JP2012505344A - Multistage turbo compressor ventilating system - Google Patents

Multistage turbo compressor ventilating system Download PDF

Info

Publication number
JP2012505344A
JP2012505344A JP2011530921A JP2011530921A JP2012505344A JP 2012505344 A JP2012505344 A JP 2012505344A JP 2011530921 A JP2011530921 A JP 2011530921A JP 2011530921 A JP2011530921 A JP 2011530921A JP 2012505344 A JP2012505344 A JP 2012505344A
Authority
JP
Japan
Prior art keywords
turbo compressor
compressor
surge
air discharge
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011530921A
Other languages
Japanese (ja)
Inventor
リ,ホンソク
Original Assignee
ケイターボ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケイターボ,インコーポレイテッド filed Critical ケイターボ,インコーポレイテッド
Publication of JP2012505344A publication Critical patent/JP2012505344A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0223Control schemes therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本発明は速やかな負荷運転と無負荷運転の切換えを行うと共に、切換えに際しての軸受負荷を減らすためにターボ圧縮機の放風配管に設けられた放風弁において、多段圧縮機に沿って放風配管を多数配設し、前記放風弁4、5の前方または後方にノズル14、15を配設してサージを防止することを特徴とする多段ターボ圧縮機の放風システムに関する。
【選択図】図2
The present invention performs quick switching between load operation and no-load operation and discharges air along a multistage compressor in a discharge valve provided in a discharge pipe of a turbo compressor in order to reduce bearing load at the time of switching. The present invention relates to an air discharge system for a multi-stage turbo compressor characterized in that a large number of pipes are provided and nozzles 14 and 15 are provided in front of or behind the air discharge valves 4 and 5 to prevent surges.
[Selection] Figure 2

Description

本発明は速やかな負荷運転と無負荷運転の切換えを行うと共に、切換えに際しての軸受負荷を減らすためにターボ圧縮機の放風配管に設けられた放風弁において、多段圧縮機に沿って放風配管を多数配設し、前記放風弁の前方または後方にノズルを配設してサージを防止することを特徴とする多段ターボ圧縮機の放風システムに関する。   The present invention performs quick switching between load operation and no-load operation and discharges air along a multistage compressor in a discharge valve provided in a discharge pipe of a turbo compressor in order to reduce bearing load at the time of switching. The present invention relates to an air discharge system for a multi-stage turbo compressor characterized in that a large number of pipes are provided and a nozzle is provided in front of or behind the air release valve to prevent surge.

多段ターボ圧縮機は、往復動圧縮機やスクリュー圧縮機とは異なり、サージ現象があるため、特定の圧力下における流量の最小値が存在する。   Unlike a reciprocating compressor or a screw compressor, a multi-stage turbo compressor has a surge phenomenon, and therefore has a minimum flow rate under a specific pressure.

圧縮機の動作中に流量が減少してサージが感知されると、大気または入口に放風することによりサージから外れ、回転数を下げて無負荷状態で待機する。   When the flow rate decreases during operation of the compressor and a surge is detected, it is released from the surge by venting to the atmosphere or the inlet, and the rotation speed is reduced to stand by under no load.

通常、図1に示すように、分岐配管に放風弁3を設けて、放風弁3の開閉速度を適切に設定しておき、圧縮機に衝撃を与えないと共にサージを防止する。   Usually, as shown in FIG. 1, an air discharge valve 3 is provided in the branch pipe, and an opening / closing speed of the air discharge valve 3 is appropriately set so as not to give an impact to the compressor and to prevent a surge.

図1に示すように、従来の方法は、図3に示す低速サージ領域などの低い圧力における1段サージを回避するために、十分に多い流量を放風し得る大きな弁を用いて、低圧・大流量の領域まで回転数を下げる方法であるが、これは、放風弁を閉止して負荷に切り替えるときに瞬時に圧力が増大して軸受に無理を与えてしまい、特に、軸の両側にインペラが設けられる場合には、低圧・大流量の位置においてスラスト荷重が急増してしまうといった不都合がある。   As shown in FIG. 1, the conventional method uses a large valve that can discharge a sufficiently large flow rate to avoid a single-stage surge at a low pressure such as the low-speed surge region shown in FIG. This is a method of reducing the rotational speed to a large flow rate range, but this closes the vent valve and switches to the load, and the pressure instantly increases, impairing the bearing, especially on both sides of the shaft. When the impeller is provided, there is a disadvantage that the thrust load increases rapidly at the position of low pressure and large flow rate.

たとえば、小さな弁を用いて放風量を減らす場合には、弁の開閉中の衝撃はあまり受けないとはいえ、回転数を上げる過程における低い回転数で低速サージ領域を経ることとなり、回転数を下げつつサージを回避するためには極めて長時間に亘って無負荷で回転数を下げる必要があるという問題点がある。   For example, when using a small valve to reduce the amount of air discharged, the impact during opening and closing of the valve will not be received much, but it will go through a low-speed surge region at a low rotational speed in the process of increasing the rotational speed. In order to avoid a surge while lowering, there is a problem that it is necessary to reduce the rotational speed without load for an extremely long time.

特に、エアフォイル軸受のように支持力が相対的に大きな軸受を使用する場合には、瞬時の圧力変化は軸受の焼付きまたは損傷につながり、しかも、極めて大きなスラスト軸受支持力を要するといった難点がある。   In particular, when a bearing having a relatively large supporting force such as an airfoil bearing is used, an instantaneous pressure change leads to seizure or damage of the bearing, and a very large thrust bearing supporting force is required. is there.

特開平10−089296号公報(1998年4月7日付公開)の先行文献によれば、出口配管に放風弁及び調節板を設けることが記載されているが、これは、サージを防止するためではなく、モーターまたは磁気軸受を冷却するための冷却空気抽出システムであり、途中にノズルを設けて流出空気量を制御するようになっている。   According to the prior document of Japanese Patent Laid-Open No. 10-089296 (published on April 7, 1998), it is described that a vent valve and an adjustment plate are provided in the outlet pipe. This is to prevent a surge. Instead, it is a cooling air extraction system for cooling the motor or the magnetic bearing, and a nozzle is provided in the middle to control the amount of outflow air.

また、本願出願人によるPCT/KR2007/005663(2007年11月12日付出願)には、サージを防止するために、放風弁の前方または後方に流量を制御するノズルを設けて、サージが発生したときに速やかに応答せしめることが記載されている。しかしながら、従来の放風システムは単段の圧縮機には採用可能であるとはいえ、多段の圧縮機においては1段のサージによって動作範囲が制限されるため、その制限を回避するために各段に応じたノズルを設けてサージへの速やかな対応を図っている。   In addition, in the PCT / KR2007 / 005663 filed by the applicant of the present application (filed on November 12, 2007), in order to prevent a surge, a nozzle for controlling the flow rate is provided in front of or behind the ventilating valve to generate a surge. It is described that you can respond promptly when you do. However, although the conventional ventilating system can be used for a single-stage compressor, the operation range is limited by a single-stage surge in a multi-stage compressor. A nozzle corresponding to the stage is provided to promptly respond to surges.

特開平10−089296号公報(1998年4月7日付公開)JP 10-089296 A (published on April 7, 1998)

本発明は上記事情に鑑みてなされたものであり、その目的は、速やかな負荷運転と無負荷運転の切換えを行うと共に、切換えに際しての軸受負荷を減らすためにターボ圧縮機の放風配管に設けられた放風弁において、多段圧縮機に沿って放風配管を多数配設し、前記放風弁の前方または後方にノズルを配設してサージを防止することを特徴とする多段ターボ圧縮機の放風システムを提供するところにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to quickly switch between load operation and no-load operation and to provide a turbo compressor discharge pipe in order to reduce bearing load at the time of switching. A multistage turbo compressor characterized in that a large number of ventilating pipes are arranged along the multistage compressor and a nozzle is arranged in front of or behind the ventilating valve to prevent surge. There is a place to provide a ventilation system.

上記の目的を達成するために、本発明は、ターボ圧縮機の放風配管に設けられた放風弁において、多段圧縮機に沿って放風配管を多数配設し、前記放風配管に設けられている前記放風弁の前方または後方にノズルを配設してサージを防止することを特徴とする多段ターボ圧縮機の放風システムを提供する。   In order to achieve the above object, the present invention provides a discharge valve provided in a discharge pipe of a turbo compressor, wherein a number of discharge pipes are arranged along a multistage compressor, and the discharge pipe is provided in the discharge pipe. A ventilating system for a multi-stage turbo compressor is provided, wherein a nozzle is disposed in front of or behind the ventilating valve to prevent surge.

本発明によれば、第1の放風弁及び第1のノズルは最大使用圧力の近傍において放風を中断できるようにして衝撃を減らし、第2の放風弁及び第2のノズルは低回転領域において1段圧縮機のサージを回避しつつ放風できるようにして無負荷まで回転数を速やかに下げることができるというメリットがある。   According to the present invention, the first air discharge valve and the first nozzle can interrupt the air discharge in the vicinity of the maximum operating pressure to reduce the impact, and the second air discharge valve and the second nozzle are rotated at a low speed. There is an advantage that the rotational speed can be quickly lowered to no load by allowing the air to be discharged while avoiding a surge of the first stage compressor in the region.

従来の技術による放風システムを示す図である。It is a figure which shows the ventilation system by a prior art. 本発明に係る多段ターボ圧縮機の放風システムを示す図である。It is a figure which shows the ventilation system of the multistage turbo compressor which concerns on this invention. 本発明に係る多段ターボ圧縮機の放風システムの性能曲線を示すグラフである。It is a graph which shows the performance curve of the ventilation system of the multistage turbo compressor which concerns on this invention.

以下、図面に基づき、本発明に係る多段ターボ圧縮機の放風システムを詳述する。   Hereinafter, a multistage turbo compressor air discharge system according to the present invention will be described in detail with reference to the drawings.

本発明は、図2に示すように、オン/オフ型の第1の放風弁4および該第1の放風弁4の前方または後方に通過流量の定量決定のための第1のノズル14を配設し、且つ、オン/オフ型の第2の放風弁5および第2の放風弁5の前方または後方に通過流量の定量決定のための第2のノズル15を配設することにより、2段階に亘って流量の制御を行っている。   As shown in FIG. 2, the present invention includes an on / off type first air discharge valve 4 and a first nozzle 14 for quantitatively determining a passage flow rate in front of or behind the first air discharge valve 4. And the second nozzle 15 for determining the passage flow rate in front of or behind the second vent valve 5 and the second vent valve 5 of the on / off type. Thus, the flow rate is controlled in two stages.

第一の問題として指摘されている低い回転数における1段圧縮機のサージ現象は、第1及び第2の放風弁4、5と第1及び第2のノズル14、15とを全て開放して十分な面積を確保することにより解消し、第二の問題として指摘されているロード過程における衝撃は、第2の放風弁5及び第2のノズル15を閉止して加速した後に、第1の放風弁4及び第1のノズル14を閉止して衝撃を分散させることで解消し、第3の問題として指摘されているアンロード過程におけるサージ現象は、第1及び第2の放風弁4、5と第1及び第2のノズル14、15とを一括で開放して同時減速をスラスト保護ラインを超えずに速やかに行うことにより十分な放風面積を確保することで解消する。   The surge phenomenon of the single-stage compressor at a low rotational speed, which is pointed out as the first problem, opens all of the first and second vent valves 4 and 5 and the first and second nozzles 14 and 15. The impact in the loading process, which has been pointed out as a second problem, is eliminated by securing a sufficient area, and then the second discharge valve 5 and the second nozzle 15 are closed and accelerated. The surge phenomenon in the unloading process, which has been pointed out as a third problem, is solved by closing the air discharge valve 4 and the first nozzle 14 to disperse the impact, and the first and second air discharge valves. The problem is solved by securing a sufficient air discharge area by opening 4, 5 and the first and second nozzles 14 and 15 at once and performing the simultaneous deceleration without exceeding the thrust protection line.

このような圧縮機の駆動アルゴリズムの詳細は図3の性能曲線から明らかであり、その過程は下記の通りである。   Details of the driving algorithm of such a compressor are apparent from the performance curve of FIG. 3, and the process is as follows.

イ)ロード過程
1)電源を投入して第1及び第2の放風弁4、5と第1及び第2のノズル14、15とを全て開放し、
2)起動信号が出力されると、P1まで加速して無負荷で待機し、
3)ロード信号が出力されると、P2まで加速し、
4)第2の放風弁5および第2のノズル15を閉止してP3へ移行し、
5)再加速してP4まで移行し、
6)第1の放風弁4及び第1のノズル4を閉止して放風を中断して圧縮ガスを提供する。
A) Loading process 1) Turning on the power and opening all of the first and second vent valves 4, 5 and the first and second nozzles 14, 15;
2) When the start signal is output, it accelerates to P1 and waits with no load.
3) When the load signal is output, it accelerates to P2,
4) The second air release valve 5 and the second nozzle 15 are closed, and the process proceeds to P3.
5) Re-accelerate to P4,
6) Close the first air discharge valve 4 and the first nozzle 4 to interrupt the air discharge and provide compressed gas.

ロ)アンロード過程
1)P6において動作していて、アンロード信号を受信すると、第1及び第2の放風弁4、5と第1及び第2のノズル14、15とを全て開放して同時に回転数を減らして、スラスト保護ラインを避けてP7まで移行し、
2)速やかにP2まで回転数を下げる。
B) Unloading process 1) When operating at P6 and receiving an unloading signal, the first and second vent valves 4, 5 and the first and second nozzles 14, 15 are all opened. At the same time, reduce the number of revolutions, avoid the thrust protection line and move to P7,
2) Immediately reduce the rotational speed to P2.

以上においては、多段圧縮機として2段の圧縮機を実施形態として挙げているため、第1及び第2の放風弁4、5と第1及び第2のノズル14、15を想定して説明を行ったが、本発明はこれに限定されるものではなく、これらの弁及びノズルの数は、多段圧縮機の状況に応じて自由に調節して配設してもよい。   In the above, since a two-stage compressor is cited as an embodiment as a multistage compressor, the first and second vent valves 4 and 5 and the first and second nozzles 14 and 15 are described. However, the present invention is not limited to this, and the number of these valves and nozzles may be freely adjusted according to the situation of the multistage compressor.

Claims (1)

ターボ圧縮機の放風配管に設けられた放風弁において、
多段圧縮機に沿って放風配管を多数配設し、前記放風配管に設けられている前記放風弁(4、5)の前方または後方にノズル(14、15)を配設してサージを防止することを特徴とする多段ターボ圧縮機の放風システム。
In the air discharge valve installed in the air discharge pipe of the turbo compressor,
A large number of ventilating pipes are arranged along the multistage compressor, and the nozzles (14, 15) are arranged in front of or behind the venting valves (4, 5) provided in the ventilating pipes to cause a surge. A ventilating system for a multi-stage turbo compressor characterized by preventing
JP2011530921A 2008-10-13 2008-10-13 Multistage turbo compressor ventilating system Pending JP2012505344A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2008/006022 WO2010044493A1 (en) 2008-10-13 2008-10-13 Blow-off system for multi-stage turbo compressor

Publications (1)

Publication Number Publication Date
JP2012505344A true JP2012505344A (en) 2012-03-01

Family

ID=42106651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011530921A Pending JP2012505344A (en) 2008-10-13 2008-10-13 Multistage turbo compressor ventilating system

Country Status (5)

Country Link
US (1) US20110194928A1 (en)
EP (1) EP2344770B1 (en)
JP (1) JP2012505344A (en)
CN (1) CN102177347A (en)
WO (1) WO2010044493A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105626266B (en) * 2016-01-12 2017-09-08 中国科学院工程热物理研究所 A kind of gas turbine anti-surge deflation energy recovery utilizing system
CN113728163B (en) * 2019-04-15 2023-09-15 株式会社日立产机*** gas compressor
US11768014B2 (en) 2019-07-01 2023-09-26 Carrier Corporation Surge protection for a multistage compressor
CN111322265B (en) * 2020-04-27 2022-02-11 乔治洛德方法研究和开发液化空气有限公司 Anti-surge system of centrifugal compressor and control method
CN111927819B (en) * 2020-10-15 2021-01-01 中国航发上海商用航空发动机制造有限责任公司 Combined anti-surge method and multistage axial flow compressor experiment platform
CN112412864B (en) * 2020-12-11 2022-07-19 中国航发上海商用航空发动机制造有限责任公司 Compressor experiment platform and surging and deep stall exit method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182491A (en) * 1985-02-06 1986-08-15 Hitachi Ltd Automatic operation controller of turbocompressor
JPH11351198A (en) * 1998-04-06 1999-12-21 Hitachi Ltd Turbo compressor system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH237682A (en) 1943-06-26 1945-05-15 Escher Wyss Maschf Ag Procedure for avoiding pumping of multistage centrifugal compressors.
US2520697A (en) * 1943-10-11 1950-08-29 Vickers Electrical Co Ltd Internal-combustion turbine plant
US4046490A (en) * 1975-12-01 1977-09-06 Compressor Controls Corporation Method and apparatus for antisurge protection of a dynamic compressor
US4834622A (en) * 1983-06-15 1989-05-30 Sundstrand Corporation Gas turbine engine/load compressor power plants
US5137681A (en) * 1990-05-23 1992-08-11 Michael Dougherty Method and apparatus for recycling turbine exhaust steam in electrical power generation
JPH08121398A (en) 1994-10-26 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd Blow-off device for turbocompressor
JP3425308B2 (en) 1996-09-17 2003-07-14 株式会社 日立インダストリイズ Multistage compressor
JP4220631B2 (en) * 1999-09-22 2009-02-04 三菱重工業株式会社 Surging detection method and apparatus for gas turbine compressor
JP3921359B2 (en) * 2001-05-30 2007-05-30 株式会社神戸製鋼所 Oil-cooled screw compressor
JP4069675B2 (en) * 2002-05-22 2008-04-02 株式会社日立プラントテクノロジー Turbo compressor and capacity control method thereof
DE102004036238A1 (en) * 2004-07-26 2006-02-16 Alstom Technology Ltd Method for modifying a turbocompressor
WO2008060073A1 (en) 2006-11-17 2008-05-22 Kturbo, Inc. Blow off system for turbo compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182491A (en) * 1985-02-06 1986-08-15 Hitachi Ltd Automatic operation controller of turbocompressor
JPH11351198A (en) * 1998-04-06 1999-12-21 Hitachi Ltd Turbo compressor system

Also Published As

Publication number Publication date
CN102177347A (en) 2011-09-07
EP2344770A1 (en) 2011-07-20
EP2344770A4 (en) 2017-11-01
WO2010044493A1 (en) 2010-04-22
EP2344770B1 (en) 2019-12-11
US20110194928A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP2012505344A (en) Multistage turbo compressor ventilating system
WO2018012100A1 (en) Gas turbine and method for operating gas turbine
JP4115037B2 (en) Gas turbine startup method
US9989068B2 (en) Method for controlling a trim-adjustment mechanism for a centrifugal compressor
JP7083551B2 (en) Turbo blower that can be operated in the surge area
US11686310B2 (en) Method for controlling a rotary screw compressor
JP5486489B2 (en) Control method of turbo compressor
WO2019189085A1 (en) Gas compressor
JPH0331917B2 (en)
JP3387225B2 (en) Method and apparatus for switching no-load operation of multistage centrifugal compressor
JPH11280408A (en) Control method of steam turbine
KR101788233B1 (en) Opening/closing device for blow-off control valve of turbo compressor
WO2017110129A1 (en) Centrifugal compressor and multistage compression device
JP2019124194A (en) Vacuum valve
KR20130134656A (en) Hybrid 2 stage turbo compressor
KR200318585Y1 (en) Centrifigual fan with double suction holes for high efficiency at part load condition
JPH05231368A (en) Operation control system for vacuum pump
JPH1162886A (en) Gas supplying system to plant and method for controlling it
JPH0828492A (en) Discharge gas capacity controller of centrifugal compressor
JPH0465240B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130325

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130412

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130425

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820