction. By using these materials, the reaction rate of the metathesis reaction can be reduced, and an explosive exothermic reaction can be prevented. When these materials are not used, the mixing of transition metal chlorides and alkali metal nitrides causes a problem of starting an explosive exothermic reaction, resulting in insufficient nitriding reaction and recovery of metal components. .

アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末の量を前記遷移金属ハロゲン化物の粉末の量の2倍以上にして、前記混合物を作製することが好ましい。2倍未満では、爆発的な発熱反応を完全に防止できない場合が発生し、希釈剤としての役割を果たすことができない。 It is preferable to make the mixture by setting the amount of the alkali metal halide or alkaline earth metal halide powder to at least twice the amount of the transition metal halide powder. If it is less than 2 times, a case where the explosive exothermic reaction cannot be completely prevented occurs, and it cannot serve as a diluent.

更に、試料粉末13は、アルカリ金属窒化物又はアルカリ土類金属窒化物の粉末である。例えば、LiN、NaN、Ca、Mg等である。これらは、メタセシス反応において、固体窒素源となる。 Further, the sample powder 13 is an alkali metal nitride or alkaline earth metal nitride powder. For example, Li 3 N, NaN 3 , Ca 3 N 2 , Mg 3 N 2 and the like. These become solid nitrogen sources in the metathesis reaction.

アルカリ金属窒化物又はアルカリ土類金属窒化物の粉末の量を前記遷移金属ハロゲン化物の粉末の同量以上にして、前記混合物を作製することが好ましい。
例えば、ReNの生成については以下の反応式(4)が考えられる。
It is preferable that the amount of the alkali metal nitride or alkaline earth metal nitride powder is equal to or greater than the amount of the transition metal halide powder to produce the mixture.
For example, the following reaction formula (4) can be considered for the production of ReN 2 .

この場合、アルカリ金属窒化物又はアルカリ土類金属窒化物の粉末の量を前記遷移金属ハロゲン化物の粉末の同量未満とすると、ReNに変換がしない未反応のReClが残るためである。 In this case, if the amount of the alkali metal nitride or alkaline earth metal nitride powder is less than the same amount of the transition metal halide powder, unreacted ReCl 5 that does not convert to ReN 2 remains.

次に、Pt製容器20の上部側円周方向に沿って一定間隔で設けられた切り込み部21に沿って、Pt製上部端部を内側に折り曲げて、Pt製容器20を封止する。 Next, the Pt-made upper end is bent inward along the notches 21 provided at regular intervals along the upper-side circumferential direction of the Pt-made container 20, and the Pt-made container 20 is sealed.

<混合物加圧加熱工程S2>
混合物加圧加熱工程S2は、混合物を加圧加熱する工程である。
圧力印加・昇温可能な製造装置の所定の位置に、封止したPt製容器20を配置する。
次に、Pt製容器20に所定の圧力を印加し、Pt製容器20を所定の温度に昇温して、一定時間、その状態を保持する。
<Mixture pressurization heating process S2>
The mixture pressure heating step S2 is a step of heating the mixture under pressure.
A sealed Pt container 20 is disposed at a predetermined position of a manufacturing apparatus capable of applying pressure and raising temperature.
Next, a predetermined pressure is applied to the Pt container 20 to raise the temperature of the Pt container 20 to a predetermined temperature, and this state is maintained for a certain time.

Pt製容器20内の混合物を1GPa以上に加圧することが好ましい。これにより、遷移金属ハロゲン化物の大部分をアルカリ金属窒化物又はアルカリ土類金属窒化物との間でメタセシス反応させることが可能となる。 It is preferable to pressurize the mixture in the Pt-made container 20 to 1 GPa or more. As a result, most of the transition metal halide can undergo a metathesis reaction with the alkali metal nitride or the alkaline earth metal nitride.

Pt製容器20内の混合物を800℃以上に加熱することが好ましい。これにより、遷移金属ハロゲン化物の大部分をアルカリ金属窒化物又はアルカリ土類金属窒化物との間でメタセシス反応させることが可能となる。 It is preferable to heat the mixture in the Pt container 20 to 800 ° C. or higher. As a result, most of the transition metal halide can undergo a metathesis reaction with the alkali metal nitride or the alkaline earth metal nitride.

反応時間は、温度・圧力、材料の種類等により決定する。ReNの生成の場合、例えば、1時間とする。
所定の時間、メタセシス反応を行った後、Pt製容器20を取り出し、開封することにより、高窒素含有遷移金属窒化物が得られる。
The reaction time is determined by temperature, pressure, material type, and the like. In the case of the generation of ReN 2 , for example, it is 1 hour.
After performing the metathesis reaction for a predetermined time, the Pt container 20 is taken out and opened to obtain a high nitrogen-containing transition metal nitride.

<高窒素含有遷移金属窒化物>
本発明の実施形態である高窒素含有遷移金属窒化物は、遷移金属に対する窒素のモル比が1以上である。各試料粉末の量を適正な量として、所定のメタセシス反応により生成するためである。遷移金属に対する窒素のモル比が1以上(N/Metal≧1)の窒素含有量の高い遷移金属窒化物とすることにより、その体積弾性率を150GPa以上とすることができる。
<High nitrogen-containing transition metal nitride>
The high nitrogen-containing transition metal nitride according to an embodiment of the present invention has a molar ratio of nitrogen to transition metal of 1 or more. This is because each sample powder is produced by a predetermined metathesis reaction with an appropriate amount. By using a transition metal nitride having a high nitrogen content and a molar ratio of nitrogen to transition metal of 1 or more (N / Metal ≧ 1), the volume modulus of elasticity can be made 150 GPa or more.

前記遷移金属がRe又はWであることが好ましい。遷移金属に対して窒素のモル比が2以上の高窒素含有遷移金属窒化物を形成できるためである。また、遷移金属自体の体積弾性率がそれぞれ360GPa、310GPaと高く、高硬度の高窒素含有遷移金属窒化物を形成できる可能性があるためである。 The transition metal is preferably Re or W. This is because a high nitrogen-containing transition metal nitride having a molar ratio of nitrogen to transition metal of 2 or more can be formed. Moreover, it is because the transition metal itself has a high volume modulus of elasticity of 360 GPa and 310 GPa, respectively, and may form a high hardness, high nitrogen-containing transition metal nitride.

本発明の実施形態である高窒素含有遷移金属窒化物の製造方法は、遷移金属ハロゲン化物の粉末11と、アルカリ金属窒化物又はアルカリ土類金属窒化物の粉末13と、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末12と、を混合して混合物を作製する工程と、前記混合物を加圧加熱する工程と、を有する構成なので、メタセシス反応の反応速度を低下して、爆発的な発熱反応を防止し、体積弾性率が150GPa以上の高窒素含有遷移金属窒化物を容易に製造できる。 A method for producing a high nitrogen-containing transition metal nitride according to an embodiment of the present invention includes a transition metal halide powder 11, an alkali metal nitride or alkaline earth metal nitride powder 13, an alkali metal halide or an alkali. Since the structure includes a step of mixing a powder 12 of an earth metal halide to prepare a mixture and a step of heating the mixture under pressure, the reaction rate of the metathesis reaction is reduced and explosive heat generation is achieved. Reaction can be prevented and a high nitrogen-containing transition metal nitride having a bulk modulus of 150 GPa or more can be easily produced.

本発明の実施形態である高窒素含有遷移金属窒化物の製造方法は、前記混合物を1GPa以上に加圧する構成なので、メタセシス反応の反応速度を低下して、爆発的な発熱反応を防止し、体積弾性率が150GPa以上の高窒素含有遷移金属窒化物を容易に製造できる。 Since the method for producing a high nitrogen-containing transition metal nitride according to an embodiment of the present invention is configured to pressurize the mixture to 1 GPa or more, the reaction rate of the metathesis reaction is reduced, and an explosive exothermic reaction is prevented. A high nitrogen-containing transition metal nitride having an elastic modulus of 150 GPa or more can be easily produced.

本発明の実施形態である高窒素含有遷移金属窒化物の製造方法は、前記混合物を800℃以上に加熱する構成なので、メタセシス反応の反応速度を低下して、爆発的な発熱反応を防止し、体積弾性率が150GPa以上の高窒素含有遷移金属窒化物を容易に製造できる。 Since the method for producing a high nitrogen-containing transition metal nitride according to an embodiment of the present invention is configured to heat the mixture to 800 ° C. or higher, the reaction rate of the metathesis reaction is reduced to prevent an explosive exothermic reaction, A high nitrogen-containing transition metal nitride having a bulk modulus of 150 GPa or more can be easily produced.

本発明の実施形態である高窒素含有遷移金属窒化物の製造方法は、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末の量を前記遷移金属ハロゲン化物の粉末の量の10倍以上にして、前記混合物を作製する構成なので、メタセシス反応の反応速度を低下して、爆発的な発熱反応を防止し、体積弾性率が150GPa以上の高窒素含有遷移金属窒化物を容易に製造できる。 The method for producing a high nitrogen-containing transition metal nitride according to an embodiment of the present invention is such that the amount of the alkali metal halide or alkaline earth metal halide powder is 10 times or more the amount of the transition metal halide powder. Since the mixture is prepared, the reaction rate of the metathesis reaction is reduced, an explosive exothermic reaction is prevented, and a high nitrogen-containing transition metal nitride having a volume modulus of 150 GPa or more can be easily produced.

本発明の実施形態である高窒素含有遷移金属窒化物は、先に記載の高窒素含有遷移金属窒化物の製造方法により製造された高窒素含有遷移金属窒化物であって、遷移金属に対する窒素のモル比が1以上である構成なので、体積弾性率を150GPa以上とすることができる。 The high nitrogen-containing transition metal nitride according to an embodiment of the present invention is a high nitrogen-containing transition metal nitride manufactured by the above-described method for manufacturing a high nitrogen-containing transition metal nitride, Since the molar ratio is 1 or more, the bulk modulus can be 150 GPa or more.

本発明の実施形態である高窒素含有遷移金属窒化物は、前記遷移金属がRe又はWである構成なので、体積弾性率を150GPa以上とすることができる。 The high nitrogen-containing transition metal nitride according to an embodiment of the present invention has a configuration in which the transition metal is Re or W, so that the bulk modulus can be 150 GPa or more.

本発明の実施形態である高窒素含有遷移金属窒化物は、前記遷移金属に対して窒素のモル比が2以上である構成なので、体積弾性率を150GPa以上とすることができる。 Since the high nitrogen content transition metal nitride which is embodiment of this invention is the structure whose molar ratio of nitrogen with respect to the said transition metal is 2 or more, it can make a volume elastic modulus 150 GPa or more.

本発明の実施形態である高窒素含有遷移金属窒化物の製造方法及び高窒素含有遷移金属窒化物は、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例で示す。しかし、本発明はこれらの実施例に限定されるものではない。 The method for producing a high nitrogen-containing transition metal nitride and the high nitrogen-containing transition metal nitride, which are embodiments of the present invention, are not limited to the above-described embodiments, and various methods are possible within the scope of the technical idea of the present invention. It can be changed and implemented. Specific examples of this embodiment are shown in the following examples. However, the present invention is not limited to these examples.

(実施例1)
<試料生成>
図2は、実施例1で用いた高窒素含有遷移金属窒化物の製造装置を示す図である。
まず、Pt製容器の空洞部(試薬部ともいう。)に、ReCl粉末、LiN粉末及びNaCl粉末(希釈剤)を均一に混合して、充填し、封入した。
次に、試料粉末を充填・封入したPt製容器を、製造装置内の所定の位置に配置した。
次に、製造装置を操作して、Pt製容器に圧力を7.7GPa加圧し、温度を1600℃として、1時間保持した。
その後、製造装置からPt製容器を取り出し、開封した。
複数の薄片状の試料片(実施例1試料片)が得られた。
Example 1
<Sample generation>
FIG. 2 is a diagram showing an apparatus for producing a high nitrogen-containing transition metal nitride used in Example 1.
First, ReCl 5 powder, Li 3 N powder, and NaCl powder (diluent) were uniformly mixed, filled, and sealed in a hollow portion (also referred to as a reagent portion) of a Pt container.
Next, a Pt container filled and sealed with sample powder was placed at a predetermined position in the manufacturing apparatus.
Next, the manufacturing apparatus was operated to pressurize the Pt container to a pressure of 7.7 GPa, to a temperature of 1600 ° C., and hold for 1 hour.
Thereafter, the Pt container was taken out from the manufacturing apparatus and opened.
A plurality of flaky sample pieces (Example 1 sample pieces) were obtained.

<材料分析>
図3は、実施例1試料片の微小X線回折図である。17.5と21に強度の大きいピークが見られた。実施例1試料のX線回折測定結果は、ReBと同じ構造であることが判明した。
<Material analysis>
FIG. 3 is a micro X-ray diffraction pattern of the sample piece of Example 1. Strong peaks were observed at 17.5 and 21. Example 1 X-ray diffraction measurement results of the samples was found to be the same structure as ReB 2.

図4は、実施例1試料片の透過顕微鏡写真である。写真中心の試料片は、長径2.2mm、短径1mmの大きさであった。層状構造を有していた。 FIG. 4 is a transmission micrograph of the sample piece of Example 1. The sample piece at the center of the photograph was 2.2 mm long and 1 mm short. It had a layered structure.

図5は、実施例1試料片の電子顕微鏡写真(×1000倍)である。表面に線状の凹凸が見られ、その他の部分は平坦であった。 FIG. 5 is an electron micrograph (× 1000 magnification) of the sample piece of Example 1. Linear irregularities were observed on the surface, and the other portions were flat.

図4及び図5を注意深く解析すると、実施例1試料片は、六回対称のモフォロジーを有していた。六回対称のモフォロジーは、X線回折測定結果から予想される構造の結晶形状と一致した。 4 and 5 were carefully analyzed, the sample piece of Example 1 had a six-fold symmetric morphology. The six-fold symmetry morphology was consistent with the crystal shape of the structure expected from the X-ray diffraction measurement results.

図6は、実施例1試料片のRe4fについてのXPS分光分析結果である。Reが窒素と結合した際に得られる41.7eVの位置に明瞭なピークがあることを確認した。他に、44、49eVにピークが見られた。
図7は、実施例1試料のN1sについてのXPS分光分析結果である。窒素がReと結合した際に得られる397.2eVの位置に明瞭なピークがあることを確認した。
以上により、実施例1試料片はReNである。
FIG. 6 is an XPS spectroscopic analysis result for Re4f of the sample piece of Example 1. It was confirmed that there was a clear peak at a position of 41.7 eV obtained when Re was combined with nitrogen. In addition, peaks were observed at 44 and 49 eV.
FIG. 7 shows the XPS spectroscopic analysis results for N1s of the sample of Example 1. It was confirmed that there was a clear peak at the position of 397.2 eV obtained when nitrogen was bonded to Re.
Thus, Example 1 specimens is ReN 2.

<特性評価>
体積弾性率測定装置(放射光測定)により、実施例1試料片の硬度を測定した。実施例1試料片の体積弾性率は、173GPaであった。
<Characteristic evaluation>
The hardness of the sample piece of Example 1 was measured with a bulk modulus measuring device (radiation measurement). Example 1 The bulk modulus of the sample piece was 173 GPa.

(実施例2)
<試料生成>
WCl粉末を用い、温度を1400℃とした他は、実施例1と同様にして、試料生成を行った。複数の薄片状の試料片(実施例2試料片)が得られた。
実施例と同様に、材料分析を行った。
(Example 2)
<Sample generation>
A sample was produced in the same manner as in Example 1 except that WCl 6 powder was used and the temperature was 1400 ° C. A plurality of flaky sample pieces (Example 2 sample pieces) were obtained.
Material analysis was performed in the same manner as in the examples.

<材料分析>
図8は、実施例2試料片の微小X線回折図である。4本のピークが見られた。実施例2試料のX線回折測定結果は、実施例2試料片がWNであることを示唆した。
<Material analysis>
FIG. 8 is a micro X-ray diffraction pattern of the sample piece of Example 2. Four peaks were observed. EXAMPLE 2 X-ray diffractometry results of the samples suggested that Example 2 specimens is WN 2.

本発明の高窒素含有遷移金属窒化物及び高窒素含有遷移金属窒化物の製造方法は、金属加工製造装置産業、金属加工産業等において利用可能性がある。 The high nitrogen-containing transition metal nitride and the method for producing the high nitrogen-containing transition metal nitride of the present invention can be used in the metal processing and manufacturing equipment industry, the metal processing industry, and the like.

11、12、13…試料粉末、15…スパチェラ、20…Pt製容器、20c…空洞部、21…切り込み部。 DESCRIPTION OF SYMBOLS 11, 12, 13 ... Sample powder, 15 ... Spatula, 20 ... Pt container, 20c ... Cavity part, 21 ... Notch part.

Claims (7)

遷移金属ハロゲン化物の粉末と、アルカリ金属窒化物又はアルカリ土類金属窒化物の粉末と、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末と、を混合して混合物を作製する工程と、前記混合物を加圧加熱する工程と、を有することを特徴とする高窒素含有遷移金属窒化物の製造方法。 Mixing a transition metal halide powder, an alkali metal nitride or alkaline earth metal nitride powder, and an alkali metal halide or alkaline earth metal halide powder to produce a mixture; and And a step of heating the mixture under pressure. A method for producing a high nitrogen-containing transition metal nitride, comprising: 前記混合物を1GPa以上に加圧することを特徴とする請求項1に記載の高窒素含有遷移金属窒化物の製造方法。 The method for producing a high nitrogen-containing transition metal nitride according to claim 1, wherein the mixture is pressurized to 1 GPa or more. 前記混合物を800℃以上に加熱することを特徴とする請求項1又は2に記載の高窒素含有遷移金属窒化物の製造方法。 The method for producing a high nitrogen-containing transition metal nitride according to claim 1 or 2, wherein the mixture is heated to 800 ° C or higher. アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の粉末の量を前記遷移金属ハロゲン化物の粉末の量の2倍以上にして、前記混合物を作製することを特徴とする請求項1〜3のいずれか1項に記載の高窒素含有遷移金属窒化物の製造方法。 4. The mixture is prepared by making the amount of alkali metal halide or alkaline earth metal halide powder more than twice the amount of the transition metal halide powder. 2. A process for producing a high nitrogen-containing transition metal nitride according to item 1. 請求項1〜4のいずれか1項に記載の高窒素含有遷移金属窒化物の製造方法により製造された高窒素含有遷移金属窒化物であって、遷移金属に対する窒素のモル比が1以上であることを特徴とする高窒素含有遷移金属窒化物。 It is the high nitrogen content transition metal nitride manufactured by the manufacturing method of the high nitrogen content transition metal nitride of any one of Claims 1-4, Comprising: The molar ratio of nitrogen with respect to a transition metal is 1 or more. A high nitrogen content transition metal nitride. 前記遷移金属がRe又はWであることを特徴とする請求項5に記載の高窒素含有遷移金属窒化物。 6. The high nitrogen-containing transition metal nitride according to claim 5, wherein the transition metal is Re or W. 前記遷移金属に対して窒素のモル比が2以上であることを特徴とする請求項6に記載の高窒素含有遷移金属窒化物。


The high nitrogen-containing transition metal nitride according to claim 6, wherein a molar ratio of nitrogen to the transition metal is 2 or more.


JP2011155185A 2011-07-13 2011-07-13 Method for producing high nitrogen content transition metal nitride and high nitrogen content transition metal nitride Active JP5867801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155185A JP5867801B2 (en) 2011-07-13 2011-07-13 Method for producing high nitrogen content transition metal nitride and high nitrogen content transition metal nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155185A JP5867801B2 (en) 2011-07-13 2011-07-13 Method for producing high nitrogen content transition metal nitride and high nitrogen content transition metal nitride

Publications (2)

Publication Number Publication Date
JP2013018688A true JP2013018688A (en) 2013-01-31
JP5867801B2 JP5867801B2 (en) 2016-02-24

Family

ID=47690509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155185A Active JP5867801B2 (en) 2011-07-13 2011-07-13 Method for producing high nitrogen content transition metal nitride and high nitrogen content transition metal nitride

Country Status (1)

Country Link
JP (1) JP5867801B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057982A1 (en) * 2012-10-12 2014-04-17 独立行政法人物質・材料研究機構 Method for synthesizing hexagonal tungsten nitride, and hexagonal tungsten nitride
JP2014152081A (en) * 2013-02-12 2014-08-25 National Institute For Materials Science Method for synthesizing hexagonal tungsten nitride
JP2015086086A (en) * 2013-10-28 2015-05-07 独立行政法人物質・材料研究機構 Method for producing hexagonal tungsten nitride based sintered compact, and hexagonal tungsten nitride based sintered compact
JP2016155699A (en) * 2015-02-24 2016-09-01 国立研究開発法人物質・材料研究機構 HIGHLY CRYSTALLINE COMPOUND OF β-NaFeO2 STRUCTURE COMPRISING Zn ATOM, Sn ATOM AND N ATOM, AND METHOD FOR THE PRODUCTION THEREOF, AND USE THEREFOR

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026309A (en) * 1988-03-12 1990-01-10 Kao Corp Composite material of metallic nitride carbon and production thereof
JP2005179138A (en) * 2003-12-22 2005-07-07 Mitsubishi Chemicals Corp Method for producing nitride
JP2005179139A (en) * 2003-12-22 2005-07-07 Mitsubishi Chemicals Corp Method for refining nitride
JP2006069804A (en) * 2004-08-31 2006-03-16 Asahi Kasei Chemicals Corp Mesoporous oxynitride compound and/or mesoporous nitride compound
JP2010232174A (en) * 2009-03-12 2010-10-14 Belenos Clean Power Holding Ag Nitride and carbide anode materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026309A (en) * 1988-03-12 1990-01-10 Kao Corp Composite material of metallic nitride carbon and production thereof
JP2005179138A (en) * 2003-12-22 2005-07-07 Mitsubishi Chemicals Corp Method for producing nitride
JP2005179139A (en) * 2003-12-22 2005-07-07 Mitsubishi Chemicals Corp Method for refining nitride
JP2006069804A (en) * 2004-08-31 2006-03-16 Asahi Kasei Chemicals Corp Mesoporous oxynitride compound and/or mesoporous nitride compound
JP2010232174A (en) * 2009-03-12 2010-10-14 Belenos Clean Power Holding Ag Nitride and carbide anode materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057982A1 (en) * 2012-10-12 2014-04-17 独立行政法人物質・材料研究機構 Method for synthesizing hexagonal tungsten nitride, and hexagonal tungsten nitride
US20150315023A1 (en) * 2012-10-12 2015-11-05 National Institute For Materials Science Method for synthesizing hexagonal tungsten nitride, and hexagonal tungsten nitride
JPWO2014057982A1 (en) * 2012-10-12 2016-09-05 国立研究開発法人物質・材料研究機構 Method for synthesizing hexagonal tungsten nitride and hexagonal tungsten nitride
US9624604B2 (en) 2012-10-12 2017-04-18 National Institute For Material Science Method for synthesizing hexagonal tungsten nitride, and hexagonal tungsten nitride
JP2014152081A (en) * 2013-02-12 2014-08-25 National Institute For Materials Science Method for synthesizing hexagonal tungsten nitride
JP2015086086A (en) * 2013-10-28 2015-05-07 独立行政法人物質・材料研究機構 Method for producing hexagonal tungsten nitride based sintered compact, and hexagonal tungsten nitride based sintered compact
JP2016155699A (en) * 2015-02-24 2016-09-01 国立研究開発法人物質・材料研究機構 HIGHLY CRYSTALLINE COMPOUND OF β-NaFeO2 STRUCTURE COMPRISING Zn ATOM, Sn ATOM AND N ATOM, AND METHOD FOR THE PRODUCTION THEREOF, AND USE THEREFOR

Also Published As

Publication number Publication date
JP5867801B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
Purdy Ammonothermal synthesis of cubic gallium nitride
Wang et al. Ammonothermal synthesis of III-nitride crystals
JP5867801B2 (en) Method for producing high nitrogen content transition metal nitride and high nitrogen content transition metal nitride
Ade et al. Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2) n CrAl with n= 1, 2, 3 and a unifying concept for ternary borides as MAB-phases
Soignard et al. High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN 1− x) phases
Choi et al. Solvothermal synthesis of nanocrystalline copper nitride from an energetically unstable copper azide precursor
Salamat et al. Synthesis of tetragonal and orthorhombic polymorphs of Hf3N4 by high-pressure annealing of a prestructured nanocrystalline precursor
Widenmeyer et al. Formation and decomposition of iron nitrides observed by in situ powder neutron diffraction and thermal analysis
Odahara et al. Self-combustion synthesis of novel metastable ternary molybdenum nitrides
Wolff et al. Resource-Efficient High-Yield Ionothermal Synthesis of Microcrystalline Cu3–x P
Collings et al. Structural distortions in the high-pressure polar phases of ammonium metal formates
CN105013400A (en) Use of nonmetal catalyst in synthetic diamond
Zhao et al. Perovskite-Like Polar Lanthanide Formate Frameworks of [NH2NH3][Ln (HCOO) 4](Ln= Tb–Lu and Y): Synthesis, Structures, Magnetism, and Anisotropic Thermal Expansion
CN102892727B (en) High strenght diamond-SiC pressed compact and manufacture method thereof
Avilés et al. Tailoring the band gap in the ZnS/ZnSe system: solid solutions by a mechanically induced self-sustaining reaction
Nersisyan et al. Experimental growth of new 6-fold symmetry patterned microcrystals of AlN: equilibrium structures and growth mechanism
JPS6241706A (en) Production of graphite intercalation compound
JP6028945B2 (en) Method for synthesizing hexagonal tungsten nitride and hexagonal tungsten nitride
US20150218707A1 (en) Method for preparing aluminum matrix composite using no pressure infiltration
Chauhan et al. Charge-compensated (V, Ru) co-substitution in higher manganese silicide single crystals for enhanced thermoelectric and mechanical performance
Richter et al. Trigonal-bipyramidal coordination in first ammoniates of ZnF2: ZnF2 (NH3) 3 and ZnF2 (NH3) 2
Becker et al. Two Intermediates in Ammonothermal InN Crystal Growth:[In (NH3) 5Cl] Cl2 and InF2 (NH2)
JP2002187775A (en) Method for manufacturing microparticle diamond sintered body
Meng et al. Synthesis, structure and bonding of Gd6MTe2 (M= Co, Ni), Er6RuTe2
US6830724B2 (en) Method of producing ceramic matrix composite, and ceramic matrix composite produced by the method for production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151224

R150 Certificate of patent or registration of utility model

Ref document number: 5867801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250