JPH11280408A - Control method of steam turbine - Google Patents

Control method of steam turbine

Info

Publication number
JPH11280408A
JPH11280408A JP8134798A JP8134798A JPH11280408A JP H11280408 A JPH11280408 A JP H11280408A JP 8134798 A JP8134798 A JP 8134798A JP 8134798 A JP8134798 A JP 8134798A JP H11280408 A JPH11280408 A JP H11280408A
Authority
JP
Japan
Prior art keywords
control valve
steam
bleed
steam turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8134798A
Other languages
Japanese (ja)
Other versions
JP3959172B2 (en
Inventor
Hideaki Yamaguchi
口 秀 明 山
Susumu Tazaki
崎 進 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP08134798A priority Critical patent/JP3959172B2/en
Publication of JPH11280408A publication Critical patent/JPH11280408A/en
Application granted granted Critical
Publication of JP3959172B2 publication Critical patent/JP3959172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a rapid temperature rise inside a steam turbine, caused by a pressure rise by throttling of a valve itself of a bleed control valve or the like, by fully opening each bleed control valve automatically, at the time of an operation outside the bleed control range of the steam turbine having one or plural stages of bleed control valves. SOLUTION: In a three-stage bleeder turbine, a main steam stop valve 1 is fully opened in the step where starting conditions of the upstream of a high- pressure turbine 3 are arranged, and a first to a third bleed control valves 4, 6, 8 are fully opened automatically before a steam control valve 2 is started to open. Then, the steam control valve 2 is started to open, and put in parallel after the number of revolutions of the steam turbine reaches from a turning number of revolutions to a rated number of revolutions, and maintained at a primary load. Afterwards, the steam control valve 2 is opened moreover to a target load, but each bleed control valve is shifted into a bleed control operation in due order from the third bleed control valve 8 on the low pressure side, so each bleed control valve 6, 4 is operated automatically to the closing direction in due order from the third bleed control valve 8, and shifted into bleed control, following a load characteristic curve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抽気加減弁或いは
混圧加減弁を有する蒸気タービンの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a steam turbine having a bleed control valve or a mixed pressure control valve.

【0002】[0002]

【従来の技術】図5は抽気加減弁を複数段有する蒸気タ
ービンの概略構成を示す図であって、図示しないボイラ
で発生した主蒸気が主蒸気止め弁1、蒸気加減弁2を経
て高圧タービン3に導入され、そこで仕事を行った蒸気
は第1抽気加減弁4を経て第1中圧タービン5に導入さ
れる。また、第1中圧タービン5から排出された蒸気は
第2抽気加減弁6を経て第2中圧タービン7に導入さ
れ、さらに第3抽気加減弁8を経て低圧タービン9に導
入される。そして、低圧タービン9で仕事を行った蒸気
は排気管10を経て図示しない復水器等に排出される。
一方、上記高圧タービン3、第1中圧タービン5、第2
中圧タービン7、及び低圧タービン9は発電機11に連
結されており、各タービンにより発電機11が駆動され
発電が行われる。
2. Description of the Related Art FIG. 5 is a diagram showing a schematic configuration of a steam turbine having a plurality of stages of bleeding control valves. 3, and the steam that has performed the work there is introduced into the first intermediate pressure turbine 5 through the first bleed control valve 4. Further, the steam discharged from the first intermediate pressure turbine 5 is introduced into the second intermediate pressure turbine 7 via the second bleed control valve 6, and further introduced into the low pressure turbine 9 via the third bleed control valve 8. Then, the steam that has performed the work in the low-pressure turbine 9 is discharged through an exhaust pipe 10 to a condenser (not shown) or the like.
On the other hand, the high pressure turbine 3, the first intermediate pressure turbine 5, the second
The medium-pressure turbine 7 and the low-pressure turbine 9 are connected to a generator 11, and each of the turbines drives the generator 11 to generate power.

【0003】また、第1抽気加減弁4、第2抽気加減弁
6、及び第3抽気加減弁8の上流側にはそれぞれ第1抽
気管12、第2抽気管13、及び第3抽気管14が接続
されており、各抽気管を経て所定圧の抽気が抽出され、
所定個所に送られる。
[0003] A first bleed pipe 12, a second bleed pipe 13, and a third bleed pipe 14 are provided upstream of the first bleed control valve 4, the second bleed control valve 6 and the third bleed control valve 8, respectively. Is connected, and bleed air of a predetermined pressure is extracted through each bleed pipe,
It is sent to a predetermined location.

【0004】また、図6は混圧蒸気タービンの概略構成
を示す図であり、高圧タービン3から排出された主蒸気
に混圧止め弁15を経て供給される蒸気が混合され、そ
の混合された蒸気が混圧蒸気加減弁16を通って第1中
圧タービン5に導入される。
FIG. 6 is a diagram showing a schematic configuration of a mixed-pressure steam turbine. Main steam discharged from the high-pressure turbine 3 is mixed with steam supplied through a mixed-pressure stop valve 15, and the mixed steam is mixed. Steam is introduced into the first intermediate pressure turbine 5 through the mixed pressure steam control valve 16.

【0005】ところで、全周噴射/部分噴射切替装置を
もたない蒸気タービンの各加減弁の弁開度と負荷制御信
号の関係は、通常図7に示すように設定されている。す
なわち、負荷の上昇にしたがい、蒸気加減弁2に先行し
て低圧段落側の第3抽気加減弁8より第2抽気加減弁
6、第1抽気加減弁4と順次開くようにしてあり、抽気
制御運転特性を優先しながらも、制御が簡便なようにリ
ニアな特性カーブに沿って開くようにしてある。
By the way, the relationship between the valve opening of each control valve and the load control signal of a steam turbine having no full-circle injection / partial injection switching device is normally set as shown in FIG. That is, as the load increases, the second bleed control valve 6 and the first bleed control valve 4 are sequentially opened from the third bleed control valve 8 on the low-pressure stage prior to the steam control valve 2, and the bleed control is performed. While giving priority to the driving characteristics, the opening is performed along a linear characteristic curve for easy control.

【0006】[0006]

【発明が解決しようとする課題】このように、各加減弁
の弁開度と負荷制御信号の関係は、リニアであって制御
が簡便である特徴を有している。しかしながら、全周噴
射/部分噴射切替装置を持たない蒸気タービンでは一つ
の弁の全閉から全開の範囲で全負荷に対応しなければな
らない。例えば、20atgを越える抽気圧力設定の高
い抽気加減弁段落では、抽気制御運転特性を維持しつつ
リニアな特性で低流量を流そうとすると、通常運転時と
の蒸気条件の違いによる体積流量の違いから、特に無負
荷時等低圧力、低流量時には抽気加減弁をかなり小さな
開度に保持する必要がある。そのため抽気加減弁開度の
リニア特性が成立せず、抽気加減弁自身による絞りが発
生し、圧力上昇から温度上昇を引き起こす場合があり、
そのために抽気加減弁の負荷制御信号に対する弁開度特
性を得るように試運転時に微調整する必要がある等の問
題があった。
As described above, the relationship between the valve opening of each control valve and the load control signal is linear and the control is simple. However, in a steam turbine having no full-circumference / partial-injection switching device, it is necessary to cope with a full load in a range of one valve from fully closed to fully opened. For example, in the bleed control mode where the bleed pressure is set higher than 20 atg, when trying to flow a low flow with linear characteristics while maintaining the bleed control operation characteristics, the difference in volume flow due to the difference in steam conditions from the normal operation. Therefore, it is necessary to keep the bleeding control valve at a considerably small opening especially at low pressure and low flow rate such as when there is no load. Therefore, the linear characteristic of the bleeding control valve opening degree is not established, and the bleeding control valve itself causes throttling, which may cause a temperature rise from a pressure rise,
For this reason, there has been a problem that it is necessary to make fine adjustments at the time of trial operation so as to obtain a valve opening degree characteristic with respect to the load control signal of the bleeding control valve.

【0007】また、図5及び図6に示す最近の抽気ター
ビンや混圧タービンも高圧高温化が進み、抽気管12の
圧力、或いは混圧部17の圧力も20atgを越え、例
えば60atg或いはそれ以上の蒸気タービンの需要も
高まっている。したがって、前述のように低流量時に当
該抽気加減弁4及び混圧蒸気加減弁16自身の絞りによ
る圧力上昇に起因する蒸気タービン内部の急速な温度上
昇が蒸気タービンの抽気部及び混圧部17の最高使用温
度を越える可能性がある。また、図8に示す蒸気タービ
ンロータ18と、蒸気タービン車室19及びノズル20
等の静止部との伸び差が大きくなることによる軸方向接
触や蒸気タービンロータ18の熱応力過大により当該ロ
ータの寿命が急速に消費される可能性がある。
[0007] In addition, the recent extraction turbines and mixed pressure turbines shown in FIGS. 5 and 6 have been subjected to high pressure and high temperature, and the pressure of the extraction pipe 12 or the pressure of the mixed pressure section 17 also exceeds 20 atg, for example, 60 atg or more. Demand for steam turbines is also growing. Therefore, as described above, when the flow rate is low, the rapid temperature rise inside the steam turbine due to the pressure increase due to the restriction of the bleeding control valve 4 and the mixed-pressure steam control valve 16 itself causes the bleeding portion and the mixed-pressure portion 17 of the steam turbine. The maximum operating temperature may be exceeded. Further, a steam turbine rotor 18 shown in FIG.
There is a possibility that the life of the steam turbine rotor 18 may be rapidly consumed due to an axial contact due to a large difference in elongation with the stationary part or an excessive thermal stress of the steam turbine rotor 18.

【0008】本発明はこのような点に鑑み、抽気加減弁
等の弁自身の絞りによる圧力上昇に起因する蒸気タービ
ン内部の急速な温度上昇を防止し、蒸気タービンの信頼
性を向上し得る蒸気タービン制御方法を得ることを目的
とする。
In view of the foregoing, the present invention prevents a rapid rise in temperature inside a steam turbine due to a pressure increase caused by a throttle of a valve itself such as a bleed control valve, and improves the reliability of the steam turbine. An object is to obtain a turbine control method.

【0009】[0009]

【課題を解決するための手段】第1の発明は、主蒸気止
め弁と蒸気加減弁及び1段もしくは複数段の抽気加減弁
を有する蒸気タービンの制御方法において、その蒸気タ
ービンの起動過程或いは停止過程等の抽気制御範囲外の
運転時においては、各抽気加減弁を自動的に全開とする
ことを特徴とする。
According to a first aspect of the present invention, there is provided a method for controlling a steam turbine having a main steam stop valve, a steam control valve, and one or more stages of bleeding control valves. During operation outside the bleed control range, such as during a process, each bleed control valve is automatically fully opened.

【0010】また、第2の発明は、第1の発明におい
て、高圧第1段出口温度および各抽気温度を監視し、温
度上昇率と抽気温度値によって各抽気加減弁を自動的に
開方向に制御することを特徴とする。
According to a second aspect, in the first aspect, the high-pressure first-stage outlet temperature and each bleed temperature are monitored, and each bleed control valve is automatically opened in accordance with the temperature rise rate and the bleed temperature value. It is characterized by controlling.

【0011】さらに、第3の発明は、主蒸気止め弁と蒸
気加減弁を有するとともに、主蒸気と混圧蒸気との合流
後の段落に混圧加減弁を有する蒸気タービンの制御方法
において、その蒸気タービンの混圧蒸気制御範囲外の運
転時に、上記混圧加減弁を自動的に全開とすることを特
徴とする。
Further, a third invention provides a control method of a steam turbine having a main steam stop valve and a steam control valve, and having a mixed pressure control valve in a stage after the main steam and the mixed pressure steam merge. When the steam turbine is operated outside of the mixed pressure steam control range, the mixed pressure control valve is automatically fully opened.

【0012】第4の発明は、第3の発明において、高圧
第1段出口温度及び混圧加減弁蒸気室温度を監視し、温
度上昇率と混圧加減弁蒸気室温度値により、混圧加減弁
を自動的に開方向に制御することを特徴とする。
In a fourth aspect based on the third aspect, the high pressure first stage outlet temperature and the mixed pressure control valve steam chamber temperature are monitored, and the mixed pressure control is performed based on the temperature rise rate and the mixed pressure control valve steam chamber temperature value. The valve is automatically controlled to open.

【0013】また、第5の発明は、主蒸気止め弁と蒸気
加減弁及び第1段もしくは複数段の抽気加減弁を有する
とともに、混圧加減弁を有する蒸気タービンの制御方法
において、蒸気タービンの起動過程或いは停止過程等の
抽気制御範囲外の運転時においては、各抽気加減弁を自
動的に全開とし、混圧蒸気制御範囲外の運転時において
は混圧加減弁も自動的に全開とすることを特徴とする。
According to a fifth aspect of the present invention, there is provided a method for controlling a steam turbine having a main steam stop valve, a steam control valve, a first or a plurality of stages of bleeding control valves, and a mixed pressure control valve. During the operation outside the bleed control range such as the start-up process or the stop process, each bleed control valve is automatically fully opened, and during the operation outside the mixed steam control range, the mixed pressure control valve is also automatically fully opened. It is characterized by the following.

【0014】第6の発明は、第5の発明において、高圧
第1段出口温度と混圧加減弁蒸気室温度及び抽気温度を
監視し、温度上昇率と混圧加減弁蒸気室温度値及び各抽
気温度により、各抽気加減弁及び混圧加減弁を自動的に
開方向へ制御することを特徴とする。
In a sixth aspect based on the fifth aspect, the high pressure first stage outlet temperature, the mixed pressure control valve steam chamber temperature and the bleed temperature are monitored, and the temperature rise rate, the mixed pressure control valve steam chamber temperature value, and It is characterized in that the respective bleeding control valves and the mixed pressure control valves are automatically controlled in the opening direction according to the bleed temperature.

【0015】第7の発明は、第1,第3,第5の発明の
いずれかにおいて、無負荷運転または初負荷以下の運転
時に、第1段出口圧力が1ata(−0.03atg)
以上となる場合、蒸気加減弁より下流にある全ての加減
弁が初負荷保持まで自動的に全開されることを特徴とす
る。
According to a seventh aspect of the present invention, in any one of the first, third, and fifth aspects, the first stage outlet pressure is 1 ata (-0.03 atg) during no-load operation or operation at or below the initial load.
In the case described above, all the control valves downstream of the steam control valve are automatically fully opened until the initial load is maintained.

【0016】また、第8の発明は、第1,第3,第5の
発明のいずれかにおいて、無負荷運転または初負荷以下
の運転時に、第1段出口圧力が1ata(−0.03a
tg)以上となる場合、蒸気加減弁より下流にある全て
の加減弁が各加減弁の圧力制御範囲となるまで自動的に
全開されることを特徴とする。
According to an eighth aspect of the present invention, in any one of the first, third, and fifth aspects, the first stage outlet pressure is 1 ata (-0.03a) during no-load operation or operation at or below the initial load.
When the pressure is equal to or more than tg), all the control valves downstream from the steam control valve are automatically fully opened until the pressure control range of each control valve is reached.

【0017】[0017]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施の形態について説明する。図1は、図5に示す3
段抽気タービンにおいて、抽気制御運転範囲外での抽気
加減弁4,6,8の弁開度と負荷制御信号との関係を示
す図であり、高圧タービン3の上流側の暖気完了且つそ
の他起動条件が整った段階で主蒸気止め弁1は全開され
るが、蒸気加減弁2が開き始める前に第1,第2,第3
抽気加減弁4,6,8がミニマム開度から自動で全開さ
れる。そして、蒸気加減弁2が開き始め、蒸気タービン
の回転数がターニング回転数からラブチェック、ヒート
ソークを経て定格回転数に達した後、併入され、初負荷
で保持される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG.
FIG. 5 is a diagram showing a relationship between the valve opening of the bleed control valves 4, 6, and 8 and the load control signal outside the bleed control operation range in the two-stage bleed turbine. Is completed, the main steam stop valve 1 is fully opened, but before the steam control valve 2 starts to open, the first, second, third
The bleed control valves 4, 6, and 8 are fully opened automatically from the minimum opening. Then, the steam control valve 2 starts to be opened, and after the rotation speed of the steam turbine reaches the rated rotation speed from the turning rotation speed through the lab check and the heat soak, the steam turbine is inserted and held at the initial load.

【0018】その後、蒸気加減弁2はさらに目標負荷ま
でリニアに開いていくが、各抽気加減弁は低圧側の第3
抽気弁8より第2抽気加減弁6、第1抽気加減弁4と順
次抽気制御運転に入るため、図1にa,b,cで示すよ
うに、第3抽気加減弁8から順次各抽気加減弁が閉方向
に自動的に動き、従来のリニアな負荷特性カーブ上に乗
り抽気制御に移行する。またタービンの停止過程ではこ
れと逆に制御される。このように、無負荷及び低負荷、
低流量時において、各抽気加減弁4,6,8はほぼ全開
状態で制御され、図7に示す従来のようなミニマム開度
で弁が絞られた状態から開方向に制御されるものと異な
り、各抽気加減弁4,6,8が一旦全開し、その後負荷
上昇に伴なって圧力が上昇していくと、逆に弁が閉方向
に制御され、低負荷、低流量域における圧力制御が行わ
れる。
Thereafter, the steam control valve 2 is further linearly opened to the target load.
Since the second bleed control valve 6 and the first bleed control valve 4 sequentially enter the bleed control operation from the bleed valve 8, each bleed control is sequentially performed from the third bleed control valve 8 as shown by a, b and c in FIG. The valve automatically moves in the closing direction, and moves to a conventional linear load characteristic curve to shift to bleed control. In the process of stopping the turbine, the control is reversed. Thus, no load and low load,
At the time of low flow rate, each of the bleeding control valves 4, 6, and 8 is controlled in a substantially fully opened state, which is different from a conventional state in which the valves are controlled in an opening direction from a state where the valves are throttled at a minimum opening degree as shown in FIG. When each of the bleed control valves 4, 6, and 8 is fully opened, and then the pressure rises with an increase in the load, the valves are controlled in the closing direction, and the pressure control in the low load and low flow rate region is performed. Done.

【0019】したがって、低負荷、低流量域や起動過程
或いは停止過程の抽気制御範囲外の運転時においては、
各抽気加減弁は大きく開いているため、従来のように弁
の絞りによる圧力上昇を招き、それに起因した蒸気ター
ビン内部の急速な温度上昇が防止される。
Therefore, at the time of operation outside the bleeding control range in the low load, low flow rate range, start-up process or stop process,
Since each of the bleeding control valves is widely opened, pressure increase due to the throttle of the valve is caused as in the related art, thereby preventing a rapid rise in temperature inside the steam turbine due to the pressure increase.

【0020】上記実施の態様においては、抽気タービン
について説明したが図6に示すような混圧タービンにつ
いても適用できる。すなわち、蒸気タービンの起動過程
等の混圧蒸気制御範囲外の運転時には混圧加減弁16が
前記抽気加減弁と同様に自動的に全開される。したがっ
て、混圧加減弁16の絞りによって圧力上昇が生ずるこ
とが防止される。また、上記抽気加減弁及び混圧加減弁
の両者を有するものにも適用することができる。
In the above embodiment, the bleeding turbine has been described, but the present invention can also be applied to a mixed pressure turbine as shown in FIG. That is, during operation outside the range of the mixed pressure steam control, such as during the start-up process of the steam turbine, the mixed pressure control valve 16 is automatically fully opened similarly to the bleeding control valve. Therefore, it is possible to prevent the pressure from increasing due to the restriction of the mixed pressure control valve 16. Further, the present invention can be applied to a valve having both the bleeding control valve and the mixed pressure control valve.

【0021】図2は、本発明の他の実施の形態を示す制
御ロジック図であって、抽気制御運転範囲外で抽気口温
度を計測し、この温度信号を用いて蒸気タービン各部の
最高使用温度を越えているか否か判定する。そして、最
高使用温度を越えていない場合は、温度変化率を計算
し、その変化率が所定値より大きいか否か判定し、温度
変化率が大きくない場合には運転を継続する。一方温度
変化率が大きい場合には、当該抽気加減弁が抽気制御運
転範囲外の運転モードであるか否か判定してその抽気制
御運転範囲外であれば、当該抽気加減弁に全開指令信号
が出力される。
FIG. 2 is a control logic diagram showing another embodiment of the present invention, in which the temperature of the bleed port is measured outside the bleed control operation range, and the maximum operating temperature of each part of the steam turbine is calculated using this temperature signal. Is determined. If the temperature does not exceed the maximum operating temperature, the temperature change rate is calculated, and it is determined whether the change rate is greater than a predetermined value. If the temperature change rate is not large, the operation is continued. On the other hand, if the temperature change rate is large, it is determined whether or not the bleeding control valve is in an operation mode outside the bleeding control operation range. Is output.

【0022】また、前記抽気口温度が最高使用温度以上
であり、抽気制御運転範囲外である場合には、直ちに当
該抽気加減弁に全開指令信号が出力される。
When the bleed port temperature is equal to or higher than the maximum operating temperature and is outside the bleed control operation range, a full-open command signal is immediately output to the bleed control valve.

【0023】したがって、この場合も、弁自身の絞りに
よる圧力上昇に起因する蒸気タービン内部の急速な温度
上昇が防止される。
Therefore, also in this case, a rapid rise in temperature inside the steam turbine due to a rise in pressure due to the restriction of the valve itself is prevented.

【0024】図3は本発明のさらに他の実施の形態を示
す制御ロジック図であって、第1段内面メタル温度を計
測し、この温度信号を用いてロータ熱応力及び熱応力変
化率を計算する。そして、この熱応力及び熱応力変化率
が大きくない場合には、抽気加減弁全開指令解除信号が
出される。一方、熱応力及び熱応力変化率が大きい場合
には、抽気制御運転範囲外の運転モードか否かが判定さ
れ、抽気制御運転範囲外の運転モードの場合には抽気加
減弁全開指令信号が出力される。また上記運転モードで
ない場合には負荷維持運転及び回転数一定運転指令が出
力される。
FIG. 3 is a control logic diagram showing still another embodiment of the present invention. The first stage inner surface metal temperature is measured, and the rotor thermal stress and the rate of change in thermal stress are calculated using this temperature signal. I do. If the thermal stress and the rate of change in thermal stress are not large, a bleed control valve full-open command release signal is issued. On the other hand, when the thermal stress and the rate of change in thermal stress are large, it is determined whether or not the operation mode is outside the bleed control operation range, and in the case of the operation mode outside the bleed control operation range, the bleed control valve fully open command signal is output. Is done. When the operation mode is not the operation mode, a load maintenance operation and a constant rotation speed operation command are output.

【0025】したがって、この場合も弁自身の絞りによ
る圧力上昇に起因する蒸気タービン内部の急速な温度上
昇が防止される。
Therefore, also in this case, a rapid rise in temperature inside the steam turbine caused by a rise in pressure due to the restriction of the valve itself is prevented.

【0026】また、図4は本発明の他の実施の形態を示
す制御ロジック図であり、第1段出口圧力を計測し、そ
の第1段出口圧力が−0.03atg以上か否か判定
し、その圧力が−0.03atg以上の場合には、R>
RTすなわちロータ回転数Rがターニング回転数RTよ
り大きく、初負荷以下か否かを判定し、R>RTで初負
荷以下の場合には抽気加減弁に全開指令が出される。
FIG. 4 is a control logic diagram showing another embodiment of the present invention. The first stage outlet pressure is measured, and it is determined whether the first stage outlet pressure is -0.03 atg or more. When the pressure is -0.03 atg or more, R>
It is determined whether RT, that is, the rotor rotation speed R is larger than the turning rotation speed RT and is equal to or less than the initial load. If R> RT and equal to or less than the initial load, a full-open command is issued to the bleed control valve.

【0027】一方、第1段出口圧力が−0.03atg
以上でない場合には、抽気加減弁全開指令が解除され、
またR>RTで初負荷以下でない場合にはその時点の運
転が継続される。しかして、この実施の態様において
は、無負荷運転または初負荷以下の運転時に当該第1段
出口圧力が−0.03atg以上の場合には抽気加減弁
を全開にすることによって温度上昇を抑制することがで
きる。
On the other hand, the first stage outlet pressure is -0.03 atg.
If not, the bleed control valve fully open command is released,
If R> RT and the load is not equal to or less than the initial load, the operation at that time is continued. In this embodiment, when the first stage outlet pressure is -0.03 atg or more during the no-load operation or the operation with the initial load or less, the temperature rise is suppressed by fully opening the bleeding control valve. be able to.

【0028】なお、図2乃至図4に示す実施の形態につ
いては抽気タービンについて説明したが、混圧タービン
についても適用することができ、混圧制御運転範囲外で
混圧加減弁を自動的に全開させることもできる。
Although the embodiment shown in FIGS. 2 to 4 has been described with reference to the bleed turbine, the present invention can also be applied to a mixed pressure turbine, and the mixed pressure control valve is automatically set outside the mixed pressure control operation range. It can be fully opened.

【0029】[0029]

【発明の効果】以上説明したように、本発明は、抽気制
御運転範囲外または混圧制御運転範囲外では、抽気加減
弁または混圧加減弁を全開に制御されるようにしたの
で、弁自身の絞りによる圧力上昇に起因する蒸気タービ
ン内部の急速な温度上昇を防止することができる。した
がって、蒸気タービン各部の最高使用温度を越えた運用
が防止され、蒸気タービンロータと蒸気タービン車室及
びノズル等の静止部との伸び差大による軸方向接触が防
止され、さらに蒸気タービン車軸の過大な熱応力発生を
防止することができ、蒸気タービンとしての信頼性の大
幅な向上と長寿命化が可能となる等の効果を奏する。
As described above, according to the present invention, the bleed control valve or the mixed pressure control valve is controlled to be fully opened outside the bleed control operation range or the mixed pressure control drive range. Thus, it is possible to prevent a rapid rise in temperature inside the steam turbine due to a rise in pressure due to the throttle. Therefore, operation exceeding the maximum operating temperature of each part of the steam turbine is prevented, axial contact between the steam turbine rotor and stationary parts such as the steam turbine casing and nozzles due to a large difference in extension is prevented, and the steam turbine axle becomes excessively large. This can prevent the occurrence of excessive thermal stress, and provide effects such as significantly improving the reliability of the steam turbine and extending the service life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における弁開度と負荷制御
信号との関係を示す図。
FIG. 1 is a diagram showing a relationship between a valve opening and a load control signal according to an embodiment of the present invention.

【図2】本発明の他の実施の形態を示す制御ロジック
図。
FIG. 2 is a control logic diagram showing another embodiment of the present invention.

【図3】本発明のさらに他の実施の形態を示す制御ロジ
ック図。
FIG. 3 is a control logic diagram showing still another embodiment of the present invention.

【図4】本発明の他の実施の形態を示す制御ロジック
図。
FIG. 4 is a control logic diagram showing another embodiment of the present invention.

【図5】抽気加減弁を複数段有する蒸気タービンの概略
構成図。
FIG. 5 is a schematic configuration diagram of a steam turbine having a plurality of bleed control valves.

【図6】混圧蒸気タービンの概略構成を示す図。FIG. 6 is a diagram showing a schematic configuration of a mixed-pressure steam turbine.

【図7】従来の蒸気タービンにおける弁開度と負荷制御
信号との関係を示す図。
FIG. 7 is a diagram showing a relationship between a valve opening and a load control signal in a conventional steam turbine.

【図8】蒸気タービンのロータ、車室及びノズルの関係
を示す構造図。
FIG. 8 is a structural diagram showing a relationship between a rotor, a vehicle compartment, and a nozzle of the steam turbine.

【符号の説明】[Explanation of symbols]

2 蒸気加減弁 3 高圧タービン 4 第1抽気加減弁 5 第1中圧タービン 6 第2抽気加減弁 7 第2中圧タービン 8 第3抽気加減弁 9 低圧タービン 10 排気管 18 蒸気タービンロータ 19 蒸気タービン車室 20 ノズル 2 Steam control valve 3 High pressure turbine 4 First bleed control valve 5 1st medium pressure turbine 6 2nd bleed control valve 7 2nd medium pressure turbine 8 3rd bleed control 9 Low pressure turbine 10 Exhaust pipe 18 Steam turbine rotor 19 Steam turbine Cabin 20 nozzles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01K 7/38 102 F01K 7/38 102E ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F01K 7/38 102 F01K 7/38 102E

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】主蒸気止め弁と蒸気加減弁及び1段もしく
は複数段の抽気加減弁を有する蒸気タービンの制御方法
において、その蒸気タービンの起動過程或いは停止過程
等の抽気制御範囲外の運転時においては、各抽気加減弁
を自動的に全開とすることを特徴とする蒸気タービンの
制御方法。
In a method for controlling a steam turbine having a main steam stop valve, a steam control valve, and one or more stages of bleed control valves, when the steam turbine is operated outside a bleed control range, such as a start-up process or a stop process. , A method for controlling a steam turbine, wherein each bleeding control valve is automatically fully opened.
【請求項2】各抽気温度を監視し、温度上昇率と抽気温
度値によって各抽気加減弁を自動的に開方向に制御する
ことを特徴とする、請求項1記載の蒸気タービンの制御
方法。
2. The control method for a steam turbine according to claim 1, wherein each bleed air temperature is monitored, and each bleed air control valve is automatically controlled to open based on a temperature rise rate and a bleed air temperature value.
【請求項3】主蒸気止め弁と蒸気加減弁を有するととも
に、主蒸気と混圧蒸気との合流後の段落に混圧加減弁を
有する蒸気タービンの制御方法において、その蒸気ター
ビンの混圧蒸気制御範囲外の運転時に、上記混圧加減弁
を自動的に全開とすることを特徴とする蒸気タービンの
制御方法。
3. A method for controlling a steam turbine having a main steam stop valve and a steam control valve, and having a mixed pressure control valve in a stage after the merge of the main steam and the mixed pressure steam. A method for controlling a steam turbine, wherein the mixed pressure control valve is automatically fully opened during operation outside a control range.
【請求項4】高圧第1段出口温度及び混圧加減弁蒸気室
温度を監視し、温度上昇率と混圧加減弁蒸気室温度値に
より、混圧加減弁を自動的に開方向に制御することを特
徴とする、請求項3記載の蒸気タービンの制御方法。
4. The high pressure first stage outlet temperature and the mixed pressure control valve steam chamber temperature are monitored, and the mixed pressure control valve is automatically controlled to open in accordance with the temperature rise rate and the mixed pressure control valve steam chamber temperature value. The method for controlling a steam turbine according to claim 3, wherein:
【請求項5】主蒸気止め弁と蒸気加減弁及び1段もしく
は複数段の抽気加減弁を有するとともに、混圧加減弁を
有する蒸気タービンの制御方法において、蒸気タービン
の起動過程或いは停止過程等の抽気制御範囲外の運転時
においては、各抽気加減弁を自動的に全開とし、混圧蒸
気制御範囲外の運転時においては混圧加減弁も自動的に
全開とすることを特徴とする蒸気タービンの制御方法。
5. A method for controlling a steam turbine having a main steam stop valve, a steam control valve and one or more stages of bleed control valves, and having a mixed pressure control valve. A steam turbine wherein each bleed control valve is automatically fully opened during operation outside the bleed control range, and the mixed pressure control valve is automatically fully opened during operation outside the mixed steam control range. Control method.
【請求項6】高圧第1段出口温度と混圧加減弁蒸気室温
度及び抽気温度を監視し、温度上昇率と混圧加減弁蒸気
室温度値及び各抽気温度により、各抽気加減弁及び混圧
加減弁を自動的に開方向へ制御することを特徴とする、
請求項5記載の蒸気タービンの制御方法。
6. A high pressure first stage outlet temperature, a mixed pressure control valve steam chamber temperature and a bleed temperature are monitored, and each of the bleed control valves and the bleed temperature are monitored based on the temperature rise rate, the mixed pressure control valve steam chamber temperature value and each bleed temperature. Characterized in that the pressure control valve is automatically controlled to open.
A method for controlling a steam turbine according to claim 5.
【請求項7】無負荷運転または初負荷以下の運転時に、
第1段出口圧力が1ata(−0.03atg)以上と
なる場合、蒸気加減弁より下流にある全ての加減弁が各
加減弁の圧力制御範囲となるまで自動的に全開されるこ
とを特徴とする、請求項1,3,5のいずれかに記載の
蒸気タービンの制御方法。
7. The method according to claim 1, wherein the operation is performed under no-load operation or at an initial load or less.
When the first stage outlet pressure is 1 ata (-0.03 atg) or more, all the control valves downstream from the steam control valve are automatically fully opened until the pressure control range of each control valve is reached. The control method for a steam turbine according to any one of claims 1, 3, and 5, wherein
【請求項8】無負荷運転または初負荷以下の運転時に、
第1段出口圧力が1ata(−0.03atg)以上と
なる場合、蒸気加減弁より下流にある全ての加減弁が各
加減弁の圧力制御範囲となるまで自動的に全開されるこ
とを特徴とする、請求項1,3,5のいずれかに記載の
蒸気タービンの制御方法。
8. The method according to claim 1, wherein at the time of no-load operation or operation under the initial load,
When the first stage outlet pressure is 1 ata (-0.03 atg) or more, all the control valves downstream from the steam control valve are automatically fully opened until the pressure control range of each control valve is reached. The control method for a steam turbine according to any one of claims 1, 3, and 5, wherein
JP08134798A 1998-03-27 1998-03-27 Steam turbine control method Expired - Fee Related JP3959172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08134798A JP3959172B2 (en) 1998-03-27 1998-03-27 Steam turbine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08134798A JP3959172B2 (en) 1998-03-27 1998-03-27 Steam turbine control method

Publications (2)

Publication Number Publication Date
JPH11280408A true JPH11280408A (en) 1999-10-12
JP3959172B2 JP3959172B2 (en) 2007-08-15

Family

ID=13743843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08134798A Expired - Fee Related JP3959172B2 (en) 1998-03-27 1998-03-27 Steam turbine control method

Country Status (1)

Country Link
JP (1) JP3959172B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228617A (en) * 2008-03-25 2009-10-08 Pan Pacific Copper Co Ltd Steam turbine, steam turbine plant system, and output increasing method of steam turbine
JP2011525587A (en) * 2008-06-23 2011-09-22 シーメンス アクティエンゲゼルシャフト Steam power plant
EP2642090A1 (en) * 2012-03-19 2013-09-25 MAN Diesel & Turbo SE Steam turbine and method for operating a steam turbine
JP2014025801A (en) * 2012-07-26 2014-02-06 Toshiba Corp Pressurized water nuclear power plant and steam supply method for the same
CN103646162A (en) * 2013-11-12 2014-03-19 国电科学技术研究院 Turbine main steam pressure operation curve and optimization method thereof
CN106499452A (en) * 2016-11-04 2017-03-15 国网山东省电力公司电力科学研究院 Lift the control method and system of adjustment extraction turbine group primary frequency modulation compensation ability
JP2020041449A (en) * 2018-09-07 2020-03-19 三菱日立パワーシステムズ株式会社 Solar heat power generation facility

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228617A (en) * 2008-03-25 2009-10-08 Pan Pacific Copper Co Ltd Steam turbine, steam turbine plant system, and output increasing method of steam turbine
JP2011525587A (en) * 2008-06-23 2011-09-22 シーメンス アクティエンゲゼルシャフト Steam power plant
EP2642090A1 (en) * 2012-03-19 2013-09-25 MAN Diesel & Turbo SE Steam turbine and method for operating a steam turbine
JP2014025801A (en) * 2012-07-26 2014-02-06 Toshiba Corp Pressurized water nuclear power plant and steam supply method for the same
CN103646162A (en) * 2013-11-12 2014-03-19 国电科学技术研究院 Turbine main steam pressure operation curve and optimization method thereof
CN106499452A (en) * 2016-11-04 2017-03-15 国网山东省电力公司电力科学研究院 Lift the control method and system of adjustment extraction turbine group primary frequency modulation compensation ability
JP2020041449A (en) * 2018-09-07 2020-03-19 三菱日立パワーシステムズ株式会社 Solar heat power generation facility

Also Published As

Publication number Publication date
JP3959172B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US6328526B1 (en) Gas turbine starting method
US8240153B2 (en) Method and system for controlling a set point for extracting air from a compressor to provide turbine cooling air in a gas turbine
JP5734792B2 (en) Steam turbine plant and operation method thereof
US4744723A (en) Method for starting thermal power plant
JP4773558B2 (en) Gas turbine operation method
US6145317A (en) Steam turbine, steam turbine plant and method for cooling a steam turbine
US6792760B2 (en) Method for operating a turbine
JPH11280408A (en) Control method of steam turbine
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
JP4657057B2 (en) Reheat steam turbine plant
JPH07189740A (en) Gas turbine cooling system
US9347454B2 (en) Method for controlling a turbocompressor
US6220086B1 (en) Method for ascertaining surge pressure ratio in compressors for turbines
JP2000130108A (en) Starting method for combined cycle power plant
US6253537B1 (en) Revolution speed control method in gas turbine shutdown process
KR102196599B1 (en) Gas turbine startup method and device
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
JP3165619B2 (en) Thermal stress reduction operation method of steam turbine in single shaft combined cycle
JP2018173004A (en) Stop method for gas turbine, control device for gas turbine, and gas turbine plant
JPS6165003A (en) Controlling method for turbine in intermediate pressure starting
JPH10196404A (en) Device and method for adjusting clearance between moving blade and stationary blade for gas turbine
JP3446185B2 (en) Operating method of steam-cooled gas turbine
CN115263446B (en) Protection control system for cold state pre-heating start of gas-steam combined cycle unit
JPH0336123B2 (en)
JPS62189304A (en) Method for controlling combined plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees