JP2013013864A - Method for manufacturing metal cluster supported catalyst - Google Patents

Method for manufacturing metal cluster supported catalyst Download PDF

Info

Publication number
JP2013013864A
JP2013013864A JP2011149069A JP2011149069A JP2013013864A JP 2013013864 A JP2013013864 A JP 2013013864A JP 2011149069 A JP2011149069 A JP 2011149069A JP 2011149069 A JP2011149069 A JP 2011149069A JP 2013013864 A JP2013013864 A JP 2013013864A
Authority
JP
Japan
Prior art keywords
metal
particles
cluster
supported
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011149069A
Other languages
Japanese (ja)
Other versions
JP5655723B2 (en
Inventor
Hiroto Hirata
裕人 平田
Naoto Nagata
直人 永田
Tomoyuki Hayashi
知征 林
Keisuke Kinoshita
圭介 木下
Tsukasa Torimoto
司 鳥本
Tetsuya Sasamura
哲也 笹村
Susumu Kuwahata
進 桑畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011149069A priority Critical patent/JP5655723B2/en
Publication of JP2013013864A publication Critical patent/JP2013013864A/en
Application granted granted Critical
Publication of JP5655723B2 publication Critical patent/JP5655723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal cluster supported catalyst in which metal clusters are uniformly supported on oxide carrier particles.SOLUTION: The method for manufacturing a metal cluster supported catalyst in which metal clusters formed by gathering a plurality of metal atoms are supported on oxide carrier particles includes the steps of: preparing a dispersing agent in which metal clusters are dispersed in an ionic liquid; mixing the dispersing agent with the oxide carrier particles; applying an external force to the obtained mixing liquid for weakening the bonding force of the ionic liquid and the metal clusters so as to support the metal clusters on the oxide carrier particles.

Description

本発明は、金属クラスター担持触媒の製造方法に関し、さらに詳しくは酸化物担体粒子にナノサイズの金属クラスターが均一に担持された金属クラスター担持触媒の製造方法に関するものである。   The present invention relates to a method for producing a metal cluster supported catalyst, and more particularly to a method for producing a metal cluster supported catalyst in which nano-sized metal clusters are uniformly supported on oxide support particles.

近年の研究によれば、制御されたサイズを有する金属クラスターは、触媒活性等の化学的性質及び磁性等の物理的性質に関して、バルクの金属とは異なる性質を有することが明らかになっている。
この金属クラスターの特異な性質を利用するために、サイズを制御したクラスターを簡便に合成する方法が必要とされており、さまざまな検討がされている。
Recent studies have shown that metal clusters with controlled sizes have different properties from bulk metals in terms of chemical properties such as catalytic activity and physical properties such as magnetism.
In order to utilize the unique properties of this metal cluster, a method for simply synthesizing a cluster with a controlled size is required, and various studies have been made.

特に、金クラスターの一酸化炭素浄化特性やプロピレン酸化特性は、サイズによる効果が大きいことが知られている。
また、平均径が10nm未満の金ナノ粒子を担体、例えばFeに共沈法により担持させて得られる担持触媒は化学反応に高い触媒活性を有することが知られている。しかし、この担持触媒は、担体が特定の材料に限られるため様々な担体に適用できる担持法が求められている。
In particular, it is known that the carbon monoxide purification characteristics and propylene oxidation characteristics of gold clusters are greatly influenced by size.
In addition, it is known that a supported catalyst obtained by supporting gold nanoparticles having an average diameter of less than 10 nm on a carrier, for example, Fe 2 O 3 , by a coprecipitation method has a high catalytic activity in a chemical reaction. However, since the supported catalyst is limited to a specific material, a supported method that can be applied to various carriers is required.

また、貴金属による触媒性能を用いる例としては、自動車用エンジン等の内燃機関から排出される排ガスの浄化を挙げることができる。この排ガスの浄化では、排ガス中に含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)等を、白金、パラジウム、ロジウム等の貴金属を主成分とする触媒成分によって、二酸化炭素、窒素、水に転化させている。この排ガス浄化の用途では一般に、貴金属である触媒成分をアルミナ等の酸化物製多孔質担体粒子に担持して、排ガスと触媒成分との大きい接触面積を与えるようにしている。 An example of using the catalytic performance of noble metal is purification of exhaust gas discharged from an internal combustion engine such as an automobile engine. In this exhaust gas purification, carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO x ), etc. contained in the exhaust gas are converted into catalyst components mainly composed of noble metals such as platinum, palladium and rhodium. , Converted to carbon dioxide, nitrogen and water. In this exhaust gas purification application, a catalyst component, which is a noble metal, is generally supported on an oxide porous carrier particle such as alumina to provide a large contact area between the exhaust gas and the catalyst component.

前記の触媒成分である貴金属の酸化物製多孔質担体粒子への担持は、一般に貴金属の硝酸塩又は単一の貴金属原子を有する貴金属錯体の溶液を担体に含浸させて、担体の表面に貴金属化合物を分散させて、次いで溶液を含浸させた担体を乾燥及び焼成する含浸法によって行っている。このような方法では、意図したサイズを有する貴金属クタスターを得ることは困難である。特に、金は融点が1000℃と金属元素の中で低く、0価の金属状態が安定な元素であるため、担体との相互作用が小さく300℃以下の温度でも担体上で粒成長し易い。このため、従来の含浸法で貴金属を酸化物担体粒子に担持させた場合、配位子除去のための焼成過程で粒成長し、目的とする10nm未満、特に5nm以下の平均径を有する金属クラスターを生成させることは困難であった。   The support of the noble metal oxide porous carrier particles as the catalyst component is generally impregnated with a solution of a noble metal nitrate or a noble metal complex having a single noble metal atom, and a noble metal compound is formed on the surface of the carrier. This is carried out by an impregnation method in which the carrier that has been dispersed and then impregnated with the solution is dried and calcined. With such a method, it is difficult to obtain a noble metal cruster having the intended size. In particular, since gold is an element having a melting point of 1000 ° C. which is low among metal elements and a stable zero-valent metal state, the interaction with the carrier is small, and grains easily grow on the carrier even at temperatures of 300 ° C. or lower. For this reason, when a noble metal is supported on oxide carrier particles by a conventional impregnation method, grains grow in the firing process for ligand removal, and a target metal cluster having an average diameter of less than 10 nm, particularly 5 nm or less. It was difficult to generate.

このため、析出還元法が提案された(例えば、Studies in Surface Science and Catalyst Vol. 91, 227)。この析出還元法では、塩化金酸水溶液にpH調整剤として水酸化ナトリウム水溶液を加えてpHを7程度とし、酸化物担体粒子を加えて金を担持し、400℃程度で加熱することにより、金クラスター担持触媒が得られる。しかし、この工程で触媒中に塩化物イオンが残存していると焼成中に金が肥大化し、ナトリウムが残存することにより触媒反応を阻害する等の問題が生じ得る。このため、触媒調製の際に不純物除去を厳密に行う必要がある。しかし、析出還元法で、塩化物あるいはナトリウムを用いないで金クラスター担持触媒を得る方法は未だ提案されていない。   For this reason, precipitation reduction methods have been proposed (for example, Studies in Surface Science and Catalyst Vol. 91, 227). In this precipitation reduction method, a sodium hydroxide aqueous solution is added as a pH adjuster to a chloroauric acid aqueous solution to a pH of about 7, and oxide support particles are added to support gold, and heated at about 400 ° C. A cluster-supported catalyst is obtained. However, if chloride ions remain in the catalyst in this step, gold may be enlarged during firing, and problems such as inhibition of the catalytic reaction may occur due to sodium remaining. For this reason, it is necessary to strictly remove impurities during catalyst preparation. However, a method for obtaining a gold cluster supported catalyst without using chloride or sodium by the precipitation reduction method has not been proposed yet.

また、予め0価の金属クラスターを液相で作製し、担体に担持する方法も提案されている。この液相担持法では、高分子保護剤を使用して金属クラスターを合成し、担体に担持させる方法であるため、高分子保護剤を焼成除去するために300℃以上の高温下に処理することが必要であり、金の粒成長が避けられない。   There has also been proposed a method in which a zero-valent metal cluster is previously prepared in a liquid phase and supported on a carrier. In this liquid phase loading method, a metal cluster is synthesized using a polymer protective agent and supported on a carrier, so that the polymer protective agent is treated at a high temperature of 300 ° C. or higher in order to remove the polymer protective agent by baking. Is necessary, and gold grain growth is inevitable.

このため、排ガス浄化用触媒は、一般的には前記の含浸法により調製されているが、簡便に大量の触媒を調製することは出来るが、担持触媒の調製に焼成工程を有するものであり、金属クラスターの粒成長が避けられず、任意の構成原子数を有する金属クラスターを担持させることはできない。
この排ガス浄化用触媒においては、貴金属資源枯渇の問題への対応と環境改善に対する要求から排ガス浄化性能のさらなら向上への期待は強く、金属をクラスターの状態で担持させる技術が検討されている。
For this reason, the exhaust gas purifying catalyst is generally prepared by the above impregnation method, but a large amount of catalyst can be easily prepared, but it has a calcination step in the preparation of the supported catalyst, Grain growth of metal clusters is inevitable, and metal clusters having an arbitrary number of constituent atoms cannot be supported.
In this exhaust gas purification catalyst, there is a strong expectation for further improvement in exhaust gas purification performance from the demand for precious metal resource depletion and the demand for environmental improvement, and a technique for supporting metals in a cluster state is being studied.

例えば、特許文献1には、金属又は半導体ナノ粒子前駆体を構成する原子又は分子をイオン液体に付着させることによりナノ粒子を製造する、金属又は半導体ナノ粒子の製造方法が記載されている。そして、具体例としてイオン液体としてN,N,N−トリメチル−N−プロピルアンモニウム(トリフルオロメタンスルホニル)イミドなどのイオン液体を用いて金をターゲット材としてスパッタリングにより分散液中の平均粒径が1〜4nm程度の金ナノ粒子を得た例が示されている。しかし、担体粒子に金属ナノ粒子を担持する方法については示されていない。   For example, Patent Document 1 describes a method for producing metal or semiconductor nanoparticles, in which nanoparticles are produced by attaching atoms or molecules constituting a metal or semiconductor nanoparticle precursor to an ionic liquid. As a specific example, the average particle size in the dispersion is 1 to 4 by sputtering using gold as a target material using an ionic liquid such as N, N, N-trimethyl-N-propylammonium (trifluoromethanesulfonyl) imide as the ionic liquid. An example of obtaining gold nanoparticles of about 4 nm is shown. However, a method for supporting metal nanoparticles on carrier particles is not shown.

また、特許文献2には、アークプラズマ蒸着法を用いて金属酸化物上に平均クラスターサイズが2nm以下である金クラスターを担持させる触媒の製造方法が記載されている。そして、具体例として真空下にアルミナ基板、シリカ基板、ジルコニア基板、セリア基板又はチタニア基板に金をアークプラズマ蒸着して、基板上に金ナノクラスターを作製した例が示されている。しかし、担体粒子に金ナノ粒子を担持する方法については示されていない。
また、非特許文献1には、イオン液体を用いてスパッタリング蒸着した金ナノ粒子を熱処理することによって高秩序の熱分解グラファイト(HOPG)に金ナノ粒子を高密度に堆積させ得たことが記載されている。そして、具体例としてイオン液体としてTMPA−TFSAを用いて1.2x1.2cmのHOPG基板上に金ナノ粒子分散液を乗せ、酸化を抑制するために真空下でHOPG基板を加熱することにより金ナノ粒子を担持させた実験例が示されている。
Patent Document 2 describes a method for producing a catalyst in which gold clusters having an average cluster size of 2 nm or less are supported on a metal oxide using an arc plasma deposition method. As a specific example, there is shown an example in which gold nanoclusters are formed on a substrate by vapor-depositing gold on an alumina substrate, silica substrate, zirconia substrate, ceria substrate or titania substrate under vacuum. However, a method for supporting gold nanoparticles on carrier particles is not shown.
Non-Patent Document 1 describes that gold nanoparticles can be deposited with high density on highly ordered pyrolytic graphite (HOPG) by heat-treating gold nanoparticles sputter-deposited using an ionic liquid. ing. As a specific example, a gold nanoparticle dispersion liquid is placed on a 1.2 × 1.2 cm HOPG substrate using TMPA-TFSA as an ionic liquid, and the HOPG substrate is heated under vacuum to suppress oxidation, thereby forming a gold nanoparticle. An experimental example in which particles are supported is shown.

特開2007−231306号公報JP 2007-231306 A 特開2010−247108号公報JP 2010-247108 A

ケミストリー レターズ(Chemistry Letters)Vol.38 No.4 2009年 第330−311頁Chemistry Letters Vol. 38 No. 4 2009 pages 330-311

しかし、前記非特許文献1に記載の方法を排ガス浄化用に適用しようとすると、ガス分子との接触面積を多くする必要があるため表面積の大きい(二次粒子径の小さい)μmオーダーの酸化物担体粒子に担持する必要がある。この場合、前記非特許文献1に記載の方法によっては酸化物担体粒子に金のナノ粒子を均一に担持することが困難である。
このように、従来公知の技術によれば、金属ナノ粒子を製造することあるいは担体基板やグラファイトに金ナノクラスターを担持させることは可能であるが、排ガス浄化用触媒に用いられ得る酸化物担体粒子に金属クラスターが均一に担持された金属クラスター担持触媒の製造方法は知られていない。
従って、本発明の目的は、酸化物担体粒子に金属クラスターが均一に担持された金属クラスター担持触媒の製造方法を提供することである。
However, if the method described in Non-Patent Document 1 is applied to exhaust gas purification, it is necessary to increase the contact area with the gas molecules, so that the oxide has a large surface area (small secondary particle diameter) on the order of μm. It is necessary to carry on the carrier particles. In this case, it is difficult to uniformly support gold nanoparticles on the oxide carrier particles by the method described in Non-Patent Document 1.
Thus, according to a conventionally known technique, it is possible to produce metal nanoparticles or to support gold nanoclusters on a support substrate or graphite, but oxide support particles that can be used as an exhaust gas purification catalyst. There is no known method for producing a metal cluster-supported catalyst in which metal clusters are uniformly supported.
Accordingly, an object of the present invention is to provide a method for producing a metal cluster-supported catalyst in which metal clusters are uniformly supported on oxide support particles.

本発明は、酸化物担体粒子に複数個の金属原子が集まった金属クラスターが担持された金属クラスター担持触媒の製造方法であって、
イオン液体中に金属クラスターが分散した分散液を用意する工程、
該分散液と溶媒に分散された酸化物担体粒子とを混合する工程、および
得られた混合液に、イオン液体と金属クラスターとの結合力を弱めるために外力を加えて酸化物担体粒子に金属クラスターを担持させる工程、
を含む、前記方法に関する。
The present invention is a method for producing a metal cluster-supported catalyst in which a metal cluster in which a plurality of metal atoms are collected on an oxide support particle is supported,
Preparing a dispersion in which metal clusters are dispersed in an ionic liquid;
The step of mixing the dispersion and the oxide carrier particles dispersed in the solvent, and applying an external force to the resulting mixture to weaken the binding force between the ionic liquid and the metal cluster, A step of supporting the cluster,
The method.

本発明によれば、酸化物担体粒子に金属クラスターが均一に担持された金属クラスター担持触媒を容易に得ることができる。   According to the present invention, a metal cluster-supported catalyst in which metal clusters are uniformly supported on oxide support particles can be easily obtained.

図1は、本発明の実施態様の工程を示す模式図である。FIG. 1 is a schematic diagram showing the steps of an embodiment of the present invention. 図2は、実施例において調製した分散液中の金クラスターのSTEM観察像である。FIG. 2 is a STEM observation image of a gold cluster in the dispersion prepared in the example. 図3は、図2に示す金クラスターの粒度分布を示すグラフである。FIG. 3 is a graph showing the particle size distribution of the gold clusters shown in FIG. 図4は、実施例で150℃に加熱して得られたアルミナ担体粒子に担持された金クラスターのSTEM観察像である。FIG. 4 is a STEM observation image of a gold cluster supported on alumina carrier particles obtained by heating to 150 ° C. in the example. 図5は、図4に示すアルミナ担体粒子に担持された金クラスターの粒度分布を示すグラフである。FIG. 5 is a graph showing the particle size distribution of the gold clusters supported on the alumina carrier particles shown in FIG. 図6は、実施例で100℃に加熱して得られたアルミナ担体粒子に担持された金クラスターのSTEM観察像である。FIG. 6 is an STEM observation image of a gold cluster supported on alumina carrier particles obtained by heating to 100 ° C. in the example. 図7は、図6に示すアルミナ担体粒子に担持された金クラスターの粒度分布を示すグラフである。FIG. 7 is a graph showing the particle size distribution of the gold clusters supported on the alumina carrier particles shown in FIG. 図8は、実施例で150℃に加熱して得られたシリカ担体粒子に担持された金クラスターのSTEM像である。FIG. 8 is a STEM image of a gold cluster supported on silica support particles obtained by heating to 150 ° C. in the examples. 図9は、実施例で150℃に加熱して得られたセリア担体粒子に担持された金クラスターのSTEM像である。FIG. 9 is a STEM image of a gold cluster supported on ceria carrier particles obtained by heating to 150 ° C. in the example. 図10は、比較例で400℃に加熱して得られたアルミナ担体粒子に担持された金クラスターのSTEM観察像である。FIG. 10 is a STEM observation image of a gold cluster supported on alumina carrier particles obtained by heating to 400 ° C. in a comparative example. 図11は、図10に示すアルミナ担体粒子に担持された金クラスターの粒度分布を示すグラフである。FIG. 11 is a graph showing the particle size distribution of the gold clusters supported on the alumina carrier particles shown in FIG.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記溶媒が、含窒素化合物又は含酸素化合物系有機溶媒である前記方法。
2)前記金属クラスター担持触媒が、酸化物担体粒子に平均径が10nm未満の金属クラスターが担持されたものである前記方法。
3)前記外力が、加熱、マイクロ波又は超音波である前記方法。
4)さらに、金属クラスターが担持された酸化物担体粒子をイオン液体からろ取し、溶媒で洗浄し、乾燥する工程を含む前記方法。
5)前記外力が、分散液の温度を0〜300℃の範囲の温度に上昇させるために行われる加熱である前記方法。
6)前記加熱が、不活性雰囲気下に100〜300℃に加熱して行われる前記方法。
7)前記酸化物担体粒子がAl粒子、SiO粒子、CeO粒子、ZrO粒子、TiO粒子、CeO−ZrO複合酸化物粒子、CeO−Al複合酸化物粒子、CeO−TiO複合酸化物粒子、CeO−SiO複合酸化物粒子又はCeO−ZrO−Al複合酸化物粒子であり、前記担持触媒が排ガス浄化用触媒である前記方法。
8)前記分散液が、イオン液体に金属クラスターを蒸着させて調製される前記方法。
9)前記金属クラスターの金属が、金、銀、白金、ロジウム又はパラジウムあるいはそれぞれの合金である前記方法。
10)前記イオン液体が、TMPA−TFSAである前記方法。
In particular, in the present invention, the following embodiments can be mentioned.
1) The method, wherein the solvent is a nitrogen-containing compound or an oxygen-containing compound-based organic solvent.
2) The method as described above, wherein the metal cluster-supported catalyst is obtained by supporting metal clusters having an average diameter of less than 10 nm on oxide support particles.
3) The method as described above, wherein the external force is heating, microwave or ultrasonic wave.
4) The method further comprising the steps of filtering the oxide carrier particles carrying the metal clusters from the ionic liquid, washing with a solvent, and drying.
5) The method, wherein the external force is heating performed to raise the temperature of the dispersion to a temperature in the range of 0 to 300 ° C.
6) The method described above, wherein the heating is performed by heating to 100 to 300 ° C. in an inert atmosphere.
7) The oxide carrier particles are Al 2 O 3 particles, SiO 2 particles, CeO 2 particles, ZrO 2 particles, TiO 2 particles, CeO 2 —ZrO 2 composite oxide particles, CeO 2 —Al 2 O 3 composite oxide. Particles, CeO 2 —TiO 2 composite oxide particles, CeO 2 —SiO 2 composite oxide particles or CeO 2 —ZrO 2 —Al 2 O 3 composite oxide particles, and the supported catalyst is an exhaust gas purifying catalyst. Method.
8) The method, wherein the dispersion is prepared by depositing metal clusters on an ionic liquid.
9) The method, wherein the metal of the metal cluster is gold, silver, platinum, rhodium, palladium, or an alloy thereof.
10) The method described above, wherein the ionic liquid is TMPA-TFSA.

本発明においては、酸化物担体粒子に複数個の金属原子が集まった金属クラスターが担持された金属クラスター担持触媒を、
イオン液体中に金属クラスターが分散した分散液を用意する工程、
該分散液と溶媒に分散された酸化物担体粒子とを混合する工程、および
得られた混合液に、イオン液体と金属クラスターとの結合力を弱めるために外力を加えて酸化物担体粒子に金属クラスターを担持させる工程、
を含むことが必要であり、これによって酸化物担体粒子に金属クラスターが均一に担持された金属クラスター担持触媒を得ることができる。
In the present invention, a metal cluster-supported catalyst in which a metal cluster in which a plurality of metal atoms are collected is supported on oxide support particles,
Preparing a dispersion in which metal clusters are dispersed in an ionic liquid;
The step of mixing the dispersion and the oxide carrier particles dispersed in the solvent, and applying an external force to the resulting mixture to weaken the binding force between the ionic liquid and the metal cluster, A step of supporting the cluster,
Thus, it is possible to obtain a metal cluster-supported catalyst in which metal clusters are uniformly supported on oxide support particles.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様の製造方法は、図1に示すように、
金ターゲットに対するスパッタリング法などにより金を蒸着させてイオン液体中に金クラスターが分散した分散液を用意する工程(a)、
該分散液と溶媒に分散された酸化物担体粒子とを混合する工程(b)、
得られた混合液に、イオン液体と金属クラスターとの結合力を弱めるために加熱による外力を加えて酸化物担体粒子に金属クラスターを担持させる工程(c)、および
金属クラスターが担持された酸化物担体粒子をイオン液体からろ取し、溶媒で洗浄し、乾燥する工程(d)
からなる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The manufacturing method of the embodiment of the present invention is as shown in FIG.
A step (a) of preparing a dispersion in which gold clusters are dispersed in an ionic liquid by depositing gold by a sputtering method or the like on a gold target;
Mixing the dispersion and the oxide carrier particles dispersed in the solvent (b),
A step (c) of applying an external force by heating in order to weaken the binding force between the ionic liquid and the metal cluster to the obtained mixed liquid to support the metal cluster on the oxide carrier particles; and an oxide on which the metal cluster is supported Step (d) of filtering carrier particles from ionic liquid, washing with solvent, and drying
Consists of.

本発明の方法においては、イオン液体中に金属クラスターが分散した分散液を用意することが必要であり、前記の分散液は、イオン液体に金属クラスターを蒸着させる方法によって調製され得る。
前記の蒸着方法としては、特に制限はなく、例えば化学蒸着法や物理蒸着法、例えば真空蒸着法、イオンプレーティング法、スパッタリング法など、好適にはスパッタリング法が挙げられる。
In the method of the present invention, it is necessary to prepare a dispersion liquid in which metal clusters are dispersed in an ionic liquid, and the dispersion liquid can be prepared by a method of depositing metal clusters on an ionic liquid.
There is no restriction | limiting in particular as said vapor deposition method, For example, sputtering methods, such as a chemical vapor deposition method and a physical vapor deposition method, for example, a vacuum evaporation method, an ion plating method, sputtering method etc., are mentioned suitably.

本発明においては、金属として金、銀、白金、ロジウム又はパラジウムあるいはそれぞれの銅もしくはニッケルとの合金が挙げられる。
前記の方法において、イオン液体の蒸気圧が極めて低いため、イオン液体を含む蒸着装置内を減圧に保つことが可能となり、金属をイオン液体に蒸着させ得る。
前記の工程によって、イオン液体中に複数個の金属原子が集まった金属クラスター、通常は10nm未満、特に5nm以下の平均径を有する金属クラスターが分散され、イオン液体に取り囲まれて安定化する。
In the present invention, examples of the metal include gold, silver, platinum, rhodium, palladium, and an alloy with each copper or nickel.
In the above method, since the vapor pressure of the ionic liquid is extremely low, the inside of the vapor deposition apparatus containing the ionic liquid can be kept at a reduced pressure, and the metal can be vapor-deposited on the ionic liquid.
Through the above process, a metal cluster in which a plurality of metal atoms gather in the ionic liquid, usually a metal cluster having an average diameter of less than 10 nm, particularly 5 nm or less, is dispersed and surrounded by the ionic liquid and stabilized.

前記のイオン液体は、陽イオンと陰イオンのみから構成される塩であって常温で液体である一連の化合物をいい、高温安定性であり液体温度範囲が広い、蒸気圧が略ゼロ、イオン性でありながら低粘性、高い酸化・還元耐性などの特性を有しているものであり、例えば脂肪族系イオン液体、イミダゾリウム系イオン液体、ピリジニウム系イオン液体などが挙げられ、好適には、N,N,N−トリメチル−N−プロピルアンモニウムビス(トリフルオロメタンスルホニル)イミドやN−メチル−N−プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムテトラフルオロホウ酸塩、N,N,N−トリメチル−N−プロピルアンモニウムビス(トリフルオロメタンスルホニル)アミド(以下、TMPA−TFTAと略記する。)など、好適にはTMPA−TFTAを挙げることができる。   The above ionic liquids are a series of compounds that are composed of only cations and anions and are liquid at room temperature. They are stable at high temperatures, have a wide liquid temperature range, have a vapor pressure of almost zero, and are ionic. However, it has characteristics such as low viscosity and high oxidation / reduction resistance. Examples thereof include aliphatic ionic liquids, imidazolium ionic liquids, pyridinium ionic liquids, and preferably N , N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide, N, N-diethyl-N-methyl-N- ( 2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide, N, N-diethyl-N-methyl-N- (2-me (Xethyl) ammonium tetrafluoroborate, N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) amide (hereinafter abbreviated as TMPA-TTA) and the like preferably include TMPA-TTA. Can do.

本発明の方法においては、前記の工程で得られた分散液と酸化物担体粒子とを混合することが必要である。
前記酸化物担体粒子としては、Al粒子、SiO粒子、CeO粒子、ZrO粒子、TiO粒子、CeO−ZrO複合酸化物粒子、CeO−Al複合酸化物粒子、CeO−TiO複合酸化物粒子、CeO−SiO複合酸化物粒子又はCeO−ZrO−Al複合酸化物粒子が挙げられる。
In the method of the present invention, it is necessary to mix the dispersion obtained in the above step and the oxide carrier particles.
Examples of the oxide carrier particles include Al 2 O 3 particles, SiO 2 particles, CeO 2 particles, ZrO 2 particles, TiO 2 particles, CeO 2 —ZrO 2 composite oxide particles, and CeO 2 —Al 2 O 3 composite oxide. Examples thereof include particles, CeO 2 —TiO 2 composite oxide particles, CeO 2 —SiO 2 composite oxide particles, and CeO 2 —ZrO 2 —Al 2 O 3 composite oxide particles.

前記の分散液と酸化物担体粒子とを混合する際には、前記酸化物担体粒子を溶媒に予め分散させたものを用いることが必要である。単に酸化物担体粒子と分散液とを混合したのでは、酸化物担体粒子に金属クラスターと均一に担持させることはできない。
前記の酸化物担体粒子を分散させるための溶媒としては、極性を有する有機溶媒、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、ジエチレングリコール、プロピレングリコールなどのアルコール、アセトニトリル、プロピオニトリルなどのニトリル、ジエチルエーテル、テトラヒドロフランなどのエーテル、酢酸エチルや酢酸ブチルなどのエステル、アセトン、メチルエチルケトンなどのケトン、アニリン、ピリジンなどの含窒素化合物又は含酸素化合部、その中でも沸点が200℃未満の有機溶媒が挙げられる。
前記溶媒の量は、前記分散液と溶媒との割合が1:10〜10:1、特に1:5〜5:1、その中でも1:3〜3:1(容量比)であることが好適である。
また、前記の分散液と混合する酸化物担体粒子の量は、酸化物担体粒子に対する金属クラスターの質量割合で示される金属の担持量が0.05〜3質量%とすることが好適である。
When mixing the dispersion and the oxide carrier particles, it is necessary to use a dispersion in which the oxide carrier particles are previously dispersed in a solvent. Simply mixing the oxide carrier particles and the dispersion liquid makes it impossible to uniformly support the metal clusters on the oxide carrier particles.
Solvents for dispersing the oxide carrier particles include polar organic solvents such as methanol, ethanol, propanol, butanol, alcohols such as ethylene glycol, diethylene glycol, and propylene glycol, and nitriles such as acetonitrile and propionitrile. , Ethers such as diethyl ether and tetrahydrofuran, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, nitrogen-containing compounds such as aniline and pyridine, or oxygen-containing compounds, among which organic solvents having a boiling point of less than 200 ° C. Can be mentioned.
The amount of the solvent is preferably such that the ratio of the dispersion to the solvent is 1:10 to 10: 1, particularly 1: 5 to 5: 1, and more preferably 1: 3 to 3: 1 (volume ratio). It is.
The amount of the oxide carrier particles mixed with the dispersion is preferably 0.05 to 3% by mass of the metal supported by the mass ratio of the metal clusters to the oxide carrier particles.

本発明の方法においては、得られた混合液に、イオン液体と金属クラスターとの結合力を弱めるために外力を加えて酸化物担体粒子に金属クラスターを担体させることが必要である。
前記の工程によって、酸化物担体粒子にナノサイズの金属クラスターが均一に担持することが可能となる。
前記の外力としては、加熱、マイクロ波又は超音波、好適には分散液の温度を0〜300℃の範囲の温度に上昇させるために行われる加熱、その中でも不活性雰囲気下に、例えば窒素を導入して分散液の温度を100〜300℃に上昇させる加熱が挙げられる。
特に、前記分散液を100〜150℃の温度で5分間〜5時間程度、例えば10〜60分間程度の加熱を行うことが好適である。
In the method of the present invention, in order to weaken the binding force between the ionic liquid and the metal cluster, it is necessary to apply an external force to the oxide carrier particle to support the metal cluster in the obtained mixed solution.
By the above process, the nanosized metal clusters can be uniformly supported on the oxide support particles.
Examples of the external force include heating, microwaves or ultrasonic waves, preferably heating performed to raise the temperature of the dispersion to a temperature in the range of 0 to 300 ° C., among which nitrogen is used in an inert atmosphere. The heating which introduce | transduces and raises the temperature of a dispersion liquid to 100-300 degreeC is mentioned.
In particular, it is preferable to heat the dispersion at a temperature of 100 to 150 ° C. for about 5 minutes to 5 hours, for example about 10 to 60 minutes.

前記の外力として加熱を用いる場合、温度が高すぎると金属クラスターの粒成長が起こるので避ける必要がある。
また、前記の外力としてマイクロ波又は超音波を用いる場合は、付与するエネルギーが過大にならないように留意する必要がある。
前記の加熱、マイクロ波又は超音波を用いる技術は、それ自体周知である。
When heating is used as the external force, if the temperature is too high, grain growth of metal clusters occurs, so it must be avoided.
Moreover, when using a microwave or an ultrasonic wave as said external force, it is necessary to care so that the energy to provide may not become excessive.
The techniques using heating, microwaves or ultrasonic waves are well known per se.

前記の各工程によって生成された、金属クラスターが担持された酸化物担体粒子は、イオン液体からろ取し、溶媒で洗浄し、乾燥され得る。
前記のイオン液体からのろ取には、ろ過、遠心分離などのろ取手段が適用され得る。
前記溶媒としては、極性を有する有機溶媒、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、ジエチレングリコール、プロピレングリコールなどのアルコール、アセトニトリル、プロピオニトリルなどのニトリル、ジエチルエーテル、テトラヒドロフランなどのエーテル、酢酸エチルや酢酸ブチルなどのエステル、アセトン、メチルエチルケトンなどのケトン、アニリン、ピリジンなど、好適にはニトリルが挙げられる。
前記の乾燥は、300℃未満の温度、通常は100〜150℃で1〜10時間程度行い得る。
The oxide carrier particles on which the metal clusters are supported produced by the above steps can be filtered from the ionic liquid, washed with a solvent, and dried.
For the filtration from the ionic liquid, filtration means such as filtration and centrifugation can be applied.
Examples of the solvent include polar organic solvents, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, diethylene glycol and propylene glycol, nitriles such as acetonitrile and propionitrile, ethers such as diethyl ether and tetrahydrofuran, acetic acid Preferred examples include esters such as ethyl and butyl acetate, ketones such as acetone and methyl ethyl ketone, aniline, and pyridine.
The drying can be performed at a temperature below 300 ° C., usually 100 to 150 ° C. for about 1 to 10 hours.

本発明の前述の方法によって、酸化物担体粒子に平均径が10nm未満、特に5nm以下の金属クラスターが均一に担持された金属クラスター担持触媒を得ることができる。
そして、前記の金属クラスター担持触媒は、自動車エンジンなどの内燃機関からの排ガスを浄化するための排ガス浄化用触媒として用い得る。
By the above-described method of the present invention, a metal cluster-supported catalyst in which metal clusters having an average diameter of less than 10 nm, particularly 5 nm or less, are uniformly supported on oxide support particles can be obtained.
The metal cluster-supported catalyst can be used as an exhaust gas purification catalyst for purifying exhaust gas from an internal combustion engine such as an automobile engine.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
以下の各例において、金属クラスター担持触媒は、図1に模式図を示す工程に従って作製した。
以下の各例において、得られた貴金属クラスター(担持前)および金属クラスター酸化物担体粒子担持触媒の貴金属クラスターについて、日立製作所社製STEM(HD−2000)を用いて、加速電圧:200kVにて測定を行った。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
In each of the following examples, the metal cluster-supported catalyst was produced according to the process shown in the schematic diagram of FIG.
In each of the following examples, the obtained noble metal cluster (before loading) and the noble metal cluster of the metal cluster oxide carrier particle supported catalyst were measured at an acceleration voltage of 200 kV using STEM (HD-2000) manufactured by Hitachi, Ltd. Went.

実施例1
1.Auクラスターの合成
TMPA−TFSAを0.600cm分取し、120℃で3時間以上減圧乾燥した。アセトンで超音波洗浄したスライドガラス(26mmx38mm)上にこのTMPA−TFSA0.600cmを均一に塗布し、DCスパッタリング装置(Sanyu Electron Co.,Ltd,SC−701HMCII)にターゲットとイオン液体との距離を20mmとして設置した。Au円板(純度99.99%)をターゲット(有効直径49mm)として用い、イオン液体への金属のスパッタリング蒸着を行った。スパッタリング蒸着条件はチャンバー内をアルゴンガスに置換し、圧力10Pa、スパッタリング蒸着電流40mAの条件でプレスパッタリングを300秒間行った後、スパッタリング蒸着時間900秒として行った。スパッタリング蒸着後のスライドガラス表面のイオン液体を回収し、Auクラスター分散イオン液体を得た。
イオン液体中に堆積させたAuクラスターのSTEM観察像を図2に、Auクラスターの粒度分布を図3に示す。
図2および3から、平均2.9nmのAuクラスターが形成されたことが確認された。
Example 1
1. Synthesis of Au cluster TMPA-TFSA was taken at 0.600 cm 3 and dried under reduced pressure at 120 ° C. for 3 hours or more. This TMPA-TFSA 0.600 cm 3 is uniformly coated on a glass slide (26 mm × 38 mm) ultrasonically cleaned with acetone, and the distance between the target and the ionic liquid is set on a DC sputtering apparatus (Sanyu Electron Co., Ltd., SC-701HMCII). It installed as 20 mm. Using an Au disc (purity 99.99%) as a target (effective diameter 49 mm), sputtering deposition of metal onto an ionic liquid was performed. The sputtering vapor deposition was performed by replacing the inside of the chamber with argon gas, performing pre-sputtering for 300 seconds under conditions of a pressure of 10 Pa and a sputtering vapor deposition current of 40 mA, and then performing a sputtering vapor deposition time of 900 seconds. The ionic liquid on the surface of the slide glass after sputtering deposition was recovered to obtain an Au cluster dispersed ionic liquid.
FIG. 2 shows an STEM observation image of the Au clusters deposited in the ionic liquid, and FIG. 3 shows the particle size distribution of the Au clusters.
2 and 3, it was confirmed that Au clusters having an average of 2.9 nm were formed.

2.AuクラスターのAl担体粒子への担持
得られたAuクラスター分散液0.5mLを1mLサンプル管に入れ、次いで0.3mLのアセトニトリルに分散させたAl(ナノテック社製、球状アルミナ)50mg(アルミナの量)を加えた。窒素気流下、150℃で30分間加熱、攪拌を行った。加熱後、冷却し、アルミナ粉末をろ取し、アセトニトリルで3回洗浄した。得られた粉末を110℃で5時間乾燥し、AuクラスターAl担体粒子担持触媒を得た。
AuクラスターAl担体粒子担持触媒のSTEM観察像を図4に、担持されたAuクラスターの粒度分布を図3に示す。
図4および5から、平均4.34nmのAuクラスターがAl担体粒子に高分散して担持されていることが確認された。
2. Supporting Au clusters on Al 2 O 3 carrier particles 0.5 mL of the obtained Au cluster dispersion liquid was placed in a 1 mL sample tube, and then Al 2 O 3 dispersed in 0.3 mL of acetonitrile (Nanotech, spherical alumina). ) 50 mg (alumina amount) was added. The mixture was heated and stirred at 150 ° C. for 30 minutes under a nitrogen stream. After heating, the mixture was cooled, and the alumina powder was collected by filtration and washed with acetonitrile three times. The obtained powder was dried at 110 ° C. for 5 hours to obtain an Au cluster Al 2 O 3 carrier particle-supported catalyst.
FIG. 4 shows an STEM observation image of the Au cluster Al 2 O 3 carrier particle-supported catalyst, and FIG. 3 shows the particle size distribution of the supported Au cluster.
4 and 5, it was confirmed that Au clusters having an average of 4.34 nm were supported on Al 2 O 3 carrier particles in a highly dispersed state.

実施例2
実施例1と同様にして得られたAuクラスター分散液0.5mLを1mLサンプル管に入れ、次いで0.3mLのアセトニトリルに分散させたAl(ナノテック社製、球状アルミナ))50mgを加えた。窒素気流下、100℃で30分間加熱、攪拌を行った。加熱後、冷却し、アルミナ粉末をろ取し、アセトニトリルで3回洗浄した。得られた粉末を110℃で5時間乾燥し、AuクラスターAl担体粒子担持触媒を得た。
AuクラスターAl担体粒子担持触媒のSTEM観察像を図6に、担持されたAuクラスターの粒度分布を図7に示す。
図6および7から、平均3.96nmのAuクラスターがAl担体粒子に高分散して担持されていることが確認された。
Example 2
50 mL of the Au cluster dispersion liquid obtained in the same manner as in Example 1 was placed in a 1 mL sample tube, and then 50 mg of Al 2 O 3 (Nanotech Co., spherical alumina) dispersed in 0.3 mL of acetonitrile was added. It was. The mixture was heated and stirred at 100 ° C. for 30 minutes under a nitrogen stream. After heating, the mixture was cooled, and the alumina powder was collected by filtration and washed with acetonitrile three times. The obtained powder was dried at 110 ° C. for 5 hours to obtain an Au cluster Al 2 O 3 carrier particle-supported catalyst.
FIG. 6 shows an STEM observation image of the Au cluster Al 2 O 3 carrier particle supported catalyst, and FIG. 7 shows the particle size distribution of the supported Au cluster.
6 and 7, it was confirmed that Au clusters having an average of 3.96 nm were supported on Al 2 O 3 carrier particles in a highly dispersed state.

実施例3
実施例1と同様にして得られたAuクラスター分散液0.5mLを1mLサンプル管に入れ、次いで0.3mLのアセトニトリルに分散させたSiO(ナノテック社製、球状シリカ))50mgを加えた。窒素気流下、150℃で30分間加熱、攪拌を行った。加熱後、冷却し、シリカ粉末をろ取し、アセトニトリルで3回洗浄した。得られた粉末を110℃で5時間乾燥し、AuクラスターSiO担体粒子担持触媒を得た。
AuクラスターSiO担体粒子担持触媒のSTEM観察像を図8に示す。
図8から、10nm未満の粒径を有する子AuクラスターがSiO担体粒子に高分散して高分散に担持されていることが確認された。
Example 3
0.5 mL of the Au cluster dispersion obtained in the same manner as in Example 1 was placed in a 1 mL sample tube, and then 50 mg of SiO 2 (Nanotech, spherical silica) dispersed in 0.3 mL of acetonitrile was added. The mixture was heated and stirred at 150 ° C. for 30 minutes under a nitrogen stream. After heating, the mixture was cooled, and the silica powder was collected by filtration and washed with acetonitrile three times. The obtained powder was dried at 110 ° C. for 5 hours to obtain an Au cluster SiO 2 carrier particle-supported catalyst.
An STEM observation image of the Au cluster SiO 2 carrier particle supported catalyst is shown in FIG.
From FIG. 8, it was confirmed that the child Au clusters having a particle size of less than 10 nm were highly dispersed in the SiO 2 carrier particles and supported in a highly dispersed state.

実施例4
実施例1と同様にして得られたAuクラスター分散液0.5mLを1mLサンプル管に入れ、次いで0.3mLのアセトニトリルに分散させたCeO(ナノテック社製、球状セリア))50mgを加えた。窒素気流下、150℃で30分間加熱、攪拌を行った。加熱後、冷却し、セリア粉末をろ取し、アセトニトリルで3回洗浄した。得られた粉末を110℃で5時間乾燥し、AuクラスターCeO担体粒子担持触媒を得た。
AuクラスターCeO担体粒子担持触媒のSTEM観察像を図9に示す。
図9から、10nm未満の粒径を有する子AuクラスターがCeO担体粒子に高分散に担持されていることが確認された。
Example 4
0.5 mL of Au cluster dispersion obtained in the same manner as in Example 1 was placed in a 1 mL sample tube, and then 50 mg of CeO 2 (Nanotech, spherical ceria) dispersed in 0.3 mL of acetonitrile was added. The mixture was heated and stirred at 150 ° C. for 30 minutes under a nitrogen stream. After heating, the mixture was cooled and the ceria powder was collected by filtration and washed with acetonitrile three times. The obtained powder was dried at 110 ° C. for 5 hours to obtain an Au cluster CeO 2 carrier particle-supported catalyst.
An STEM observation image of the Au cluster CeO 2 carrier particle supported catalyst is shown in FIG.
From FIG. 9, it was confirmed that the child Au clusters having a particle size of less than 10 nm are supported on the CeO 2 carrier particles with high dispersion.

比較例1
実施例1と同様にして得られたAuクラスター分散液0.5mLを1mLサンプル管に入れ、次いでAl(ナノテック社製、球状アルミナ)50mgを加えた。得られたスラリーを400℃で26時間焼成することにより、担持触媒を得た。
担持触媒のSTEM観察像を図10に、担持されたAuの粒度分布を図11に示す。
図10および11から、400℃での焼成によりAuクラスター粒成長し、平均径は10nm以上であった。
Comparative Example 1
0.5 mL of the Au cluster dispersion obtained in the same manner as in Example 1 was placed in a 1 mL sample tube, and then 50 mg of Al 2 O 3 (Nanotech, spherical alumina) was added. The obtained slurry was calcined at 400 ° C. for 26 hours to obtain a supported catalyst.
An STEM observation image of the supported catalyst is shown in FIG. 10, and the particle size distribution of the supported Au is shown in FIG.
10 and 11, Au cluster grains were grown by firing at 400 ° C., and the average diameter was 10 nm or more.

本発明の金属クラスター酸化物担体粒子担持触媒によれば、平均径が10nm未満の金属クラスターが均一に担持された、自動車エンジンなどの内燃機関からの排ガスを浄化するための排ガス浄化用触媒として用い得る金属クラスター担持触媒を得ることができる。 The metal cluster oxide carrier particle-supported catalyst of the present invention is used as an exhaust gas purifying catalyst for purifying exhaust gas from an internal combustion engine such as an automobile engine in which metal clusters having an average diameter of less than 10 nm are uniformly supported. The resulting metal cluster supported catalyst can be obtained.

Claims (11)

酸化物担体粒子に複数個の金属原子が集まった金属クラスターが担持された金属クラスター担持触媒の製造方法であって、
イオン液体中に金属クラスターが分散した分散液を用意する工程、
該分散液と溶媒に分散された酸化物担体粒子とを混合する工程、および
得られた混合液に、イオン液体と金属クラスターとの結合力を弱めるために外力を加えて酸化物担体粒子に金属クラスターを担持させる工程、
を含む、前記方法。
A method for producing a metal cluster-supported catalyst in which a metal cluster in which a plurality of metal atoms are collected on an oxide support particle is supported,
Preparing a dispersion in which metal clusters are dispersed in an ionic liquid;
The step of mixing the dispersion and the oxide carrier particles dispersed in the solvent, and applying an external force to the resulting mixture to weaken the binding force between the ionic liquid and the metal cluster, A step of supporting the cluster,
Said method.
前記溶媒が、含窒素化合物又は含酸素化合物系有機溶媒である請求項1に記載の方法。   The method according to claim 1, wherein the solvent is a nitrogen-containing compound or an oxygen-containing compound-based organic solvent. 前記金属クラスター担持触媒が、酸化物担体粒子に平均径が10nm未満の金属クラスターが担持されたものである請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the metal cluster-supported catalyst is a catalyst in which metal clusters having an average diameter of less than 10 nm are supported on oxide support particles. 前記外力が、加熱、マイクロ波又は超音波である請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the external force is heating, microwaves, or ultrasonic waves. さらに、金属クラスターが担持された酸化物担体粒子をイオン液体からろ取し、溶媒で洗浄し、乾燥する工程
を含む請求項1〜4のいずれか1項に記載の方法。
The method according to any one of claims 1 to 4, further comprising a step of filtering oxide carrier particles carrying metal clusters from an ionic liquid, washing with a solvent, and drying.
前記外力が、分散液の温度を0〜300℃の範囲の温度に上昇させるために行われる加熱である請求項1〜5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the external force is heating performed to increase the temperature of the dispersion to a temperature in the range of 0 to 300 ° C. 前記加熱が、不活性雰囲気下に100〜300℃に加熱して行われる請求項6に記載の方法。   The method according to claim 6, wherein the heating is performed by heating to 100 to 300 ° C. in an inert atmosphere. 前記酸化物担体粒子がAl粒子、SiO粒子、CeO粒子、ZrO粒子、TiO粒子、CeO−ZrO複合酸化物粒子、CeO−Al複合酸化物粒子、CeO−TiO複合酸化物粒子、CeO−SiO複合酸化物粒子又はCeO−ZrO−Al複合酸化物粒子であり、前記担持触媒が排ガス浄化用触媒である請求項1〜7のいずれか1項に記載の方法。 The oxide support particles Al 2 O 3 particles, SiO 2 particles, CeO 2 particles, ZrO 2 particles, TiO 2 particles, CeO 2 -ZrO 2 composite oxide particles, CeO 2 -Al 2 O 3 composite oxide particles, 2. A CeO 2 —TiO 2 composite oxide particle, a CeO 2 —SiO 2 composite oxide particle or a CeO 2 —ZrO 2 —Al 2 O 3 composite oxide particle, wherein the supported catalyst is an exhaust gas purification catalyst. The method of any one of -7. 前記分散液が、イオン液体に金属クラスターを蒸着させて調製される請求項1〜8のいずれか1項に記載の方法。   The method according to claim 1, wherein the dispersion is prepared by depositing metal clusters on an ionic liquid. 前記金属クラスターの金属が、金、銀、白金、ロジウム又はパラジウムあるいはそれぞれの合金である請求項1〜9のいずれか1項に記載の方法。   The method according to any one of claims 1 to 9, wherein the metal of the metal cluster is gold, silver, platinum, rhodium, palladium, or an alloy thereof. 前記イオン液体が、TMPA−TFSAである請求項1〜10のいずれか1項に記載の方法。   The method according to claim 1, wherein the ionic liquid is TMPA-TFSA.
JP2011149069A 2011-07-05 2011-07-05 Method for producing metal cluster supported catalyst Active JP5655723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149069A JP5655723B2 (en) 2011-07-05 2011-07-05 Method for producing metal cluster supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149069A JP5655723B2 (en) 2011-07-05 2011-07-05 Method for producing metal cluster supported catalyst

Publications (2)

Publication Number Publication Date
JP2013013864A true JP2013013864A (en) 2013-01-24
JP5655723B2 JP5655723B2 (en) 2015-01-21

Family

ID=47687080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149069A Active JP5655723B2 (en) 2011-07-05 2011-07-05 Method for producing metal cluster supported catalyst

Country Status (1)

Country Link
JP (1) JP5655723B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014158992A (en) * 2013-02-19 2014-09-04 Toyota Motor Corp Exhaust gas purification catalyst and manufacturing method thereof
CN104069858A (en) * 2013-03-27 2014-10-01 中国石油化工股份有限公司 Bifunctional catalyst for synthesis of dimethyl carbonate and preparation and application method thereof
JP2016198725A (en) * 2015-04-10 2016-12-01 新日本電工株式会社 Method for producing noble metal-supported catalyst for exhaust gas purification
JP6077190B1 (en) * 2015-09-08 2017-02-08 中国電力株式会社 Thermal power generation system
WO2017042896A1 (en) * 2015-09-08 2017-03-16 中国電力株式会社 Exhaust gas purification method
KR20180057276A (en) * 2016-11-22 2018-05-30 한국과학기술연구원 Catalyst for reduction of carbon dioxide and process of preparing the same
CN109499567A (en) * 2018-11-23 2019-03-22 厦门大学 A kind of preparation method and applications of metal cluster photostability catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194490A (en) * 1975-02-17 1976-08-19
EP1611951A1 (en) * 2004-06-17 2006-01-04 Total Petrochemicals Research Feluy Use of ionic liquids for simultaneous deposition of several single site catalyst components on a support to generate hybrid polymers
JP2007231306A (en) * 2006-02-27 2007-09-13 Univ Nagoya Method for producing nanoparticle
JP2009178644A (en) * 2008-01-30 2009-08-13 Japan Fine Ceramics Center Metal fine particle carrier and its manufacturing method
JP2009214094A (en) * 2008-02-15 2009-09-24 Tokyo Institute Of Technology Oxidation catalyst, oxidizing method, oxidation apparatus, and antimicrobial agent
WO2009122149A1 (en) * 2008-04-02 2009-10-08 Petroleo Brasileiro S.A. - Petrobras Method for the preparation of supported catalyst using noble metal nanoparticles and catalyst so obtained
JP2010247079A (en) * 2009-04-16 2010-11-04 Denso Corp Method for manufacturing exhaust gas-cleaning catalyst
JP2010247108A (en) * 2009-04-17 2010-11-04 National Institute Of Advanced Industrial Science & Technology Gold nano cluster uniformly controlled in size on metal oxide, method for manufacturing the same and catalyst using the same
WO2012123472A1 (en) * 2011-03-15 2012-09-20 Shell Internationale Research Maatschappij B.V. Hydrogenation catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194490A (en) * 1975-02-17 1976-08-19
EP1611951A1 (en) * 2004-06-17 2006-01-04 Total Petrochemicals Research Feluy Use of ionic liquids for simultaneous deposition of several single site catalyst components on a support to generate hybrid polymers
JP2007231306A (en) * 2006-02-27 2007-09-13 Univ Nagoya Method for producing nanoparticle
JP2009178644A (en) * 2008-01-30 2009-08-13 Japan Fine Ceramics Center Metal fine particle carrier and its manufacturing method
JP2009214094A (en) * 2008-02-15 2009-09-24 Tokyo Institute Of Technology Oxidation catalyst, oxidizing method, oxidation apparatus, and antimicrobial agent
WO2009122149A1 (en) * 2008-04-02 2009-10-08 Petroleo Brasileiro S.A. - Petrobras Method for the preparation of supported catalyst using noble metal nanoparticles and catalyst so obtained
JP2010247079A (en) * 2009-04-16 2010-11-04 Denso Corp Method for manufacturing exhaust gas-cleaning catalyst
JP2010247108A (en) * 2009-04-17 2010-11-04 National Institute Of Advanced Industrial Science & Technology Gold nano cluster uniformly controlled in size on metal oxide, method for manufacturing the same and catalyst using the same
WO2012123472A1 (en) * 2011-03-15 2012-09-20 Shell Internationale Research Maatschappij B.V. Hydrogenation catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014017814; H. ZHANG et al.: 'Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters suppor' Journal of Materials Chemistry , 2009, 19, 8223-8231. *
JPN6014017815; Y. H. LIU et al.: 'Innovative one-step immobilization of TiO2 on polymer material by the sol-gel method under IL/MW con' J. Mater. Sci. , 2010, 45, 6212-6217. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014158992A (en) * 2013-02-19 2014-09-04 Toyota Motor Corp Exhaust gas purification catalyst and manufacturing method thereof
CN104069858A (en) * 2013-03-27 2014-10-01 中国石油化工股份有限公司 Bifunctional catalyst for synthesis of dimethyl carbonate and preparation and application method thereof
JP2016198725A (en) * 2015-04-10 2016-12-01 新日本電工株式会社 Method for producing noble metal-supported catalyst for exhaust gas purification
JP6077190B1 (en) * 2015-09-08 2017-02-08 中国電力株式会社 Thermal power generation system
WO2017042896A1 (en) * 2015-09-08 2017-03-16 中国電力株式会社 Exhaust gas purification method
WO2017042895A1 (en) * 2015-09-08 2017-03-16 中国電力株式会社 Thermal power generation system
JPWO2017042896A1 (en) * 2015-09-08 2017-09-07 中国電力株式会社 Exhaust gas purification method
KR20180057276A (en) * 2016-11-22 2018-05-30 한국과학기술연구원 Catalyst for reduction of carbon dioxide and process of preparing the same
KR101958426B1 (en) * 2016-11-22 2019-03-15 한국과학기술연구원 Catalyst for reduction of carbon dioxide and process of preparing the same
CN109499567A (en) * 2018-11-23 2019-03-22 厦门大学 A kind of preparation method and applications of metal cluster photostability catalyst
CN109499567B (en) * 2018-11-23 2020-05-12 厦门大学 Preparation method and application of metal cluster photostable catalyst

Also Published As

Publication number Publication date
JP5655723B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5655723B2 (en) Method for producing metal cluster supported catalyst
Francisco et al. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts
Yao et al. Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid− liquid phase arc discharge process
JP6126145B2 (en) Exhaust gas purification catalyst and method for producing the same
CN106457210A (en) A process for the production of a carbon supported catalyst
JP5715726B2 (en) Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same
JP6757726B2 (en) Base-integrated nanocrystalline metal oxide complex-containing catalyst, its manufacturing method, and catalyst parts
JP2012096234A (en) Carrier carrying metal-containing colloidal particle and method of producing the same
JP2020044535A (en) Production method of carrying catalyst
JPWO2012120711A1 (en) Metal particles, exhaust gas purifying catalyst containing the same, and method for producing them
CN111185161B (en) High-temperature sintering-resistant gold catalyst, and preparation method and application thereof
JP5515635B2 (en) Noble metal-supported silicon carbide particles, production method thereof, catalyst containing the same, and production method thereof
JP3030328B2 (en) Ultrafine noble metal dispersed titanium oxide thin film and its manufacturing method
JP2010089032A (en) Metal-particle supporting catalyst, and method of producing the same
JP2021527555A (en) Composition containing platinum nanoparticle clusters with improved thermal stability
JP5969410B2 (en) Exhaust gas purification catalyst and method for producing the same
EP2954578B1 (en) Fuel cell catalyst treatment
JP2004188390A (en) Metal nano cluster, production method therefor, and catalyst using the same for eliminating air- contaminating material
JP2011111652A (en) Method for producing copper porous body, and coating film layer of copper porous body
JP5760677B2 (en) Novel multinuclear complex and method for producing supported catalyst using the same
JP2016198725A (en) Method for producing noble metal-supported catalyst for exhaust gas purification
JP6154409B2 (en) Method for producing heterometallic multinuclear complex containing Ni and Au
KR101401368B1 (en) Fabrication method of catalyst-carrier composite powder
JP6268601B2 (en) Method for producing exhaust gas purification catalyst
JP2013017992A (en) Catalyst-carried diesel particulate filter, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151