JP2012224884A - High strength steel material having excellent strength, ductility and energy absorption power, and method for producing the same - Google Patents

High strength steel material having excellent strength, ductility and energy absorption power, and method for producing the same Download PDF

Info

Publication number
JP2012224884A
JP2012224884A JP2011091236A JP2011091236A JP2012224884A JP 2012224884 A JP2012224884 A JP 2012224884A JP 2011091236 A JP2011091236 A JP 2011091236A JP 2011091236 A JP2011091236 A JP 2011091236A JP 2012224884 A JP2012224884 A JP 2012224884A
Authority
JP
Japan
Prior art keywords
steel
less
steel material
strength
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011091236A
Other languages
Japanese (ja)
Other versions
JP5747249B2 (en
Inventor
Toshihiro Hanamura
年裕 花村
Shiro Torizuka
史郎 鳥塚
Masakata Imagunbai
正名 今葷倍
Hiroshi Takechi
弘 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2011091236A priority Critical patent/JP5747249B2/en
Publication of JP2012224884A publication Critical patent/JP2012224884A/en
Application granted granted Critical
Publication of JP5747249B2 publication Critical patent/JP5747249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel material such as a thick steel plate, a shape steel, a deformed bar steel, a bar steel and a steel wire having high strength and high ductility and having excellent energy absorption power, without adding expensive alloy elements and by using the existing production line without applying excessive loads onto production equipment, as the steel material used for structures such as buildings and bridges, automobile underbody steel materials and machine parts such as gears, and to provide a method for producing the steel material.SOLUTION: The steel material comprises, by mass, 0.05 to 0.20% of C, 1.0 to 3.5% of Si, 4.5 to 5.5% of Mn, 0.001 to 0.080% of Al, ≤0.030% of P, ≤0.020% of S, ≤0.010% of N and ≤0.045% of Nb, and the balance Fe with inevitable impurities, and has a tensile strength of ≥1,100 MPa and an elongation of ≥25%, and the product between the tensile strength and elongation (TS×El) is ≥30,000 MPa%. The steel material has a two phase structure in which the production ratio between ferrite and austenite is controlled by short time annealing treatment.

Description

本発明は、建造物や橋梁等の構造物、自動車の足回り鋼材、機械用歯車等部品に使用される鋼材であって、特に高強度かつ高延性で、エネルギー吸収能に優れた厚鋼板や棒鋼・鋼線等の非調質鋼材に関するものである。   The present invention is a steel material used for structures such as buildings and bridges, undercarriage steel materials for automobiles, mechanical gears, etc., and is particularly a steel plate having high strength and high ductility and excellent energy absorption capability. It relates to non-heat treated steel such as steel bars and steel wires.

近年、構造物の大型化や自動車部品の軽量化に伴って、これまで以上に強靭で高性能な鋼材が求められている。これに加えて当該鋼材を製造するに当たり、省資源かつ省エネルギーであることも重要な課題である。そして、当該鋼材を製造するに当たっては設備を増設ないし新設することなく、しかも従来の製造工程よりも省工程で目的とする鋼材を製造できることが望まれている。   In recent years, with the increase in the size of structures and the reduction in weight of automobile parts, stronger and higher performance steel materials are required than ever. In addition to this, it is an important issue to save resources and energy when manufacturing the steel material. And when manufacturing the said steel materials, it is desired that the target steel materials can be manufactured by a process saving rather than the conventional manufacturing process, without installing or newly installing an installation.

従来、主に自動車の車体向けとして高強度で高延性を有し、衝撃エネルギー吸収能にも優れた薄鋼板が多数開発されている。例えば、特許文献1には、高強度と高延性を両立させ、プレス成形性と衝撃エネルギー吸収能に優れた自動車用の冷延鋼板に関する技術が開示されている。これは高価な合金元素の添加量を抑制してフェライト結晶粒の微細化により強度を上昇させ、しかもプレス成形性に重要となる強度と延性とのバランスに優れた薄鋼板である。そしてその製造工程では熱間圧延の後、冷間圧延を行ない、適切な焼鈍を行なうというものである。しかしながら、この技術によれば、MoやNi等の高価な合金元素が少量ではあるが添加必須元素であり、薄鋼板に圧延後、焼鈍処理を必要としている。   Conventionally, many thin steel sheets having high strength and high ductility and excellent impact energy absorption ability have been developed mainly for automobile bodies. For example, Patent Document 1 discloses a technology related to a cold-rolled steel sheet for automobiles that has both high strength and high ductility and is excellent in press formability and impact energy absorption capability. This is a thin steel plate that suppresses the amount of expensive alloy elements added and increases the strength by refining ferrite crystal grains and has an excellent balance between strength and ductility, which is important for press formability. In the manufacturing process, after hot rolling, cold rolling is performed and appropriate annealing is performed. However, according to this technique, a small amount of expensive alloy elements such as Mo and Ni are essential elements to be added, and an annealing treatment is required after rolling into a thin steel plate.

また、非特許文献1には、高価な合金元素を添加せずにMnとSi含有量を高めた0.1%C−5%Mn−2%Siという低炭素鋼に準じる化学成分組成鋼を用い、焼鈍後の低温再加熱処理において高含有量のMnにより残留オーステナイトの分率を高めると同時に、高含有量のSiによりフェライト中からオーステナイトへ排出されたCにより残留オーステナイトを安定化させることによる加工硬化指数を高めた鋼板(New TRIP鋼と称される)が開示されている。しかし、このプロセスは薄鋼板に圧延後に複雑なプロセスである焼鈍処理及び低温再加熱処理を必要としており、省エネルギーの観点からの問題が解決されていない。そして、薄鋼板を製造対象鋼材としているので、熱間圧延に加えて冷間圧延工程も必須としている。   Further, Non-Patent Document 1 discloses a chemical composition steel according to a low carbon steel of 0.1% C-5% Mn-2% Si in which the contents of Mn and Si are increased without adding an expensive alloy element. Used, by increasing the fraction of retained austenite with a high content of Mn in low-temperature reheating treatment after annealing, and at the same time stabilizing the retained austenite with C discharged from ferrite into austenite with a high content of Si A steel sheet (called New TRIP steel) with an increased work hardening index is disclosed. However, this process requires an annealing process and a low-temperature reheating process, which are complicated processes after rolling into a thin steel sheet, and the problem from the viewpoint of energy saving has not been solved. And since the thin steel plate is made into steel material for manufacture, in addition to hot rolling, the cold rolling process is also essential.

一方、製造対象鋼材として薄鋼板を除く構造物等に使用される高強度、高強靭鋼材についても多数開発されている。例えば、特許文献2には、高強度、高延性で、耐遅れ破壊特性に優れ、しかも靭性が飛躍的に向上した高強度鋼材に関する技術が開示されている。この技術によれば、引張強さが1660〜1800MPa、伸び(全伸び)が18.5〜19.2%であって、室温におけるVノッチシャルピー試験の衝撃吸収エネルギーで305〜382J/cmを有する鋼材が例示されている(特許文献2の表6の実施例1及び実施例17参照)。しかし、この技術においても、化学成分組成として高価格のMoを1.0%程度含有させ、製造工程として、所定の温度及び時間の条件下において焼鈍、焼戻し及び時効処理のいずれかを施した後、350℃以上(AC1−20℃)以下の温度で加工をする(温間加工をする)工程が必要である。
以上のように、これまでに開示されている技術では省資源、省エネルギーの問題が解決されておらず、また、比較的低温領域における温間加工を実施するために通常の製造ラインにおいては加工装置に大きな負担を強いることになり、工業的に幅広く利用するには問題がある。
On the other hand, many high-strength and high-tough steel materials used for structures and the like excluding thin steel plates have been developed as steels to be manufactured. For example, Patent Document 2 discloses a technique related to a high strength steel material having high strength, high ductility, excellent delayed fracture resistance, and drastically improved toughness. According to this technique, the tensile strength is 1660 to 1800 MPa, the elongation (total elongation) is 18.5 to 19.2%, and the impact absorption energy of the V-notch Charpy test at room temperature is 305 to 382 J / cm 2 . The steel material which has is illustrated (refer Example 1 and Example 17 of Table 6 of patent document 2). However, even in this technique, about 1.0% of high-priced Mo is contained as a chemical component composition, and after manufacturing, annealing, tempering, or aging treatment is performed under conditions of a predetermined temperature and time. , A step of processing (warming) at a temperature of 350 ° C. or higher (A C1 −20 ° C.) or lower is required.
As described above, the technologies disclosed so far have not solved the problem of resource saving and energy saving, and a processing apparatus is used in a normal production line to perform warm processing in a relatively low temperature region. For this reason, there is a problem in using it widely industrially.

特開2007−321207号報JP 2007-321207 A 国際公開WO2007/058364International Publication WO2007 / 058364

H.Takechi,JOM.December 2008,p.22H.Takechi, JOM.December 2008, p.22

本発明は、以上の点に鑑みて、従来技術では解決することができない上記各種の問題点、即ち、建造物や橋梁等の構造物、自動車の足回り鋼材、機械用歯車等部品に使用される鋼材として、高強度かつ高延性で、エネルギー吸収能(本願においては、引張強さ(TS)と伸び(El)との積:TS×Elを指標とし、定義するものである。この指標は、例えば、前記非特許文献1に記載されている。)に優れた厚鋼板、形鋼、異形棒鋼、棒鋼及び鋼線等の鋼材を製造するに当たって、高価な合金元素を添加しないで、低炭素鋼の化学成分組成を有する鋼を使用して、製造設備に過大な負荷をかけることなく現有の製造ラインにおいて、多資源・高エネルギーでかつ多工程のために安価かつ所望の鋼材を製造することができないという問題を解決しようとするものである。   In view of the above points, the present invention is used for the above-mentioned various problems that cannot be solved by the prior art, that is, for structures such as buildings and bridges, undercarriage steel materials for automobiles, and mechanical gears. Steel material having high strength, high ductility, and energy absorption capacity (in this application, the product of tensile strength (TS) and elongation (El): TS × El is used as an index. This index is defined as (For example, it is described in the said nonpatent literature 1.) When manufacturing steel materials, such as a thick steel plate, a shaped steel, a deformed steel bar, a steel bar, and a steel wire, which is excellent in low carbon without adding an expensive alloy element Using steel with the chemical composition of steel to produce cheap and desired steel materials for many resources, high energy, and multiple processes in existing production lines without overloading production equipment To solve the problem It is intended to.

本発明は、以上の点に鑑みて、従来技術では解決することができない上記各種の問題点、即ち、建造物や橋梁等の構造物、自動車の足回り鋼材、機械用歯車等部品に使用される鋼材として、高強度かつ高延性で、エネルギー吸収能に優れた厚鋼板、形鋼、異形棒鋼、棒鋼及び鋼線等の鋼材を製造するために、安価なMn及びSiを添加した低C鋼を基盤とした短時間焼鈍処理により、更には、所定条件の圧延のままで焼鈍処理を施さなくてもフェライトとオーステナイトとの生成比率を制御した2相組織を有する鋼材を提供することにより解決しようとするものである。また、組織微細化に効果のあるNbを微量添加することにより、特性を更に高める効果も示すものである。   In view of the above points, the present invention is used for the above-mentioned various problems that cannot be solved by the prior art, that is, for structures such as buildings and bridges, undercarriage steel materials for automobiles, and mechanical gears. Low C steel to which inexpensive Mn and Si are added to produce steel materials such as thick steel plates, shaped steels, deformed steel bars, steel bars and steel wires with high strength, high ductility and excellent energy absorption. By providing a steel material having a two-phase structure in which the formation ratio of ferrite and austenite is controlled without performing annealing while maintaining rolling under predetermined conditions, the steel material having a two-phase structure will be solved. It is what. Moreover, the effect which further improves a characteristic is shown by adding trace amount of Nb which is effective in structure | tissue refinement | miniaturization.

そして製造対象とする鋼材の材料特性値に関しては、機械的性質として、引張強さ(TS)が1100MPa以上で、伸び(El)が25%以上であって、かつ引張強さと伸びとの積(TS×El)が30000MPa・%以上であることを特徴とする強度、延性及びエネルギー吸収能に優れた高強度鋼材を得ることである。一般的には引張強度の上昇につれて延性が低下するのに対して、本発明では全伸びを一定水準以上確保した高強度鋼材を提供することにある。   And regarding the material property value of the steel material to be manufactured, as mechanical properties, the tensile strength (TS) is 1100 MPa or more, the elongation (El) is 25% or more, and the product of tensile strength and elongation ( TS × El) is to obtain a high-strength steel material excellent in strength, ductility and energy absorption capacity, characterized by being 30000 MPa ·% or more. In general, the ductility decreases as the tensile strength increases, whereas the present invention provides a high-strength steel material in which the total elongation is secured to a certain level or more.

本発明者は上記の課題を解決するために、鋼材のミクロ組織形態の新規組合せの相及びその構成比率と材料特性値との関係を鋭意研究した、しかもかかる組織を得るための製造条件を研究した結果、本発明を完成するに至った。本発明は以下の特徴を有する。   In order to solve the above-mentioned problems, the present inventor has eagerly studied the phase of a novel combination of microstructures of steel materials and the relationship between the composition ratio and material property values, and has also studied production conditions for obtaining such a structure. As a result, the present invention has been completed. The present invention has the following features.

第1に、化学成分組成が、質量%で、C :0.05〜0.20%、Si:1.0〜3.5%、Mn:4.5〜5.5%、Al:0.001〜0.080%、P:0.030%以下、S:0.020%以下、N:0.010%以下、Nb:0.01〜0.045であって、残部がFe及び不可避不純物からなり、ミクロ組織は、主相がフェライトであり、第2相が30体積%以上を占めるオーステナイトからなる2相組織である。そして、機械的性質として、引張強さ(TS)が1100MPa以上、伸び(El)が25%以上であって、引張強さと伸びとの積(TS×El)が30000MPa・%以上であることを特徴とする強度、延性及びエネルギー吸収能に優れた高強度鋼材である。   1stly, a chemical component composition is the mass%, C: 0.05-0.20%, Si: 1.0-3.5%, Mn: 4.5-5.5%, Al: 0.00. 001-0.080%, P: 0.030% or less, S: 0.020% or less, N: 0.010% or less, Nb: 0.01-0.045, the balance being Fe and inevitable impurities The microstructure is a two-phase structure composed of austenite in which the main phase is ferrite and the second phase accounts for 30% by volume or more. As mechanical properties, the tensile strength (TS) is 1100 MPa or more, the elongation (El) is 25% or more, and the product of the tensile strength and the elongation (TS × El) is 30000 MPa ·% or more. It is a high-strength steel material with excellent strength, ductility and energy absorption.

第2に、上記第1の発明の強度、延性及びエネルギー吸収能に優れた高強度鋼材において、前記高強度鋼材のミクロ組織は、圧延方向に平行な断面において、前記主相のフェライトの平均結晶粒径が0.9μm以下であって、かつ、前記第2相のオーステナイトの平均結晶粒径が0.6μm以下であることを特徴とするものである。   Second, in the high-strength steel material excellent in strength, ductility, and energy absorption capability of the first invention, the microstructure of the high-strength steel material is an average crystal of ferrite of the main phase in a cross section parallel to the rolling direction. The grain size is 0.9 μm or less, and the average crystal grain size of the second phase austenite is 0.6 μm or less.

第3に、化学成分組成が、質量%で、C :0.05〜0.20%、Si:1.0〜3.5%、Mn:4.5〜5.5%、Al:0.001〜0.080%、P:0.030%以下、S:0.020%以下、N:0.010%以下、Nb:0.01〜0.045であって、残部がFe及び不可避不純物からなり、1200℃で均一に加熱後鍛造により減面率88%以上の加工後、室温まで空冷したもので圧延方向に対する直角方向断面における平均結晶粒径が1.0μm以下であるフェライトと、平均粒子径が0.2μm以下である球状化セメンタイトとからなる微細ミクロ組織を有する鋼材を、650〜700℃の範囲内で2分間以上の加熱を行う焼鈍処理を施すことを特徴とする強度、延性及びエネルギー吸収能に優れた高強度鋼材の製造方法である。  Third, the chemical composition is, in mass%, C: 0.05-0.20%, Si: 1.0-3.5%, Mn: 4.5-5.5%, Al: 0.00. 001-0.080%, P: 0.030% or less, S: 0.020% or less, N: 0.010% or less, Nb: 0.01-0.045, the balance being Fe and inevitable impurities A ferrite having an average crystal grain size in a cross section in a direction perpendicular to the rolling direction of 1.0 μm or less, which is air-cooled to room temperature after being uniformly heated at 1200 ° C. and then processed by forging by forging and then cooled to room temperature. Strength and ductility characterized by subjecting a steel material having a fine microstructure composed of spheroidized cementite having a particle diameter of 0.2 μm or less to an annealing treatment in which heating is performed for 2 minutes or more within a range of 650 to 700 ° C. And high-strength steel with excellent energy absorption It is the law.

本発明の、高価な合金添加元素のない低炭素鋼を使用する従来の強度、延性及びエネルギー吸収能に優れた高強度鋼材の製造方法によれば、本発明鋼材の品質特性に近い水準の特性を備えた鋼材を得るためには、焼鈍処理において30分程度の加熱時間が必要とされていたが、これを著しく短縮して僅か2分程度の加熱時間で目的を達成し、しかも得られる鋼材の品質特性は、その従来の鋼材では得られていない優れた機械的性質を備えた鋼材が得られる。   According to the conventional method for producing a high-strength steel material excellent in strength, ductility and energy absorption capacity using a low-carbon steel free from an expensive alloying element, characteristics close to the quality characteristics of the steel material of the present invention In order to obtain a steel material provided with a steel material, a heating time of about 30 minutes was required in the annealing treatment, but this was significantly shortened to achieve the purpose with a heating time of only about 2 minutes, and the steel material to be obtained Therefore, a steel material having excellent mechanical properties that cannot be obtained by the conventional steel material can be obtained.

実施例1における本願発明に係る高強度鋼材の調製工程の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the preparation process of the high strength steel materials which concern on this invention in Example 1. FIG. 表1に示す本願発明の範囲内の化学成分組成を有する鋼の0.5K/sの徐冷から67K/sの急冷まで各種の冷却速度で1200℃から常温まで冷却中したときの等温変態図(TTT線図)に、マルテンサイト変態点(Ms)及びビッカース硬さ(HV)を併記したグラフ。Isothermal transformation diagram when cooling from 1200 ° C. to room temperature at various cooling rates from 0.5 K / s slow cooling to 67 K / s rapid cooling of steels having chemical composition within the scope of the present invention shown in Table 1. (TTT diagram) A graph in which the martensitic transformation point (Ms) and Vickers hardness (HV) are written together. 実施例1において、温間溝ロール圧延後に得られた棒鋼の微細化されたミクロ組織のフェライト(図3−(1))及び球状化セメンタイト(図3−(2))の形態を示すSEM写真。In Example 1, the SEM photograph which shows the form of the ferrite (FIG. 3- (1)) and the spheroidized cementite (FIG. 3- (2)) of the refined microstructure of the steel bar obtained after the warm groove roll rolling. . 実施例1において、焼鈍及び過時効処理工程後に得られた本願発明に係る棒鋼の微細化されたミクロ組織のフェライト(図4−(1))及びオーステナイト(図4−(2))の形態を示すSEM写真。In Example 1, the ferrite (FIG. 4- (1)) and the austenite (FIG. 4- (2)) of the refined microstructure of the steel bar according to the present invention obtained after the annealing and overaging treatment steps are shown. SEM photograph shown. 実施例1で得られた本発明に係る鋼材の応力−ひずみ曲線。The stress-strain curve of the steel material which concerns on this invention obtained in Example 1. FIG. 比較例1における本願発明範囲外の鋼材の調製工程の概略説明図。The schematic explanatory drawing of the preparation process of the steel materials outside the scope of the present invention in Comparative Example 1. 比較例1において、焼鈍及び過時効処理工程後に得られた本願発明範囲外の鋼材のミクロ組織のフェライト及び残留オーステナイトの形態を示すSEM写真。In the comparative example 1, the SEM photograph which shows the form of the ferrite and residual austenite of the microstructure of the steel material outside the scope of the present invention obtained after the annealing and overaging treatment steps. 比較例1で得られた本発明範囲外の鋼材の応力−ひずみ曲線。The stress-strain curve of the steel material outside the scope of the present invention obtained in Comparative Example 1.

以下、本発明に係る鋼材の化学成分組成、顕微鏡組織及び機械的性質の特徴、並びに当該鋼材の製造方法の特徴について詳細に説明する。   Hereinafter, the chemical composition of the steel material according to the present invention, the characteristics of the microstructure and mechanical properties, and the characteristics of the method for producing the steel material will be described in detail.

<鋼の化学成分組成>
本発明に係る高強度鋼材における化学成分組成の範囲は以下の通りである(以下、成分の%はすべて質量%を示す)。
<Chemical composition of steel>
The range of the chemical component composition in the high-strength steel material according to the present invention is as follows (hereinafter, “% of components” indicates “% by mass”).

C:0.05〜0.20%とする。Cは引張強度を確保するために必要であるが、0.05%未満では本発明に係る鋼材の引張強度を十分に満たさないおそれがあるため、0.05%以上に規定する。一方、0.20%を超えると、鋼材の延性の低下傾向及び溶接性の低下傾向を示すので、上限を0.20%に規定する。  C: Set to 0.05 to 0.20%. C is necessary to ensure the tensile strength, but if it is less than 0.05%, the tensile strength of the steel material according to the present invention may not be sufficiently satisfied, so it is specified to be 0.05% or more. On the other hand, if it exceeds 0.20%, the steel material exhibits a tendency to lower ductility and a tendency to lower weldability, so the upper limit is defined as 0.20%.

Si:1.0〜3.5%とする。Siは、材質を大きく硬質化する置換型固溶体強化元素であり、鋼材の強度を上昇させるのに有効な元素であると共に、本発明の製造工程の焼鈍処理の加熱中におけるフェライト中の固溶Cを排出してオーステナイト中に濃化させてオーステナイトを安定化させる作用も有する。後者の作用を一層十分に発揮させるためには1.0%以上が望ましい。しかしながら、Si含有量が過度に高くなると熱間加工時の加熱中にSiスケールが多く発生しスケール除去に余分のコストがかかったり、スケールによる表面疵が発生し易くなる。そこで、上限を3.5%とする Si: 1.0 to 3.5%. Si is a substitutional solid solution strengthening element that greatly hardens the material, and is an effective element for increasing the strength of the steel material, and is also a solid solution C in ferrite during heating in the annealing process of the manufacturing process of the present invention. Is discharged and concentrated in austenite to stabilize austenite. In order to exhibit the latter effect more fully, 1.0% or more is desirable. However, if the Si content is excessively high, a large amount of Si scale is generated during heating during hot working, and an extra cost is required for scale removal, or surface flaws due to the scale tend to occur. Therefore, the upper limit is 3.5%

Mn:4.5〜5.5%とする。
「本願発明品の第1の製造方法の製造工程中で、最も特徴的な条件である極めて短時間(2分間程度)の加熱による焼鈍処理においては、フェライトとオーステナイトとの2相組織生成の温度領域に属する650〜700℃で加熱して、微細球状化セメンタイト中のCを微細粒フェライトへ著しく大なる速度で拡散させることにより、微細粒オーステナイトを安定して生成させると共に、所定の分率以上のオーステナイトを確保するために、高いMn含有量が効果的作用を発揮する。
Mn: 4.5 to 5.5%.
“In the manufacturing process of the first manufacturing method of the product of the present invention, in the annealing process by heating for the very short time (about 2 minutes), which is the most characteristic condition, the temperature of the two-phase structure formation of ferrite and austenite By heating at 650 to 700 ° C. belonging to the region and diffusing C in the fine spheroidized cementite into the fine-grained ferrite at a remarkably high rate, the fine-grained austenite is stably generated, and a predetermined fraction or more In order to secure the austenite, a high Mn content exhibits an effective action.

これらの作用効果を十分に発揮させるためには、Mn含有量を4.5%以上とすることが望ましい。一方、Mnが高濃度になると、鋼材の低温靭性を劣化させること、及び過度に高濃度になると凝固時の鋼中Mnの偏析が過大となり材料内部の均一性を害する。また、素材の調製工程における熱間加工工程において表面割れが発生し易くなる。よって、上限を5.5%とする。  In order to fully exhibit these effects, it is desirable that the Mn content is 4.5% or more. On the other hand, if the Mn concentration is high, the low temperature toughness of the steel material is deteriorated, and if the Mn concentration is excessively high, segregation of Mn in the steel at the time of solidification becomes excessive and the uniformity inside the material is impaired. Further, surface cracks are likely to occur in the hot working step in the raw material preparation step. Therefore, the upper limit is set to 5.5%.

Al:0.001〜0.080%とする。Alは溶鋼の脱酸のために添加するが、真空溶解炉を使用した場合でも、0.001%未満ではその効果が不十分となる。転炉精錬の場合には、十分な脱酸をするためには、通常、0.010%以上が望ましい。一方、0.080%を超えると、AlNの生成により脆化の問題が起こる可能性がある他に、酸化物系介在物が増加して靭性を損なう可能性があるので、上限を0.080%とする。なお、本願発明においては、鋼の溶製工程としては、通常の工業的量産方法である転炉製鋼法や電気炉製鋼法を前提条件とし、真空精錬をしなくてもよい場合の他に、真空溶解炉をしようする少量生産の場合をも想定して下限値を規定している。   Al: 0.001 to 0.080%. Al is added for deoxidation of molten steel, but even when a vacuum melting furnace is used, the effect is insufficient if it is less than 0.001%. In the case of converter refining, 0.010% or more is usually desirable for sufficient deoxidation. On the other hand, if it exceeds 0.080%, the problem of embrittlement may occur due to the formation of AlN, and oxide inclusions may increase and impair toughness. %. In addition, in the present invention, as a steel melting step, a converter steelmaking method or an electric furnace steelmaking method, which is a normal industrial mass production method, is a precondition, and there is no need for vacuum refining, The lower limit is specified assuming small production using a vacuum melting furnace.

P:0.030%以下とする。Pは、鋼中に不可避的に混入する不純物元素であり、靭性を低下させるので、その含有量の上限を0.030%に制限する。また、P含有量のより一層望ましい上限は、0.015%以下である。下限値は特に限定しないが、コストを考慮し適宜決めればよい。 P: 0.030% or less. P is an impurity element inevitably mixed in the steel and lowers the toughness, so the upper limit of its content is limited to 0.030%. A more desirable upper limit of the P content is 0.015% or less. The lower limit value is not particularly limited, but may be appropriately determined in consideration of cost.

S:0.020%以下とする。Sは、Pと同様に鋼中に不可避的に混入する不純物元素であり、加工性及び靭性を損うので、その含有量の上限を0.020%に制限する。また、Sのより一層望ましい上限は、0.005%である。下限値は特に限定しないが、コストを考慮し適宜決めればよい。  S: Set to 0.020% or less. S is an impurity element that is inevitably mixed in the steel as in the case of P, and since workability and toughness are impaired, the upper limit of the content is limited to 0.020%. A more desirable upper limit of S is 0.005%. The lower limit value is not particularly limited, but may be appropriately determined in consideration of cost.

N:0.010%以下とする。Nは、鋼中に不可避的に含有される元素であり、積極的に低減するためには脱ガス精錬等を必要とするので、製造コスト高を招く。また、Nは電気炉製鋼法による場合は特に原料中のN含有量にも依存するので、特に下限は規定しない。一方、N含有量が0.0080%を超えると、窒化物が増加して靭性を損うので、上限を0.0100%とする。  N: 0.010% or less. N is an element inevitably contained in the steel, and degassing refining or the like is required to actively reduce it, resulting in high manufacturing costs. Further, since N depends on the N content in the raw material particularly when the electric furnace steelmaking method is used, no lower limit is particularly defined. On the other hand, if the N content exceeds 0.0080%, nitrides increase and the toughness is impaired, so the upper limit is made 0.0100%.

Nb:0.045%以下とする。Nbは、鋼中に炭化物を微細分散させて組織を微細化させる効果がある。これはNbが鋼中性分のCと反応してNbCを生成し、この微小析出物が高温のγ域におけるγ粒の成長を粒界ピニングにより抑えることによるものである。0.045%以上入れると鋼中の炭素を消費してしまい、オーステナイトの体積分率を下げ、鋼材の特性を劣化させる危険がある。  Nb: 0.045% or less. Nb has the effect of finely dispersing the carbide in the steel to refine the structure. This is because Nb reacts with C in the steel to produce NbC, and this fine precipitate suppresses the growth of γ grains in the high temperature γ region by grain boundary pinning. If 0.045% or more is added, carbon in the steel is consumed, and there is a risk of lowering the volume fraction of austenite and degrading the properties of the steel material.

<ミクロ組織と機械的特性値>
次に、本発明に係る高強度鋼材のミクロ組織について説明する。
本発明に係る高強度鋼材のミクロ組織は、主相がフェライトであり、第2相がオーステナイト(γ)からなる2相組織であり、その際、オーステナイト(γ)の分率が30体積%以上を占めることである。第2相にはオーステナイト(γ)の他には、実質的にポリゴナルフェライト、準ポリゴナルフェライト、ベイナイト、ベイニティックフェライト、焼戻しマルテンサイト、パーライト及びセメンタイトの内のいずれをも含んでいない組織である。実質的に含んでいないとは、倍率10000倍のSEM及びTEMによる観察でもその存在が確認されないことを意味する。かかるミクロ組織を有することは、所要の機械的特性値を満たすための必要条件の一つであり、そのためには上述した鋼の化学成分組成を満たすことを前提条件とするものである。
<Microstructure and mechanical properties>
Next, the microstructure of the high strength steel material according to the present invention will be described.
The microstructure of the high-strength steel material according to the present invention is a two-phase structure in which the main phase is ferrite and the second phase is composed of austenite (γ R ). At that time, the fraction of austenite (γ R ) is 30 volumes. Occupy more than 50%. In addition to austenite (γ R ), the second phase substantially does not contain any of polygonal ferrite, quasi-polygonal ferrite, bainite, bainitic ferrite, tempered martensite, pearlite and cementite. It is an organization. The phrase “substantially free” means that the presence is not confirmed even by observation with a SEM and TEM at a magnification of 10,000 times. Having such a microstructure is one of the necessary conditions for satisfying the required mechanical property values. For this purpose, it is premised on satisfying the chemical composition of the steel described above.

本発明に係る高強度鋼材は、その機械的特性値として、下記(1)から(3)式:
の全てを満たすものである。
The high-strength steel material according to the present invention has the following mechanical properties (1) to (3):
It satisfies all of the above.

上記化学成分組成を有する鋼材であって、かかる機械的特性値を備えた鋼材は、これまで見当たらないのである。 A steel material having the above-described chemical component composition and having such a mechanical characteristic value has not been found so far.

上記(1)から(3)式の機械的特性値を満たすためには、上述した化学成分組成及びミクロ組織に加えて、高強度鋼材のミクロ組織は、主相がフェライトであって第2相が30体積%以上の2相組織であって、圧延方向に平行な断面において、フェライトの平均結晶粒径が0.9μm以下であって、オーステナイトの平均結晶粒径が0.6μm以下であることが望ましい。 In order to satisfy the mechanical characteristic values of the above formulas (1) to (3), in addition to the chemical composition and microstructure described above, the microstructure of the high-strength steel material has a main phase of ferrite and a second phase. Is a two-phase structure of 30 volume% or more, and in a cross section parallel to the rolling direction, the average crystal grain size of ferrite is 0.9 μm or less, and the average crystal grain size of austenite is 0.6 μm or less. Is desirable.

<製造方法>
次に、本発明の鋼材を得るための好ましい製造方法を説明する。
(1)素材(0.1%C−2%Si−5%Mn鋼)の熱間塑性加工条件について
上記で得られた素材の熱間における塑性加工方式としては、工業的に行われている厚鋼板製造ラインにおける平ロール圧延、極厚鋼板製造ラインにおける鍛造、棒鋼又は鋼線材製造ラインにおける溝ロール圧延、及び条鋼又は形鋼製造ラインにおける形ロール圧延の内のいずれであってもよい。これらいずれかの加工方式により、素材に対して所望の塑性相当ひずみを与える。
<Manufacturing method>
Next, the preferable manufacturing method for obtaining the steel material of this invention is demonstrated.
(1) About the hot plastic working conditions of the raw material (0.1% C-2% Si-5% Mn steel) As the hot plastic working method of the raw material obtained above, it is industrially performed. Any of flat roll rolling in a thick steel plate production line, forging in a very thick steel plate production line, groove roll rolling in a bar or steel wire production line, and shape roll rolling in a steel bar or shape steel production line may be used. Any one of these processing methods gives a desired plastic equivalent strain to the material.

上記の加工方式により、素材に導入される圧縮ひずみとせん断ひずみの入り方は異なる。そこで、全応力成分や全ひずみ成分の量や分布に関して理論的に塑性ひずみを算出する方法として、有限要素法(finite element methode:FEM)がある。塑性ひずみの計算については、参考文献(春海佳三郎、他「有限要素法入門」(共立出版(株):1990年3月15日)に詳述されている。しかしここでは、工業的に簡便に用いることができる塑性相当ひずみを用いてもよい。有限要素法計算で得られる塑性ひずみを用いれば一層望ましいが、ここでは工業的に簡便な、下記式(4)で定義される塑性相当ひずみ(e)を塑性ひずみの指標とする。
ただし、Rは減面率(%)であり、素材のC方向断面積をSとし、熱間加工後のC方向断面積をSとすると、下記式(5)で表される。
Depending on the above processing method, the way of entering the compressive strain and shear strain introduced into the material is different. Therefore, there is a finite element method (FEM) as a method for theoretically calculating the plastic strain with respect to the amount and distribution of the total stress component and the total strain component. The calculation of plastic strain is described in detail in the reference (Kasaburo Harumi, et al. “Introduction to Finite Element Method” (Kyoritsu Shuppan Co., Ltd .: March 15, 1990). The plastic equivalent strain that can be used in the calculation may be used, but it is more desirable to use the plastic strain obtained by the finite element method calculation, but here the plastic equivalent strain defined by the following formula (4), which is industrially simple, is used. Let (e) be an index of plastic strain.
However, R is a surface reduction rate (%), and when the C direction sectional area of the material is S 0 and the C direction sectional area after hot working is S, it is expressed by the following formula (5).

後述する実施例1及び実施例2の試験において、前記化学成分組成範囲内にある0.1%C−2%Si−5%Mnの95mm角の鋼塊(素材)を1200℃で加熱後、38mm角まで鍛造したときに得られたミクロ組織は、主相が95体積%以上を占めるラスマルテンサイトで長径が7.0μm以下で短径が1.0μm以下であり、第2相が5体積%未満の残留オーステナイト(γ)でL方向断面が5.0μm、C方向断面が0.2μmという微細粒組織であった。かかる微細粒組織は塑性相当ひずみ(e)がある程度大きいときに得られる。実施例1及び実施例2での結果より、e≧1.8とするのが望ましい。 In the test of Example 1 and Example 2 to be described later, after heating a steel ingot (raw material) of 0.1% C-2% Si-5% Mn of 95% square within the chemical component composition range at 1200 ° C, The microstructure obtained when forging to 38 mm square is lath martensite in which the main phase accounts for 95% by volume or more, the major axis is 7.0 μm or less, the minor axis is 1.0 μm or less, and the second phase is 5 volumes. Less than% retained austenite (γ R ), the L direction cross section was 5.0 μm, and the C direction cross section was 0.2 μm. Such a fine grain structure is obtained when the plastic equivalent strain (e) is somewhat large. From the results in Example 1 and Example 2, it is desirable that e ≧ 1.8.

(2)請求項3に対応する製造方法について
この製造方法は、上記(1)項で得られた95体積%以上を占めるラスマルテンサイトの主相と5体積%未満の残留オーステナイトの第2相とからなる鋼材料に、臨界ひずみより大きなひずみを導入することにより、加工と同時に動的な回復ないしは再結晶を起こさせ、相変態によらず結晶粒を微細化する。かくしてC方向断面で1.0μm以下の微細フェライトと、粒径が0.2μm以下の微細球状化セメンタイトとを有する2相組織鋼を調製する。その際の加工温度は、650〜700℃の範囲が工業上望ましい。650℃よりも低いと加工設備に対する負荷が次第に増加する。一方、700℃よりも高くなるにつれて、粒成長により微細化にとって次第に不利となるからである。
こうして得られた微細フェライトと微粒セメンタイトとからなる鋼を、650〜700℃の温度範囲で短時間加熱による焼鈍処理を施す。加熱時間は僅か2分間以上であればよい。それはフェライト及び球状化セメンタイトがいずれも微細であるために、セメンタイト中のCが高速でフェライトへ拡散してオーステナイトを生成させるからである。しかも生成するオーステナイトは微細であって30体積%以上生成し、フェライトも微細であるために、所望のTS及びElが得られ、TS×Elも高水準となる。
(2) Production method corresponding to claim 3 This production method comprises a main phase of lath martensite occupying 95% by volume or more obtained in the above item (1) and a second phase of residual austenite of less than 5% by volume. By introducing a strain larger than the critical strain into the steel material comprising the following, dynamic recovery or recrystallization occurs simultaneously with processing, and the crystal grains are refined regardless of the phase transformation. Thus, a dual phase steel having a fine ferrite of 1.0 μm or less in the cross section in the C direction and a fine spheroidized cementite having a particle size of 0.2 μm or less is prepared. The processing temperature in that case is industrially desirable in the range of 650 to 700 ° C. When the temperature is lower than 650 ° C., the load on the processing equipment gradually increases. On the other hand, as the temperature becomes higher than 700 ° C., the grain growth gradually becomes disadvantageous for miniaturization.
The steel composed of the fine ferrite and fine cementite thus obtained is subjected to an annealing treatment by heating for a short time in a temperature range of 650 to 700 ° C. The heating time may be only 2 minutes or more. This is because since both ferrite and spheroidized cementite are fine, C in the cementite diffuses into the ferrite at a high speed to generate austenite. Moreover, the austenite to be produced is fine and is produced in an amount of 30% by volume or more, and the ferrite is also fine, so that desired TS and El can be obtained, and TS × El is also at a high level.

以下、実施例により本発明を更に具体的に説明する。なお、本発明は、下記の実施例によって制限されず、前記及び後記の趣旨に適合し得る範囲で適切な改変を行って実施することも可能であり、これらはいずれも本発明の技術的範囲内に含まれる。   Hereinafter, the present invention will be described more specifically with reference to examples. It should be noted that the present invention is not limited by the following examples, and can be carried out by making appropriate modifications within a range that can be adapted to the above and the gist of the following, all of which are within the technical scope of the present invention. Contained within.

<実施例1>
実施例1における本願発明に係る高強度鋼材の調製方法を説明する概略調製工程を図1に示す。同図に基づき以下、詳細に説明する。
<Example 1>
FIG. 1 shows a schematic preparation process for explaining a method for preparing a high-strength steel material according to the present invention in Example 1. Details will be described below with reference to FIG.

(1)実施例1の第1工程:素材を熱間鍛造
電解鉄、電解Mn及び金属Siを溶解用主原料として使用し、高周波真空誘導溶解炉を用いて溶製し、縦95mm×横95mm×高さ450mmの鋼塊に鋳造して、これを素材とした。素材の化学成分組成を表1に示す。
(1) First step of Example 1: Using hot forged electrolytic iron, electrolytic Mn and metal Si as main raw materials for melting and melting using a high frequency vacuum induction melting furnace, length 95 mm × width 95 mm X A steel ingot having a height of 450 mm was cast as a raw material. Table 1 shows the chemical composition of the material.

上記95mm角の素材(鋼塊)を加熱昇温し、1200℃で1時間加熱保持した後、表2に鍛造スケジュールを示すように、上記の縦95mm×横95mmの角形状断面の素材に対して、途中で再加熱することなく縦と横とを交互に1回ずつセットのプレス鍛造を6セット行ない、縦38mm×横38mmの角形状断面(38mm角という。以降、これに準じた表記をすることがある)まで鍛造し、そして最後に材料全体を直線状に矯正して、38mm角の棒材とした。この熱間鍛造において、95mm角から38mm角に至る減面率(R)は、R=84.0%であり、塑性相当ひずみ(e)は、e=1.83であり、鍛造終了温度は680℃であった。その後直ちに空冷し、室温まで冷却して、棒材とした。
ここで、減面率(R)及び塑性相当ひずみ(e)は、下記式(6)及び(7)式で算出した。Sは素材の圧延に垂直方向(C方向)の断面積であり、Sは熱間鍛造後の圧延に垂直方向(C方向)の断面積である。
この熱間鍛造により得られた38mm角の棒材のミクロ組織は、主相が95体積%以上を占めるラスマルテンサイトで、第2相が5体積%未満の残留オーステナイト(γ)からなる2相組織であって、
ラスマルテンサイトの平均結晶粒径は、長径が7.0μm以下で短径が1.0μm以下であり、残留オーステナイト(γ)の平均結晶粒径は、長手方向断面(L断面)において5.0μmであり、長手直角方向断面(C断面)において0.2μmであった。
After heating and heating the 95 mm square material (steel ingot) for 1 hour at 1200 ° C., as shown in Table 2 for the forging schedule, Then, six sets of press forging were alternately performed one by one in the vertical and horizontal directions without reheating on the way, and a square cross section of 38 mm long x 38 mm wide (referred to as 38 mm square. And finally the whole material was straightened to obtain a 38 mm square bar. In this hot forging, the area reduction ratio (R) from 95 mm square to 38 mm square is R = 84.0%, the plastic equivalent strain (e) is e = 1.83, and the forging end temperature is It was 680 ° C. Immediately after that, it was air-cooled, cooled to room temperature, and used as a bar.
Here, the area reduction ratio (R) and the plastic equivalent strain (e) were calculated by the following formulas (6) and (7). S 0 is a cross-sectional area in the direction perpendicular to the rolling of the material (C direction), and S is a cross-sectional area in the direction perpendicular to the rolling after hot forging (C direction).
The microstructure of the 38 mm square bar material obtained by this hot forging is a lath martensite in which the main phase occupies 95% by volume or more, and the second phase consists of residual austenite (γ R ) of less than 5% by volume. Phase organization,
The average crystal grain size of lath martensite is 7.0 μm or less in major axis and 1.0 μm or less in minor axis, and the average crystal grain size of retained austenite (γ R ) is 5. It was 0 μm and was 0.2 μm in the longitudinal cross section (C cross section).

なお、鍛造終了後に空冷した場合でも上記のようにマルテンサイトが95体積%以上形成されたのは、表1の成分組成のように、Mnが高いことが主原因である。図2に、表1の成分を有する試験片を用いて、0.5K/sの徐冷から67K/sの急冷まで各種の冷却速度で1200℃から常温まで冷却したときの相変態を、フォーマスター試験で熱膨張測定により作成した連続冷却変態図(CCT線図)を示す。図2から冷却速度によらず、Ms点が約340℃であることが分かる。これは、等温変態図(TTT線図)のノーズに達することなく、マルテンサイト変態点(Ms)まで温度低下したために、ほぼマルテンサイト相のみが生成したものと考えられる。
なお、図2には、試験荷重10kgのビッカース試験により、2相組織全体の平均硬さの測定値を併記した。
In addition, even when air-cooled after completion of forging, the reason why martensite is formed by 95% by volume or more as described above is mainly due to high Mn as in the component composition of Table 1. FIG. 2 shows the phase transformation when cooling from 1200 ° C. to room temperature at various cooling rates from 0.5 K / s slow cooling to 67 K / s rapid cooling using the test pieces having the components shown in Table 1. The continuous cooling transformation diagram (CCT diagram) created by thermal expansion measurement in the master test is shown. It can be seen from FIG. 2 that the Ms point is about 340 ° C. regardless of the cooling rate. This is probably because only the martensite phase was generated because the temperature dropped to the martensitic transformation point (Ms) without reaching the nose of the isothermal transformation diagram (TTT diagram).
In FIG. 2, the measured value of the average hardness of the entire two-phase structure is also shown by the Vickers test with a test load of 10 kg.

(2) 実施例1の第2工程:38mm角棒材を温間溝ロール圧延
熱間鍛造で得られた38mm角の棒材を、温間溝ロール圧延により、14.3mm角の棒鋼とした。圧延条件は、表3に示すように材料を650℃で1時間加熱保持した後、650−680℃の温間温度範囲で、合計11パスの溝ロール圧延により、14.3mm角とし、最後に材料全体を直線状に矯正するための矯正ロールを行って、14.3mm角の棒鋼に仕上げた。この温間における溝ロール圧延工程においては、途中で650℃での2分間の加熱を表3に示す通り3回行っている。ここでの累積塑性相当ひずみ(e)は2.06である。
なお、実操業の通常ラインにおいては、上記パススケジュールで圧延をする場合、最初に650℃に材料を加熱後に連続圧延工程に入れば、圧延による発熱作用が加わり、再加熱無しで650−680℃程度で圧延をすることができると考えられる。上記の通り14.3mm角に仕上げた棒鋼を直ちに水冷して室温まで冷却した。圧延終了時の温度は675℃であった。
(2) Second step of Example 1: A 38 mm square bar material obtained by hot forging of a 38 mm square bar material was formed into a 14.3 mm square steel bar by warm groove roll rolling. . As shown in Table 3, after rolling and holding the material at 650 ° C. for 1 hour as shown in Table 3, the rolling temperature was set to 14.3 mm square by groove roll rolling for a total of 11 passes in the warm temperature range of 650-680 ° C. A straightening roll for straightening the entire material was performed to finish a 14.3 mm square steel bar. In the warm groove roll rolling step, heating at 650 ° C. for 2 minutes is performed three times as shown in Table 3 in the middle. The cumulative plastic equivalent strain (e) here is 2.06.
In the normal line of actual operation, when rolling by the above pass schedule, if the material is first heated to 650 ° C. and then entered into a continuous rolling process, the exothermic action due to rolling is added, and 650-680 ° C. without reheating. It is thought that it can be rolled at a degree. The steel bar finished to 14.3 mm square as described above was immediately cooled with water and cooled to room temperature. The temperature at the end of rolling was 675 ° C.

上記温間温度域における溝ロール圧延により得られた棒鋼のミクロ組織は、フェライトとセメンタイトとからなっており、フェライトの平均結晶粒径は、圧延方向に対する直角方向断面において0.64μmであり、一方、セメンタイトの平均粒子径は、圧延方向に対する直角方向断面において0.11μm以下の球状化セメンタイトとなっていた。圧延直角方向(C方向)断面におけるこれらのミクロ組織のSEM写真を、 図3−(1)、(2)に例示する。   The microstructure of the steel bar obtained by groove rolling in the warm temperature range is composed of ferrite and cementite, and the average crystal grain size of ferrite is 0.64 μm in a cross section perpendicular to the rolling direction, The average particle diameter of cementite was spheroidized cementite of 0.11 μm or less in a cross section perpendicular to the rolling direction. SEM photographs of these microstructures in the cross section perpendicular to the rolling direction (C direction) are illustrated in FIGS.

なお、同図には、当該断面上で測定したフェライト又はセメンタイトの各粒子の輪郭線とそれにより囲まれた面積(単位はμm)を記入し、当該面積の平方根を粒径とみなし、各10個の粒径の平均値をフェライトの平均結晶粒径又は球状化セメンタイトの直径とした。
温間溝ロール圧延により、このような微細組織を有する棒鋼が得られた理由は、次のように考えられている(例えば、特開2005−194550の段落番号0103を参照)。
In this figure, the outline of each particle of ferrite or cementite measured on the cross section and the area surrounded by it (unit: μm 2 ) are entered, the square root of the area is regarded as the particle size, The average value of the 10 grain sizes was defined as the average grain size of ferrite or the diameter of spheroidized cementite.
The reason why a steel bar having such a microstructure is obtained by warm groove roll rolling is considered as follows (for example, see paragraph number 0103 of JP-A-2005-194550).

上記圧延温度において、臨界ひずみよりも大きなひずみが材料に導入された結果、このひずみによる結晶粒のミクロ的な局所方位差が微細結晶粒の発生起点となり、圧延加工中あるいは加工後に起きる回復過程において、粒内の転位密度が低下すると同時に結晶粒界が形成されて、微細粒組織が形成されたからである。即ち、加工と同時に動的な回復ないしは再結晶が起こり、相変態によらず結晶粒が微細化されたからである。ただし、加工温度が高過ぎると、不連続再結晶あるいは通常の粒成長により、結晶粒が粗大化し、逆に、加工温度が低過ぎると、所定の臨界ひずみよりも大きなひずみを与えても、回復が十分に起こらないために転位密度の高い加工組織が残存してしまう。   At the above rolling temperature, a strain larger than the critical strain is introduced into the material. As a result, the microscopic local orientation difference of the crystal grain due to this strain becomes the starting point of the fine crystal grain, and in the recovery process that occurs during or after the rolling process. This is because the grain boundary is formed at the same time as the dislocation density in the grains is lowered, and a fine grain structure is formed. That is, dynamic recovery or recrystallization occurs simultaneously with the processing, and the crystal grains are refined regardless of the phase transformation. However, if the processing temperature is too high, the crystal grains become coarse due to discontinuous recrystallization or normal grain growth. Conversely, if the processing temperature is too low, recovery occurs even if a strain greater than the predetermined critical strain is applied. Therefore, a processed structure with a high dislocation density remains.

(3) 実施例1の第3工程:温間溝ロール圧延材を焼鈍処理+過時効処理
上記製造工程2の温間溝ロール圧延で得られた14.3mm角の棒鋼に対して、本発明に係る製造方法における最大の特徴である短時間加熱による焼鈍処理を、具体的には675℃で2分間加熱するという短時間の加熱処理を施した後、Heガスで室温まで冷却した。次いで、これに更に400℃で5分間の加熱処理を施した後、Heガスで室温まで冷却した。
(3) Third step of Example 1: Annealing treatment + over-aging treatment of a warm groove roll rolled material The present invention is applied to a 14.3 mm square steel bar obtained by the warm groove roll rolling of the above production step 2. An annealing process by short-time heating, which is the greatest feature in the manufacturing method according to the above, was performed, specifically, a short-time heat treatment of heating at 675 ° C. for 2 minutes, and then cooled to room temperature with He gas. Next, this was further heated at 400 ° C. for 5 minutes, and then cooled to room temperature with He gas.

こうして得られた棒鋼について、ミクロ組織の観察及び機械的性質を試験した。試験結果は次の通りである。   The steel bar thus obtained was examined for microstructure observation and mechanical properties. The test results are as follows.

(a)ミクロ組織の観察結果
棒鋼の長手方向断面(=前記温間溝ロール圧延時の圧延方向断面、L方向断面)のSEM観察結果によれば、フェライトを主相とし、残留オーステナイト(γ)を第2相とする2相組織である。しかも当該残留オーステナイト(γ)の分率は、X線回折試験により30体積%以上を占めていることがわかった。そして、主相フェライトの平均粒径は0.85μmの微細粒となっており、また残留オーステナイト(γ)の平均粒径は0.56μmの微細粒となっていた。
これらのミクロ組織のL方向断面におけるSEM写真を、図4−(1)、−(2)に例示する。ただし、図4には、当該断面上で測定したフェライト又は残留オーステナイト(γ)の各粒子の輪郭線とそれにより囲まれた面積(単位はμm)を記入し、当該面積の平方根を粒径とみなし、10個の粒径の平均値をフェライト又は残留オーステナイト(γ)の平均結晶粒径とした。
(A) Microstructure observation result According to the SEM observation result of the longitudinal cross section of the steel bar (= the cross section in the rolling direction at the time of the warm groove roll rolling, the cross section in the L direction), the main phase is ferrite and the retained austenite (γ R ) Is the second phase. Moreover, the fraction of the retained austenite (γ R ) was found to occupy 30% by volume or more by the X-ray diffraction test. The average grain size of the main phase ferrite was 0.85 μm fine grains, and the average grain size of retained austenite (γ R ) was 0.56 μm fine grains.
The SEM photograph in the L direction cross section of these micro structures is illustrated to FIG. 4- (1) and-(2). However, in FIG. 4, the outline of each particle of ferrite or retained austenite (γ R ) measured on the cross section and the area surrounded by it (unit: μm 2 ) are entered, and the square root of the area is defined as the grain. The average value of the 10 grain sizes was regarded as the average crystal grain size of ferrite or retained austenite (γ R ).

なお、本発明者は更に追加試験を行った結果、上記675℃で2分間の加熱をした焼鈍処理までを施せば、その後更に上記の400℃で5分間の加熱処理を施した場合と施さない場合とを比較することにより、両者間のミクロ組織の形態には実質的に差が認められないことを確認した。
更に、上記条件による過時効処理は、本願の請求項3に係る製造方法の発明の必須要件ではないが、常温又はその付近での侵入型元素(水素等)の移動に起因する経時的な機械的性質の変化や、遅れ破壊の発生を防止する観点から、実施することがより一層望ましい。
In addition, as a result of further testing, the present inventor conducted the annealing process that was heated at 675 ° C. for 2 minutes, and then performed the above heat treatment at 400 ° C. for 5 minutes and not. By comparing the cases, it was confirmed that substantially no difference was observed in the morphology of the microstructure between the two.
Further, the overaging treatment under the above conditions is not an essential requirement of the invention of the manufacturing method according to claim 3 of the present application, but the machine over time due to the movement of interstitial elements (hydrogen etc.) at or near normal temperature. From the viewpoint of preventing changes in mechanical properties and the occurrence of delayed fracture, it is even more desirable.

上記のような特徴あるミクロ組織が形成されたメカニズムは次の通りである。この焼鈍処理においては、棒鋼を上記の通り予めフェライトが微細粒となっており、セメンタイトも微細に球状化された組織に制御しておいたために、Ac〜Acの範囲内に属する675℃のフェライトとオーステナイトとの2相組織生成の温度領域にいて、セメンタイト中Cのフェライトへの拡散速度が著しく大きい状態でオーステナイトを生成させることができた。しかも生成したオーステナイトを微細粒状態で且つ安定化が可能となった。その結果、加熱保持時間が2分間という極めて短時間の焼鈍処理により、オーステナイト量を30体積%以上確保することが可能となった。同時に、オーステナイトの平均粒径を0.56μmの微細粒とし、かつ、フェライトの平均粒径を0.85μmの微細粒を確保することができたのである。 The mechanism by which the above characteristic microstructure is formed is as follows. In this annealing treatment, since the steel bar was previously controlled to have a fine grained ferrite and the cementite was also finely spheroidized as described above, 675 ° C. belonging to the range of Ac 1 to Ac 3. The austenite was able to be generated in a temperature range where the two-phase structure of ferrite and austenite was formed and the diffusion rate of C in the cementite into the ferrite was remarkably large. Moreover, the produced austenite can be stabilized in a fine grain state. As a result, it became possible to secure an austenite amount of 30% by volume or more by an extremely short annealing process with a heating and holding time of 2 minutes. At the same time, it was possible to secure fine grains having an average austenite grain size of 0.56 μm and ferrite having an average grain diameter of 0.85 μm.

(b)機械的性質の試験結果
引張試験結果によれば、引張強さ(TS)=1142MPa、伸び(El)=27.2%であり、引張強さ(TS)×伸び(El)=31062MPa・%と優れていた。また、絞り(RA)は48.7%と優れていた。
図5に、実施例1の鋼材の応力−ひずみ曲線を示す。なお、引張試験は、L方向の丸棒引張試験片(試験部分の平行部直径が3.5mmφ、長さが24.5mm)で行った。
(B) Test results of mechanical properties According to the tensile test results, tensile strength (TS) = 1142 MPa, elongation (El) = 27.2%, tensile strength (TS) × elongation (El) = 31062 MPa・ It was excellent at%. The aperture (RA) was excellent at 48.7%.
In FIG. 5, the stress-strain curve of the steel material of Example 1 is shown. The tensile test was performed with a round bar tensile test piece in the L direction (the diameter of the parallel part of the test part was 3.5 mmφ and the length was 24.5 mm).

以上の実施例1で得られた確性試験結果と、それが得られるまでの途中工程における材料の確性試験結果とを併せて、表4にまとめた。   Table 4 summarizes the accuracy test results obtained in Example 1 above and the material reliability test results in the intermediate process until it is obtained.

次に、本発明の範囲外である比較例1について述べる。この比較例1は、前記実施例1では行った熱間鍛造後の温間溝ロール圧延による組織の微細化を行わずに、実施例1と同じ条件での短時間焼鈍及び過時効処理を行った場合である。
<比較例1>
比較例1における鋼材の概略調製工程を、図6に示す。
Next, Comparative Example 1 that is outside the scope of the present invention will be described. In Comparative Example 1, short-time annealing and overaging treatment were performed under the same conditions as in Example 1 without refining the structure by warm groove roll rolling after hot forging performed in Example 1. This is the case.
<Comparative Example 1>
The schematic preparation process of the steel material in Comparative Example 1 is shown in FIG.

(1)比較例1の第1工程:素材の熱間鍛造
電解鉄、電解Mn及び金属Siを溶解用主原料として使用し、高周波真空誘導溶解炉を用いて、表5に示す化学成分組成の溶鋼(単位:質量%)を溶製した。この化学成分組成は、実施例1のそれとほぼ同じである。これを縦95mm×横95mm×高さ450mmの鋼塊に鋳造して、これを素材とした。
(1) First step of Comparative Example 1: Hot forging of raw materials Using electrolytic iron, electrolytic Mn and metal Si as main raw materials for melting, using a high-frequency vacuum induction melting furnace, the chemical composition composition shown in Table 5 Molten steel (unit: mass%) was melted. This chemical composition is almost the same as that of Example 1. This was cast into a steel ingot having a length of 95 mm × width of 95 mm × height of 450 mm, and this was used as a material.

上記素材を、実施例1における熱間鍛造条件と同一条件で実施例1と同じく38mm角に鍛造した。即ち、95mm角の素材を表2に示した鍛造スケジュールにより1200℃で1時間加熱保持した後、縦と横とを交互に1回ずつのプレス鍛造を6セット行って、38mm角に鍛造した。この間途中で再加熱することなく鍛造をした。そして最後に材料全体の形状を直線状に矯正して、38mm角の棒材とした。上記鍛造において、95mm角から38mm角に至る減面率(R)は、R=84.0%であり、塑性相当ひずみ(e)は、e=1.83であり、鍛造終了温度は688℃であった。この鍛造終了温度は実施例1の680℃とほぼ同じ温度であった。その後直ちに空冷し、室温まで冷却して、棒材とした。   The material was forged into a 38 mm square as in Example 1 under the same conditions as the hot forging conditions in Example 1. That is, a 95 mm square material was heated and held at 1200 ° C. for 1 hour according to the forging schedule shown in Table 2, and then six sets of press forging were performed alternately in the vertical and horizontal directions, and forged to 38 mm square. During this time, forging was performed without reheating in the middle. Finally, the shape of the entire material was straightened to obtain a 38 mm square bar. In the forging, the area reduction ratio (R) from 95 mm square to 38 mm square is R = 84.0%, the plastic equivalent strain (e) is e = 1.83, and the forging end temperature is 688 ° C. Met. The forging end temperature was almost the same as 680 ° C. in Example 1. Immediately after that, it was air-cooled, cooled to room temperature, and used as a bar.

この熱間鍛造により得られた38mm角の棒材のミクロ組織は、実施例1の熱間鍛造により得られた38mm角の棒材と実質的に同じであった。即ち、主相が95体積%以上を占めるラスマルテンサイトで、第2相が5体積%未満の残留オーステナイト(γ)からなる2相組織であって、ラスマルテンサイトの平均結晶粒径は、長径が7.0μm以下で短径が1.0μm以下であり、残留オーステナイト(γ)の平均結晶粒径は、長手方向断面(L断面)において5.0μmであり、長手直角方向断面(C断面)において0.2μmであった。 The microstructure of the 38 mm square bar obtained by this hot forging was substantially the same as the 38 mm square bar obtained by the hot forging of Example 1. That is, the main phase is a lath martensite occupying 95% by volume or more, and the second phase is a two-phase structure composed of residual austenite (γ R ) of less than 5% by volume, and the average crystal grain size of the lath martensite is The major axis is 7.0 μm or less and the minor axis is 1.0 μm or less, and the average crystal grain size of retained austenite (γ R ) is 5.0 μm in the longitudinal section (L section). (Cross section) was 0.2 μm.

(2)比較例1の第2工程:38mm角の熱間鍛造材を焼鈍処理+過時効処理
次に、上記熱間鍛造で得られた38mm角の棒材に対して、実施例1と同じ条件の焼鈍処理及び過時効処理を施した。具体的には675℃で2分間加熱するという短時間の加熱処理を施した後、Heガスで室温まで冷却した。次いで、これに400℃で5分間の加熱処理による過時効処理を施した後、Heガスで室温まで冷却した。
こうして得られた棒鋼について、ミクロ組織の観察及び機械的性質を試験した。試験結果は次の通りである。
(2) Second step of comparative example 1: annealing for 38 mm square hot forged material + overaging treatment Next, for the 38 mm square bar material obtained by the above hot forging, the same as in Example 1 Conditioned annealing treatment and overaging treatment were performed. Specifically, after a short heat treatment of heating at 675 ° C. for 2 minutes, the mixture was cooled to room temperature with He gas. Next, this was over-aged by heat treatment at 400 ° C. for 5 minutes, and then cooled to room temperature with He gas.
The steel bar thus obtained was examined for microstructure observation and mechanical properties. The test results are as follows.

(a)ミクロ組織の観察結果
棒鋼の長手方向断面(=前記温間溝ロール圧延時の圧延方向断面、L方向断面)のSEM観察結果によれば、フェライト(α)を主相とし、残留オーステナイト(γ)を第2相とする2相組織である。
当該残留オーステナイト(γ)の分率は、X線回折試験により20体積%以上を占めていることがわかった。そして、主相フェライト(α)の平均粒径は5.0μmであり、また残留オーステナイト(γ)の平均粒径は0.2μmであった。
これらのミクロ組織のL方向断面におけるSEM写真を、図7に例示する。
(A) Microstructure observation results According to SEM observation results of the longitudinal cross section of the steel bar (= the cross section in the rolling direction at the time of the warm groove roll rolling, the cross section in the L direction), the retained austenite is mainly composed of ferrite (α). It is a two-phase structure having (γ R ) as the second phase.
The fraction of retained austenite (γ R ) was found to occupy 20% by volume or more by an X-ray diffraction test. The average particle diameter of the main phase ferrite (α) was 5.0 μm, and the average particle diameter of retained austenite (γ R ) was 0.2 μm.
The SEM photograph in the L direction cross section of these micro structures is illustrated in FIG.

(b)機械的性質の試験結果
一方、引張試験結果によれば、
引張強さ(TS)=1160MPa、伸び(El)=23.7%であり、引張強さ(TS)×伸び(El)=27492MPa・%
であった。
図8には、比較例1の鋼材の応力−ひずみ曲線を示す。なお、引張試験は、L方向の丸棒引張試験片(試験部分の平行部直径が3.5mmΦ、長さが24.5mm)で行った。
(B) Test results of mechanical properties On the other hand, according to the tensile test results,
Tensile strength (TS) = 1160 MPa, Elongation (El) = 23.7%, Tensile strength (TS) × Elongation (El) = 27492 MPa ·%
Met.
In FIG. 8, the stress-strain curve of the steel material of the comparative example 1 is shown. The tensile test was performed with a round bar tensile test piece in the L direction (the diameter of the parallel part of the test part is 3.5 mmΦ and the length is 24.5 mm).

図8 比較例1の鋼材の応力−ひずみ曲線
以上の比較例1で得られた確性試験結果と、それが得られるまでの途中工程における材料の確性試験結果とを併せて、表6にまとめた。
Fig. 8 Stress-strain curve of the steel material of Comparative Example 1
Table 6 summarizes the accuracy test results obtained in the above Comparative Example 1 and the material reliability test results in the intermediate process until it is obtained.

<実施例1と比較例1の比較のまとめ>
以上の結果より、実施例1と比較例1のそれぞれにおいて焼鈍+過時効処理後に得られた材料特性を比較すると、下記の通りまとめられる。
(1).実施例1によれば、主相がフェライトで、第2相が30体積%以上を占める残留オーステナイトからなる2相組織を有する微細組織鋼により、引張強さ(TS)≧1100MPa、伸び(El)≧25%の高強度・高延性であって、かつ、TS×El≧30000MPa・%の高吸収エネルギーを有する高強度鋼材が得られた。
これに対して、比較例1では、引張強さ(TS)、伸び(El)及びTS×Elの全てにわたりこのように優れた高強度鋼材は得られなかった。
(2).実施例1において上記の優れた機械的性質が得られた理由は、当該高強度鋼材のミクロ組織の微細化が、圧延方向に対する直角方向断面において、前記主相フェライトの平均結晶粒径が0.9μm以下であって、前記第2相の残留オーステナイトの平均結晶粒径が0.6μm以下であることによる。これに対して、比較例1では、実施例1にみられる程度のミクロ組織の微細化は達成されていない。
(3).製造方法に関して、実施例1において上記(1)及び(2)項の特徴が達成されるに至った理由は、短時間焼鈍に供した材料のミクロ組織が、圧延方向に対して直角方向断面において、平均粒径が1.0μm以下のフェライトと、直径が、2μm以下の球状化セメンタイトからなる微細組織鋼を供したからである。
これに対して、比較例1では、短時間焼鈍に供した材料に関し、実施例1にみられる程度の微細化された材料を供していないからである。
また、実施例2として実施例1と同一成分であるが、加えて0.045%Nb添加を行った材料についても実験を行い、ほぼ実施例1と同等の組織、特性を得た。若干の差異として実施例2の材料はNb添加の効果により若干、微細組織であるため、延性が5%程高かった。
<Summary of comparison between Example 1 and Comparative Example 1>
From the above results, the material properties obtained after annealing and overaging in each of Example 1 and Comparative Example 1 are compared as follows.
(1). According to Example 1, a microstructure steel having a two-phase structure composed of retained austenite in which the main phase is ferrite and the second phase occupies 30% by volume or more, tensile strength (TS) ≧ 1100 MPa, elongation (El) A high-strength steel material having a high strength and high ductility of ≧ 25% and a high absorption energy of TS × E1 ≧ 30000 MPa ·% was obtained.
On the other hand, in Comparative Example 1, such an excellent high strength steel material could not be obtained in all of tensile strength (TS), elongation (El), and TS × El.
(2). The reason why the above-described excellent mechanical properties were obtained in Example 1 is that the microstructure of the high-strength steel material is reduced in the average crystal grain size of the main phase ferrite in the cross section in the direction perpendicular to the rolling direction. This is because the average crystal grain size of the retained austenite of the second phase is 0.6 μm or less. On the other hand, in the comparative example 1, the microstructural refinement to the extent seen in the example 1 is not achieved.
(3). Regarding the manufacturing method, the reason why the characteristics of the above items (1) and (2) are achieved in Example 1 is that the microstructure of the material subjected to the short-time annealing is in a cross section perpendicular to the rolling direction. This is because a microstructure steel made of ferrite having an average particle diameter of 1.0 μm or less and spheroidized cementite having a diameter of 2 μm or less was provided.
On the other hand, in Comparative Example 1, the material subjected to the short-time annealing is not provided with the material as fine as that in Example 1.
Further, as Example 2, the same components as in Example 1 were added, but the material added with 0.045% Nb was also subjected to experiments, and the structure and characteristics almost equivalent to those in Example 1 were obtained. As a slight difference, the material of Example 2 has a slightly fine structure due to the effect of Nb addition, and therefore the ductility was about 5% higher.

本発明は、建造物や橋梁等の構造物、自動車の足回り鋼材、機械用歯車等部品に使用される鋼材であって、特に高強度かつ高延性で、エネルギー吸収能に優れた厚鋼板や棒鋼・鋼線等の非調質鋼材に関するものである。 The present invention is a steel material used for structures such as buildings and bridges, undercarriage steel materials for automobiles, mechanical gears, etc., and is particularly a steel plate having high strength and high ductility and excellent energy absorption capability. It relates to non-heat treated steel such as steel bars and steel wires.

Claims (3)

化学成分組成が、質量%で、
C :0.05〜0.20%、
Si:1.0〜3.5%、
Mn:4.5〜5.5%、
Al:0.001〜0.080%
P:0.030%以下、
S:0.020%以下、
N:0.010%以下
Nb:0.045%以下
であって、残部がFe及び不可避不純物からなり、
ミクロ組織として、主相がフェライトであり、第2相が30体積%以上を占めるオーステナイトからなる2相組織であり、
機械的性質として、引張強さ(TS)が1100MPa以上で、伸び(El)が25%以上であって、かつ引張強さと伸びとの積(TS×El)が30000MPa・%以上であることを特徴とする強度、延性及びエネルギー吸収能に優れた高強度鋼材。
The chemical composition is mass%,
C: 0.05 to 0.20%,
Si: 1.0 to 3.5%
Mn: 4.5 to 5.5%,
Al: 0.001 to 0.080%
P: 0.030% or less,
S: 0.020% or less,
N: 0.010% or less Nb: 0.045% or less, with the balance being Fe and inevitable impurities,
As the microstructure, the main phase is ferrite, the second phase is a two-phase structure consisting of austenite occupying 30% by volume or more,
As the mechanical properties, the tensile strength (TS) is 1100 MPa or more, the elongation (El) is 25% or more, and the product of the tensile strength and the elongation (TS × El) is 30000 MPa ·% or more. High strength steel with excellent strength, ductility and energy absorption.
前記高強度鋼材のミクロ組織において、前記主相のフェライトの圧延方向に平行な断面の平均結晶粒径が 0.9μm以下であり、前記第2相のオーステナイトの圧延方向に平行な断面の平均結晶粒径が0.6μm以下であることを特徴とする請求項1に記載の強度、延性及びエネルギー吸収能に優れた高強度鋼材。   In the microstructure of the high-strength steel material, the average crystal grain size of the cross section parallel to the rolling direction of the ferrite of the main phase is 0.9 μm or less, and the average crystal of the cross section parallel to the rolling direction of the austenite of the second phase The high-strength steel material excellent in strength, ductility, and energy absorption capacity according to claim 1, wherein the particle size is 0.6 μm or less. 化学成分組成が、質量%で、
C :0.05〜0.20%、
Si:1.0〜3.5%、
Mn:4.5〜5.5%、
Al:0.001〜0.080%
P:0.030%以下、
S:0.020%以下、
N:0.010%以下
Nb:0.045%以下
であって、残部がFe及び不可避不純物からなり、
1200℃で均一に加熱後鍛造により減面率88%以上の加工後、室温まで空冷したもので圧延方向に対する直角方向断面における平均結晶粒径が1.0μm以下であるフェライトと、平均粒子径が0.2μm以下である球状化セメンタイトとからなる微細ミクロ組織を有する鋼材を、650〜700℃の範囲内で2分間以上の加熱を行う焼鈍処理を施すことを特徴とする強度、延性及びエネルギー吸収能に優れた高強度鋼材の製造方法。
The chemical composition is mass%,
C: 0.05 to 0.20%,
Si: 1.0 to 3.5%
Mn: 4.5 to 5.5%,
Al: 0.001 to 0.080%
P: 0.030% or less,
S: 0.020% or less,
N: 0.010% or less Nb: 0.045% or less, with the balance being Fe and inevitable impurities,
After uniformly heating at 1200 ° C., processing after forging area reduction of 88% or more by forging, air-cooled to room temperature, the average grain size in the cross section perpendicular to the rolling direction is 1.0 μm or less, and the average grain size is Strength, ductility and energy absorption characterized by subjecting a steel material having a fine microstructure composed of spheroidized cementite of 0.2 μm or less to an annealing treatment in which heating is performed for 2 minutes or more within a range of 650 to 700 ° C. A high-strength steel manufacturing method with excellent performance.
JP2011091236A 2011-04-15 2011-04-15 High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method Active JP5747249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091236A JP5747249B2 (en) 2011-04-15 2011-04-15 High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091236A JP5747249B2 (en) 2011-04-15 2011-04-15 High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2012224884A true JP2012224884A (en) 2012-11-15
JP5747249B2 JP5747249B2 (en) 2015-07-08

Family

ID=47275380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091236A Active JP5747249B2 (en) 2011-04-15 2011-04-15 High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5747249B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005386A1 (en) 2013-07-09 2015-01-15 独立行政法人物質・材料研究機構 Martensite steel and method for producing same
EP2708610B1 (en) 2011-05-12 2017-09-27 JFE Steel Corporation Vehicle collision energy absorbing member having high collision energy absorbing power, and method for manufacturing same
WO2018110851A1 (en) * 2016-12-16 2018-06-21 주식회사 포스코 Wire rod with excellent strength and ductility and manufacturing method therefor
CN110036130A (en) * 2016-12-08 2019-07-19 株式会社Posco High-tensile steel wires and its manufacturing method with excellent anticorrosive
JP2021038418A (en) * 2019-08-30 2021-03-11 公立大学法人兵庫県立大学 Method for producing superfine ferrite-cementite structure steel, superfine ferrite-austenite structure steel, superfine martensite structure steel and superfine martensite-austenite structure steel
CN114214495A (en) * 2021-10-20 2022-03-22 中国科学院力学研究所 Ultrahigh-strength medium manganese steel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259121A (en) * 1988-04-11 1989-10-16 Nisshin Steel Co Ltd Manufacture of ultrahigh strength steel stock excellent in ductility
JPH01259120A (en) * 1988-04-11 1989-10-16 Nisshin Steel Co Ltd Manufacture of ultrahigh strength steel stock having superior ductility
JPH04333526A (en) * 1991-05-08 1992-11-20 Sumitomo Metal Ind Ltd Hot rolled high tensile strength steel plate having high ductility and its production
JPH05311323A (en) * 1992-05-13 1993-11-22 Sumitomo Metal Ind Ltd Dual-phase steel plate having high strength and high workability and production thereof
JP2007321207A (en) * 2006-06-01 2007-12-13 Honda Motor Co Ltd High-strength steel sheet and its production method
JP2012102346A (en) * 2010-11-05 2012-05-31 National Institute For Materials Science Non-heat treated steel material excellent in strength, ductility and toughness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259121A (en) * 1988-04-11 1989-10-16 Nisshin Steel Co Ltd Manufacture of ultrahigh strength steel stock excellent in ductility
JPH01259120A (en) * 1988-04-11 1989-10-16 Nisshin Steel Co Ltd Manufacture of ultrahigh strength steel stock having superior ductility
JPH04333526A (en) * 1991-05-08 1992-11-20 Sumitomo Metal Ind Ltd Hot rolled high tensile strength steel plate having high ductility and its production
JPH05311323A (en) * 1992-05-13 1993-11-22 Sumitomo Metal Ind Ltd Dual-phase steel plate having high strength and high workability and production thereof
JP2007321207A (en) * 2006-06-01 2007-12-13 Honda Motor Co Ltd High-strength steel sheet and its production method
JP2012102346A (en) * 2010-11-05 2012-05-31 National Institute For Materials Science Non-heat treated steel material excellent in strength, ductility and toughness

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708610B1 (en) 2011-05-12 2017-09-27 JFE Steel Corporation Vehicle collision energy absorbing member having high collision energy absorbing power, and method for manufacturing same
WO2015005386A1 (en) 2013-07-09 2015-01-15 独立行政法人物質・材料研究機構 Martensite steel and method for producing same
CN110036130A (en) * 2016-12-08 2019-07-19 株式会社Posco High-tensile steel wires and its manufacturing method with excellent anticorrosive
WO2018110851A1 (en) * 2016-12-16 2018-06-21 주식회사 포스코 Wire rod with excellent strength and ductility and manufacturing method therefor
CN110088329A (en) * 2016-12-16 2019-08-02 株式会社Posco Wire rod and its manufacturing method with excellent intensity and ductility
EP3556886A4 (en) * 2016-12-16 2019-10-23 Posco Wire rod with excellent strength and ductility and manufacturing method therefor
JP2020509176A (en) * 2016-12-16 2020-03-26 ポスコPosco Wire rod excellent in strength and ductility and method for producing the same
US11512365B2 (en) 2016-12-16 2022-11-29 Posco Wire rod with excellent strength and ductility and manufacturing method therefor
JP2021038418A (en) * 2019-08-30 2021-03-11 公立大学法人兵庫県立大学 Method for producing superfine ferrite-cementite structure steel, superfine ferrite-austenite structure steel, superfine martensite structure steel and superfine martensite-austenite structure steel
CN114214495A (en) * 2021-10-20 2022-03-22 中国科学院力学研究所 Ultrahigh-strength medium manganese steel and preparation method thereof

Also Published As

Publication number Publication date
JP5747249B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP5270274B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
CN102971442A (en) Ultrahigh-strength cold-rolled steel sheet with excellent ductility and delayed-fracture resistance, and process for producing same
JP2012077336A (en) High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
WO2015102048A1 (en) Hot-formed member and process for manufacturing same
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP5747249B2 (en) High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method
JP2012153957A (en) High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP2009173959A (en) High-strength steel sheet and producing method therefor
CN110343970A (en) A kind of hot rolling high strength and ductility medium managese steel and preparation method thereof having lower Mn content
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP6021094B2 (en) High-strength non-heat treated steel material excellent in strength, ductility and toughness and method for producing the same
EP3020844B1 (en) Martensite steel and method for producing same
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
CN114381655A (en) High-strength-ductility cold-rolled QP steel and annealing process and manufacturing method thereof
EP3868909A1 (en) Thin steel sheet and method for manufacturing same
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5747249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250