JP2013000666A - Method of treating gas containing hydrogen sulfide - Google Patents

Method of treating gas containing hydrogen sulfide Download PDF

Info

Publication number
JP2013000666A
JP2013000666A JP2011134785A JP2011134785A JP2013000666A JP 2013000666 A JP2013000666 A JP 2013000666A JP 2011134785 A JP2011134785 A JP 2011134785A JP 2011134785 A JP2011134785 A JP 2011134785A JP 2013000666 A JP2013000666 A JP 2013000666A
Authority
JP
Japan
Prior art keywords
adsorbent
hydrogen sulfide
gas
containing gas
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011134785A
Other languages
Japanese (ja)
Inventor
Tomoko Akiyama
朋子 穐山
Takashi Sasaki
崇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011134785A priority Critical patent/JP2013000666A/en
Publication of JP2013000666A publication Critical patent/JP2013000666A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PROBLEM TO BE SOLVED: To remove hydrogen sulfide from a gas containing hydrogen sulfide, such as carbon dioxide recovered from coal-gasified gas, with less energy and to improve the performance of removal of hydrogen sulfide.SOLUTION: Recovered CO10 recovered from coal-gasified gas through a COrecovery system 20 is heated to a predetermined temperature and supplied to an adsorption tower 1a or 1b. The adsorption towers 1a and 1b use an adsorbent containing titanium, molybdenum and nickel oxides and make hydrogen sulfide fixed to the adsorbent. In regenerating the adsorbent, an oxidizing gas 12 is heated to a predetermined temperature and supplied to the adsorption tower 1a or 1b.

Description

本発明は、硫化水素を含むガスから硫化水素を除去する硫化水素含有ガスの処理方法に関する。   The present invention relates to a method for treating a hydrogen sulfide-containing gas that removes hydrogen sulfide from a gas containing hydrogen sulfide.

近年、地球温暖化現象の一因として二酸化炭素による温室効果が指摘され、大量の化石燃料を使用する火力発電所等を対象に、高効率な二酸化炭素回収方法が精力的に研究されている。回収された二酸化炭素は、主に地中や海底に貯留するか、Enhanced Oil Recovery(石油(原油)増進回収。以下,EOR。)や化学原料として利用される。地中貯留は、まだそれ自体が実証の段階であり、二酸化炭素純度に関する法規制も整備中である。一方、海底下投棄に関しては、日本では二酸化炭素の分離回収方法や濃度が法律により規定されており、アミン吸収法で回収された濃度99%以上の二酸化炭素に限られる。化学原料として用いる場合にはさらに高い二酸化炭素純度が求められる。EORは、二酸化炭素を油田に注入し原油回収率を向上させる方法で、米国を中心に1970年代から商業化されている。米国のEORでは、ほぼ全量二酸化炭素がガス田からパイプラインで供給されているが、石炭ガス化プロセスで得られた二酸化炭素を用いたEORも実証の段階にある。石炭ガス化ガスから回収される二酸化炭素には硫化水素が混入する場合がある。硫化水素はパイプラインの腐食の原因となるため、なるべく低いレベル(例えば20ppm未満)にコントロールすることが求められている。しかし、二酸化炭素回収プロセス内で硫化水素濃度をppmレベルまで下げようとすると、過剰にエネルギーを投入する必要がある。   In recent years, the greenhouse effect due to carbon dioxide has been pointed out as a cause of the global warming phenomenon, and high-efficiency carbon dioxide recovery methods have been intensively studied for thermal power plants that use large amounts of fossil fuels. The recovered carbon dioxide is mainly stored in the ground or at the bottom of the sea, or is used as an enhanced oil recovery (hereinafter referred to as EOR) or chemical raw material. Underground storage is still in the demonstration stage, and regulations on carbon dioxide purity are being developed. On the other hand, with regard to dumping under the sea floor, the separation and collection method and concentration of carbon dioxide are regulated by law in Japan, and are limited to carbon dioxide with a concentration of 99% or more collected by the amine absorption method. When used as a chemical raw material, higher carbon dioxide purity is required. EOR is a method of injecting carbon dioxide into oil fields to improve crude oil recovery and has been commercialized since the 1970s, mainly in the United States. In US EOR, almost all the carbon dioxide is supplied from the gas field by pipeline, but EOR using carbon dioxide obtained from the coal gasification process is also in the demonstration stage. Carbon dioxide recovered from coal gasification gas may contain hydrogen sulfide. Since hydrogen sulfide causes corrosion of the pipeline, it is required to control it as low as possible (for example, less than 20 ppm). However, if the hydrogen sulfide concentration is to be reduced to the ppm level within the carbon dioxide recovery process, it is necessary to input energy excessively.

さらに、石炭ガス化で発生した生成ガスを使って発電を行う石炭ガス化複合発電システム(以下、IGCC)においては、硫化水素濃度を下げるために余剰に二酸化炭素回収系での所内動力が増加し、送電端効率が大幅に低下することになる。   Furthermore, in a coal gasification combined power generation system (hereinafter referred to as IGCC) that generates power using the generated gas generated by coal gasification, in-house power in the carbon dioxide recovery system increases excessively in order to reduce the hydrogen sulfide concentration. As a result, the transmission end efficiency is greatly reduced.

尚、二酸化炭素と硫化水素を含むガスを吸着剤と接触させて硫化水素を除去し、高純度の二酸化炭素を回収するものとして、特許文献1及び特許文献2に記載されたものがある。これらの特許文献では、吸着剤としてチタンとモリブデンの酸化物を含有する吸着剤が用いられている。   In addition, there exists what was described in patent document 1 and patent document 2 as what collects the gas containing carbon dioxide and hydrogen sulfide with an adsorbent, and removes hydrogen sulfide, and collect | recovers high purity carbon dioxide. In these patent documents, an adsorbent containing oxides of titanium and molybdenum is used as the adsorbent.

特開2010-120013JP2010-120013 特開2011-68751JP2011-68751

従来の二酸化炭素回収型IGCCでは、回収した二酸化炭素に混入する硫化水素の濃度を低下させるために、所内動力が著しく増加することになる。   In the conventional carbon dioxide recovery type IGCC, in-house power is remarkably increased in order to reduce the concentration of hydrogen sulfide mixed in the recovered carbon dioxide.

特許文献1や2に記載の吸着剤を用いることによって、所内動力を増加させることなく高純度の二酸化炭素を回収すること、即ち、少ないエネルギーで硫化水素を除去することができる。   By using the adsorbent described in Patent Documents 1 and 2, it is possible to recover high-purity carbon dioxide without increasing in-house power, that is, to remove hydrogen sulfide with less energy.

吸着剤を用いて硫化水素を除去する硫化水素含有ガスの処理方法において、吸着剤による硫化水素の除去性能(吸着能力)をさらに向上させることが望ましい。   In the method for treating a hydrogen sulfide-containing gas in which hydrogen sulfide is removed using an adsorbent, it is desirable to further improve the hydrogen sulfide removal performance (adsorption capability) by the adsorbent.

本発明は、石炭ガス化ガスから回収された二酸化炭素の様に硫化水素を含むガスから少ないエネルギーで硫化水素を除去することができ、かつ、硫化水素の除去性能を向上させることを目的とする。   An object of the present invention is to remove hydrogen sulfide with a small amount of energy from a gas containing hydrogen sulfide such as carbon dioxide recovered from coal gasification gas, and to improve the removal performance of hydrogen sulfide. .

本発明は、硫化水素を含有するガスをチタンとモリブデンとニッケルの酸化物を含有する吸着剤と接触させ、硫化水素を硫化物の形態で吸着剤に吸着させて除去することを特徴とする。   The present invention is characterized in that a gas containing hydrogen sulfide is brought into contact with an adsorbent containing oxides of titanium, molybdenum and nickel, and hydrogen sulfide is adsorbed on the adsorbent in the form of sulfide to be removed.

また、本発明は、硫化水素を含有するガスをチタンとモリブデンとニッケルの酸化物を含有する吸着剤と接触させ、硫化水素を硫化物の形態で吸着剤に吸着させて除去し、次に吸着剤と酸素含有ガスとを接触させ、吸着剤を再生することを特徴とする。   In addition, the present invention is made by contacting a gas containing hydrogen sulfide with an adsorbent containing oxides of titanium, molybdenum and nickel, and removing hydrogen sulfide by adsorbing the adsorbent in the form of sulfide, and then adsorbing the gas. The adsorbent is regenerated by bringing the agent into contact with the oxygen-containing gas.

本発明によれば、吸着剤による硫化水素の除去性能を向上させることができる。   According to the present invention, the performance of removing hydrogen sulfide by an adsorbent can be improved.

例えば、二酸化炭素回収型IGCCにおける、回収した二酸化炭素に混入する硫化水素の除去に適用した場合、硫化水素の濃度を低下させるために必要な所内動力を抑制することができるため、従来よりも送電端効率を改善することができる。   For example, in the carbon dioxide recovery type IGCC, when applied to the removal of hydrogen sulfide mixed in the recovered carbon dioxide, it is possible to suppress the in-house power required to reduce the concentration of hydrogen sulfide, so that the power transmission than before Edge efficiency can be improved.

本発明の実施例1によるHSの積算供給量と除去率の関係を示す図である。It is a diagram showing the relationship between cumulative supply quantity and the removal rate of H 2 S according to the first embodiment of the present invention. 本発明の実施例2による生成SO濃度を示す図である。It is a diagram showing a generation SO 2 concentration according to Example 2 of the present invention. 本発明の実施例3による硫化水素含有ガス処理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the hydrogen sulfide containing gas processing system by Example 3 of this invention. 本発明の実施例4による硫化水素含有ガス処理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the hydrogen sulfide containing gas processing system by Example 4 of this invention. 本発明をIGCCで回収した二酸化炭素の処理に適用したシステムフロー図である。It is a system flow figure which applied the present invention to processing of carbon dioxide collected by IGCC.

以下に本発明の実施の形態について説明するが、本発明は以下の実施形態に限定されるものではない。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.

まず初めに吸着剤の調製手順を説明する。チタン,モリブデンおよびニッケルの原料と同量の純水を乳鉢に入れ、30分間混錬した。チタン原料にはTiO2,モリブデン原料には(NH4)6Mo7O24・4H2O,ニッケル原料にはNi(NO3)2・6H3Oを使用した。これらの原料はチタン酸化物、モリブデン酸化物、ニッケル酸化物を得るのに一般的に用いられる原料である。この混合物を170℃で10時間乾燥した後、粉砕し、高圧プレスにて成型したものを破砕して10〜20メッシュに整粒した。得られた成型物を450℃で2時間焼成し、再度10〜20メッシュに整粒して供試する吸着剤を得た。この吸着剤は、ニッケル、モリブデン、チタンをモル比で7:23:70の比率で含有する。 First, an adsorbent preparation procedure will be described. Pure water in the same amount as the raw materials of titanium, molybdenum and nickel was put in a mortar and kneaded for 30 minutes. TiO 2 was used as the titanium raw material, (NH 4 ) 6Mo 7 O 24 · 4H 2 O was used as the molybdenum raw material, and Ni (NO 3 ) 2 · 6H 3 O was used as the nickel raw material. These raw materials are raw materials generally used for obtaining titanium oxide, molybdenum oxide, and nickel oxide. The mixture was dried at 170 ° C. for 10 hours, pulverized, and crushed with a high-pressure press, and sized to 10 to 20 mesh. The obtained molded product was fired at 450 ° C. for 2 hours, and sized again to 10 to 20 mesh to obtain an adsorbent to be tested. This adsorbent contains nickel, molybdenum, and titanium in a molar ratio of 7:23:70.

次に実験の手順について述べる。内径24mmの石英ガラス製の反応管にグラスウールを敷き、その上に約20mlの吸着剤を充填し、電気炉にて外周から110℃に加熱した。吸着剤の温度が安定したら、反応ガスを0.67L/min(空間速度2000h−1)で供給した。反応ガスの組成は、HS1%,CO99%とした。この反応ガスの組成は、IGCCで回収される二酸化炭素ガスを模擬したものである。吸着剤の出口のガス組成をガスクロマトグラフおよび赤外式分析計で分析し、HSの除去率を計算した。 Next, the experimental procedure will be described. Glass wool was spread on a reaction tube made of quartz glass having an inner diameter of 24 mm, about 20 ml of adsorbent was filled thereon, and heated to 110 ° C. from the outer periphery in an electric furnace. When the temperature of the adsorbent was stabilized, the reaction gas was supplied at 0.67 L / min (space velocity 2000 h −1 ). The composition of the reaction gas was H 2 S 1% and CO 2 99%. The composition of this reaction gas simulates carbon dioxide gas recovered by IGCC. The gas composition at the outlet of the adsorbent was analyzed with a gas chromatograph and an infrared analyzer, and the removal rate of H 2 S was calculated.

図1の黒丸で、本発明のNi/Mo/Ti吸着剤におけるHSの積算供給量と除去率の関係を示す。本図には除去率が60%を下回る時点までの除去率を示しているが、本発明のNi/Mo/Ti吸着剤は、破過するまではHSの除去率が100%で保たれていることが分かる。したがって、本発明のNi/Mo/Ti吸着剤を用いれば、実質的にHSを含まない高純度のCOを得ることが可能となる。
<比較例>
本発明の実施例の比較例として、モリブデンとチタンをモル比で3:7の比率で含有する吸着剤(ニッケル酸化物を含まない吸着剤)を実施例1と同様の手順で調整し、HS除去率を測定した。
The black circle in FIG. 1 shows the relationship between the cumulative supply amount of H 2 S and the removal rate in the Ni / Mo / Ti adsorbent of the present invention. This figure shows the removal rate until the removal rate falls below 60%, but the Ni / Mo / Ti adsorbent of the present invention keeps the H 2 S removal rate at 100% until it breaks through. You can see that it is leaning. Therefore, if the Ni / Mo / Ti adsorbent of the present invention is used, high-purity CO 2 substantially free of H 2 S can be obtained.
<Comparative example>
As a comparative example of the example of the present invention, an adsorbent (adsorbent not including nickel oxide) containing molybdenum and titanium in a molar ratio of 3: 7 was prepared in the same procedure as in Example 1, and H 2 S removal rate was measured.

図1の白丸で、本比較例のMo/Ti吸着剤のHSの積算供給量と除去率の関係を示す。黒丸で示した実施例1と比較して、白丸で示したMo/Ti吸着剤は少ないHS吸着量で破過しており、実施例1の吸着剤の方の吸着容量が大きいことが分かる。 The white circle in FIG. 1 shows the relationship between the cumulative supply amount of H 2 S of the Mo / Ti adsorbent of this comparative example and the removal rate. Compared with Example 1 indicated by black circles, the Mo / Ti adsorbent indicated by white circles breaks through with a small amount of H 2 S adsorption, and the adsorption capacity of the adsorbent of Example 1 is larger. I understand.

本発明の吸着剤と硫化水素の反応機構は必ずしも明らかではないが、モリブデンの酸化物に硫化水素が反応して硫化物として吸着剤に固定されるものと推定される。チタンの酸化物は主として担体として機能し、ニッケルの酸化物はモリブデンの酸化物と硫化水素の反応を促進させる機能を有しているものと推定される。また、本発明の吸着剤は、チタンとモリブデンとニッケルの酸化物を含有する吸着剤であるが、酸化物の形態としては、チタンとモリブデンとニッケルのそれぞれの酸化物の形態の他、チタンとモリブデンとニッケルの複合酸化物の形態も含まれているものと考えられる。   Although the reaction mechanism of the adsorbent of the present invention and hydrogen sulfide is not necessarily clear, it is presumed that hydrogen sulfide reacts with molybdenum oxide and is fixed to the adsorbent as sulfide. It is presumed that the oxide of titanium mainly functions as a support, and the oxide of nickel has a function of promoting the reaction between molybdenum oxide and hydrogen sulfide. The adsorbent of the present invention is an adsorbent containing oxides of titanium, molybdenum and nickel. The oxide forms include titanium, molybdenum and nickel oxides as well as titanium and molybdenum oxides. It is considered that a composite oxide of molybdenum and nickel is also included.

次に本発明の第二の実施例を説明する。実施例2としては、実施例1と同様にニッケル,モリブデン,チタンを原料とし、Ni/Moモル比を0.33,0.66,1.0,1.33及び1.66とした吸着剤を実施例1と同様の手順で調整し、吸着時に副反応により生成するSOの濃度を測定した。尚、本実施例2では、Ti:(Ni+Mo)のモル比は70:30とした。このモル比は、TiとMoの酸化物の吸着剤と同様のモル比(例えば、99:1〜50:50)で調整される。 Next, a second embodiment of the present invention will be described. In Example 2, as in Example 1, the adsorbent was made of nickel, molybdenum, and titanium as raw materials, and the Ni / Mo molar ratio was 0.33, 0.66, 1.0, 1.33, and 1.66. Was adjusted by the same procedure as in Example 1, and the concentration of SO 2 produced by side reaction during adsorption was measured. In Example 2, the molar ratio of Ti: (Ni + Mo) was 70:30. This molar ratio is adjusted at a molar ratio similar to that of the Ti and Mo oxide adsorbent (for example, 99: 1 to 50:50).

測定結果を図2に示す。また、図2には、比較例の吸着剤(Ni酸化物を含まない。便宜上、Ni/Moモル比で表すとすれば0。)について同様の条件でSO濃度を測定した結果を合わせて示している。本実施例による吸着剤を用いた場合のSO濃度はいずれも25ppm以下である。比較例では180ppmのSOが生成しており、本実施例による吸着剤では副反応が抑制されていることが分かる。Ni/Moモル比を0.6以上とするとSO濃度はいずれも10ppm以下となり、副反応の抑制効果が高くなる。従って、Ni/Moモル比は0.6以上が好ましい。 The measurement results are shown in FIG. FIG. 2 also shows the results of measuring the SO 2 concentration under the same conditions for the adsorbent of the comparative example (not including Ni oxide. For convenience, it is 0 if expressed in terms of Ni / Mo molar ratio). Show. In the case of using the adsorbent according to this example, the SO 2 concentration is 25 ppm or less. In the comparative example, 180 ppm of SO 2 is generated, and it can be seen that the side reaction is suppressed in the adsorbent according to this example. When the Ni / Mo molar ratio is 0.6 or more, the SO 2 concentration is 10 ppm or less, and the side reaction suppression effect is enhanced. Therefore, the Ni / Mo molar ratio is preferably 0.6 or more.

一方、Ni/Moモル比を1.0より大きくすると、比表面積が小さくなる影響を受け、また、吸着剤の微小細孔がつぶれてしまう影響により、HS吸着量が低下することが分かっている。従って、Ni/Moモル比は、0.3以上、好ましくは0.6〜1.0が良い。 On the other hand, when the Ni / Mo molar ratio is larger than 1.0, the specific surface area is affected, and the H 2 S adsorption amount is reduced due to the influence of the fine pores of the adsorbent being crushed. ing. Therefore, the Ni / Mo molar ratio is 0.3 or more, preferably 0.6 to 1.0.

次に、本発明による硫化水素含有ガスの処理方法を説明する。図3は、本実施例での硫化水素含有ガス処理システムの構成を示すブロック図である。本システムは、主に、吸着塔1a,1bと、再生ガス同士の熱交換により入口ガスを加熱するためのガス/ガス熱交換器2と、硫黄を回収する硫黄回収装置3と、COガスを再生ガスで加熱するためのガス/ガス熱交換器4から構成されている。 Next, a method for treating a hydrogen sulfide-containing gas according to the present invention will be described. FIG. 3 is a block diagram showing the configuration of the hydrogen sulfide-containing gas processing system in the present embodiment. This system mainly includes adsorption towers 1a and 1b, a gas / gas heat exchanger 2 for heating the inlet gas by heat exchange between the regeneration gases, a sulfur recovery device 3 for recovering sulfur, and CO 2 gas. Is constituted by a gas / gas heat exchanger 4 for heating with a regeneration gas.

CO回収系20において回収されたHSを含むCOは、バルブ5aを介して吸着塔1aへ供給され、バルブ6aより排出される。一方、吸着剤の再生処理用の酸化ガス12は、バルブ7aより導入され、再生排ガス14はバルブ8aより排出される。吸着塔1bについても同様に、HSを含むCOガスはバルブ5bから供給し、バルブ6bから排出され、再生用の酸化ガス12はバルブ7bから供給し、再生排ガス14はバルブ8bから排出される。 CO 2 containing H 2 S recovered in the CO 2 recovery system 20 is supplied to the adsorption tower 1a through the valve 5a, and is discharged from the valve 6a. On the other hand, the oxidizing gas 12 for regeneration treatment of the adsorbent is introduced from the valve 7a, and the regenerated exhaust gas 14 is discharged from the valve 8a. Similarly, in the adsorption tower 1b, CO 2 gas containing H 2 S is supplied from the valve 5b and discharged from the valve 6b, the regeneration oxidizing gas 12 is supplied from the valve 7b, and the regeneration exhaust gas 14 is discharged from the valve 8b. Is done.

以下に、吸着塔1aでHSの吸着を、吸着塔1bでは吸着剤の再生を行うときの運転方法について説明する。HS含有COガス10は、ガス/ガス熱交換器4において、再生排ガス14により110℃まで加熱され、バルブ5aを介して吸着塔1aに導入される。吸着塔1aでは、主に反応(1)によりHSが吸着剤と反応し、吸着剤に固定される。吸着塔1aを通過したCO11はバルブ6aから排出される。 Hereinafter, an operation method for performing adsorption of H 2 S in the adsorption tower 1a and regeneration of the adsorbent in the adsorption tower 1b will be described. The H 2 S-containing CO 2 gas 10 is heated to 110 ° C. by the regenerated exhaust gas 14 in the gas / gas heat exchanger 4 and introduced into the adsorption tower 1 a through the valve 5 a. In the adsorption tower 1a, H 2 S reacts with the adsorbent mainly by reaction (1) and is fixed to the adsorbent. The CO 2 11 that has passed through the adsorption tower 1a is discharged from the valve 6a.

MoO+2HS = MoS+2HO (1)
一方の吸着塔1bでは、次の手順で吸着剤の再生処理を行う。あらかじめ空気と窒素を混合することにより所定のO濃度(例えば3%程度)に調整された酸化ガス12は、ガス/ガス熱交換器2で150℃まで加熱された後、バルブ7bを介して吸着塔1bに供給される。Sを吸着した後の吸着剤は、Oが供給されると主に反応(2)により再生され、吸着していた硫黄はSOとして放出される。再生反応は発熱反応であり、SOを含む再生ガスは400℃以上の高温になる。
MoO 2 + 2H 2 S = MoS 2 + 2H 2 O (1)
In one adsorption tower 1b, the adsorbent regeneration process is performed in the following procedure. The oxidizing gas 12 adjusted to a predetermined O 2 concentration (for example, about 3%) by mixing air and nitrogen in advance is heated to 150 ° C. in the gas / gas heat exchanger 2 and then passed through the valve 7b. It is supplied to the adsorption tower 1b. The adsorbent after adsorbing S is regenerated mainly by reaction (2) when O 2 is supplied, and the adsorbed sulfur is released as SO 2 . The regeneration reaction is an exothermic reaction, and the regeneration gas containing SO 2 has a high temperature of 400 ° C. or higher.

MoS+3O = 2SO+MoO (2)
再生排ガス14はバルブ8bから排出され、ガス/ガス熱交換器2に加熱源として導入される。その後、160℃以上の温度で硫黄回収装置3に導入され、副反応により生成した微量の硫黄を回収する。硫黄を回収した後の再生排ガス14は、ガス/ガス熱交換器4に導入され、HS含有COガス10を加熱した後に排出される。SOを含む再生排ガス14は、図示していない石膏回収装置等に導入され処理される。
MoS 2 + 3O 2 = 2SO 2 + MoO 2 (2)
The regenerated exhaust gas 14 is discharged from the valve 8b and introduced into the gas / gas heat exchanger 2 as a heating source. Then, it introduce | transduces into the sulfur collection | recovery apparatus 3 at the temperature of 160 degreeC or more, and collect | recovers the trace amount sulfur produced | generated by the side reaction. The regenerated exhaust gas 14 after recovering the sulfur is introduced into the gas / gas heat exchanger 4 and heated after the H 2 S-containing CO 2 gas 10 is heated. The regenerated exhaust gas 14 containing SO 2 is introduced into a gypsum recovery device (not shown) and processed.

一定時間の後、バルブ7bおよび8bを開に、バルブ5aおよび6aを閉にして、吸着塔1bは吸着工程に、吸着塔1aは再生工程に切り替えられる。以上の手順を繰り返すことにより、連続的にHSの除去が行われる。 After a certain time, the valves 7b and 8b are opened, the valves 5a and 6a are closed, and the adsorption tower 1b is switched to the adsorption process, and the adsorption tower 1a is switched to the regeneration process. By repeating the above procedure, H 2 S is continuously removed.

本実施例では、吸着塔2基で構成されているがそれに限定されるものではない。また、吸着の際の塔入口でのガス温度を110℃、再生の際は150℃としたが、それに規定されるものではない。HS含有COガス10が吸着剤と接触する温度は100〜300℃が望ましい。即ち、吸着剤を活性化させるために100℃以上とし、実施例2で説明したSOの発生を抑制するという観点から300℃以下とするのが望ましい。酸化ガス12が吸着剤と接触する温度は100〜600℃が望ましい。即ち、吸着剤を活性化させるために100℃以上とし、また、吸着剤の耐熱性を考慮して600℃以下とするのが望ましい。 In this embodiment, it is composed of two adsorption towers, but is not limited thereto. Further, although the gas temperature at the tower entrance during the adsorption is 110 ° C. and during the regeneration, it is 150 ° C., it is not limited thereto. The temperature at which the H 2 S-containing CO 2 gas 10 comes into contact with the adsorbent is preferably 100 to 300 ° C. That is, in order to activate the adsorbent, the temperature is preferably 100 ° C. or higher, and is preferably 300 ° C. or lower from the viewpoint of suppressing the generation of SO 2 described in the second embodiment. The temperature at which the oxidizing gas 12 comes into contact with the adsorbent is preferably 100 to 600 ° C. That is, in order to activate the adsorbent, the temperature is preferably 100 ° C. or higher, and is preferably 600 ° C. or lower in consideration of the heat resistance of the adsorbent.

図4を用いて本発明による硫化水素含有ガスの処理方法の他の実施例を説明する。本実施例と上述の実施例3との主な相違点は、再生排ガスの一部に空気を混合して酸化ガスの酸素濃度を調整している点である。   Another embodiment of the method for treating a hydrogen sulfide-containing gas according to the present invention will be described with reference to FIG. The main difference between the present embodiment and the above-described embodiment 3 is that the oxygen concentration of the oxidizing gas is adjusted by mixing air with a part of the regenerated exhaust gas.

図4は、本実施例での硫化水素含有ガス処理システムの構成を示すブロック図である。空気15を追加した点以外は、図3と略同じなので前述した部分は説明を省略する。   FIG. 4 is a block diagram showing the configuration of the hydrogen sulfide-containing gas processing system in this embodiment. Except for the addition of the air 15, it is substantially the same as FIG.

再生排ガス14は、硫黄回収装置3を出た後に、一部を分取し、そこに空気15を混合して酸化ガス12として使用される。残りの再生排ガス14は、排ガスとして図示していない石膏回収装置などに導入され処理される。再生排ガス14は酸素をほとんど含まないため、適当な混合割合で空気と混合することにより任意に酸化ガス12の酸素濃度を調整することが可能である。したがって、本実施例によれば,酸化ガス12の酸素濃度を調整するための窒素の使用量を削減することができる。   A part of the regenerated exhaust gas 14 leaves the sulfur recovery device 3, and a part of the regenerated exhaust gas 14 is mixed with air 15 and used as the oxidizing gas 12. The remaining recycled exhaust gas 14 is introduced into a gypsum recovery device (not shown) as exhaust gas and processed. Since the regenerated exhaust gas 14 contains almost no oxygen, it is possible to arbitrarily adjust the oxygen concentration of the oxidizing gas 12 by mixing it with air at an appropriate mixing ratio. Therefore, according to the present embodiment, the amount of nitrogen used for adjusting the oxygen concentration of the oxidizing gas 12 can be reduced.

次に、本発明の硫化水素含有ガスの処理方法をIGCCで回収した二酸化炭素の処理に適用した実施例を説明する。図5はそのシステムフロー図である。   Next, the Example which applied the processing method of the hydrogen sulfide containing gas of this invention to the processing of the carbon dioxide collect | recovered by IGCC is described. FIG. 5 is a system flow diagram thereof.

脱塵された石炭ガス化ガスは、COS転化器21によって石炭ガス化ガスに含まれるCOSをHSに転換し、水洗塔22によって石炭ガス化ガス中の微細なダストや塩素等の不純物が除去される。COシフト反応器23において水蒸気が供給されて石炭ガス化ガス中のCOをCOに転換する。CO回収系20においてCOを回収する。精製ガスは発電用燃料としてガスタービンに供給される。CO回収系20からのCOガスは、COと同時に吸収されたHSを含んでおり、本発明の吸着剤を用いたHS吸着器1に供給され、HSが吸着除去され、高純度COガスとなる。本実施例では、本発明の吸着剤を用いたHS吸着器1を用いることによってCO回収プロセス内において実質的にHSを含まない高純度のCOを得ることが可能となる。 The degassed coal gasification gas converts COS contained in the coal gasification gas into H 2 S by the COS converter 21, and impurities such as fine dust and chlorine in the coal gasification gas are converted by the washing tower 22. Removed. Steam is supplied to convert the CO in the coal gasification gas to CO 2 in a CO shift reactor 23. The CO 2 is recovered in the CO 2 recovery system 20. The purified gas is supplied to the gas turbine as a fuel for power generation. The CO 2 gas from the CO 2 recovery system 20 contains H 2 S absorbed at the same time as CO 2 , and is supplied to the H 2 S adsorber 1 using the adsorbent of the present invention, where H 2 S is adsorbed. It is removed and becomes high purity CO 2 gas. In this example, by using the H 2 S adsorber 1 using the adsorbent of the present invention, it is possible to obtain high-purity CO 2 substantially free of H 2 S in the CO 2 recovery process. .

従来、回収したCOガスのHS濃度をppmレベルまで下げるためには、CO回収系20よりも上流側にHS吸収塔を設置し脱硫を行う必要があり、このため過剰にエネルギーを投入する結果となる。これでは、石炭ガス化で発生した生成ガスを使って発電を行うIGCCにおいては、HS濃度を下げるために余剰にCO回収系20での所内動力が増加し、送電端効率が大幅に低下することになる。 Conventionally, in order to reduce the H 2 S concentration of the recovered CO 2 gas to the ppm level, it has been necessary to install a H 2 S absorption tower upstream of the CO 2 recovery system 20 and perform desulfurization. As a result, energy is input. In this case, in the IGCC that generates power using the generated gas generated by coal gasification, the in-house power in the CO 2 recovery system 20 increases excessively to reduce the H 2 S concentration, and the power transmission end efficiency is greatly increased. Will be reduced.

本実施例によれば、CO回収系20からのCOガスをHS吸着器1で処理することによって実質的にHSを含まない高純度のCOが得られることから、HS濃度を下げるためのCO回収プロセス内での所内動力の増加を回避することが可能となる。 According to this example, high-purity CO 2 substantially free of H 2 S can be obtained by treating the CO 2 gas from the CO 2 recovery system 20 with the H 2 S adsorber 1. It is possible to avoid an increase in in-house power within the CO 2 recovery process for reducing the 2 S concentration.

1a,1b…吸着塔、2,4…ガス/ガス熱交換器、3…硫黄回収装置、5a,5b,6a,6b,7a,7b,8a,8b…バルブ、10…回収CO、11…高純度C、12…酸化ガス、14…再生排ガス、15…空気、20…CO回収系。 1a, 1b ... adsorption tower, 2,4 ... gas / gas heat exchanger, 3 ... Claus process, 5a, 5b, 6a, 6b , 7a, 7b, 8a, 8b ... valve, 10 ... recovery CO 2, 11 ... high purity C, 12 ... oxidizing gas, 14 ... regeneration exhaust gas, 15 ... air, 20 ... CO 2 recovery system.

Claims (7)

硫化水素を含有するガスを、チタンとモリブデンとニッケルの酸化物を含有する吸着剤と接触させ、硫化水素を硫化物の形態で前記吸着剤に吸着させて除去することを特徴とする硫化水素含有ガスの処理方法。   Hydrogen sulfide containing gas characterized by contacting hydrogen sulfide containing gas with an adsorbent containing oxides of titanium, molybdenum and nickel, and adsorbing and removing hydrogen sulfide in the form of sulfide Gas processing method. 硫化水素を含有するガスを、チタンとモリブデンとニッケルの酸化物を含有する吸着剤と接触させ、硫化水素を硫化物の形態で前記吸着剤に吸着させて除去し、次に前記吸着剤と酸素含有ガスとを接触させ、前記吸着剤を再生することを特徴とする硫化水素含有ガスの処理方法。   A gas containing hydrogen sulfide is contacted with an adsorbent containing oxides of titanium, molybdenum and nickel, and hydrogen sulfide is adsorbed and removed by the adsorbent in the form of sulfide, and then the adsorbent and oxygen A treatment method for a hydrogen sulfide-containing gas, wherein the adsorbent is regenerated by contacting with the contained gas. 請求項1または2に記載の硫化水素含有ガスの処理方法において、
前記吸着剤におけるニッケルとモリブデンのモル比率が0.3から1.0の範囲にある吸着剤を用いることを特徴とする硫化水素含有ガスの処理方法。
In the processing method of the hydrogen sulfide containing gas of Claim 1 or 2,
A method for treating a hydrogen sulfide-containing gas, wherein an adsorbent having a molar ratio of nickel and molybdenum in the adsorbent in the range of 0.3 to 1.0 is used.
請求項3に記載の硫化水素含有ガスの処理方法において、
前記吸着剤におけるニッケルとモリブデンのモル比率が0.6から1.0の範囲にある吸着剤を用いることを特徴とする硫化水素含有ガスの処理方法。
In the processing method of the hydrogen sulfide containing gas according to claim 3,
A method for treating a hydrogen sulfide-containing gas, wherein an adsorbent having a molar ratio of nickel and molybdenum in the adsorbent in the range of 0.6 to 1.0 is used.
請求項2に記載の硫化水素含有ガスの処理方法において、
前記吸着剤と前記酸素含有ガスとを接触させて前記吸着剤を再生する際に発生する高温の再生ガスを熱源として、前記吸着剤に接触する前の前記酸素含有ガスを加熱することを特徴とする硫化水素含有ガスの処理方法。
In the processing method of the hydrogen sulfide containing gas of Claim 2,
Heating the oxygen-containing gas before contacting the adsorbent using a high-temperature regeneration gas generated when the adsorbent and the oxygen-containing gas are brought into contact with each other to regenerate the adsorbent. To treat hydrogen sulfide-containing gas.
請求項2に記載の硫化水素含有ガスの処理方法において、
前記吸着剤と前記酸素含有ガスとを接触させて前記吸着剤を再生する際に発生する再生ガスの一部に、空気を混合したガスを前記吸着剤に接触させて前記吸着剤を再生することを特徴とする硫化水素含有ガスの処理方法。
In the processing method of the hydrogen sulfide containing gas of Claim 2,
Regenerating the adsorbent by bringing a mixed gas of air into contact with the adsorbent to a part of the regeneration gas generated when the adsorbent and the oxygen-containing gas are brought into contact with each other. A method for treating a hydrogen sulfide-containing gas.
石炭ガス化ガスを精製してガスタービンに発電燃料として供給し、石炭ガス化ガスを精製する際に二酸化炭素を回収するようにした二酸化炭素回収型石炭ガス化複合発電システムであって、
二酸化炭素回収系からの二酸化炭素が供給される硫化水素吸着器を備え、
前記硫化水素吸着器の吸着剤として、チタンとモリブデンとニッケルの酸化物を含有する吸着剤を用いたことを特徴とする二酸化炭素回収型石炭ガス化複合発電システム。
A carbon dioxide recovery type coal gasification combined power generation system that purifies coal gasification gas and supplies it as a power generation fuel to a gas turbine, and recovers carbon dioxide when refining the coal gasification gas,
Equipped with a hydrogen sulfide adsorber to which carbon dioxide from a carbon dioxide recovery system is supplied,
A carbon dioxide-recovery coal gasification combined power generation system using an adsorbent containing oxides of titanium, molybdenum and nickel as an adsorbent for the hydrogen sulfide adsorber.
JP2011134785A 2011-06-17 2011-06-17 Method of treating gas containing hydrogen sulfide Pending JP2013000666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134785A JP2013000666A (en) 2011-06-17 2011-06-17 Method of treating gas containing hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134785A JP2013000666A (en) 2011-06-17 2011-06-17 Method of treating gas containing hydrogen sulfide

Publications (1)

Publication Number Publication Date
JP2013000666A true JP2013000666A (en) 2013-01-07

Family

ID=47669818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134785A Pending JP2013000666A (en) 2011-06-17 2011-06-17 Method of treating gas containing hydrogen sulfide

Country Status (1)

Country Link
JP (1) JP2013000666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590850A (en) * 2022-03-17 2022-06-07 中国长江三峡集团有限公司 Novel vulcanized positive electrode material for sulfide all-solid-state lithium battery and preparation method thereof
CN115634661A (en) * 2022-10-25 2023-01-24 唐山师范学院 Efficient adsorbent and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647947A (en) * 1987-02-16 1989-01-11 Hitachi Ltd Desulfurizing agent and treatment of gas containing hydrogen sulfide used therewith
JPH02180614A (en) * 1989-01-05 1990-07-13 Mitsubishi Heavy Ind Ltd Process for refining high temperature reducing gas
JP2010120013A (en) * 2008-10-23 2010-06-03 Hitachi Ltd Method and apparatus for removing carbon dioxide and hydrogen sulfide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647947A (en) * 1987-02-16 1989-01-11 Hitachi Ltd Desulfurizing agent and treatment of gas containing hydrogen sulfide used therewith
JPH02180614A (en) * 1989-01-05 1990-07-13 Mitsubishi Heavy Ind Ltd Process for refining high temperature reducing gas
JP2010120013A (en) * 2008-10-23 2010-06-03 Hitachi Ltd Method and apparatus for removing carbon dioxide and hydrogen sulfide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590850A (en) * 2022-03-17 2022-06-07 中国长江三峡集团有限公司 Novel vulcanized positive electrode material for sulfide all-solid-state lithium battery and preparation method thereof
CN114590850B (en) * 2022-03-17 2023-04-18 中国长江三峡集团有限公司 Vulcanized positive electrode material for sulfide all-solid-state lithium battery and preparation method thereof
CN115634661A (en) * 2022-10-25 2023-01-24 唐山师范学院 Efficient adsorbent and preparation method and application thereof
CN115634661B (en) * 2022-10-25 2023-11-21 唐山师范学院 Efficient adsorbent and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6977112B2 (en) Integrated system and method for removing acid gas from gas stream
CA2745359C (en) A method and apparatus for producing power and hydrogen
JP6956665B2 (en) Method of methaneization of carbon dioxide in combustion exhaust gas and methane production equipment
US10005666B2 (en) Claus process for sulfur recovery with intermediate water vapor removal by adsorption
CN102847431B (en) Method for treating claus technical tail gas
TWI523687B (en) Conversion catalyst, gas purification plant gas refining methods and gas refining equipment
CN108179046A (en) A kind of method of coke-stove gas hydrogen making and LNG
US9365423B2 (en) Method and device for separating hydrogen sulfide and hydrogen production system using the same
JP2012506022A (en) Method for producing energy and method for capturing CO2
CN104689679A (en) Desulfurization and denitrification process for coke oven flue gas
CN109482049B (en) Dry desulfurization, denitrification and purification integrated process for coke oven flue gas
JP2017014437A (en) Purification device and purification method of raw material gas
US20160136567A1 (en) Method for removing sulfur compounds from sour gas streams and hydrogen rich streams
KR20200092360A (en) Process for recovery of sulfur from acid gas streams without catalytic cloth reactor
CN103316563B (en) Blue charcoal tail gas desulfurization purifier and using method thereof
JP2013000666A (en) Method of treating gas containing hydrogen sulfide
CN103566730B (en) The sulphur removal produced in process sulfur recovery facility shut-down process purges the method for tail gas
RU2460690C2 (en) Method of producing ammonia and apparatus for realising said method
JP4594239B2 (en) Gas purification system and gas purification method
JP2017048087A (en) Method and apparatus for producing hydrogen from fossil fuel
JP5270903B2 (en) Blast furnace gas calorie increase method
JP5601659B2 (en) Dry gas refining equipment and coal gasification combined power generation equipment
JPH03238019A (en) Purification of high temperature reductive gas
CA2830498C (en) Process and system for removing sulfur from sulfur-containing gaseous streams
CN101591578A (en) Process for extracting natural gas from coke-oven gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422